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THE LARGEST SAMPLE EIGENVALUE DISTRIBUTION IN THE
RANK 1 QUATERNIONIC SPIKED MODEL OF
WISHART ENSEMBLE

BY DONG WANG
Brandeis University

We solve the largest sample eigenvalue distribution problem in the rank 1
spiked model of the quaternionic Wishart ensemble, which is the first case of
a statistical generalization of the Laguerre symplectic ensemble (LSE) on
the soft edge. We observe a phase change phenomenon similar to that in the
complex case, and prove that the new distribution at the phase change point
is the GOE Tracy—Widom distribution.

1. Introduction. The Wishart ensemble is defined as follows [24]:

Consider M independent observation Xi, ..., X)s of an N-variate normal dis-
tribution with mean 0 and covariance matrix X. Here the values of the normal
distribution can be real, complex or even quaternion. If the variables are complex
or quaternionic, then the definition of the mean is as usual, and the (co)variance is
defined as

cov(x,y) =E((x —X)(y — %),

where x (resp. y) is the mean of x (resp. y), and * is the complex or quater-
nionic conjugation operator. Then ¥ is a real symmetric/Hermitian/quaternionic
Hermitian matrix. Without loss of generality, we assume X to be a diagonal ma-
trix, with population eigenvalues | = (l1,...,Iy). If we put the above data into
an N x M double array X = (X1 : --- :Xp7), then the positively defined real sym-
metric/Hermitian/quaternionic hermitian matrix S = ﬁXX* is the sample matrix
and its eigenvalues A = (A1, ..., Ay) are sample eigenvalues. (X* is the transpose,
Hermitian transpose or quaternionic Hermitian transpose of X depending on type
of X’s entries.) The probability space of A;’s is called the Wishart ensemble.

It is a classical result [2] that (in the real category) if M > N, A;’s are good
approximations of /;’s. But if M and N are of the same order of magnitude,
that is, M/N = y> > 1 and M and N are very large, the problem is subtler.
The simplest case with ¥ = I, the white Wishart ensemble, is the Laguerre en-
semble, well studied in random matrix theory (RMT) under the name LOE, LUE
and LSE—they are abbreviations of Laguerre Orthogonal/Unitary/Symplectic En-
semble, and GOE, GUE and GSE appearing later are abbreviations of Gaussian
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Orthogonal/Unitary/Symplectic Ensemble—over all the three base fields, respec-

tively.
Naturally, the next question is: If X is slightly deviate from /, such that /; =
l4+ai,i=1,...,k,and [y =--- =Iy = 1, what is the distribution of the A;’s?

This is called the spiked model [19] and k is defined as its rank.

If M and N are very large and k and a;’s are small constants, the density of
A;’s is the same as that in the white Wishart model, proved in [22] in real and
complex categories. The distribution of the largest sample eigenvalue, however,
may change. For the complex ensemble, Baik, Ben Arous and Péché [4] solved the
problem completely. They show that if max(a;) is smaller than a threshold, then
the distribution of the largest sample eigenvalue is the same as that in the white
ensemble, which is the GUE Tracy—Widom distribution, but if max(a;) exceeds the
threshold, that distribution is changed into a Gaussian whose mean and variance
depend on max(a;). Furthermore, in the case that max(a;) equals the critical value,
they find a series of new distributions, indexed by the multiplicity of max(a;).

In the real category, which is practically the most important and mathematically
the most difficult, much less is known. In this paper I solve the distribution of the
largest sample eigenvalue for the rank 1 spiked model in the quaternionic category.
I believe the similarity of LOE and LSE [13] suggests that the solution to the
quaternionic spiked model is an intermediate step toward the solution to the real
one.

1.1. Some known results for the largest sample eigenvalue in white and rank 1
spiked models. In latter part of the paper, we concentrate on the distribution of
the largest sample eigenvalue in the rank 1 spiked model, so denote a to be the
only perturbation parameter.

The result in the complex category is complete. First we recall the result for the
complex white Wishart ensemble.

PROPOSITION 1. The distribution of the largest sample eigenvalue in the com-
plex white Wishart ensemble satisfies that, max(A) almost surely approaches [15]
(1+ y_1)2 with fluctuation scale M2 and [11, 18]

y M2/

LT <
L+ )3 =
where Fgug is the GUE Tracy—Widom distribution.

Mlim P((max(k) —(+yhH?) T) = Fgue(T),

The GUE Tracy—Widom distribution is defined by Fredholm determinant [11,
29]:
Foue(T) =det(1 — Kairy(§, 1) X(T,00) (1))
where x(r,00) 18 the step function:

. 1’ if ne (Tv OO),
X(T.00) (M) = 0, otherwise,
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and K ajry(§, n) is the well-known Airy kernel defined by the Airy function Ai(x):
0
(1) Kairy(§, 1) =/0 Ai(§ +1) Ai(n+ 1) dt.

The Airy function can be defined in different ways, and here we take an integral
representation suitable for our asymptotic analysis [4]:

-1 3
@) Aig) =5 [ e,
2mi Jroo
where I'*® = I'{° U T'S° U T'$®, which are defined as (see Figure 1)
I ={—re™/3|—0c0 <1 < —1}, I ={e™ -1 <r <1},

I = {131 <t < o).

The breakthrough in the complex category is by [4], which is for any finite rank
spiked model. In the rank 1 case, it is:

PROPOSITION 2. In the rank 1 complex spiked model:

1. If =1 <a <y}, then the distribution of the largest sample eigenvalue is the
same as that of the complex white Wishart ensemble in Proposition 1.

2. Ifa=y~", then the limit and the fluctuation scale are the same as those of the
complex white Wishart ensemble, but the distribution function is

. 1o yM2/3
3) MlgnooIP’((max()») —(14+y7)7)- RESSLE < T) = Fguei(T).

FiG.1. T'*.



1276 D. WANG

3. Ifa > y~!, then the limit and the fluctuation scale are changed as well as the
distribution function, which is a Gaussian:

lim }P’((max(k) —(a+ 1)(1 + %)) . M < T)
M= o0 ysa (a+1)y/1 —1/(y%a?)

4)
= /T —1 e 2 dr.
—00 A/ 2
The function Fgyg; occurring in (3) is defined similarly to Fgug [4]:
(5) Fougi (T) = det(1 — (Kairy (€. 1) + s (&) Ai() x(7.00) (M)

where s(1 is one of a series of functions defined in [4], and has the integral repre-
sentation
) 1 17353 ] ) ©
sV ==—|[. e —-dz and sYV(n)=1- Ai(t) dt,
2mi Jroo Z n
where ['® = I:“fo U IZ‘SO U Iz‘go, which are defined as (see Figure 2 ¢ is a positive
constant, used later)

f‘?oz{—te”i/3‘—oo<l‘§—i}, f‘goz{fetni
2 2

1 5}
—<r<>}
37— 73

f‘goz{teSNi/3’§§t<oo}.

REMARK 1. The kernel in (5) is not in trace class, but the Fredholm determi-
nant is well defined and we can easily conjugate it into a trace class kernel. Several
kernels below are in similar situations.

FIG. 2. T,
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In the real category, we have the result for the real white Whishart ensemble:

PROPOSITION 3. The distribution of the largest sample eigenvalue in the real
white Wishart ensemble satisfies that, max(A) almost surely approaches [15] (1 +
¥y~ 12 with fluctuation scale M~%/3, and [19]

y M2/3

- <
A+ =
where Fgog is the GOE Tracy—Widom distribution.

lim P((max(,\) —(14+yH?Y. T) = Fgog(T),

Here the function Fgog is defined by the Fredholm determinant of a matrix
integral operator [30]:

Fgoe(T) = \/det(l — PgoEe(§,n))

and

Si(&, SD) (¢,
PGOE<s,n>=x<r,oo><s)( (&) 1€ )

IS1(€,n) — Ssgn(x —y)  Si(n,&,) ) X(T,00) (M),

where

1 00 1
$1(6.1) = Kainy 6,1 — 5 AI©) / A d + 5 Ai(6),
n

0 1
SD1(§,n) = —%KAiry(E, n) — 5 Ai§) Ai(n),

o0 1 o0 o0
IS1¢&,n) = —l_ Kairy (2, m)dt + 5[;‘ Ai(z) dt/ Ai(r)dt
n
1 oo . I
- 5/5 Ai(z)dt + 5/17 Ai(r)dt.

REMARK 2. We have a more convenient form of Fgog [12]:

(©6) Fok = /det(1 — (Kairy (6. 1) + s (&) AL0) x(1.00) ().
so [4]

FGue1(T) = (Fgor(T))>.

In the real spiked model, Baik and Silverstein [8] compute the almost sure limit
of the largest population eigenvalue, which is the same as that in the complex
category, and Paul [25] proves the Gaussian distribution property in the case a >
y !, which is similar to (4). Neither of their methods can find the distribution
function when a < L.

For the quaternionic white Wishart ensemble, we have:



1278 D. WANG

PROPOSITION 4. The distribution of the largest sample eigenvalue in the
quaternionic white Wishart ensemble satisfies that, max(\) almost surely ap-
proaches (1 4+ y~Y)? with fluctuation scale M~2/3, and [14]

20y
. ﬁ =< T) = Fgse(T),

where FGsE is the GSE Tracy—Widom distribution.

A/jli_r)n@l[”((max(k) —(14+y™H?

Here the function Fgsg is defined by the Fredholm determinant of a matrix
integral operator [30]:

Fase(T) = /det(I — P(5.m))

and R .

N S4(&, SDy4 (&,

P&, n) = XT,00(8) (If?j((i }Z?)) §4?n(2n))) X(T,00) (1),
where

—~ 1 1 00
S4(6. 1) = 5 Kainy €. ) — 7 Ai(®) / Air) dt,
n

~ 19 1
SD4(§,m) = _EEKAiry(fy n) — ; Ai) Ai(n),

- 1 roo 1 poo o
IS4(&E,n) = _E/g Kairy (2, m)dt + Zfé Al(t)a’t/ Ai(t) dt.
n

1.2. Statement of main results. The main theorem in this paper is:

THEOREM 1. In the rank 1 quaternionic spiked model:

1. If =1 <a <y~ then the distribution of the largest sample eigenvalue is the
same as that of the quaternionic white Wishart ensemble in Proposition 4.

2. Ifa =y~ then the limit and the fluctuation scale are the same as those of the
quaternionic white Wishart ensemble, but the distribution function is

A/Ilg‘IlOOP((maX()») — <T> ) : m = T) = Fgsg1(T).

3. Ifa > y~\, then the limit and the fluctuation scale are changed as well as the
distribution function, which is a Gaussian:

lim P((max(k) —(a+ 1)(1 + %)) . 21 < T>
M= o0 veall (a4 1)/1—1/(y2a?)

e_tz/zdt.

