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TIME-REVERSAL AND ELLIPTIC BOUNDARY
VALUE PROBLEMS

BY ZHEN-QING CHEN1 AND TUSHENG ZHANG

University of Washington and University of Manchester

In this paper, we prove that there exists a unique, bounded continuous
weak solution to the Dirichlet boundary value problem for a general class of
second-order elliptic operators with singular coefficients, which does not nec-
essarily have the maximum principle. Our method is probabilistic. The time
reversal of symmetric Markov processes and the theory of Dirichlet forms
play a crucial role in our approach.

1. Introduction. The pioneering work by Kakutani [18] in 1944 on represent-
ing the solution to the classical Dirichlet boundary value problem{

�u = 0, in D,
u = f, on ∂D,

using Brownian motion started a new era in the very fruitful interplay between
probability theory and analysis. Here D is a bounded connected open subset of R

n.
Since then, in place of Laplacian �, there are two classes of second-order ellip-
tic differential operators that have been studied in connection with probabilistic
approach. One is the nondivergence form operator

L = 1

2

n∑
i,j=1

aij (x)
∂2

∂xi∂xj

+
n∑

i=1

bi(x)
∂

∂xi

+ q.(1.1)

The other is the divergence form operator

L = 1

2

n∑
i,j=1

∂

∂xi

(
aij (x)

∂

∂xj

)
+

n∑
i=1

bi(x)
∂

∂xi

+ q,(1.2)

where A(x) = (aij (x)) is an n × n symmetric bounded positive definite matrix.
For nondivergence form operator L in (1.1), one can run stochastic differential
equation

dXt = σ(Xt) dBt + b(Xt) dt,
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where σ is a symmetric n × n matrix such that σ 2 = A, b = (b1, . . . , bn) and B is
a Brownian motion on R

n. The infinitesimal generator of X is L0 = L− q . Under
some suitable conditions, the solution for Lu = 0 in D with u = f on ∂D can be
solved by

u(x) = Ex

[
exp

(∫ τD

0
q(Xs) ds

)
f (XτD

)

]
for x ∈ D;

see [12]. Here τD = inf{t ≥ 0 :Xt /∈ D} is the first exit time from D by X. When L
is the divergence form operator of the form (1.2), one has to run symmetric diffu-
sion associated with 1

2∇(A∇). Observe that X is in general not a semimartingale
when A is just measurable. Nevertheless one can still use the symmetric diffu-
sion X to solve the Dirichlet boundary value problem

Lu = 0 in D with u = f on ∂D

through a combination of Girsanov and Feynman–Kac transforms (see [8]). The
Dirichlet form theory plays the role of Itô’s calculus in the divergence form oper-
ator case.

In this paper, we study the Dirichlet boundary value problems for second-order
elliptic operators of the following form:

L = 1

2
∇ · (A∇) + b · ∇ − div(̂b·) + q

(1.3)

= 1

2

n∑
i,j=1

∂

∂xi

(
aij (x)

∂

∂xj

)
+

n∑
i=1

bi(x)
∂

∂xi

− “ div(b̂·)” + q(x)

in a bounded domain D ⊂ R
n. Here A = (aij ) : Rn → R

n × R
n is a Borel mea-

surable, symmetric matrix-valued function that is uniformly elliptic and bounded,
that is, there is a constant λ ≥ 1 such that

λ−1In×n ≤ A(x) ≤ λIn×n for every x ∈ R
n;(1.4)

b = (b1, . . . , bn) and b̂ = (b̂1, . . . , b̂n) are Borel measurable R
n-valued functions

on R
n and q is a Borel measurable function on R

n such that

1D(|b|2 + |̂b|2 + |q|) ∈ Kn.(1.5)

Here Kn denotes the space of Kato class of measures on R
n: when n ≥ 3, a signed

measure μ ∈ Kn if and only if

lim
r→0

sup
x∈Rn

∫
B(x,r)

|x − y|2−n|μ|(dy) = 0,

where |μ| denotes the total variational measure of μ. Kato class Kn can also be
defined for n = 1,2; see [9] for details. A function q is said to be in Kn if μ(dx) :=
q(x) dx is in Kn. Clearly L∞(Rn) ⊂ Kn, and it is easy to see by using Hölder’s
inequality that Lp(Rn) ⊂ Kn for p > n/2. By taking b = b̂ = 0 = q off D, we
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may and do assume in the sequel that (1.5) holds without the restriction of D by
1D .

Note that “div(b̂·)” in (1.3) is just a formal writing because the divergence really
does not exist for the merely measurable vector field b̂. It should be interpreted in
the distributional sense. It is exactly due to the nondifferentiability of b̂, all the pre-
vious known methods in solving the elliptic boundary value problems such as those
in [8] and [12] ceased to work. The lower-order term div(b̂·) cannot be handled by
Girsanov transform or Feynman–Kac transform. We will show in this paper that
this term in fact can be tackled by the time-reversal of Girsanov transform from the
first exit time τD from D by the symmetric diffusion X associated with 1

2∇(A∇).
This is the novelty of this paper. Note that time reversal of a Girsanov transform
from a deterministic time was first studied in [20] for diffusions, and very recently
in [4] in the context of general m-symmetric Markov processes. We point out that
time reversal from a deterministic time in [4, 11, 20] are defined under the sta-
tionary measure Pm. Doing time reversal from a random time τD involves many
delicate technical issues for an effective analysis. We are able to circumvent these
difficulties through a certain h-transform. See (1.12) below for details.

Let (Q,D(Q)) be the bilinear form associated with the operator L, where

D(Q) = {u ∈ L2(Rn) :∇u ∈ L2(Rn)} = W 1,2(Rn)

and for u, v ∈ W 1,2(Rn)

Q(u, v) = 1

2

n∑
i,j=1

∫
Rn

aij (x)
∂u

∂xi

∂v

∂xj

dx −
n∑

i=1

∫
Rn

bi(x)
∂u

∂xi

v(x) dx

(1.6)

−
n∑

i=1

∫
Rn

b̂i(x)
∂v

∂xi

u(x) dx −
∫

Rn
q(x)u(x)v(x) dx.

For an open subset D ⊂ R
n, denote by C∞

c (D) the space of smooth functions on D

with compact support. The L2-domain D(L) of L is defined to be{
u ∈ W 1,2(Rn): there is g ∈ L2(Rn) so that Q(u, v) = (−g, v)L2(Rn)

for every v ∈ C∞
c (Rn)

}
and we denote g by Lu. Clearly, it follows from this definition that

Q(u, v) = (−Lu, v)L2(Rn) for u ∈ D(L) and v ∈ D(Q).

It is well known that the differential operator L enjoys the maximum principle
if −div(̂b) + q ≤ 0 in R

n in the following distributional sense:
n∑

i=1

∫
Rn

b̂i(x)
∂φ

∂xi

dx +
∫

Rn
q(x)φ(x) dx ≤ 0(1.7)

for all nonnegative function φ in C∞
c (Rn).

Trüdinger [26], Theorem 3.2 and Corollary 5.5, has proved the following:
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THEOREM 1.1. Assume the Markovian condition (1.7) holds. For every f ∈
W 1,2(D), there exists a unique weak solution u ∈ W 1,2(D) such that

Lu = 0 in D with u − f ∈ W
1,2
0 (D).(1.8)

Here W
1,2
0 (D) is the completion of C∞

c (D) under the Sobolev norm

‖u‖1,2 :=
(∫

D

(
u(x)2 + |∇u(x)|2)

dx

)1/2

in W 1,2(D). Moreover u is locally Hölder continuous in D.

Recall that Lu = 0 in D is understood in the following distributional sense:

Q(u,φ) = 0 for every φ ∈ C∞
c (D).

We stress that condition (1.7) plays a key role in Trüdinger’s approach because of
the critical use of the maximum principle there.

The aim of the present paper is twofold. The first is to give a probabilistic rep-
resentation for the weak solution of the Dirichlet boundary value problem (1.8).
This is highly nontrivial because there is no longer a Markov process associated
with the operator L due to the appearance of the lower-order term div(b̂·), nor can
that lower-order term be handled via Girsanov transform or Feynman–Kac trans-
form. Our idea is to use the symmetric diffusion process X associated with the
divergence form operator 1

2∇(A∇), the symmetric part of L, and treat L as its
lower-order perturbation via a combination of Girsanov and Feynman–Kac trans-
forms and a time-reversal of Girsanov transform at the first exit time τD from D

by X. Based on the new probabilistic representation, our second aim is to establish
the existence and uniqueness of the weak solution to problem (1.8) without the
Markovian assumption (1.7). To this end, we introduce a kind of h-transformation
which transforms the solution of the problem (1.8) to the solution of a Dirichlet
boundary value problem for operators which do not involve the adjoint vector field
like b̂. The time reversal and the theory of Dirichlet forms play an essential role
throughout this paper.