[
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Here the function Fgsg is defined by the Fredholm determinant of a matrix
integral operator:

Fse1 (T) = /det(I — P (€, )
and

Sa€,m)  SDa(&,m)

P& = X100 ) | = S
(&, m) = x, )(5)<IS4(5,;7) S4(n,§,)

) X(T,OO) (77)7
where

= -~ 1 —_— o~
Sa€.m) =846, m) + S AWE),  SDa(§. ) =SDa (8. 1),

Bam=Bum—3 [ Aiwdr+ [ Aiwar.
2 Jg 2y
Although the distribution Fgsg] seems to be new, we have that

THEOREM 2.

Fgsg1(T) = Feoe(T).

1.3. Relation with other models and conjecture on the rank 1 real spiked
model. The results of Theorems 1 and 2 give a phase transition pattern Fgsg—
Fcoe—Gaussian as the parameter a increases from —1 to +oo. This pattern ap-
pears as limiting distributions indexed by a parameter in several other combi-
natorial and statistical physical models, for example, the lengths of the longest
monotone subsequences of random involutions with condition on the number of
fixed points [6] and the symmetrized last passage percolation [7] studied by Baik
and Rains. In semi-infinite totally asymmetric simple exclusion process [26] stud-
ied by Prihofer and Spohn, and the symmetric polynuclear growth process [5]
studied by Baik et al., 2-dimensional phase transition diagrams are obtained, and
the 1-dimensional Fgsg—Fgog—Gaussian pattern is contained in both of them.

Although there is no model which can give hints to the rank 1 real spiked model,
it is plausible that it has a phase transition from Fgog to Gaussian for the limiting
distributions of the largest sample eigenvalue as a goes across y ~'. Based on the
duality of orthogonal and symplectic models from the Virasoro structure’s point of
view, we have:

CONJECTURE 1. In the rank 1 real spiked model:

1. If =1 <a < y~!, then the distribution of the largest sample eigenvalue is the
same as that of the real white Wishart ensemble in Proposition 3.
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2. Ifa = y~!, then the limit and the fluctuation scale are the same as those of the
quaternionic white Wishart ensemble, but the distribution function is

, y+ 1\ y(M/2)*3
M]l_r)n@[[”((maX()») — (T) ) : m =< T) = FGse(T).

3. If a > y~!, then the limit and the fluctuation scale are changed as well as the
distribution function, which is a Gaussian (proved by Paul in [25]):

e

/T 1 _p2p
= — dt.
—o0 /27

1.4. Structure of the paper. In Section 2 we use combinatorial techniques to
express the joint distribution function of {A;}, and then by skew orthogonal poly-
nomial techniques express the distribution function of max(2 ;) in the square root
of a Fredholm determinant of a matrix integral operator. In Section 3 we do as-
ymptotic analysis on the kernel of the matrix integral operator, and prove the three
cases of Theorem 1 in the three subsections, respectively. Section 4 contains the
proof of Theorem 2. In the proof of Theorem 1, we use some trace norm con-
vergence results which generalize the old result on the LUE [11], and we give a
method of proof to them in the Appendix.

2. The Fredholm determinantal formula.

2.1. The joint distribution function. In this subsection, we prove the follow-
ing:

THEOREM 3. The joint probability distribution function of A in the quater-
nionic spiked model is

Loy o _ A
) POy =GV [TGM 0 e2hm),
j=1

In this paper, C stands for any constants, and here

1 0 1
A 1 AN 1
22 2 22 21
700 1 1 v N
V =
A%I\" -2 N — é)fo -3 Aff’ -2 N — Z')A%\,N -3
ea/(l+a)2Mkl ﬂﬂZMea/(lﬂz)ZM)\l . ea/(l+a)2MAN ﬁZMea/(H—a)ZMAN
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the determinant of a 2N x 2N matrix whose (2N, 2k — 1) entry is e®/(1T@)2Mk
(j,2k — 1) entry is )x,]{_l for j=1,...,2N — 1, and 2ith column is the derivative
of the (2i — 1)st column. V#(1) is a variation of the V (1)* appearing in the LSE
(see [23] and (9)).

For the Wishart ensemble defined in the introduction section, we first have the
distribution function for the sample matrix in the N x N positive definite quater-
nionic Hermitian matrix space [3]:

P(S) = %e—Wf’*Tr(E‘S (det §)2M=N)+1.

REMARK 3. Due to the noncommutativity of the quaternions, det S is not well
defined in the usual way. Since § is quaternionic Hermitian, we can diagonalize
it into a real-valued diagonal matrix by the conjugation of a quaternionic unitary
matrix U, and define

detS = l_[ eigenvalues of USU™.
N

REMARK 4. In the distribution function in real and complex categories of
sample matrices, we do not need to take the real part of the trace, since the trace is
already real. Unfortunately, this does not hold in the quaternionic category due to
its noncommutativity, and luckily ) Tr behaves better. [For example, R Tr(AB) =
RTr(BA), but Tr(AB) # Tr(BA) in general.]

The distribution function for sample eigenvalues A, the eigenvalues of S, is

1 al _ RS- OA O~
(8) P()\.) — E(V()"))4 1_[ kf(M N)+1 / e—ZM.hTI'(E 1QAQ 1) dQ,
j=1 QeSp(N)

where we integrate on the compact symplectic group with the Haar measure,
V(L) = ]_[i<j(ki — Aj) is the Vandermonde, and A = diag(Ay, ..., Ay). (See [23]
for a derivation of the similar GSE case.)

If the perturbation parameter a =0, then [y =l =--- =1y =1,
\ —1 —1 N
/ e 2MATHETI A0 45 1—[ o—2M3
QeSp(N) j=1
and
1 AT (2N
9 PG)=Z(VO) Hl(x,- e M),
j:

is the standard LSE [23].
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Generally,
/ e—szTr(z-'QAQ—l)dQ
QeSp(N)
(10) _ e—zMsnTr(IQAQ*l)e—ZMmTr((E*‘—I)QAQ*I)dQ
QeSp(N)
N
- e—ZMAj] ZMATHU=E7H0A07Y 49

j=1 Q€eSp(N)

Then by the integral formula of the quaternionic Zonal polynomials [17], we get

/ AMATHUI=2"H0eA0™) 40
QeSp(N)

(11) ‘

B i QM) 21—z HelP ()

- . 1 2 k)

=0 o= Py
kkj

where C,El/ 2 (x1,...,xn) is the N variable quaternionic Zonal polynomial, that is,
the Jack polynomial with the parameter « = 1/2 (see [21] and [27]) and the C-
normalization [10], so that [k = (k1, ..., k), k1 = ky>--->k; > 0, thenl(x) =1]

S eI xm) = (@A)

l(k)<m
Kk

In the formula, a symmetric polynomial of a matrix is equivalent to the symmetric
polynomial of its eigenvalues, so

c/2 _y-1 :c<1/2><L,o,...,0>.
e ) K 1+a

1/2)(1 — »~ 1), we simply find

Since all variables except for one vanish in C,E
(12) c/2( - 2—1)|,(K)>1= 0.

We have [27]

J
(0 0) = (1)
J 1+a 1+a

and since the number of variables is N [27]

j—1
[TeN+i),

i=0

(1/2)
ci? ..

TS
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so with (11) and (12), we get

/ AMATHU=27H0A07Y 4
QeSp(N)

1/2 _ 2
ey el st

>

12
Jj=0 C((j)/ "(In)

)

:°° A1 (a 2M> 2 p).

ST eN+i)\1+a

In [27] there is an identity
N 1

= (1/2) :
2+ DCGT M = ]1:[1 =02

Jj=0
Comparing it with the well-known identity for Schur polynomials

dospHmr =T] s
j=0 j=1 J
we get the identity
. 1
(13) (+ DCHP () =5y At Az 2o, Ay A,

1283

with each A; appearing twice as variables of the s ;. For notational simplicity, we
denote the right-hand side of (13) as §(;)(A), which is a plethysm [21]

5y (A) = s(jy 0 2p1(A).

Now we get

/ AMATHU-27h0A0™) 4
QeSp(N)

s 1 a J
ZM) i (A).
i 0]‘[/ O(2N+,)<1+a )

Then we need a lemma to simplify (14) further.

(14)

LEMMA 1.
1 0 1
A 1 AN 1
A2 21 A% 21
1 1 N N
SpHd)y =1 . : :
AN=2 QN —2)a3N =3 e AN (N —2)a3N 3
) A%Nﬂ‘—l ON+j— 1)A2N+; 2 A?VNﬂ‘—l ON+j— 1)A2N+1 -2

x V(L)
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with the (k, 2 j — 1) entry of the matrix being a power of A j with the exponent k — 1
ifk#2N and 2N + j — 1 if k =2N, and the (k,2j) entry being the derivative of
the (k,2j — 1) entry with respect to A;.

To prove this lemma, we need the well-known fact (see [23]), proven by
L’Hopital’s rule

1 0 e 0

, A 1 Y 1
(16) voy'=| | ; i : ,
AMV=L N —Dath=2 L AN o - a2

with the (k,2j — 1) entry being )J;_l and the (k,2j) entry (k — I)A];_z.

PROOF OF LEMMA 1. Applying the L’Hopital’s rule repeatedly with respect
to xp;,i =1,..., N, we get the identity

1 0 1 0
A 1 AN 1
22 24 % 21N
AIN=2 (N —2)33V 3 P (2N —2)23N -3
)\%N-%—j—l (2N+j71))ﬁ1v+j—z )Li]N+j—1 (2N+1*1))\iJN+j_2
1 0 1 0
/ Al 1 AN 1
ABNTL QN — a2 3N o — 13N
1 1 1 1
X X XN — X
aN 1 2 2N—1 2N
B 0Xx20Xx4 -+ 0X 2.72 2.72 2.72 2.72
2044 2N xlN XzN )‘211:{71 sz
x12N+j—1 X§N+,—1 x;[]\\]/i—{—l x;][\\]/-%—j—l
1 1 1 1
X X XN — X
/ aN 1 2 2N—1 2N
0xp 0xq---0X 21;/72 2/;172 21;/72 2/;172
2044 2N Ral R o XaN— XoN
ON4j—1  2N+j-1 ON4j—-1  2N+j-1
1 X2 T Yan-d 2N
X1 =X2j = A

=s(y(A1, A1, A2, A2, .. AN, AN) =55 (A),

from the matrix representation of Schur polynomials, and now use (16) to get the
compact formula (15). O
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Substituting (15) into (14), we get

V(k)4/ AMATHI=3"h0A0™) 4
QeSp(N)

1 0 e 0
Al 1 .- AN 1
23 2h1 ey 2hy
MNZZ QN =23V 3N o )33
a17) p(r1) p'(h1) o p() P ()
1 0 1 0
M 1 AN 1
1 A2 241 A% 2hn
AIN=2 @N -2V A2 (2N —2)A3N -3
ea/(l+a)2MM ﬁzMea/(H»a)QMA] ea/(lJra)ZMAN ﬁzMea/(lJra)ZM}"N
1 -~
==V,
where

& 1 a J .
p(x):Z = : <1 2M) K2N+j-1
D[y @N +iy N\ +a

2N-2 j
_ (2N—1)!2 (eortians "y i( a 2Mx>j :
(a/(1+a)2M)2N- j=o J\l+a

and if k # 2N, the (k,2j — 1) entries in both matrices are )J;_l, and the (k,2j)
entries are (k — 1))»]]‘-_2, and the 2N, 2i — 1 entry in the former (latter) matrix is
p(A) (resp. e/ 1+ D2MAiy and the 2N, 2i entry p’(A;) (resp. ﬁZMe“/(H")ZMM).

PROOF OF THEOREM 3. Formulas (8), (10) and (17) together give the re-
sult (7). U

2.2. The Pfaffian and determinantal formulas. With the formula (7) ready to
use, we apply the standard RMT technique to get the distribution formula for the
largest sample eigenvalue, in the same spirit as the solution of the LSE. Our process
below is closely parallel to that in [31] to the LSE.

First, we find a skew orthogonal basis {¢g(x), ¢1(x), ..., @an—1(x)} of the lin-
ear space spanned by {1, x, x2, ..., x2N =2 a/(+a)2Mx} \We require that the @;j(x)
is a linear combination of {1, x, x2, ..., xj} if j <2N — 1, while poy—1(x) can be
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arbitrary, with the skew inner products among them

(0 (), o)) = /0 () ()@ () — @ ()i () > M=+ =2M g

rjj2, if jisevenand k= j + 1,
=1 —rk/2, ifkisevenand j =k + 1,
0, otherwise.

Then we can reformulate the distribution function of A as

@o(A1) o) o @o(AN) @o(AN)
PO :é <ﬂ1(.)»1) <ﬂ’1(-k1) Sﬂl(')&N) (ﬂi(‘)MN)
on—1(A1) @y (A1) - oan—1(AN)  @ay_ (AN)
N
(18) X H(ki(M_N)He_ZMM)
j=1
Yo(r1) Vokr) - Yo(An) Vo(AN)
L i) Yia) e i) Yi(AN)
Scl : : 2]
Von—1(A1) Yoy (A1) oo Yan—1(AN) Wiy (AN)
where
(19) i (x) = @i (x)x MV H 2= M

For an arbitrary function f(x) on [0, c0), by the formula of de Bruijn [9],

Vo (A1) Vor) - Yo(Aw) Vo(An)
/‘X’m/o" Y1 (A1) via) - () V1 (An)
0 0 : : : :
Yon-1(A1) 1pé/\/_1()¥l) o Yan—1(AN) ‘/féN_l()MN)

(20)

N
x [T(1+ f()dri = CPE(P(1 + f)),
i=1

where P(1 + f) is a 2N x 2N matrix, whose entries depend on 1 + f in the
following way:

(PU+ )= /O S OV 0 — W Y ) (1 + £()dx.



QUATERNIONIC WISHART 1287

Now we define a matrix Z as

0 ro
—ro O
0 n
7 = —I 0 ,
0 rN—1
—rN—1 0
with
k/2—1, ifkisevenand j =k — 1,
Zik=1 —Tjn2-1, if jisevenandk =j — 1,
0, otherwise,
and define for j =0,..., N — 1, = Z "', that is,
2j+1(x) 2j(x)
00 = — L2 g0 = 28
rj rj

So we have

(PA+ )= [ W@V 0 = ¥ i1 () da
[T W v 0 = ¥ v (0) f @

=Zjk +f0 (Y1) () = ¥ ) Pr—1(x)) f (x) dx.
And if we denote Q(1+ f)=Z~'P(1+ f), then

O+ 1) jx =8+ [~ (1100 =) 1 (0) F (@)

If we choose f to be —x(7,0), then the integral on the left-hand side of (20),
after multiplying a constant, is the probability of all A;’s smaller than 7. In lat-
ter part of the paper, we abbreviate x(r,o0) t0 x. So we get for a T-independent
constant

P(max(2;) < T)=CPf(P(1 — x)),
and
(P(max (i) < T))* = C*det(P(1 — x)) = C>det(Q(1 — x)).
In linear algebra, we have the determinant identity

(21) det(/ — AB) =det({ — BA),
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for A an m x n matrix and B an n x m matrix, but the identity still holds in infinite
dimensional settings [16]. Letting det mean a Fredholm determinant for matrix
integral operators, we describe a setting due to Tracy—Widom [31].

If A is an operator from L2([0, 00)) x L%([0, 00)) to the vector space R2N with

A<f1g;)J :/0 X(x)’?j—l(x)g(x)dx—/o X(x)n’j,l(x)h(x)dx,
and B is an operator from R2N to Lz([(), 00)) x Lz([O, 00)) with

2N
¢l Y a1 (D)X (x)

. _ | k=1
B . - 2N 9

N Zcmﬂk—l(x)x(x)
k=1

then
I —AB=0( —y)

and

o S4(x,y)  SD4(x,y)
I—-BA=I X(x)(m(x,y) S4<y,x>>X(”’

where S4(x, y), ISa(x, y) and SD4(x, y) are integral operators whose kernels are

2N—-1

Sa(x,y) = Z ¥ (y)

.
(=)

ggz

hl
—( Y2 Y2 41(0) + 9541 () Y2, (1),
ry

j=0
2N—-1
SD4(x,y) = Y —¥;()n;(y)
j=0
1 / /
= —(sz(x)‘/fzj+1()’) 1//2j+1(x)1/f2j()’)),
j=0"
IS4(x,y) = Wj(x)nj(y)

i WME’

1
—( V2 () V2j41(0) + V241 (0) V2 (),
rj

0

~.
Il
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2N—-1

Sa(y. x)= Y =¥ (m;(»)
(23) -

—~ 1
Z — (Y2 OV (9) — V241 ()W (1))
j=0 J

REMARK 5. It is clear that the nomenclature of SD4(x, y) is due to the fact
that SD4(x, y) is the negative of the derivative of S4(x, y). But IS4(x, y), which
gets its name in the same way in earlier literature in GSE (e.g., [30]), in our prob-
lem may not satisfy the equation

o0
IS4(x,y) = — / Sut. y) dt.

since the integral on the right-hand side may diverge.

In conclusion,

Sa(r.y)  SD4(x.
(P(max(A;) < T))* = C2 det (1 — X @) ( IS‘;(();’yy)) 54‘2(; xy))> x(y)) ,

and we can find that C? = 1 by taking the limit 7 — oo. We define a 2 x 2 matrix
kernel as

B Sa(x,y) SDa(x,y)
PT(X,y)—X(x) (IS4(_x,y) S4(}’,x) ) (y)

_ ( x)Sa(x, y)x(y)  x (1)DSalx, y)x(y))
X IS4, ) x(v)  x(x)Sa(y, x)x ()

then we have

(P(max(A;) < T))* =det(I — Pr(x, y)).

2.3. Sa(x,y) in terms of Laguerre polynomials. In manipulation of skew or-
thogonal polynomials, we take the approach of [1], and all classical orthogonal
polynomial properties are from [28].

Since Laguerre polynomials by definition satisfy the orthogonal property

|
/ L L0 e dx _ G+t 5k,
0 Jj!

and they have the differential identity [we assume L Ela) (x)=0ifn <0]

(24) x%L;‘”(x) =nL®x) -+ )L, (),
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it is easy to get that

:/ (L@(M N))(ZM ) L<2(M M) QM)
0

L(Z(M N))(2M ) L(Z(M N))(ZMx)>

(2M=N)+1 ,—2Mx 4

1 2(M—N)+1 ¢ . 2UM — N))!
<_> (J+ .( ))’ ik,
M 2M—N)+1 =Dt
= 1 - k+2(M — N))!
—(—) (k+ )), ifhk=j+1,
oM (k — 1)!
, otherwise.
So we can choose for j =0,..., N — 2,
(25) (x) = i ﬁ 2] ) @0 o
iX) = s — X),
= LA\ =y
(26) 92j41(x) = —Lgi.%N”(zMx)
and
QN rj= (L)Z(M_N)“ Qj+2M-N)+ D! L 2k —1
7 \em @) iy 2k+2(M — Ny

We can also choose

N—1/ k .
2i —1 Q(M—N))

_ = — | L 2Mx),
YaN—2(x) k§O<||21+2(” N)) 2%k (2Mx)

but oy —1(x) is not a polynomial and needs to be treated separately.
By the Rodrigues’ representation

1 d!
n!dxn
and repeated integration by parts, we get for n > 0

(eu/(H-a)ZMx’ LEZZ(M—N)) @Mx)),

xae—folOl)(x) — (e—x n+oc)’

X

_ (1 + a)Z(M_N)+1 ((_a)n—l—l (n+2(M — N) + 1)!
oM

n!

o (n+2(M — N))!)

- (=a) n—1)!
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and

(eo/A2Mx [ QOI=ND) 3 pp0y) _(

1 2AM—N)+1
+”> a(2(M — N) + 1),

2M
so that
(ea/(l+a)2Mx’ 02 (),
__(1+a>2(MN)+la2j+1 (2j +2(M — N) + 1)! li[ 2%k — 1
- \2Mm 2! i 2k +2(M = N)
and
<ea/(l—|—a)2Mx’ g02‘/__‘_1()6»4
_ _(1 + a>2<M—N>+‘ (a2j+2 (2j 4+2(M — N) +2)!
2M 2j+ 1!
Y 2j+2(M—-N)+ 1)!)
@2n! '
Now by the skew orthogonality, we can choose
@an -1 (x) = TR =y = (et TFO2ME, o )y o2 ()
j=0"7
— (e/HO2ME g (X)) g 2j41(X))

N=12i+2(M —N)

— (1 4a)*M-NH 2N =2 TT 1 PaN—2(x)
j=1 e
IN-2
= /M _ (] | g 2(M=N)+1 3 (_a)jLS_Z(M—N))(ZMx)
j=0

and

(1 +a)2<M—N>+1 SOV 07,7 S DY R ]
rN-1=

2M (2N—2)!k1:[12k+2(M—N)'

Now, we write S4(x, ¥) as Saq(x, y) + Sap(x, ¥), where

(28) Saa(x,y) =Y — (=2, (V2j41 () + V241 ()2 (1)
j=0"J
and
1
(29)  Sap(x,y) = E(—%N_z(xwm_l ) + Yoy 1 () Yan—2()),

and simplify them separately.
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The formula (28) of our S4,(x, y) is also the formula for S4(x, y) in the LSE
problem, with parameters M and N — 2, and has been well studied. For complete-
ness we derive its Laguerre polynomial expression here, following [1].