The remaining of the paper is organized as follows. Let X be the symmetric
diffusion with infinitesimal generator 1

2∇(A∇). It is well known (cf. [25]) that X

is a conservative Feller process on R
n that has Hölder continuous transition density

function which admits a two-sided Aronson’s Gaussian type estimate. In general,
X is a not a semimartingale but it admits the following Fukushima’s decomposition
(cf. [14]):

Xt = X0 + Mt + Nt, t ≥ 0,(1.9)

where M = (M, . . . ,Mn) is a martingale additive functional (MAF) of X with
quadratic co-variation 〈Mi,Mj 〉t = ∫ t

0 aij (Xs) ds and N = (N1, . . . ,Nn) is a con-
tinuous additive functional (CAF) of X locally of zero quadratic variations. Note
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that, since X has a continuous density function and each aij is bounded on R
d ,

by [13], Theorem 2, M and N can be refined to be CAFs of X in the strict sense
without exceptional set and (1.9) holds under Px for every x ∈ R

n. Without loss of
generality, we work on the canonical continuous path space C([0,∞),R

n) of X

and, for t > 0, denote by rt the reverse operator of X from time t . In Section 2, we
prove that, under the Markovian condition (1.7), the solution u of the problem (1.8)
admits the following probabilistic representation:

u(x) = Ex[ZτD
f (XτD

)] for x ∈ D,(1.10)

where τD := inf{t ≥ 0 :Xt /∈ D} is the first exit time from D by the symmetric
diffusion X and

Zt = exp
(∫ t

0
(A−1b)(Xs) dMs +

(∫ t

0
(A−1b̂)(Xs) dMs

)
◦ rt

(1.11)

− 1

2

∫ t

0
(b − b̂)A−1(b − b̂)∗(Xs) ds +

∫ τD

0
q(Xs) ds

)
.

All the vectors in this paper are row vectors and we use b∗ to denote the transpose
of a vector b. For two vectors α and β in R

n, we use α · β or 〈α,β〉 to denote their
inner product.

Note that ZτD
is well defined under Px for quasi-every x ∈ R

n. This is because
t �→ ∫ t

0 (A−1b̂)(Xs) dMs is a square integrable martingale of X in the strict sense
having finite energy and so it follows from [3] and [23] that there is a continuous
additive functional L of X having zero energy (which in general may admit an
exceptional set) such that for quasi-every (q.e.) x ∈ R

d , Px -a.s.(∫ t

0
(A−1b̂)(Xs) dMs

)
◦ rt = −

∫ t

0
(A−1b̂)(Xs) dMs + Lt, t ≥ 0.

To prove the probabilistic representation (1.10), we introduce a sequence of ap-
proximating operators Lk with b̂ in the definition of L replaced by smooth b̂k . We
first show that the solution uk of the Dirichlet boundary value problem for the op-
erator Lk has the representation (1.10) with b̂ replaced by smooth b̂k . To complete
the proof, we then show that both the approximating solutions and the correspond-
ing probabilistic expressions converge in an appropriate sense. The purpose of
Section 3 is to show that the weak solution u to the Dirichlet boundary value prob-
lem (1.8) is continuous up to the boundary of the domain D. The crucial step is to
show that for every Lp-integrable Rn-valued function f in a ball BR with radius
R > 0 and p > n, there exists a function v ∈ W

1,p
0 (BR) such that the following

identity holds: (∫ t

0
f (Xs) dMs

)
◦ rt = −

∫ t

0
f (Xs) dMs + Nv

t

(1.12)
for t < inf{s :Xs /∈ BR},
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where Nv is the zero-energy part of the Fukushima’s decomposition for v(Xt) −
v(X0) (see Section 3). By Sobolev embedding theorem, if we extend v to R

n by
taking v = 0 on Bc

R , then v is continuous on R
n. It then follows from [13], Theo-

rem 1, that Nv can be refined to be a CAF of X in the strict sense. Consequently,
t �→ (

∫ t
0 f (Xs) dMs) ◦ rt can be refined to be a CAF of X in the strict sense by

using the expression on the right-hand side of (1.12). In particular, ZτD
is then

well defined under Px for every x ∈ D. Equation (1.12) allows us to get rid of the
reverse operator rt in the expression of the solution u making the analysis possible.
In Section 4, we establish a general existence and uniqueness result for the weak
solution of the Dirichlet boundary value problem (1.8) for the operator L without
the Markovian assumption (1.7). Let Z be defined by (1.11). We establish as The-
orem 4.4 the following important gauge theorem under suitable condition of D, A,
b, b̂ and q , which is of independent interest

if Ex0[ZτD
] < ∞ for some x0 ∈ D, then x �→ Ex[ZτD

] is bounded
between two positive constants.

We then show that if Ex0[ZτD
] < ∞ for some x0 ∈ D, then for every f ∈ C(∂D),

the equation Lu = 0 in D has a unique weak solution that is continuous on D such
that u = f on ∂D. Moreover, this solution can be expresses as

u(x) = Ex[ZτD
f (XτD

)] for every x ∈ D.

Our strategy is, by using (1.12), to reduce the Dirichlet boundary value problem
Lu = 0 in D with u = f on ∂D to a corresponding Dirichlet boundary value
problem for an operator that does not have the lower-order term div(̂b·). In Sec-
tion 5, we consider the special case of L in (1.3) where b = b̂ = −A∇ρ where
ρ ∈ W 1,2(Rn) with ∇ρ ∈ Lp(Rn;dx) for some p > n. By Sobolev embedding
theorem, ρ is continuous on R

n. In this case, the quadratic form (Q,W 1,2(Rn))

in (1.6) takes the following form:

Q(u, v) = 1

2

n∑
i,j=1

∫
Rn

aij (x)
∂u

∂xi

∂v

∂xj

dx + 1

2

n∑
i,j=1

∫
Rn

aij (x)
∂(uv)

∂xi

∂ρ

∂xj

dx

+
∫

Rn
u(x)v(x)q(x) dx

for u, v ∈ W 1,2(Rn). For this case, we can establish a stronger result without addi-
tional condition on the diffusion matrix A. Let X be the symmetric diffusion with
infinitesimal generator 1

2∇(A∇), and recall the Fukushima’s decomposition in the
strict sense (cf. [13], Theorem 1):

ρ(Xt) − ρ(X0) = M
ρ
t + N

ρ
t , t ≥ 0,

where Mρ is the MAF of X in the strict sense having finite energy and Nρ is the
continuous additive functional of X in the strict sense having zero energy. Define

Zt = exp
(
N

ρ
t +

∫ t

0
q(Xs) ds

)
, t ≥ 0.
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We prove in Theorem 5.1 that if D is a bounded Lipschitz domain and if
Ex0[ZτD

] < ∞ for some x0 ∈ D, then x �→ Ex[ZτD
] is bounded between two posi-

tive constants. Moreover, assuming that Ex0[ZτD
] < ∞ for some x0 ∈ D, we show

that for every f ∈ C(∂D),

u(x) := Ex[ZτD
f (XτD

)], x ∈ D,

gives the unique weak solution of Lu = 0 in D that is continuous on D with u = f

on ∂D.
In this paper, we use “:=” as a way of definition. A statement is said to hold

quasi-everywhere (q.e.) on some set A ⊂ R
n if there is an exceptional set N of zero

capacity so that the statement holds on A \ N . For the general theory of Dirich-
let forms and Markov processes and their terminology, we refer readers to [14]
and [21] .

2. Probabilistic representation. In this section, we will give a probabilistic
representation of the weak solutions of Dirichlet boundary value problems. Con-
sider the following regular Dirichlet form on R

n:

E(u, v) = 1

2

n∑
i,j=1

∫
Rn

aij (x)
∂u

∂xi

∂v

∂xj

dx,

(2.1)
D(E) = W 1,2(Rn).

It is well known that there is a symmetric conservative diffusion process X =
{Xt, θt , rt ,Px, x ∈ R

n} associated with it. Since X has Hölder continuous transi-
tion density function with respect to the Lebesgue measure on R

n (cf. [25]), X can
be modified to start from every point in R

n. Without loss of generality, we may and
do assume that X is defined on the canonical sample space � = C([0,∞) → R

n)

on which the time-shift operators {θt , t ≥ 0} and time-reversal operators {rt , t > 0}
are well defined: for t > 0,

θt (ω)(s) = ω(t + s) for s ≥ 0(2.2)

and

rt (ω)(s) :=
{

ω(t − s), if 0 ≤ s ≤ t ,
ω(0), if s ≥ t .