By the differential identity (24) and the identity

nL@(x)=(—x+2n+a - LY () = (n+a — DLY,(x),
we get, remembering the definition (19), the telescoping sequence

, [k 2i — 1
v =2\ 550

k=0 \i=1

d _
x (M —~N+1/2— Mx +xd—>L§§fM N))(ZMx))
X

j .
2i — 1
Q(M~-N))
I m((zk + DLy 7 (2Mx)

(30)
— 2k +2M — N)LGM N 2mx))

1 li[ 2% —1
C 2\ 2k+2(M — N)
x (2j + 1)L§§(+M[N”(2Mx)xM—N—1/2e—Mx

and
(2(M—N))

d
Yo (x) = —(M — N+ 1/2—Mx+xE>L2j+l

X (2Mx)xM-N=1/2=Mx
1 _
31) =—5(@j+ LSS @Mx)

—(2j+2(M —N)+ 1)L§§(M*N”(2Mx))

% yM—N=1/2 ,—Mx

Therefore, if we substitute (27), (30) and (31) into (28), we get after some trick,

M=N+1/2 ,~My

S4a(x,Y)= y

l(2M)2(M—N)+1XM—N—1/26—M)C
2

N2 it

: LM @pp) LEMN) apy)

jgg) (j+2M—-N)! /
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QN =2 (N=Z12j+2(M = N)
(5 )

2M -2)! b 2j—1

2(M—N
x LEM N QM x)pan 2 () .

Furthermore, we can simplify ¥»y_2(x). Since for j #% 2N — 1 [if we define
@j(x) and then ¥ (x) for j > 2N — 1 by the formula (25) and (26)]

o
[ v = vy (v ) dx =0,
we get for j 2N — 1, using integration by parts,
o0
[ ¥ a L PH Y @M MV M <,
0

So by the orthogonal property of Laguerre polynomials, we get
2(M—N “N—1/2 —
Vhn_a () = CLGM M QM) M=N=1/2=Mx,
and we can determine that
oN -1 21
C= J

2 E] 2j+2(M —N)

without much difficulty. Together with the fact limy_, oo Y2ny—_2(x) =0, we get
N —1N=H 21
a0 = 11:[1 2j +2(M — N)

o0
x [ MNR M G ) .
X

Now, we can write S4,(x, y) as Saq1(x, y) + S4q2(x, y), where

1
Saar (x, y) = 5 @MY=
N2 J! Q(M—N)) M—N—-1/2 —M
(32) X y _ L7 Mx)xM N T s M
; G +2(M— N

« LS'Z(M_N)) (2My)yM—N+1/2e—My

and
1 41 @N =)
s y) = = (2M)2M—N)+
4a2(X, ) = 72M) M —2)!
(33) x LM M) M =N =12 M

o0
x [T MN M O Q) i
y
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Finally,
1/ 2M \2M=+l 2N — 1!
Sap(x,y) = ——( ) g-en-n &V D!
2\1+a QM —1)!
(34) x LG M N2y ()

0
+ Yoy () f LEMND g1y M-N=1/2g =M1 d;},
y

and we can take the asymptotic analyses of Si,1(x, y), Saq2(x,y) and Sap(x, y)
separately.

3. Asymptotic analysis. In order to consider the rescaled distribution prob-
lem, we wish to find the probability of the largest sample eigenvalue being in the
domain (0, p + gT]. We can put the kernel in the new coordinate system [after a

conjugation by (q10/2 q91 » )], and get
(B(max(i) < p+ 7))’ =det (1= x0 (FE 200D )
= det(I — Pr(&,m),

where as L2 functions,

(35) SDa(&, ) = q*SDa(x, Y)|x=p+q-
y=p+qn
(36) S48, 1) = q54(x, V) |x=ptqt
y=p+qn
(37) IS4(En) = 1S40x, ¥)Le=pre
y=p+qn
and

S4&,m)  SDa(&, )
Baom Sa(n €) )X(’”'

In this section, we want to prove that for fixed y > 1 and @ > —1, we can choose
suitable pjs and g)s depending on M, so that for any T,

Jim (P(max(3) < pyr + guT))’ = Jim det(1 = Pr(&.m) = fa(T),

ﬁT@,n):x(s)(

where f, is a function to be determined.

To prove the convergence of Fredholm determinants, we may use that Pr(€,n)
is in trace class for any M and converges to a certain 2 x 2 matrix kernel in trace
norm. Equivalently, we may use that each entry of Pr (&, n) is in trace class and
converges to a scalar kernel in trace norm. It turns out later that the Pr(€,n)’s may
not satisfy these requirements, but certain conjugates do.
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Since the IS4(x, y) and DS4(x, y) are of the same form as S4(x, y), we only
show the asymptotic analysis of S4(x, y), and state the result for the other two, for
which the arguments are the same.

3.1. Proof of the —1 < a < y~! part of Theorem 1. Incase —1 <a <y},

_ ()P
yemy?s

4a, 4al, 4a2 and 4b; the definition of §* (&, n) in (38) is only used in Sections 3.1
and 3.2]

we choose py = (1 + )/_1)2 and gy and denote [here * stands for 4,

< (14 y)*3
(38) S«(§.m) = WS*(X, )’)|x:(1+y—1)2+(1+y)4/3/(y(2M)2/3)5 .

y=(14+y~D2+1+9)*3/(y 2M)?/3)n

S44(x, y) is the formula for the upper-left entry of the 2 x 2 matrix kernel of the
LSE problem with parameters M and N — 1, and its asymptotic behavior is well
studied [14]. We want to prove that as M — 00, S4,4(x, y) dominates S4(x, y) in
the domain that we are interested in, and so naturally the distribution of the largest
sample eigenvalue in the perturbed problem is the same as that in the LSE problem.
(The difference between N and N — 1 is negligible.)

Saq1(x,y) is almost the kernel for the LUE problem with parameters
2M — 2 and 2N — 2, besides a factor /y/x/2. From a standard result for LUE
[11], x7 (&€ )§4a1 (&, n)xT(n) is in trace class and converges in trace norm to half of
the Airy kernel

- 1
(39) A}igloox(é)S4a1(E, mxm) = EX(S)KAiry(S, mxm).

More discussion see the Appendix.
For the S442(x, y) part, we also have in trace norm [14],

~ 1 00
(40) Jim x (§)Saa2 (8, m)x () = —ZX(E)Ai(E)/ Ai(t)dr x ().
—00 n

We just sketch the proof. Since Saa2 (&, n) is arank 1 operator, for the trace norm
convergence, we only need to prove that in L? norm as functions in £ and respec-
tively n,

M— o0

(1) x Ly " @Mx)x MV Ze My )
= Ai)x (&),
0
lei_l;noo)/_ZNZMeM_N/ Lé%]_wl_N))(2Mt)tM—N—l/ze—Mt th(n)
(42) ’

=—f Ai(r) di x(n)
n
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and by the Stirling’s formula,

(2N —1)!
hm (ZM)Z(M N)— 1(2M 2)‘ 2(N M)V4N 1 =1.

By (33), (38), (41) and (42), we get

~ 2N — 1!
X (E)Saa2(E, M x () = (2M)2<M M- lﬁem M) aN=1y,=2N

x (1+p)"3@M) PeM=NLEM N 2 px)
x xM=N=1/2g=Mx 5 (£),,=2N ppM—N
X / Lézl\(,Ml N))(2Mt)tM_N_]/2e_M’ dt x(n).
y
Therefore we get the trace norm convergence from the L? convergence by the fact

that if f,,(x) — f(x)and g,(y) — g(y) in L? norm, then we have the convergence
of integral operators in trace norm:

fn(X)gn(y) = f(x)g(y).

Finally, we need to analyze the term S (£, 1), new to the perturbed problem.
We need the following results:

PROPOSITION 5. Forfixedy > 1 and —1 <a <y~ and any T, we have the
convergences in L* norm with respect to & or n:

lim y—2N—1(1+y)4/3(2M)1/3eM—N
M— o0

2(M—N —N— —
XLE[\(I_I ))(ZM.X)XM N 1/26 MXX(%-)

=—Ai§)x (),

o0
lim y2NopeM—N / LMD QppyM=N=12=Mt g1y ()
M— o0 y

- f Ai(r) di x ().

1—ay)2M)'/3
fim (14 a)2N-A0- 12N Ey +"1§2)/(3 D MM gy 1 ()X ()
(43)
= Ai(n) x (n),

i av—m—1_—an1 (L= ay)(y + 1)
A/Ih—r>noo(1+a) (D g V2N (2M)1/3 M Nyin 1) x (&)

=Ai'@)x ®).
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PROOF. We just prove the identity (43), and others can be done in the same
way.

By the integral representation of Laguerre polynomials,
1 e—2sz (Z + 1)n+2(M—N)

(2M—N)) _
(44) L¢ eMx) =5 o

dz,

where C is a contour around the pole 0, therefore we get

Pan—1(y) = e/ (IT@2M
(1 +Cl)2(M7N)+1
B 2mi
Xfedmﬂ+WQ+W®m”&+Dmhmﬁ
45) c l4+a(z+1)/z Z
_ a/(+a2My _ (14 a)>M=N) f o= 2Myz (z + 1)2M=N) J
= - —dz
2mi C z4+a/(a+1)
(1 +a)2(M—N)+1a2N—1
2mi
X % e M @+ D < dz
c 2V ((a+Dz+a)z+1)
If the pole z = — % is inside of C, then
(1 + a)2M=N) yg o—2Myz (z + 1)2M=N) dz — o@/@+2My
27i C z+a/(a+1)
and
( ) (1 _,’_a)Z(M—NH-laZN—l
PN-1Y) = — ;
(46) 2mi o
o f}g o 2Myz z+1) Z dz
c 2N (@+Dz+a)z+1)

In later part of the proof, we make this condition hold, and will not mention the
canceled terms, and we are then free to deform C in (46) as we wish, provided it
includes 0. We then proceed to a stationary phase analysis.

Since

2M 4/3
o-2Myz G D™ am 1y etioge -y 2loga) - H2E ) e
2N -
Z

(we do not need to concern ourselves about the ambiguity of the value of logarith-
mic functions), if we denote

47) f@=—(0+y H2z+logz+ 1) —y*logz,
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then we get:

A4y Hz+y™H P I
o fl(2)= W,wuh the zero pomtz_—m,
o f'(——==)=0;

y+1 A
2 +1
f///( y+1) ()’ ) > 0.

So locally around z = —#,

i)

—(1-— y‘z) log(y + 1)+ )/_2711'

(48) o
+ O Riw),
3y

where
(49) Ri(w) = 0(w4), as w — 0.

After the substitution w = z + we get

y+1’

% eZM(—yz—l—log(z—1)—)/‘2 logz) Zz d
c (a+Dz4+a)z+1)

1
= exp{2M(yt
M y

+ Muﬁ + Ri(w) — Mn(w - L))}

— A=y Hlogly + 1) +y *mi

3y y(2M)?/3 y+1
w—1/(y +1)
((a +Dw+ @y -1/ (y+D)(w+y/(y + 1))
_ 1 M M)y

a+1(y+1)>2HM=N)
_a 4/3 4
X% exp{&(ZM)l/?’n Hiy)zM +2MR1(w)}
M Y 3y?

L~y Dw 1
(y + 1)/)/w+ Lw+ @y —1)/((y + D@+ 1))

composed of '™, ', T'¥ and I'}!, which

’

where FM is a contour around

T
are defined as (see Flgure 3)
M _ i/3 - —-1/3
r _{(4 n-ge 0<r<4- a7 }
F§”={ 14 QM) V3t —l<t<l},
(14 p)43 37 73
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A

Fig.3. ™,

FMz{t Y eSni/?a‘ !
a

— M _1/3<t<4},
3 Y1 JrJ/)1/3( ) st s

11{‘4={2L+it)—2«ﬁL §t§2\/§L}.
y+1 y+1 y+1

For the asymptotic analysis, we define
(50) Dy =lzeMME@ =@M ), Tifoe= UL\ Tk,
51) I ={wel*NR(w)<cl, r. =r>\r.

Now, we denote

(A
Fam(n, w) = L QM)3
1 4/3 1 4
X exp{—ﬂQM)anw + (;—73)/)2Mw3 + 2MR1(w)}
14
—(y+Dhw+1 1

(v +D/yw+lw+ @y —D/((y +D@+1)’

and establish several lemmas for the proof. [

LEMMA 2. If T is fixed and M is large enough, then for any n > T,

1 e—1/2

_/1"‘2’[ FuM(n,u))dw < gm

1
2mi
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PROOF. By (48) and (47),

(14 p)*
3y3

1 1
:2M<f<——+w>— rt
y +1 14

(52) “logy +(1—y Dlog(y + 1) — yzm')

2Muw? +2MR; (w)

1)? 1
Ww +log<iw + 1)
I4 Y

:2M<—
—y7? log((y + Dw —1) — yzni>,

If weT}, R(w)=2-L5, and denote 6 = arg(w) € [-%, ], we have

v+
1 4
SR(( +¥)
3y3

1
= 2M<—2& + log(y/3? + (2tan6)?)
14

— 7 2log(y/(1 +2y)2 + 2y tane)z))

2Mw? +2M R, (w))

1
< 2M(—2L +log~/21 — y 2 log(1 + 2)/)) < (logv21 —2)2M <.
14

So on Fi"’, ifn>T,0<¢ <2—1log+/21 and M large enough,

1 4/3
Faar ()] < a2

x exp{—2(n —T)(1 + m3em!s3
+ ((log V21 =2) = 2T (1 +y)~*)2M}
~(y +Dw +1 !

y+D/yw+lw+ @y —D/((y + D@+ 1)
=20-T)(1+7)' @M [(og v21-2+¢")2M

<e

where ¢’ is a positive number and &’ < 2 — log+/21. If M is large enough,

(log V/21—2+¢")2M 27 le ~1/2
¢ < 1/40°
2V3y/(y +1)3M

1/3 1/3
e 20=D)A+BRME [ T/2,=n/2.

(53)



QUATERNIONIC WISHART 1301

and we get the result, since

1 24/3 1
(54) ’—2 ./MFaM(n,w)dw‘s—f”(” e | Fo . w).
2 F4

2w wel'y! O

LEMMA 3. IfT is fixed and M is large enough, then for any n > T,

1
2mi

1 e_n/z

‘/FM FaM(n,U))dw‘<§W

remote

PROOF. Forw eTM ' we denote l = R(w) = % Since arg(w) = +%5, we

get by (52)
1 4
m(ﬂzMuP + 2MR1(w)>
3y3
nz 1 1 1\?2
:2M<—@z+—1og<1+2ﬁz+4(il> )
14 2 4 14
)/_2

Then we take derivative

d Dz 1 1 1\?2
—<—7(V+ ) l+—10g<1+2y+ 1+4<VJr z))
dl y?2 2 Y Y

-2
— VT log(1—2(y + DI +4(y + 1)212)>
D4 1 1\?
= —8()/;3)120 —(y — 1)&; _,_4(&1) )
1 12 14
1 1\2
x{<1+2—”+ l+4(—”+ 1))
y 1%

-1
x (1 =2(y + DI +4(y + 1)212)} :

and are able to find a positive number ¢” > 0, such that for 0 </ < 2#,

4
_8()/ ;—31) 2
1—(y =D+ D/yl+4(y + D/yl)?

) (142 + D/yl+4(y + 1)/yDH A =2(y + DI +4(y + D??)
/112’

<3¢
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and on the two left-most points of rm (1 + \/§i)(2M)_10/ 3 and (1 —

V3nem)~,

4
m(ﬂzM + 2MR(w)>
3y3

remote?

w=(1£+/3i)M~10/39

=2M( ?Zi—L@Mr“W3+OM4“W%)
V
= ——7(2M)3/13( + oM~

(ZM)_10/39
<M / —3¢"12dt.

Therefore we know that for w € TM
%(a+yﬁ
g —3)/3
and have the estimation that if n > T, 0 < &” < ¢’ and M large enough [/ >
Q@m)~19,

remote’

l
2Mw? +2MR1(w)> <2M f —3&"t?dt = —2Me" 13,
0

4/3
|&M@wN<9ifL4M@W

4/3
x exp{—(n _ T)%QM)WI

1 4/3
— <e”13 + T%(zM)—Z/%)zM}
1%

—(y+DhHw+1 1 ‘
y+D/yw+Tw+ @y —D/((y + Da+1)
< ¢~ =D A+)* Py @M)VE =" 2M)¥ 1

Now we get the result by inequalities similar to (53)—(54). [J

LEMMA 4. If T is fixed and c is large enough,
1

_ 3 1
_f e Tu+u’/3 dul < =.
2mi res

c

PROOE. Obvious. [

LEMMA 5. IfT is fixed and M is large enough, then for any n > T, holds:

1 (y+D@+1) 1en?

T Ai
2mi 1—- & )‘ 3 M1/A0°

[ Fameln,w)duw

local
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M
PROOF. On I'jj_,;>

lw| <22M)'1973 50 by (49)
(y+D@+1) 1+ p)*3
Fapt (. w) = -2 Y amy's
ay — 1 Y

x e~ NPy @M Pt () Gy H2Mw® (| 4 o (p=1/39)).

_ 4/3
After the substitution u = %(ZM Y3w, we get

/ Fau(n, w)dw = w e—nu+u3/3 du
ra T (ay—1  Jre
oca <3y @mn!/3

(55)
x (1 + O(M_1/39)),

and the O(M~1/39) term is independent to w.
OnT® if n>T,e =14 < ¢T/2=1/2 By (2) and (55), we have

1 (y +D@+1)

o R L e
(y+D@+1

2ni(1 —ay) Jree

>(1+p)*3 /y @t/ 13

Ai(n)‘

local

3
< eT/Ze—n/z |e—TM+M /3|dl/l

(y+D@+1

T/2 -2
e T i —ay)

% |e—Tu+u3/3|du 0(M‘1/39)

FOO
<1443y @ t/13

9’

and we can get the result by direct calculation. [J

CONCLUSION OF THE PROOF OF (43). Putting Lemmas 2-5 together, we get
the convergence in L? norm:

| oy (y + DFMEHS
a

v (1 —ay)em'’?

lim (14 q)*>®=-
M— o0

x e MY oy vy () xr (1) = Ai ) e ().

On the other hand, for n € [T, 00),

(56) /\4h—r>noo(l + y_l)z(N—M)—leM—NyM—N-H/Ze(l—y)/(H—V)My —1

and

(57) (14 y~ " EN=M=1 M-N M=N+1/2,~(1=p)/(+)My < | 4 0<L>

VM



1304 D. WANG

Therefore, in L% norm,

Lonp (L—ap)@m)'3
Jim (1+a)2(N My=1g=2N+l RN M Ny 1 () x ()

= Ai(n) x (). O

Now we conclude the proof of the —1 < a < y ! part of Theorem 1. By Stir-
ling’s formula, we get

(58) 11m (2M)2(M N)Mgw M) AN |
eM —1)! :

and then by (34), (38) and Proposition 5, we have the convergence in trace norm

(1 —ay)2m)'/3
m
M—o0 (1 -i-)/)z/3

X (&) Sap(E, M x (1)
(59)

= 32©(Ai©) AiC) + AT [ Ay ),
which implies that in trace norm,
Jim X (€)Sa (€ mx () =0.
Now we get the desired result
Jim X @S mxn = Jim xS E mxm) = x@SE mx ),
and in the same way
Jim X (@©)SDa(&, mx (m) = x €)SDa(E, mx (),

Jim X E)SaE mx () = x ©)ISaE mx ().

Therefore, in trace norm

Jim Pr(& my () = x(@) < 1%((?77)) Sﬁtf&?) a

and the convergence of Fredholm determinant follows.

3.2. Proof ofthe a =y~ part of Theorem 1. Whena =y ! the | —ay~'in

(59) vanishes, so we need other asymptotic formulas for {ox_1(n) and l//é n_1(m).

1

The approach is similar to that in the a <y~ case, so we just sketch the proof.
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PROPOSITION 6. For fixed y > 1,a =y~ !, ¢ >0 and any T, we have the
convergences in L? norm with respect to & or n:

lim y—2N—1(1 + y)4/3(2M)1/3eM—NeegL§21\SA_4;N))
M— o0
% (ZMx)xM—N—l/Ze—MxX(g)
= —e" Ai(E) x (5),

o
lim y 2N2MeM_N€_Mf Lg\(lj_wl_N))(ZMI)IM_N_UZB_M[ dt x (n)
y

M — o0

60) S / A di x (),
n

lim (1+ a)y* V=M=l =2NFLM=N ) =INHL g =enyp v 1 (0) % (1)

=e 15Dy x (),

4/3
(1 V-t DY
fim (1+a) V2N M) Von—1 () x (&)

= ¢S Ai(E) x (£).