(2.3)

Let {Ft , t ≥ 0} be the minimal augmented filtration generated by the diffusion
process X. For every u ∈ D(E), the following Fukushima’s decomposition holds:
for q.e. x ∈ R

n,

u(Xt) − u(X0) = Mu
t + Nu

t , Px-a.s.,(2.4)

where Mu a continuous MAF of X having finite energy and Nu
t is a CAF of X

having zero energy. Note that the MAF Mu and the CAF Nu typically admit an ex-
ceptional set N of zero capacity in their definition. However since X has a Hölder
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continuous transition density function, by [13], Theorem 1, both Mu, Nu and the
above Fukushima decomposition (2.4) can be strengthened to admit no exceptional
set [so in particular, (2.4) holds for every x ∈ R

n] if u is continuous and the energy
measure for Mu

μ〈u〉(dx) :=
n∑

i,j=1

ai,j (x)
∂u(x)

∂xi

∂u(x)

∂xj

dx

is a smooth measure in the strict sense. The latter means that there is an increasing
sequence of finely open sets {Dk, k ≥ 1} so that

⋃∞
k=1 Dk = R

n, 1Dk
μ〈u〉 is a finite

Borel measure and G1(1Dk
μ〈u〉) is bounded for every k ≥ 1. In the sequel we

call an additive functional strict if it admits no exceptional set and call the refined
decomposition of (2.4) without exceptional set a strict Fukushima decomposition.
In fact by [13], Theorem 2, both Mu and Nu can be taken to be strict AFs of X

and the strict Fukushima decomposition holds for every continuous function u that
is locally in F such that μ〈u〉 is a smooth measure in the strict sense. Applying the
above to coordinate functions fj (x) := xj for j = 1, . . . , n, we have

Xt = x + Mt + Nt, Px-a.s.(2.5)

for every x ∈ R
n, where Mt = (M1

t , . . . ,Mn
t ) is a continuous local MAF of X in

the strict sense with

〈Mi,Mj 〉t =
∫ t

0
aij (Xs) ds

and Nt is a CAF of X locally of zero energy in the strict sense. In particular, there
is a Brownian motion B = (B1, . . . ,Bn), which is a martingale AF of X in the
strict sense, such that

M =
∫ t

0
σ(Xs) dBs, t ≥ 0,

where σ(x) is the positive definite symmetric square root of the matrix A(x). Note
that M is a MAF of X in the strict sense.

Here is the first representation result.

LEMMA 2.1. Assume condition (1.7) holds and that b̂ is C1-smooth. Then
for every f ∈ W 1,2(D) ∩ C(D), the unique weak solution u to (1.8) admits the
following representation: for x ∈ D

u(x) = Ex

[
f (XτD

) exp
{∫ τD

0
(A−1b)(Xs) dMs

+
(∫ τD

0
(A−1b̂)(Xs) dMs

)
◦ rτD

(2.6)

− 1

2

∫ τD

0
(b − b̂)A−1(b − b̂)∗(Xs) ds

+
∫ τD

0
q(Xs) ds

}]
.
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Moreover, u ∈ C(D).

PROOF. First we note that by [20], (46), we for a.e. x ∈ D, Px-a.s. have(∫ τD

0
(A−1b̂)(Xs) dMs

)
◦ rτD

(2.7)
= −

∫ τD

0
(A−1b̂)(Xs) dMs −

∫ τD

0
div(b̂)(Xs) ds.

Note that since b̂ ∈ C1(Rn), both t �→ ∫ t
0 (A−1b̂)(Xs) dMs and t �→ ∫ t

0 div(b̂) ×
(Xs) ds are continuous AFs of X in the strict sense. Therefore (

∫ τD

0 (A−1b̂) ×
(Xs) dMs) ◦ rτD

can be refined using the right-hand side of (2.7) so that it is well
defined under Px for every x ∈ D. In particular, the right-hand side of (2.6) is well
defined for every x ∈ D.

Under our assumptions, the operator L can be written as

L = 1

2

n∑
i,j=1

∂

∂xi

(
aij (x)

∂

∂xj

)

+
n∑

i=1

(
bi(x) − b̂i (x)

) ∂

∂xi

− div b̂(x) + q(x).

Define a family of measures {Qx, x ∈ R
n} on F∞ by

dQx

dPx

∣∣∣∣
Ft

= Ht,(2.8)

where

Ht = exp
(∫ t

0
A−1(b− b̂)(Xs) dMs − 1

2

∫ t

0
(b− b̂)A−1(b− b̂)∗(Xs) ds

)
.(2.9)

It is known (cf. [8]) that under measure {Qx, x ∈ R
n}, X is a diffusion process

on R
n having infinitesimal generator

L0 = 1

2

n∑
i,j=1

∂

∂xi

(
aij (x)

∂

∂xj

)
+

n∑
i=1

(
bi(x) − b̂i(x)

) ∂

∂xi

.

By Theorem 5.11 in [8], when f ∈ W 1,2(D) ∩ C(D), the unique weak solution u

to (1.8) is continuous on D and has the following probabilistic representation

u(x) = EQ
x

[
f (XτD

) exp
(∫ τD

0

(−div(̂b)(Xs) + q(Xs)
)
ds

)]
, x ∈ D,

where EQ
x stands for the expectation with respect to the measure Qx . Since

{Ht∧τD
, t ≥ 0} is a uniformly integrable martingale under Px for every x ∈ D,
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due to the fact that |b − b̂|2 ∈ Kn (see [6], page 746), we have

u(x) = Ex

[
f (XτD

) exp
(∫ τD

0

(
A−1(b − b̂)

)
(Xs) dMs

− 1

2

∫ τD

0
(b − b̂)A−1(b − b̂)∗(Xs) ds

)
× exp

(∫ τD

0

(−div(̂b)(Xs) + q(Xs)
)
ds

)]
.

This together with (2.7) implies (2.6). �

Put

J (x) =
⎧⎨⎩ c0 exp

(
− 1

1 − |x|2
)
, if |x| < 1,

0, if |x| ≥ 1,

where c0 > 0 is a normalizing constant so that∫
Rn

J (x) dx = 1.

For any positive integer k ≥ 1, we set

Jk(x) := knJ (kx) for x ∈ R
n

and

b̂k(x) = Jk ∗ b̂(x) :=
∫

Rn
b̂(y)Jk(x − y)dy,

(2.10)
qk(x) = Jk ∗ q(x) :=

∫
Rn

q(y)Jk(x − y)dy.

Recall that we assume that b, b̂ and q are set to be zero off D, and |b|2 + |̂b|2 +
|q| ∈ Kn.

LEMMA 2.2. (i) b̂k → b̂ in L2
loc(R

n) and qk → q in L1
loc(R

n) as k → ∞.

(ii) For every nonnegative function φ in C∞
c (Rn) and k ≥ 1,

n∑
i=1

∫
Rn

b̂ki(x)
∂φ

∂xi

dx +
∫

Rn
qk(x)φ(x) dx ≤ 0.

(iii) Assume n ≥ 3. Then

lim
r→0

sup
k≥1
x∈Rn

∫
{y∈Rn : |x−y|≤r}

|̂bk(y)|2 + |qk(y)|
|x − y|n−2 dy = 0.
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(iv) Assume n ≥ 3. Then

lim
k→∞ sup

x∈Rn

∫
D

|̂bk(y) − b̂(y)|2 + |qk(y) − q(y)|
|x − y|n−2 dy = 0.

PROOF. (i) follows easily from the fact that b̂ ∈ L2
loc(R

n) and q ∈ L1
loc(R

n).
For a nonnegative function φ in C∞

c (Rn) and z ∈ R
n, put φz(x) = φ(x + z). Then

it is easy to see that for k ≥ 1,
n∑

i=1

∫
Rn

b̂ki(x)
∂φ

∂xi

dx +
∫

Rn
qk(x)φ(x) dx

=
∫

Rn
Jk(z)

(
n∑

i=1

∫
Rn

b̂i(x)
∂φz

∂xi

dx +
∫

Rn
q(x)φz(x) dx

)
dz

and so (ii) follows from (1.7). Since |̂b|2 ∈ Kn, (iii) is a consequence of the fol-
lowing inequality:

sup
x∈Rn

k≥1

∫
|x−y|≤r

|̂bk|2(y)

|x − y|n−2 dy ≤
∫
|x−y|≤r

∫
Rn Jk(z)|̂b|2(y − z) dz

|x − y|n−2 dy

=
∫

Rn
Jk(z)

(∫
|x−y|≤r

|̂b|2(y − z)

|x − y|n−2 dy

)
dz

=
∫

Rn
Jk(z)

(∫
|x−z−y|≤r

|̂b|2(y)

|x − z − y|n−2 dy

)
dz

≤ sup
x∈Rn

∫
|x−y|≤r

|̂b|2(y)

|x − y|n−2 dy,

where we used the fact
∫
Rn Jk(z) dz = 1. The proof for q is similar. To prove (iv)

we observe from the proof of (iii) that for any r > 0,

sup
x∈Rn

∫
Rn

|̂bk − b̂|2(y)

|x − y|n−2 dy

≤ 2 sup
x∈Rn

∫
|x−y|≤r

|̂b|2(y)

|x − y|n−2 dy + 1

rn−2

∫
Rn

|̂bk − b̂|2(y) dy.