SKETCH OF PROOF OF (60). We perform the same algebraic procedure and

use the contour T = FM U I"M U FM U FM which is slightly different from the
I'" inthe a < y~—! case (see Flgure 4):

. 2
ry=1¢ 0T ”’/3(0< <4—4€/ 13(21\4)—1/3},
I+

= )/8/2 13 1 5}

FM=72M Belm ~ <t <=1

2 la+ )4/3( ) 3773

. . 2

Y= tLeﬁ““]Lm(zM)—”3 <t 54},

y+1 1+

M= 2L+it‘—2«/§L§t§2\/§L}

y+1

and for asymptotic analysis, we define Fremote, FlA(;Ical’ liioc and 12?6 in the same
way as (50)—(51). Then we get
an-1(y) = —(1 +a)* M= H 2N

2M
% Y e@M)/(1+7)y
()/ + 1)2(M—N)+1

1 1 4/3
—.yﬁ_ exp{—i( I oy P
M )4

2mi
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FiG. 4. TM.
1 4
+ ﬂzMuﬁ + 2MR1(w)}
3y3

—(y+DHw+1 dw
y+D/yw+1 w’

If we denote

(14 )43 N (14 p)*

3y3

Fyu(p,w) = exp{— M) Pyw 2Mw’ + 2MR1(w)}

—(y+Dw+11
(v +D/yw+ 1w’
then parallel to Lemmas 2-5, we have:

LEMMA 6. Forany T fixed, and M large enough, if n > T, then
1 en/2

3 M1/40°

e—€ﬁi/ Fu(n w)dw’<
2mi Jiy ’

LEMMA 7. Forany T fixed, and M large enough, if n > T, then

ey | 1e—en/2
IE 2_7'”\/I;‘M FM(n,w)dw<§—M1/40

remote
LEMMA 8. If T is fixed and c is large enough,

L/ o Turud3dul 1
2mi

re, ul c
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LEMMA 9. Forany T fixed, and M large enough, if n > T, then

1 1e=n/2
—en__ _ e /24D -
e Zni/:M Fy(,w)ydw —e 75" (n)|< 3 M1/

local

Using Lemmas 6-9, we get the convergence in L? norm:
1)2(M—N)+1

lim (1 q)2N-M—1,-2N+1 (y + o 2M/(147)y
M— o0

)/ZM

x e ooy _1(y)x ()
=15 x ().
Furthermore, because of the limit result (56) and (57), we get the L? convergence

Mlgnoo(l + a)Z(N—M)—la—ZN—Hy—2N+leM—Ne—snw2N_] (y)X(ﬂ)

= 15O x (). O

Now we conclude the proof of the a > y~! part of Theorem 1. Using (34), (58)
and Proposition 6 we have the convergence in trace norm

Jim o (€)e™ Sap €. me™* x (n)
1 o0
= X (©e (Ai(S)s(“(n) +ai@ | Ai(t)dt)e_”x(n)
n

1 & A —en
ZEX(S)e Ai(§)e " x(n),

and this together with the conjugated convergence result (discussed in the Appen-
dix) of S44(&, n) in formulas (39) and (40) of Section 3.1 conclude

6 lim x(§)e™Sule, me () = x (€)eF Sae me™ " (n).
In the same way we get

Jim x (§)e 5D e x () = x(§)e* SDa(€. me " x (n),

Jim &) ISae me 5 () = x(€)e IS4 e x (),

Then we get the convergence in trace norm of a conjugate of Pr(€, n)

, e S48, me " e*$SDy(E, n)e”
i, X&) (e‘ggfszx(é, me~ e~ S4(n, £)e ) x ()

_ €846 e eESDy(E. m)e’
_X(E)(e_ggm(%_w)e_s,7 5S40, £)eFT x(m),

and the convergence of Fredholm determinant follows.
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3.3. Proof of the a > y ' part of Theorem 1. 1f a > y~!, the location as well
as the fluctuation scale of the largest sample eigenvalue is changed. We change

: _ 1 _ T 1
variables as pM_(a+l)(1+yTa) andgy =(@a+1),/1 — 22 7
(36) the kernel S, (x, y) after substitution is [here * stands for 4, 4a or 4b, and the

S, (&, n) in this subsection is not identical to that in Sections 3.1 and 3.2]

~ / 1 1
SiE,n)=@+1) 1_WW

X 56 Va1 2a) +a+ ) T G 2aD) ) (VIS
y=(a+)(1+1/(y2a)+(a+1)+/T-1/(72a2) 1 /(2M)y

, and then by

(62)

We analyze S (&, n) first.

PROPOSITION 7. For fixed y > 1,a > y~', ¢ > 0 and any T, we have con-
vergences in L? norm with respect to £ or n:

2 M—N+1/2
1
lim — (ya+1) J(2a? —1)2MeMN

« eV =D/((YPa+D)(a+1)Mx

(63)
« eséLg\(Iﬂfl—N))(ZMX)XM—N—I/ZE—MxX(i_.)

1 { 1 y*a® + y2a®> +4y2a+y? + 1
= expy ——
4 (y2a+1)?
2 M—N-1/20,2_2
1 (y?a+1) (ya®—=1) /)/2(12 —1QM)3R2MN

M50 2 (y2a)MHANHI2(q 4 1)M-N+1/2

s2+ss}x<s>,

« eW?@=D/(YPa+1)(@+1)My jen
(64) 0
X / Lg\(,ﬂ_/ll_N))(2Mt)tM_N_l/ze_M’ dt x(n)
y

_ L 1a0ta e by ety )/ Rak ) P e

T x (),

2 M—N+1/2
lim ( ya ) eM—N
M—oo\ (y2a+1)(a +1)

(65) x ¢~ (DGR @E MY ey (3)x ()

_ 2.2 2_ 2 2.2
— o /Ay am=D(y"=D/(yZa+1)n &y (),
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' ( v2a )M—N—I/Q ~ v2a
lim e ——
M—=oo\ (y2a+ 1)(a +1) (y2a2 —1)M
(66) x e—()/zaz—1)/(()’za+1)(d+1))Mxe—8$ wéN—l (x) x (&)
— o~ VAP@ =D =D/ (Pt P8 ek (g
We only prove (65). The identity (45) still holds, but we need to use another
contour and a new procedure of steepest-descent analysis.

Since

amy: @ DY
€ 2N

_ 2M(—(a+D)(1+1/(/2a)z+log(+ D=y ~log2)—(a+1)+/T=1/(72a)v/ 2z

if we denote (ignoring the ambiguity of values of logarithm)

1
g(@)=—(a+ 1)<1 + )/Ta)z +log(z+ 1) —y2logz,

then we get:
-2 .
o ¢'(2)=—(a+ DH( + ﬁ) + z4+1 — VT’ with zero points z = —ﬁ and
e=—riy .
¢ $'Q) =~y + o &) = 7+ ya)*(d = 55) > 0 and

— 2, 1
§'(—1tf)=U+a) (W - D <0.
So we take 7z = — as the saddle point, and locally around that point, after the

1
1+y2a’

1
1+y2a

substitution w = z + we get

2

1 a+1 ) -2 2 — .
g\ — s~ tw|=-——+log(y’a) — (1 —y log(y“a+1) +y “mi
1+y“a y-a

Lo (1= LY,
+ =y +vya)yll 5 Jw” + Ra(w),
2 y-a

where
Ry (w) = O(w) asw — 0,
so that
% o2AM (—yzHlog(z+1)—y 2 log2) £ dz
C ((a+Dz+a)z+1)

67) = fEM exp{ZM(a L log(r2a) — (1 — y=2) log(y%a + 1)

y2a



1310 D. WANG

S o 2 ! 2
+y mit+ Sy +ya) |l - 5w+ Ra(w)
2 ya

—(a+1) /1 -

a7 )
V2d% /20 w V2a+ 1
w—1/(y%a+1)
X dw
((a+ Dw + (y2a® = D/(y?a+ D)(w + (y2a)/(y?a + 1)))

_ 1 (y2a)*M-1 o2M/(yPa+1)x
a+1(y%a+1)2M-N)

1
X f exp{—(a + 1), /1— ﬁVZan
M y<a

1 1
+-+ ya)2<1 - 2)2Mw2 + 2MR2(w)}
2 y-a

—(yla+Dw+1
X
(y2a+1)/(y?a)w +1
X ! d
w+ (y2a® —1)/((y2a+ 1)(a+1))

’

where £ is a contour around ﬁ, composed of M, £ 5M and £}, which

are defined as (see Figure 5)
M = (—it|-2 <1 <2}, M =4 —r42i0<1 <4},
s —(atirl—2<1<2), SP={-2i0<r<4).

And for the asymptotic analysis, we define (see Figure 6)

M M —-2/5 M M M
z:local = {w €X ||w| =M / }’ Eremote = 21 \ z:local’
3 Zgl
=M by
%u

Fig.5. =M.
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230
Y
FIG. 6. =%,
X ={—it]—00 <t < 00}, 22 ={we Z%°|w| < ¢},

Zg:Ew\Eﬁ.

Then if we denote

1
Gam(n,w) = (y~ 1 + ya)\/(l — ﬁ)2M
yea

X exp{—(a + 1)\/(1 — %)Zan
yca

1 1
+-( 70)2(1 - ﬁ)zMw2 + 2MRz(w)}
2 yca

—(yla+DHw+1 1
X )
(Y2a+1)/(y2a)w+ 1w+ (y2a® = D) /((y2a+ D(a +1))

we have four lemmas similar to Lemmas 2-5:

LEMMA 10. Forany T fixed, and M large enough, if n > T, then
'e—snL e ™

1
. G , W dw‘<
2mi ./):g’uzgwuzjw abt (1, )

3 pM1/10°
LEMMA 11. Forany T fixed, and M large enough, if n > T, then
1 —en

et — Gannwydw|< L
2mi Jst, M 3 M0

remote

LEMMA 12. If T is fixed and c is large enough,

R / o@D/ v rutit2 g, | L
re;

2mi c
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LEMMA 13. Forany T fixed, and M large enough, if n > T, then

1
‘e_”%/M Gam(n, w)dw

local

_ D@D _ingarn/otaerm?

n
(y2a? — )\/27
1 e~®"
=310

Their proofs are the same as those of Lemmas 2-5, and we need the identity

1 / o@D/ a2 g, L g @ oatn?
2mi oo 27T
SKETCH OF PROOF OF (65). Because the pole z = — %5, which is w =
2.2
_W%)Zalﬂ) in the w plane, is not in side of ¥, so
1)2(M~N)
(68) f o2z GF DT
c z+a/(@a+1)

Similar to but subtler than (56) and (57), if we denote (here we have a notation
conflict with the r; defined in Section 2.3, but there should be no confusion)

v2a >M—N+1/2eM_N
y2a+1D@+1)

x =’ =Da/((y*a+D(a+D)My—en

M—N+1/2

() = ( y

we have for n € [T, 00),

im ry () = e~ V/A02@=DE2=D/(Zat )P0’ —en,
M— o0

and for a large enough positive C, n € [C, 00) and M| < M3, pointwisely
rm, (n) > rup, () >0,
so that we can use the dominant convergence theorem to prove that in L? norm,

—1/4(y2a®>~ D) (2 =D /((y2a+1)*)n>—en

A}gnw ru(mx(m) =e x(m).

Finally, since from (45), (67) and (68),

Yan_1(y) = yM—N+1/2gla=D/(a+ DMy

F (1 +a)2M—N) 2N -1

(2™ 1

X
(y%a + 1)2M-N)+1 (y2a% — 1)2M
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« yM=N+1/2,(1=y2a)/(ramy 1 f Goang (1. w) dw
2mi JxMm ’

— yM=N+1/2,=((y*=Da)/(v*a+D(a+ D) My

« [e(yzaz_1)/(yza+1>(a+1)My

(y*a)*M 1

(y2a + 1)2M=N)+1 (y2d? — 12M

< o~ PP/ DMy / Gant (1. w)dw}

F (14 a)2M=N)g2N-1

we get

( v2a )M—N+1/2
(y2a+D(a+1)

M=N o=(?@=D/(yPatDa+DIMy p=e

1 xm
()/Za)ZM
(yza + 1)2(M—N)+1

1 2a? -1
X exp{— (ya ) 2My}

[(y2a2 - 1)2M (y2a+D@+1)

1
_— Ga N d )
X 3 oy Gowtnow)dw | xcn

and get the L? convergence

( v2a )M N+1/2
lim
M—oo\ (y2a+1)(a+1)

N —(v242— 2 _
w M =N o=@ =D/ Pat D@t DMy g=eny, () ()

—1/4(y2a®~D)(y* =1 /(y%a+1)*n>—en

= Mlg)noo ru(mMx(m) =e x (),

because for ¢ > y !

estimation that

and n € [T, o0), we can verify by by elementary but tricky

lim (1+a)2(M—N)a2N—1
M— o0

(y 24)2M e—(r?a*=1)/((y*a+1)(a+1)2My

(y2a + 1)2M-N)+1 (y2a% — 1)2M

=0
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uniformly, and by Lemmas 10-13, in L? norm

1
fim 1 / Gan (1. w) dw x ()

M— o0
_(lat+ D@+ o~ 1200 @+ D/ 2a+ Dn)?—en

C (y2a? - Wik

For notational simplicity, we denote functions on the left-hand sides of (63)—
(66) by F1(§)x(§), F2(m)x (m), F3() x () and F4(§) x (§), and denote

x (). 0

— QM)2M=N) (2N—1)'62(N M) 4N-1

M - 1)!
By (58), we have
lim cy =1.
M— o0

Then we get from (34), (62) and (63)—(66)

Sup(E,m) = ( —(y?a WWZ““><a+1>)M<x—Y>—8(f—">F1(g)F3(n)
2
69
© + VD@ 2at D@ DM =) +eE =) B (£ Fy ().
If we define
N=21
SD4q(x, y) = Z — (W3, )11 () = V1 ()Y (1),
=0 rj
—2 1
IS4q(x,y) = Z — (=2 Y2 41(Y) + V241 (X) Y25 (),
j=0 J
and
SDyp(x,y) = (%N 2OV 1 () — Vo (D2 (D)),
1
IS4p(x, y) = o~ —— (=Yan—2()V2n—1(¥) + Yan—1 () Yan—2())),
like
N-2
Sta(x,y) =) L Yo, (W2 41(0) + ¥ (D)W1),
j=0"J

1
Sap(x,y) = '~ ( Yan_2 ) Van—1(3) + Voy_1 (D) ¥an—2(1)),
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in (28) and (29), and by (35) and (37) define [ stands for 4, 4a or 4b]

SD Y=+ D*(1- ! !
«&,m=(a )< W)W

X 8D+ (6 M, 441y 141/ 20+t D) To1 2D 1 (V2D
y=(a+1)(1+1/(y2a)+(a+ D)/ 1=1/(y2a®)1 /(v ZM)n

I8, 1) = IS5 08 D,y (14170 200+ @+ -1 G20/ 2RDE
y=(a+D(1+1/(7a)+a+D/1-1/(/2a) 1/ (+/2M)n

like

5 1
Sc(E,n) =@+ 1)1 —1/(y2a?
«(&.m =( ) /(y )«/W
X S V(141 2a) )T G 2aD) 1/ (V2Me
y=(a+1)(1+1/(2a)+@a+ 1)/ 11/ 2a2) 1 /(V2M)n

in (62), then in the same way of (69), we have
§D4b(§ n) = C_MCM (e—()/zaz—1)/((72a+1)(a+1))M(x—y)—e(é—n)Fl (&) Fs(n)
’ 4
— =D/ At DM =y +eE =) By (£) Fy (1)),

~ CM . (2.2 2 V) —e(E—
IS4b(fs77):a(e (y=a*—D)/((y“a+D(@+1)M(x—y)—e(& n)FZ@)Fé(U)

_ =D/t D@t )M x—y)+eE—n) g, (g) Fy(m),
with

B (')/2612 _ 1)3/2 /2M

C
M ay(y?a+1)

Now we write ﬁT (&, n) as the sum

Pr(¢,n) = Pra(&,n) + Prp(€, ),
with

S1a(&,m)  SDaa(&, 1)
e S ) x>

Sap(&. 1) SDap(&. )
BaGm e ) xm.

Pra(e.m = x(&)(

Bry(€.n) = x(é)(



1316 D. WANG

If we denote

{ y2a? —1 M — o) 4+ }
P G2t Dt TR T

0

U@ =

_Cm Fa®) 202 1)/ 2at D@t 1) M (s —xo0) o6
2 F3(8)
2@ =D/ ((ya+1)(@+1)M (x—x0)+¢§

e—(r?a>=1)/((y*a+D)(a+1)M(y—yo)—en

-1 .
u—(m= 0

Cumt Fa®) 2021y /((yPa+ 1)@+ 1) M (y—yo)—e
2 F3(§)
e(r2a* =1/ (Y a+1)(a+1))M(y—yo)+&&

with

1 T
=yo=(a+D(1+— D /1- S
xo=yo=(a+ )( +y2a>+(a+ ) 22 oo

then we have the result of kernel conjugation
cm

F2(§) Fa(£)
UE)PryE, mU™ () = x (&) ( 2

F F
( O TE® ) 3()
UE)PrpE, MU ()21

0
Cu F2(77)F4(’7))) x(m),
- 2F F bl
: 3@)( o0+ =

with the entry

UE)PryE, MU (o
_ C_M(e—z(yzaz—1)/((y2a+1)(a+1>>M<x—xo>—2ss Fy(8)F3(n)

Cu
— F3(8) F2(n)e—2<y2a2—1)/<<y2a+1)<a+1))M(y—yo)—28n).

We want U(é)ﬁrb(s, n)U‘l(n) to converge in trace norm as M — oo, and
need the results:

LEMMA 14. In trace norm,

Jim U@ Pry& mU~" (ma1 =0.
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LEMMA 15. In L? norm,

Fr (&) F4(8)

MEHOOT(S)X(&)
_ 1 1y*a® +y%a> +4y?a+y> + 1 5
—‘mexp{‘z I 7+ et ©)

The proof of Lemma 14 is obvious. The main ingredient in the proof of
Lemma 15 is (64) and the fact that F4(&)/F3(£) approaches to 1 uniformly on
[T, 00).

We need another convergence result on U (§ )ﬁra &, U -1 (n):

PROPOSITION 8. In trace norm,

(70) Jim U@ Pra€. mU™" () =0.

The proof is left to the reader. Since all the four entries in ﬁra (¢, n) can be
expressed by Laguerre polynomials like (32) and (33), the asymptotic results like
(63) and (64) give the convergence (70).

By Lemmas 14 and 15 and Proposition 8, we get in trace norm

Jim_det(/ — Pr(£, 1))
= Jim_det(I —U &) Pr& mU~" ()

= lim_det(/ - U&)Prs6.mU™" )

r 1 2 2
= (/ ——e! /Zdt) ,
00 A/ 2
and we get the proof of the a > ! part of Theorem 1.

4. Proof of Fgsg1 = Fgog. In manipulation of kernels, we follow the method
of [30]. The procedure seems informal and cursory, but is carefully justified in [30].
For notational simplicity, we denote [ x (§) = x(7,00)(§)]

BE)=1-sDE) = /:OAi(z)df.

First, we express the integral operator

X(§)S4(&, mx () X($)§:D4($,n)x(n))

? ’ — — =
HEOFEmxm (X(S)IS4($,n)x(n) X(€)San. &) x(n)
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d = =
(x(%‘)a— 0 )(gzx(é,n)x(n) :S4<n,s>x<n>)
0 x@&/ \ISaG.mxm Sam.E)xm )

since by (22)—(23) and taking limit,

a e =
5154(5, n) = 84§, n),

0= —

—S84(n, &) =SD4(§, n).

T 4(n,8) 4§, 1)
Then using (21) for A bounded and B trace class, upon suitably defining the
Hilbert spaces our operators A and B are acting on, we find

8 = =
det (, _ <x(§)£ 0 ) (Q@, mx(m)  Sa(n,§)x(m) ))
0 x &)/ \1S4&. mx () Sa(n, &, )x ()

= = B
et 1_<§4(S,n)x(n) _s4<n,s)x<n>> Xy 0
o 79 N n

= 8 =
IS4(€, n)x(n)a— Sa(n, &) x ()
=det| ] — 7

= 8 —=
IS4(§,77)X(77)% Sa4(m, &) x ()

and by conjugation with (_11 ?), we get

= P — _
= det (1 _ (154(5, n)x(n)% + 84, &) x () Sa(n, E)x(n)))
0 0

= d =
= det(1 = (Bate. 20 5+ 540 020 ) ).
Since
1S4(&, m— f () dn =184, m) f (D=7 — / ~—1S4(8,m) f(n) dn,
T on T 0N
as an operator
1848, n)X(n)% =154(§, 00)800 () — 1S4(§, T)d7 () — %154(5, mx (),
where 8 and §7 are (generalized) Dirac functions. Then with the help of identity

o0 o0 o o0
| Kamde+ [ Kan@odr= [ aiwar [ Aoy,
§ n & &
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which can be proved directly from (1), we get

— 0 =
I— (184(%‘, n)x(n)% + S4(n, %‘)x(n))
1
= 1= (K (6,10 = 5 B&) AiGa) + AiC) ) ()
L N di — 1B(T)B Lp Ler))s
(5[ KanEndi = BIIBE) - JB@) + 3BT )srn

1
+ 5 B(E)doo ().

Now we denote R(&, n) as the resolvent of Kairy(§, 1) x (17), such that as integral
operators

(71) I+RE M=~ KaiyE. mx(m)

then
- (B, n)x(n)f—)7 +S4.6x(n)
= (I — Kairy(E, ) x (1))
< (1= +m(1-38©) Aionxo
+ I+ R)(% /TOO KAiry(Sa t)dt
— %B(T)B(E) — %B(S) + %B(T))Sr(n)
43U+ RBE5(n)
Again by the formula (21), in the form of (formula (17) in [30])

n
(72) d6t<1 > %u® ,Bk) =det(8k — (@), BO)) jx=1...n
k=1
we get

1
det(] a4 R)(l _ 53@)) Ai(x (m)

1 o 1 1 1
+U + R)(E/T K piry(§, 1) dt — ZB(T)B(S) - EB(S) + EB(T))ST(TI)
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1
FoU+ R)B(é)aoo(m)

l+ar o o13
=det| a I+axn o3 |,
3] 32 I+ o33
where upon the definition

(FE1e@Nr = T F®@) de,
we define

air = (I +R)(1 - 3B®&)), —Ai©)),,

1 o 1 1 1
wp = <(1 + R><§f7 Ky (6,101 = S BT)BE) — S BE) + 5’“”)’

- Ai(é‘)>T,

a3 = (5(I + R)B(), — Ai(§)),
a2t =+ R)(1 = 3BE))|e_r

1 [ 1 1 1
= (I + R)(5 | Ka€.ndi - {BIBE - 3B + EB(T))'