Using (i), this implies that

lim
k→∞ sup

x∈Rn

∫
Rn

|̂bk − b̂|2(y)

|x − y|n−2 dy ≤ 2 sup
x∈Rn

∫
|x−y|≤r

|̂b|2(y)

|x − y|n−2 dy

for any r > 0. Letting r → 0 we get (iv) for b̂k − b̂. The proof for |qk − q| goes in
a similar way. �
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For integer k ≥ 1, define

Lk := 1

2

n∑
i,j=1

∂

∂xi

(
aij (x)

∂

∂xj

)
(2.11)

+ (
b(x) − b̂k(x)

) · ∇ − div b̂k(x) + qk(x),

where b̂k, qk are the functions defined by (2.10). Denote by Qk(·, ·) the quadratic
form associated with Lk .

Now we can drop the assumption of b̂ being C1 from Lemma 2.1 by using the
smooth approximation b̂k for b̂.

THEOREM 2.3. Suppose that condition (1.7) holds and f ∈ W 1,2(D)∩C(D).
Then the unique weak solution u of (1.8) has the following probabilistic represen-
tation: for q.e. x ∈ D,

u(x) = Ex

[
f (XτD

) exp
(∫ τD

0
(A−1b)(Xs) dMs

+
(∫ τD

0
(A−1b̂)(Xs) dMs

)
◦ rτD

(2.12)

− 1

2

∫ τD

0
(b − b̂)A−1(b − b̂)∗(Xs) ds

+
∫ τD

0
q(Xs) ds

)]
.

PROOF. For simplicity, we assume n ≥ 3. [The case of n = 1 and n = 2 can
be handled similarly with a corresponding version for Lemma 2.2(iii) and (iv).]
Recall the differential operator Lk defined by (2.11). Let uk denote the unique
weak solution of the following Dirichlet boundary value problem:

Lkuk = 0 in D with uk − f ∈ W
1,2
0 (D).

Since b̂k is smooth, it follows from Lemmas 2.2(ii) and 2.1 that

uk(x) = Ex

[
f (XτD

) exp
(∫ τD

0
(A−1b)(Xs) dMs

+
(∫ τD

0
(A−1b̂k)(Xs) dMs

)
◦ rτD

− 1

2

∫ τD

0
(b − b̂k)A

−1(b − b̂k)
∗(Xs) ds

+
∫ τD

0
qk(Xs) ds

)]
.
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Let v denote the right-hand side of (2.12). We will show that limk→∞ uk(x) =
v(x). To this end, put

Zk := exp
(∫ τD

0
(A−1b)(Xs) dMs +

(∫ τD

0
(A−1b̂k)(Xs) dMs

)
◦ rτD

− 1

2

∫ τD

0
(b − b̂k)A

−1(b − b̂k)
∗(Xs) ds +

∫ τD

0
qk(Xs) ds

)
and

Z := exp
(∫ τD

0
(A−1b)(Xs) dMs +

(∫ τD

0
(A−1b̂)(Xs) dMs

)
◦ rτD

− 1

2

∫ τD

0
(b − b̂)A−1(b − b̂)∗(Xs) ds +

∫ τD

0
q(Xs) ds

)
.

We first prove that Zk → Z in probability as k → ∞. It is clear that∫ τD

0
(b − b̂k)A

−1(b − b̂k)
∗(Xs) ds +

∫ τD

0
qk(Xs) ds

converges in probability under Px for every x ∈ D to∫ τD

0
(b − b̂)A−1(b − b̂)∗(Xs) ds +

∫ τD

0
q(Xs) ds.

Thus, it is sufficient to show that(∫ τD

0
(A−1b̂k)(Xs) dMs

)
◦ rτD

→
(∫ τD

0
(A−1b̂)(Xs) dMs

)
◦ rτD

(2.13)

in probability under Px as k → ∞ for q.e. x ∈ D. Define

M̂k
t :=

∫ t

0
(A−1b̂k)(Xs) dMs, t ≥ 0

and

M̂t :=
∫ t

0
(A−1b̂)(Xs) dMs, t ≥ 0,

which are MAFs of X in the strict sense of finite energy (recall that we assumed
b = b̂ = 0 off D). It follows from [3] and [23] that there are continuous processes
Nk

t and Nt of zero energy such that

M̂k
t ◦ rt = −M̂k

t + Nk
t and M̂t ◦ rt = −M̂t + Nt .

Moreover, since M̂k → M̂ as k → ∞ with respect to the energy norm in the mar-
tingale space, for every subsequence {nk}, there is a sub-subsequence {nkj

} so
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that N
nkj

t converges to Nt uniformly on compact intervals Px -a.s. for q.e. x ∈ D

(cf. [14]). Thus, for any T > 0, on {ω : τD(ω) ≤ T }, it holds that∣∣∣∣(∫ τD

0
(A−1b̂k)(Xs) dMs

)
◦ rτD

−
(∫ τD

0
(A−1b̂)(Xs) dMs

)
◦ rτD

∣∣∣∣
≤ sup

0≤t≤T

|M̂k
t ◦ rt − M̂t ◦ rt |

≤ sup
0≤t≤T

|Mk
t − M̂t | + sup

0≤u≤T

|Nk
t − Nt |.

This proves (2.13). So, to show that un → v, it suffices to prove that the family
{Zn,n ≥ 1} is uniformly integrable under Px for q.e. x ∈ D. In view of Lem-
mas 2.1, (2.7) and 2.2(ii), we have

Zk ≤ Lk := exp
(∫ τD

0

(
A−1(b − b̂k)

)
(Xs) dMs

− 1

2

∫ τD

0
(b − b̂k)A

−1(b − b̂k)
∗(Xs) ds

)
.

Define L in the same way as Lk but with b̂ in place of b̂k . Then∫
�

|Lk − L|dPx =
∫
{Lk>L}

(Lk − L)dPx +
∫
{Lk≤L}

(L − Lk)dPx

=
∫
�

Lk dPx −
∫
�

LdPx + 2
∫
{Lk≤L}

(L − Lk)dPx

= 2
∫
{Lk≤L}

(L − Lk)dPx → 0 as k → ∞.

Here we have used the fact that Ex[Lk] = 1 = Ex[L], which is a consequence of
the Kato class assumption on |b|2 + |̂b|2 (cf. [2]). This particularly implies that
{Lk, k ≥ 1} is uniformly integrable under Px for every x ∈ D, so is {Zk, k ≥ 1}.

To show that the weak solution u of (1.8) is equal to v, by the uniqueness, it
suffices to show that v is a weak solution to (1.8). By Theorem 3.2 (and its proof)
of Trüdinger [26], there is a constant C > 0, independent of k, such that

‖uk‖1,2 ≤ C‖f ‖1,2 for every k ≥ 1.

By taking a subsequence if necessary, we may assume that un converges weakly
to some v1 in W 1,2(D) and that its Cesaro mean {k−1 ∑k

j=1 uj , k ≥ 1} converges

to some v2 in (W 1,2(D),‖ · ‖1,2). Clearly v1 = v2 = v. Moreover, since uk − f ∈
W

1,2
0 (D), we have v − f ∈ W

1,2
0 (D).

As Qk(uk,φ) = 0 for any φ ∈ C∞
c (D), if we can show that for any φ ∈ C∞

c (D),
Q(v,φ) = limk→∞ Qk(uk,φ), then v ∈ W 1,2(D) is a weak solution for Lv = 0
in D with v − f ∈ W

1,2
0 (D).
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Observe that

Qk(uk,φ) = 1

2

n∑
i,j=1

∫
Rn

aij (x)
∂uk

∂xi

∂φ

∂xj

dx −
n∑

i=1

∫
Rn

bi(x)
∂uk

∂xi

φ dx

−
n∑

i=1

∫
Rn

b̂ki(x)
∂φ

∂xi

uk(x) dx −
∫

Rn
qk(x)uk(x)φ dx.

Obviously

lim
k→∞

1

2

n∑
i,j=1

∫
Rn

aij (x)
∂uk

∂xi

∂φ

∂xj

dx = 1

2

n∑
i,j=1

∫
Rn

aij (x)
∂v

∂xi

∂φ

∂xj

dx

and

lim
k→∞

n∑
i=1

∫
Rn

bi(x)
∂uk(x)

∂xi

φ(x) dx =
n∑

i=1

∫
Rn

bi(x)
∂v(x)

∂xi

φ(x) dx.

On the other hand, for φ ∈ C∞
c (D), by Lemma 2.2 we have

lim
k→∞

n∑
i=1

∫
Rn

b̂ki(x)
∂φ(x)

∂xi

uk(x) dx =
n∑

i=1

∫
Rn

b̂i(x)
∂φ(x)

∂xi

v(x) dx

and

lim
k→∞

∫
Rn

qk(x)uk(x)φ(x) dx =
∫

Rn
q(x)v(x)φ(x) dx.

This proves that

Q(v,φ) = lim
k→∞Qk(uk,φ) = 0 for every φ ∈ C∞

c (D)

and so Lv = 0 in D in the distributional sense. This proves the theorem. �

3. Continuity at the boundary. In this section, we study the regularity of
the solution of the Dirichlet boundary value problems (1.8) at the boundary of the
domain. First, we prepare two useful lemmas. The next result is due to Meyers [22],
Theorem 1.

LEMMA 3.1. For every x0 ∈ R
n, R > 0 and p > n, there is a constant ε ∈

(0,1), depending only on n,R and p, such that if

(1 − ε)In×n ≤ A(x) ≤ In×n for a.e. x ∈ BR := B(x0,R),(3.1)

then 1
2∇(A∇u) = div f in BR has a unique weak solution in W

1,p
0 (BR) for every

f = (f1, . . . , fn) ∈ L2(BR;dx). Moreover, there is a constant c > 0 independent of
f such that

‖∇u‖Lp(BR;dx) ≤ c‖f‖Lp(BR;dx).
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Observe that since u ∈ W
1,p
0 (D) ⊂ R

n with p > n, by the classical Sobolev
embedding theorem (see, e.g., [16], Theorem 7.10) u ∈ C(D) if we take u = 0
on Dc. Recall that D is a bounded domain in R

n. Select x0 ∈ R
n and R > 0 so

that B(x0,R) ⊃ D. For simplicity, denote B(x0,R) by BR . Let XBR denote the
symmetric diffusion in BR associated with the infinitesimal generator 1

2∇(A∇).
The time-reversal operator for XBR will still be denoted as rt .

For a MAF M̂ of XBR of finite energy, let

�(M̂)t = −1
2(M̂t + M̂t ◦ rt ) for t < τBR

.

According to the representation theorem of martingale additive functionals in [14],
there is a measurable function F :BR → R

n such that

M̂t =
∫ t

0
F(Xs) dMs for t < τBR

.

We have the following result.

LEMMA 3.2. Suppose that p > n and the diffusion matrix A satisfies the
condition (3.1). Then for every Lp-integrable R

n-valued function F :BR →
R

n, there exists a function v ∈ W
1,p
0 (BR) ⊂ W

1,2
0 (BR) with ‖∇v‖Lp(BR;dx) ≤

c‖F‖Lp(BR;dx) such that

�(M̂)t = �(Mv)t = Nv
t for t < τBR

.(3.2)

Moreover, if we extend v to R
n by taking v = 0 on Bc

R , then v ∈ C(Rn).

PROOF. By [10], Corollary 3.2, the following orthogonal decomposition holds
with respect to the inner product induced by the energy norm.

M̂t = Mv
t + Kt for t < τBR

,(3.3)

where v is an element in W
1,2
0 (BR), K is a MAF of XBR satisfying �(K) = 0 and

μ〈K,Mφ〉(BR) = 0 for all φ ∈ D(E). Here μ〈K,Mφ〉 is the signed Revuz measure of
CAF 〈K,Mφ〉 of X of finite variation. Hence,

�(M̂)t = �(Mv)t = Nv
t for t < τBR

.

By the representation of MAFs, we have

Mv
t =

∫ t

0
∇v(Xs) dMs and Kt =

∫ t

0
G(Xs) dMs for t < τBR

,

for some measurable vector field G = (G1(x), . . . ,Gn(x)) :BR → R
n. Since

μ〈K,Mφ〉(BR) = 0 for all φ ∈ W
1,2
0 (BR), we have∫

D

n∑
i,j=1

aij (x)
∂φ

∂xi

Gj (x) dx = 0
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for all φ ∈ C1
c (BR). This says that div(AG) = 0 in BR . Note that

F(x) = ∇v(x) + G(x).

Multiplying both sides of the above equation by the matrix function A(x), we see
that v ∈ W

1,2
0 (BR) solves the equation

div(A∇v) = div(AF) in BR.

By Lemma 3.1, v ∈ W
1,p
0 (BR) with

‖v‖Lp(BR;dx) ≤ c‖AF‖Lp(BR;dx) ≤ c1‖F‖Lp(BR;dx).

If we take v = 0 on Bc
R , then v ∈ W 1,p(Rn) and so by the Sobolev embedding

theorem [16], Theorem 7.10, v ∈ C(Rn). This completes the proof of the lem-
ma. �

Henceforth, we select and fix a ball BR ⊃ D.

THEOREM 3.3. Assume the Markovian condition (1.7) is satisfied, p > n and
that the diffusion matrix A satisfies the condition (3.1) of Lemma 3.1. Assume that
|̂b| ∈ Lp(D;dx) , and that 1D(|b|2 +|q|) ∈ Kn. Let u be the unique weak solution
of the Dirichlet boundary value problem (1.8). Then for y ∈ ∂D that is regular for
(1

2�,D), we have

lim
x→y,x∈D

u(x) = f (y).

PROOF. It is enough to prove the theorem for nonnegative function f . Let
{�,F ,Xt ,Qx, x ∈ R

n} denote the diffusion process defined as in (2.8). As in the
proof of Theorem 2.3, put

M̂t =
∫ t∧τBR

0
(A−1b̂)(Xs) dMs.

By Lemma 3.2, there exits a bounded, function v ∈ W
1,p
0 (BR) ⊂ W

1,2
0 (BR) such

that

M̂t ◦ rt = −M̂t + Nv
t for t < τBR

.

Note that M̂ is a MAF of X in the strict sense and Nv is a CAF of X in the strict
sense of zero energy in view of [13], Theorem 1, since v ∈ W

1,p
0 (BR) and so it is

continuous on R
n if we extend v to take value 0 on Bc

R . Therefore M̂t ◦ rt can be
refined to be a CAF of X in the strict sense. It follows that u can be expressed as

u(x) = EQ
x [f (XτD

) exp(AτD
)],

where

At = Nv
t +

∫ t

0
q(Xs) ds.
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Under condition (1.7), the CAF At is negative and decreasing in t ∈ [0, τBR
).

Hence for x ∈ D,

|u(x) − EQ
x [f (XτD

)]| ≤ ‖f ‖∞EQ
x [| exp(AτD

) − 1|] ≤ ‖f ‖∞EQ
x [1 − exp(AτD

)].
We know from [8] that for y ∈ ∂D that is regular for (1

2�,D),

lim
x→y,x∈D

EQ
x [f (XτD

)] = f (y)

and limx→y,x∈D Qx(τD > t) = 0 for every t > 0. Thus, it suffices to show that

lim
t↓0

lim
x→y,x∈D

EQ
x [exp(AτD∧t )] = 1.

For this, note that by Jensen’s inequality,

1 ≥ EQ
x [exp(AτD∧t )] ≥ exp(EQ

x [AτD∧t ]).
On the other hand, by the Cauchy–Schwarz inequality,

(EQ
x [AτD∧t ])2 ≤ Ex[H 2

τD∧t ]Ex[A2
τD∧t ],

where H is the martingale given by (2.9). We know from [8] that
supx∈D sups∈[0,1] Ex[H 2

s ] < ∞. Observe that

At = Nv
t +

∫ t

0
q(Xs) ds = v(Xt) − v(X0) −

∫ t

0
∇v(Xs) dMs +

∫ t

0
q(Xs) ds.

Since v is bounded and continuous, it is known (see, e.g., [8]) that

lim
x→y,x∈D

Ex[(v(XτD∧t )
2] = v(x)2 and lim

x→y,x∈D
Ex[v(XτD∧t ] = v(x).