@23 = 5(I + R)B(&)|z=r.
a3t =+ R)(1 = 3BE))]po =1,

1 o 1 1 1
ap =+ R)(E/T K piry(§,1) dt — ZB(T)B(é) - EB(S) + EB(T))‘

E=00
= lB(T),
2
33 =3I + R)B(E)]g=c0 =0.
If we take elementary row operations, we get
( 1+ o1 o2 o13 )
det| oo I+axn a3
3] a3 l4oass
(1 +on—ai3 o —3B(Tas 0113)
= det

ay —ax3  l+an—B(Taxs a3
0 0 1

_ 1+ P2
_det< B21 1+ﬂ22>’
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where

Bii = (I + R)(1 — B®)). — Ai(®));.
1 00
Bir = <5(1 + R)( [ Kainte. 0t = BYBE) - BE) + B<T>>, —Ai(5)>

Bor = (I + R)(1 = B®))|,_g-

)
T

1 o0
P =70 +R)</T Kpiry(§,1)dt — B(T)B(§) — B(§) +B(T)>'

Using (71) and (72), we observe [sV(§) =1 — B(&)]

det( — Kairy(§, 1) x (1)) det (1 ;zl?” 1 f%zz)

- det(l — (Kairy & mx () + sV &) Ai(n) x ()

1 [e'¢)
+ 5(/T Kairy(§,1)dt — B(T)B(§) — B(§) + B(T)>8T(77))-

If we denote R(£, 1) as the resolvent of (K airy(£, 7)) x (1) + 51 (£) Ai(n)) x (1),
so that as operators

I+ RE n) = (I + (Kairy & mx () + 5D &) Aim) x ()~
and
0E) = (I + R)(fTOO Kairy (5. 1) di — B(T)B(€) — B(&) + B(T)),
then

Foser = det(I — (Kairy (€, m) x (1) +sD(€) Ai(m)) x () det(I + 5 Q(&)d7 ().

To prove Theorem 2, we need only (6) and

det(I + 5 Q&) (m) =1,
which by (72) is equivalent to
(73) Q(T) =0.
If we take f(&) = Q(§) + 1, then (73) is
(I — (Kairy €. m)x () + sV &) Ai() x () (f (€) — 1)

:/T Kpiry(§,1)dt — B(T)B(§) — B(§) + B(T),
which is equivalent to

(74) (I — (Kairy &, mx (1) + sV @) Aim) x () £ ) =5V (@),
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The integral equation (74) is solvable, and the solution is

(I +R)sM &)
(I + R)sMW (&), AiE))r

Therefore to prove Theorem 2 we need only to prove f(7") = 1, which is equiva-
lent to

&) =

I+ R)ysV(T) =1~ (I + R)sV (&), Ai(®)),.
This is a nontrivial result, but it can be derived by results in [30]. In Section VII of
[30] Tracy and Widom define function g and u for both GOE and GSE. Our (/ +
R)sD(T) is equal to /2 times their ¢ in GOE and our ((I + R)s(V (&), Ai(€))r
is equal to 2 times their u# in GOE. With
(75) (I + R)s(T) = ¢~ IT 10,
(76) (14 R)sD (), Ai(§)) =1 — e~ T 90,

where ¢ is the Painlevé II function determined by the differential equation

q"(s) = s5q(s) +2¢°(s)

together with the condition g (s) ~ Ai(s) as s — 00.
We can give a proof of (75) and (76), based on the method and results in [29].
First, assume T is fixed, then (I + R)s" is a function, and we have

da Mgy dsD (&) [i }(1)
RO =U+R= 2 | A+ R V@),

Since %s(l)(é) = Ai(£) and we have (2.13) in [29], which is

d
[E 1+ R)} =—Q2+R)AiE) - (1 - KA xm) + RO, T) - p(T, ),

where p(x, y) =8(x — y) + R(x, y) is the distribution kernel of 1 + R, and K is
the transpose (as an operator) of Kairy (&, 7) x (1), we have

%u +R)sV (&) = (1+ R) Ai€) — (1 + R) Ai€) - (I + R)sV (&), Ai(®)),

+RE,T) - (1+ R)sV(T).
If we regard T as a parameter, then we have
d M M
(77) ﬁ(1+R)S &:T)=—RET)-(1+ R)s"(T),

because (2.16) in [29] gives

1
ﬁ(1+R):R(§,T)-p(T, ).
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Therefore, if we set £ = T and take the derivative with respect to the parameter 7,
we have

(1+ R)sV(T)) = (% + %)((1 + R)sD(T)) -

=1+ R)AT) - (1 — (I + R)sV (&), Ai®)),).
On the other hand, by (77) we have

d
o7

d
S0+ RV @), Ai§);

=—(+4 R)sV(T) AUT) + <C;LT(1 + R)sW(g), Ai(§)>T

=—(1+R)sV(T)- (Ai(T) + f;o R(E,T) Ai(g)dg)

=—(14+R)sV(T) - 1+ R)AI(T).
(1.11) and (1.12) in [29] give the result
(1+ R)AT) =q(T),

and now if we denote (I + R)sV(T) = s7 and ((I + R)sV (&), Ai(€))r = wr,
we have

d
75T = q(l —wr)

d (1 )=
o7 Wr) =gST.

Now we can get (75) and (76) by boundary conditions.

APPENDIX: DISCUSSION ON THE TRACE NORM CONVERGENCE OF
INTEGRAL OPERATORS RELATED TO LUE

For convenience, we write (44) as

2My 2(M—N)+j
e }g —2Myz % dz
c

78 LM opyy = — :
78 j MY = @—D)it]

where C is a contour around 1, and we have another integral representation of
Laguerre polynomials

QM — N) + j)! 1
JIQM)2M=N) 3 2(M=N))rj

z— 1)/
<9, M de,
D 72(M=N)+j+

LM apmx) =

(79)

where D is a contour around 0.
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Recall the integral operator K (x, y) [11] for the rescaled LUE with parameters
2N and 2M, and by (78) and (79) we have

2N—-1 .
J! -
K@.y)= ) (2M)> M=
Jj=

§ QM =N+ )
» LEZ(M*N))(ZMX)LEQ(M*N))(2My)xM—NyM—Ne—x+y

(80)
M yM—NeMy 2N—1 2(M N)+j

_ 2Myz
© (Qmi)2 xM—NeMx Z % dzf dwe: (z— 1)+l

2Mxw (w — 1)J

AR T A YR RN
We can write the sum of integrands in (80) as
2N-1 2AM—N)+j .
3 b M o 2Myw (w—1)/
s (z —1)J+! w2M—=N)+j+1
2AM—N 2N—1 i
— 2Mxz ,—2Myw 2% ) 1 Z (z(w - 1))1
w?M=N) (z — DHw (z—Dw
_ v 0TV 1 1= @ = D/(@ = hw)*Y

w2M=N) z—DHw 1—z(w—1/((z—-1Dw)
U oMxz 2M—N) ,—2Myw 1
—w e z e D2
1 2Mxz ZZM e—Myw (w— 1)2N
z—w (z — 1)2N w2M ’
By the residue theorem, let C and D be disjoint, then for the variable z, the pole
z = w is outside of C,

1 1
dz% dw 2Mxz 2M=N) ;—2Myw —0.
ﬁc D  Z—w w2(M—=N)

On the other side, we assume 9i(w — z) to be less than 0, and get

1 o0
_ 2M/ e 2Mw=2) g4,
Z—w 0

so that we have

2M 2N
% f —2Myz <z eZwa (w—-1

(Z _ 1)2N wZM

(M)’ % % f°° o 2
81 = dz¢ d iz
®D @ri2le Iy ¢ DN

(2m)2
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1 )2N

« XM +Dw (w—
e —_—
w2M

2 [ ] 2M(y+1)z M
M) o \27i Jef (z— 12N

2N
(e f e =
2ni Jp wM

Put (80)—(81) together, we get the result

M—N ,My
_ 2Y ¢
K(X’y)—_(ZM) xM_NeMX
/1 (w—1>N
82 2M (x+t)w d )
(82) X/o (2m‘?€)e w4

1 5 M
X <—% e~ M(y'mzidZ) dt.
27i Je (z —1)2N

To find the probability that the largest eigenvalue > 7' in the LUE, we need
to consider the integral operator from L2([0, 00)) to L3([0, 00)) with the kernel
X (x)K (x,y)x(y). We can decompose it into the product of two integral operators
by (82):

XK (X, )X () = =@M x (x)J (X, 1) X10,00) (1) © X10.00) (VH (£, 1) X (3),
where x (x)J (x, 1) X[0,00)(t) and x[0,00)(#) H(Z, y) x (¥) stands for two integral op-
erators with these kernels, and

_ 1)2N

J(X,t): 1 1 % eZM(X-H)w (w
D

— dw,
XM=N oMx 2 w2M

M-N My | 2M(y+1)z M
H(it,y)=y" eV — @ e =MV _—___ (g7
&=y 2m‘?{c (z — 12V ¢

Since we consider the limiting distribution of the largest eigenvalue around (1 +

_ _ 1 4/3
y 2% wetake p=(1+y 1% g = {38m x = p+qg5, v = p+qnand1 = gt.

Then for the rescaled kernel y (& )E (&, m)x(n), we have

XEKE XM = xE)VT(E, T)x10.00) (T) © X10.00) (D) H (T, 1) x (1),

where

4/3 2N ,N—-M N
J(E, 1) = (y + DY pyl\RY_¢ L?g eZM(p—‘rq(E—}—r))wudw
’ Y xM=NeMx 27i Jp w2M ;
4/3 M~—N ,M oM
H(t,n) = (y + ¥ m13Y e yif e—2M(p+q(g+t))ZZ7dz‘
’ )/ZNeN_M 27i Jc (z — 1)2N
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We want to prove the trace norm convergence

Jim x @)K &, mx(n)

(33) = X(é)KAiry(fa mx ()
= x(§) Ai(§ + 1) X[0.00) (T) © X[0,00) (T) Ai(T + 1) x ().

By results in functional analysis, we need only to prove the convergence in Hilbert—
Schmidt norm of (e.g., see [20])

(84) Jim X )T E 1) x10.00 (1) = X E)K pairy (€, M X (1),
(85) Jim 10,00 (T H (2, 1) x (1) = X10,00) (7) Ad(T + 1) x (D).

Since for integral operators, the convergence in Hilbert—Schmidt norm is equiva-
lent to the convergence in L? norm of their kernels as two variable functions, we
can verify (84) and (85) by asymptotic analysis similar to that in Section 3.

For the integral operator x (§ )§4L,1 (&, M) x(n) in (39), we have

- 1 1 = ~
X E)Saa16,mMx(n) = EX(E)ﬁJ(S’ T) X[0,00) (T) © X[0,00) (T)/YH (T, 1) x (1),

where we define ? and H in the same way as J and .7~, but use parameters 2N — 2
and 2M — 2 instead of 2N and 2M. Similarly, in the S4,4 part of (61), we have

X (8)e Saq1 (8, me "y ()
1 &8
= Ex(é)%J(E, ) X10.00) (T) © X[0.00)(T)

We can give rigorous proofs to (39) and (61) in the same way as (83).

N

—en H, mxm).
e
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