Thus,

lim
x→y,x∈D

Ex[A2
τD∧t ]

≤ lim
x→y,x∈D

cEx

[(
v(XτD∧t ) − v(X0)

)2

+
∫ τD∧t

0
|∇v(Xs)|2 ds +

(∫ τD∧t

0
|q(Xs)|ds

)2]
≤ c lim

x→y,x∈D
Ex

[∫ τD∧t

0
|∇v(Xs)|2 ds

+ 2
∫ τD∧t

0
|q(Xs)|

(∫ τD∧t

s
|q(Xr)|dr

)
ds

]
≤ c lim

x→y,x∈D
Ex

[∫ τD∧t

0
|∇v(Xs)|2 ds

+ 2
(

sup
z∈D

GD|q|(z)|
)∫ τD∧t

0
|q(Xs)|ds

]
= 0.
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In the second to the last inequality we used the Markov property of X, while in the
last equality we used the fact that |∇v|2 and q are in the Kato class and the domi-
nated convergence theorem. This proves that limt↓0 limx→y,x∈D EQ

x [AτD∧t ] = 0.

Consequently limt↓0 limx→y,x∈D EQ
x [exp(AτD∧t )] = 1. This proves the theo-

rem. �

4. Without Markovian assumption (1.7). In this section, we will drop the
Markovian condition (1.7) and give a general result on the existence and unique-
ness of the weak solutions of the Dirichlet boundary value problem (1.8).

Let h = (h1(x), . . . , hn(x)) : Rn → R
n be a measurable function such that h ∈

Lp(Rn → R
n) for some p > n. Let μ be a signed measure in Kn. Consider

G = 1

2

n∑
i,j=1

∂

∂xi

(
aij (x)

∂

∂xj

)
+

n∑
i=1

hi(x)
∂

∂xi

+ μ.

The quadratic from (C,D(C)) associated with G is given by D(C) = W 1,2(Rn)

and for u, v ∈ W 1,2(Rn),

C(u, v) = (−Gu, v)

= 1

2

n∑
i,j=1

∫
Rn

aij (x)
∂u

∂xi

∂v

∂xj

dx −
n∑

i=1

∫
Rn

hi(x)
∂u

∂xi

v(x) dx(4.1)

−
∫

Rn
u(x)v(x)μ(dx).

We will regard (C,W 1,2(Rn)) as a lower-order perturbation of the symmetric
Dirichlet form (E ,W 1,2(Rn)) associated with the infinitesimal generator 1

2∇(A∇).
Recall that X is the symmetric diffusion process with infinitesimal generator
1
2∇(A∇), or equivalently, with (E ,W 1,2(Rn)). Let A

μ
t be the CAF of X whose Re-

vuz measure is μ. It is proved in [8] (see also [20]) that the semigroup {Tt , t ≥ 0}
associated with (C,W 1,2(Rn)) is given by

Ttg(x) = Ex

[
g(Xt) exp

(∫ t

0
(A−1h)(Xs) dMs

− 1

2

∫ t

0
hA−1h∗(Xs) ds + A

μ
t

)]
(4.2)

= EP∗
x [g(Xt)e

A
μ
t ],

where EP∗
x stands for the expectation with respect to the diffusion measure {P∗

x, x ∈
R

n}, defined by

dP∗
x

dPx

∣∣∣∣
Ft

= Ht,(4.3)
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where

Ht = exp
(∫ t

0
(A−1h)(Xs) dMs − 1

2

∫ t

0
hA−1h∗(Xs) ds

)
.(4.4)

Let ν be a positive Radon measure of finite energy with respect to the symmet-
ric Dirichlet form (E ,W 1,2(Rn)). Note that due to the Lp-integrability of h and
the Kato class condition on μ, there exists a constant α0 ≥ 1 such that for every
α > α0,

Cα(u, v) := C(u, v) + α(u, v)

is a positive definite quadratic form satisfying

c−1
α Cα(u,u) ≤ E1(u,u) ≤ cαCα(u,u) for every u ∈ W 1,2(Rn).

By Lax–Milgram theorem, for any α > α0, there is a unique function in D(E),
denoted by Uαν, such that

Cα(Uαν, v) =
∫

Rn
v(x)ν(dx)(4.5)

for all v ∈ D(E). Uαν is called the α-potential of ν associated with the quadratic
form (Cα,D(C)). We have the following useful representation for Uαν.

LEMMA 4.1. Let Aν be the positive CAF of X associated with the smooth
measure ν in the strict sense. Then, for sufficiently large α,

Uαν(x) = Ex

[∫ ∞
0

R
(α)
t dAν

t

]
= EP∗

x

[∫ ∞
0

exp(−αt + A
μ
t ) dAν

t

]
,

where

R
(α)
t = exp

(∫ t

0
(A−1h)(Xs) dMs − 1

2

∫ t

0
hA−1h∗(Xs) ds − αt + A

μ
t

)
.(4.6)

PROOF. By the same proof of [14], Lemma 2.2.5, we see that there exists an
E -nest consisting of an increasing sequence {Fk, k ≥ 1} of compact sets of R

n such
that ‖Uα(1Fk

ν)‖∞ < ∞ for each k ≥ 1. By restricting to Fk if necessary, we may
assume that g(x) := Uαν(x) is bounded in the sequel. By (4.5), it follows that for
every v ∈ W 1,2(Rn),

E(g, v) = 1

2

n∑
i,j=1

∫
Rn

aij (x)
∂g

∂xi

∂v

∂xj

dx

=
n∑

i=1

∫
Rn

hi(x)
∂g

∂xi

v(x) dx +
∫

Rn
g(x)v(x)μ(dx)(4.7)

+
∫

Rn
v(x)ν(dx) − α

∫
Rn

g(x)v(x) dx.
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By [14], Theorem 5.4.2, (4.7) implies that Px-a.s.

g(Xt) = g(X0) +
∫ t

0
∇g(Xs) dMs −

n∑
i=1

∫ t

0
hi(Xs)

∂g

∂xi

(Xs) ds

−
∫ t

0
g(Xs) dAμ

s + α

∫ t

0
g(Xs) ds − Aν

t .

Note that R
(α)
t satisfies

dR
(α)
t = R

(α)
t (A−1h)(Xt) dMt + R

(α)
t dA

μ
t − αR

(α)
t dt.

By Itô’s formula, it follows that

g(Xt)R
(α)
t = g(X0) + Kt −

∫ t

0
R(α)

s Aν
s ,(4.8)

where

Kt :=
∫ t

0
g(Xs)R

(α)
s (A−1h)(Xs) dMs +

∫ t

0
R(α)

s ∇g(Xs) dMs

is a local martingale. Let {τk, k ≥ 1} be an increasing sequence of stopping times
approaching to ∞ such that {Kt∧τk

, t ≥ 0} is a martingale for every k ≥ 1. It fol-
lows from (4.8) that

g(x) = Ex

[∫ t∧τk

0
R(α)

s dAν
s

]
+ Ex

[
g(Xt∧τn)R

(α)
t∧τk

]
.

Note that since |μ| ∈ Kn, it follows from Khasminskii’s inequality, Cauchy–
Schwarz inequality and [8], Theorem 3.1, {R(α)

s ,0 ≤ s ≤ T } is uniformly inte-
grable under Px for every x ∈ R

n and T > 0. Letting k → ∞, by dominated and
monotone convergence theorems we get

g(x) = Ex

[∫ t

0
R(α)

s dAν
s

]
+ Ex

[
g(Xt)R

(α)
t

]
.(4.9)

Since the Revuz measure μ of Aμ is in the Kato class, for sufficiently large α, we
have

lim
t→∞ Ex

[
R

(α)
t

] = 0.

As g is assumed to be bounded, letting t → ∞ in (4.9) we obtain that

g(x) = Ex

[∫ ∞
0

R(α)
s Aν

s

]
,

which completes the proof. �
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Assume from now on that D is a bounded Lipschitz domain. In particular, the
boundary of D is regular with respect to (1

2�,D). Let R be the multiplicative
functional of X defined as in (4.6) with α = 0; that is,

Rt = exp
(∫ t

0
(A−1h)(Xs) dMs − 1

2

∫ t

0
hA−1h∗(Xs) ds + A

μ
t

)
.

The following is a gauge theorem involving the Girsanov as well as Feynman–Kac
functional, which extends the corresponding result in [15] where the diffusion ma-
trix A is the identity matrix and the Kato class measure μ is absolutely continuous
with respect to the Lebesgue measure [i.e., μ(dx) = q(x) dx].

THEOREM 4.2. Let D be a bounded Lipschitz domain in R
n, h ∈ Lp(Rn →

R
n) for some p > n and μ a signed measure in Kn. Define u(x) := Ex[RτD

]. Then
if u(x) < ∞ for some x ∈ D, then u is bounded between two positive constants
in D.

PROOF. Let GD denote the Green function of the symmetric diffusion X in D

and μ+, μ− be the positive, negative part of μ, respectively. Since μ is in the Kato
class, we have by Jensen’s inequality

inf
x∈D

u(x)

≥ inf
x∈D

exp
(

Ex

[∫ τD

0
(A−1h)(Xs) dMs − 1

2

∫ τD

0
hA−1h∗(Xs) ds + Aμ

τD

])
= inf

x∈D
exp

(
Ex

[
Aμ

τD
− 1

2

∫ τD

0
hA−1h∗(Xs) ds

])
≥ exp(−‖GDμ−‖∞ − c‖GD|h|2‖∞).

Let Y be the diffusion process with infinitesimal generator 1
2

∑n
i,j=1

∂
∂xi

(aij (x) ×
∂

∂xj
)+∑n

i=1 hi(x) ∂
∂xi

. It is known (see [8]) that Y can be obtained from X through
Girsanov transform by the exponential martingale H in (4.4). That is, if for every
x ∈ R

n, we let P∗
x be the measure defined by

dP∗
x

dPx

∣∣∣∣
Ft

= Ht for every t ≥ 0,(4.10)

then the diffusion process X under P∗
x has the same distribution as Y starting

from x.
Note that RτD

= HτD
exp(A

μ
τD). For every k ≥ 1, we have by (62) of Sharpe [24],

EP∗
x [k ∧ exp(Aμ

τD
)] = Ex

[∫ τD

0
k ∧ exp(A

μ
t ) d(−Hs) + (

k ∧ exp(Aμ
τD

)
)
HτD

]
= Ex

[(
k ∧ exp(Aμ

τD
)
)
HτD

]
.
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Passing k → ∞, we have

EP∗
x [exp(Aμ

τD
)] = Ex[exp(Aμ

τD
)HτD

] = Ex[RτD
].(4.11)

Since h ∈ Lp(D;dx) for some p > n, by Ancona [1], the Green function of Y

in D is comparable to that of X in D. Hence μ is in the Kato class of Y in D.
By [5], Theorem 2.2, we have x �→ EP∗

x [exp(A
μ
τD)] is either bounded or identically

infinite on D. It then follows from (4.11) that u(x) is either bounded on D or
identically infinite, which proves the theorem. �

Now consider the Dirichlet boundary value problem

Gu = 0 in D with u = f on ∂D,(4.12)

where f ∈ C(∂D). Recall that {P∗
x, x ∈ D} are the probability measures defined

by (4.10).

THEOREM 4.3. Recall that R is the multiplicative functional of X defined
as in (4.6) with α = 0. Assume that Ex0[RτD

] < ∞ for some x0 ∈ D. Then there
exists a unique, continuous weak solution to the Dirichlet boundary value prob-
lem (4.12), which is given by

u(x) = Ex[RτD
f (XτD

)] = EP∗
x [eA

μ
τD f (XτD

)], x ∈ D.(4.13)

PROOF. We first show that u defined by (4.13) is a weak solution to the Dirich-
let boundary value problem (4.12). Put

v1(x) = EP∗
x [f (XτD

)] and v2(x) = EP∗
x

[∫ τD

0
v1(Xs)e

A
μ
s dAμ

s

]
.

Then u1(x) = v1(x) + v2(x). By [8], Theorem 4.5, we know that v1 is locally in
W 1,2(Rn) and

C(v1, φ) = −
∫
D

v1(x)φ(x)μ(dx) for every φ ∈ W
1,2
0 (D).

Here the quadratic form (C,W 1,2(D)) is defined by (4.1). We will show now that
v2 ∈ W

1,2
0 (D). Let

Gβg(x) = EP∗
x

[∫ τD

0
e−βteA

μ
t g(Xs) ds

]
.

Denote by Ĝβ the adjoint operator of Gβ in L2(D;dx). Applying Lemma 4.1 to
the process X killed upon leaving D, we have

v2(x) − βG1
βv2(x) = EP∗

x

[∫ τD

0
e−βt eA

μ
t v1(Xt) dA

μ
t

]
= Ūβ(v1μ),
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where Ūβ(v1μ) is defined as in the proof of Lemma 4.1 but with the killed
process XD in place of X. Since μ belongs to the Kato class of X (and of Y

by the proof of Theorem 4.2) in D, we have

β(v2 − βGβv2, v2)

= β

∫
D

EP∗
x

[∫ τD

0
e−βt eA

μ
t v1(Xt) dA

μ
t

]
v2(x) dx

= β

∫
D

Ūβ(v1μ)v2(x) dx

=
∫
D

βĜβv2(x)v1(x)μ(dx)

≤ C1

(∫
D

|∇v1|2 dx +
∫
D

|v1|2 dx

)
+ C2

∫
D

|βĜβv2|2 dx + C(βĜβv2, βĜβv2)

≤ C1

(∫
D

|∇v1|2 dx +
∫
D

|v1|2 dx

)
+ C2

β

β − α0

∫
D

|βĜβv2|2 dx

+ 1

2
β(v2 − βGβv2, v2),

where in the last inequality [19], Lemma 3.1(i), is used. Thus,

sup
β>0

β(v2 − βGβv2, v2) < ∞,

which implies that v2 ∈ W
1,2
0 (D). Moreover for φ ∈ W

1,2
0 (D),

C(v2, φ) = lim
β→∞β(v2 − βGβv2, φ) = lim

β→∞

∫
D

βĜβφ(x)v1(x)μ(dx)

=
∫
D

v1(x)φ(x)μ(dx).

The last equation follows from the fact that βĜβφ(x) converges to φ in the Dirich-
let space (E1,W

1,2
0 (D)). Thus, for φ ∈ W

1,2
0 (D),

C(u,φ) = C(v1, φ) + C(v2, φ) = 0.

This means that u is a weak solution to Gu = 0 in D. It is a well-known fact in
the theory of PDE (cf. [16]) that u is continuous inside D. Next we show that the
boundary condition is fulfilled, that is,

lim
x→y,x∈D

u1(x) = f (y)(4.14)
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for every y ∈ ∂D. It is proved in [8] that every point in ∂D is a regular point of Dc

with respect to Y

lim
x→y,x∈D

v1(x) = lim
x→y,x∈D

EP∗
x [f (XτD

)] = f (y)

for every y ∈ ∂D. As u1 = v1 + v2, it suffices to show that

lim
x→y,x∈D

v2(x) = 0 for y ∈ ∂D.

Note that

v2(x) = EP∗
x [f (XτD

)(eA
μ
τD − 1)].

For any t > 0, write v2 as

v2(x) = EP∗
x [f (XτD

)(eA
μ
τD − 1); τD ≤ t] + EP∗

x [f (XτD
)(eA

μ
τD − 1); τD > t].

Now

|EP∗
x [f (XτD

)(eA
μ
τD − 1); τD > t]| ≤ ‖f ‖∞EP∗

x [(eA
μ
τD + 1); τD > t]

= ‖f ‖∞EP∗
x

[
eA

μ
t EP∗

Xt
[eA

μ
τD + 1]; τD > t

]
≤ ‖f ‖∞EP∗

x

[
eA

|μ|
t (M + 1); τD > t

]
.

Here in the last inequality, we used the assumption that Ex[RτD
] < ∞ for some x ∈

D and thus by Theorem 4.2, M := supx∈D EP∗
x [exp(A

μ
τD ] = supx∈D Ex[RτD

] < ∞.
Let y ∈ ∂D. Since

lim
x→y,x∈D

P∗
x(τD > t) = 0 and sup

x∈D

EP∗
x

[
eA

|μ|
t

]
< ∞,

we have

lim
x→y,x∈D

EP∗
x [f (XτD

)(eA
μ
τD − 1) : τD > t] = 0.

Thus for every t > 0,

lim
x→y,x∈D

|v2(x)| = lim sup
x→y,x∈D

|EP∗
x [f (XτD

)(eA
μ
τD − 1); τD ≤ t]|

≤ ‖f ‖∞ lim sup
x→y,x∈D

EP∗
x

[
eA

|μ|
t − 1; τD ≤ t

]
≤ ‖f ‖∞ lim sup

x→y,x∈D

(Ex[(Ht)
2])1/2(

Ex

[(
eA

|μ|
t − 1

)2])1/2
.

By [8], Theorem 3.1, we know that supx∈D Ex[(Ht)
2] < ∞, where H is defined

in (4.10). On the other hand, since μ is in the Kato class of X, it follows from the
Khasminskii’s inequality that

lim
t→0

sup
x∈D

Ex

[(
eA

|μ|
t − 1

)2] = 0.
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Thus we conclude that limx→y,x∈D v2(x) = 0. So (4.14) is established.
To prove the uniqueness, let u1 be any, bounded continuous weak solution of

the Dirichlet boundary value problem (4.12). Then for φ ∈ W
1,2
0 (D),

E(u1, φ) = C(u1, φ) +
n∑

i=1

∫
D

hi(x)
∂u1(x)

∂xi

φ(x) dx

+
∫
D

u1(x)φ(x)μ(dx)(4.15)

=
n∑

i=1

∫
D

hi(x)
∂u1(x)

∂xi

φ(x) dx +
∫
D

u1(x)φ(x)μ(dx).

By [14], Theorem 5.4.2, it follows from (4.15) that the following decomposition
holds:

u1(Xt) − u1(X0) =
∫ t

0
∇u1(Xs) dMs −

n∑
i=1

∫ t

0
hi(Xs)

∂u1

∂xi

(Xs) ds

−
∫ t

0
u1(Xs) dAμ

s

for t < τD . Recall that

Rt = exp
(∫ t

0
(A−1h)(Xs) dMs − 1

2

∫ t

0
hA−1h∗(Xs) ds + A

μ
t

)
satisfies

dRt = Rt(A
−1h)(Xt) dMt + Rt dA

μ
t .

Applying Itô’s formula, we get that for t < τD ,

d(u1(Xt)Rt ) = Rt∇u1(Xt) dMt + u1(Xt)Rt (A
−1h)(Xt) dMt .(4.16)

This shows that {u1(Xt∧τD
)Rt∧τD

, t ≥ 0} is a Px-local martingale for every x ∈ D.
We claim that {Rt∧τD

, t ≥ 0} is uniformly integrable with respect to Px for every
x ∈ D. To see this, write

Rt∧τD
= RτD

1{t≥τD} + Rt1{t<τD}.
Obviously the first term {RτD

1{t≥τD}} is uniformly integrable. For the second term,
by Jensen’s inequality,

1{t<τD}Ex[RτD
|Ft ]

= 1{t<τD}Ex[Rt(RτD
◦ θt )|Ft ]

= Rt1{t<τD}EXt [RτD
]

≥ Rt1{t<τD} exp
(
−1

2
sup
x∈D

Ex

[∫ τD

0
hA−1h∗(Xs) ds

]
+ inf

x∈D
Ex[Aμ

τD
]
)

≥ cRt1{t<τD}
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for some positive constant c, where we have used the fact that |h|2,μ are both
in the Kato class. The above inequality implies that {Rt1{t<τD}, t ≥ 0} is also
Px-uniformly integrable. Therefore, {Rt∧τD

, t ≥ 0} is Px-uniformly integrable.
Since u is bounded continuous, we conclude that {u1(Xt∧τD

)Rt∧τD
, t ≥ 0} is uni-

formly integrable, hence a Px-martingale for every x ∈ D. Consequently,

Ex[u1(Xt∧τD
)Rt∧τD

] = u1(x).

Letting t → ∞, we get that

u1(x) = Ex[f (XτD
)RτD

],
which proves the uniqueness. �

Now we can get to the main results of this section. Define

Zt = exp
{∫ t

0
(A−1b)(Xs) dMs +

(∫ t

0
(A−1b̂)(Xs) dMs

)
◦ rt

(4.17)

− 1

2

∫ t

0
(b − b̂)A−1(b − b̂)∗(Xs) ds +

∫ t

0
q(Xs) ds

}
.

Recall that X is the symmetric diffusion with infinitesimal generator 1
2∇(A∇)

and M is the martingale part of X in (1.9). For domain D ⊂ R
n, τD := inf{t ≥

0 :Xt /∈ D} is the first exit time from D by diffusion X. The following theorem is
a new type of gauge theorem, in comparison with those found in [2, 5, 9].

THEOREM 4.4. Let D be a bounded Lipschitz domain contained in some
ball BR , A be an n × n symmetric positive definitive matrix satisfying the con-
dition (3.1) of Lemma 3.1, |b| + |̂b| ∈ Lp(D;dx) for some p > n, and 1Dq ∈ Kn.
Then ZτD

of (4.17) is well defined under Px for every x ∈ D. If Ex0[ZτD
] < ∞

for some x0 ∈ D, then the function x �→ Ex[ZτD
] is bounded between two positive

constants on D.

PROOF. As before, put

M̂t =
∫ t

0
(A−1b̂)(Xs) dMs for t ≥ 0.

Let R > 0 so that D ⊂ BR := B(0,R). By Lemma 3.2, there exits a bounded
function v ∈ W

1,p
0 (BR) ⊂ W

1,2
0 (BR) such that

M̂t ◦ rt = −M̂t + Nv
t
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and that v ∈ W
1,2
0 (BR) satisfies the following equation in the distributional sense:

div(A∇v) = −2 div(b̂) in BR.(4.18)

Note that by Sobolev embedding theorem, v ∈ C(Rn) if we extend v = 0 on Dc.
Thus both M̂ and Nv are CAFs of X in the strict sense (cf. [13], Theorem 1), and
so is t �→ M̂t ◦ rt . Moreover,(∫ τD

0
(A−1b̂)(Xs) dMs

)
◦ rτD

= −
∫ τD

0
(A−1b̂)(Xs) dMs + Nv

τD

= −
∫ τD

0
(A−1b̂)(Xs) dMs + v(XτD

) − v(X0) − Mv
τD

= −
∫ τD

0
(A−1b̂)(Xs) dMs + v(XτD

) − v(X0)

−
∫ τD

0
∇v(Xs) dMs.

Thus

ZτD
= ev(XτD

)

ev(X0)
exp

(∫ τD

0

(
A−1(b − b̂) − ∇v

)
(Xs) dMs

(4.19)

+
∫ τD

0

(
q − 1

2
(b − b̂)A−1(b − b̂)∗

)
(Xs) ds

)
.

So ZτD
is well defined under Px for every x ∈ D. Since v is bounded, b − b̂ ∈

Lp(D;dx), ∇v ∈ Lp(D;dx) and 1Dq ∈ Kn, the theorem follows from Theo-
rem 4.2. �

Recall that L is the second-order differential operator defined by (1.3).

THEOREM 4.5. Let D be a bounded Lipschitz domain contained in some
ball BR , A be an n × n symmetric positive definitive matrix satisfying the con-
dition (3.1) of Lemma 3.1, |b| + |̂b| ∈ Lp(D;dx) for some p > n, and 1Dq ∈ Kn.
Let Z be defined in (4.17) and assume that Ex[ZτD

] < ∞ for some x ∈ D. Then
for every f ∈ C(∂D), there exists a unique weak solution u to Lu = 0 in D that is
continuous on D with u = f on ∂D. Moreover, the solution u admits the following
representation:

u(x) = Ex[ZτD
f (XτD

)] for x ∈ D.(4.20)
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PROOF. Let u be defined by the right-hand side of (4.20). Recall that v is the
function in W

1,p
0 (BR) that is continuous on R

n if we extend v = 0 off D in the
proof of Theorem 4.4. Define

ẐτD
:= exp

(∫ τD

0

(
A−1(b − b̂ − A∇v)

)
(Xs) dMs

− 1

2

∫ τD

0
(b − b̂ − A∇v)A−1(b − b̂ − A∇v)∗(Xs) ds

−
∫ τD

0
〈b − b̂,∇v〉(Xs) ds

+ 1

2

∫ τD

0
(∇v)A(∇v)∗(Xs) ds +

∫ τD

0
q(Xs) ds

)
.

We have by (4.19) that

ZτD
= ev(XτD

)

ev(X0)
ẐτD

.

Since the function v is bounded and continuous on D, it follows that Ex0[ZτD
] <

+∞ for some x0 ∈ D if and only if Ex0[ẐτD
] < +∞. Define g := evu. Then

g(x) = Ex[ẐτD
(evf )(XτD

)] for x ∈ D.(4.21)

Let

L1 := 1

2

n∑
i,j=1

∂

∂xi

(
aij (x)

∂

∂xj

)

+
n∑

i=1

(
bi(x) − b̂i (x) − (A∇v)i(x)

) ∂

∂xi

− 〈b − b̂,∇v〉(x) + 1

2
(∇v)A(∇v)∗(x) + q(x).

By Theorem 4.3, g is a weak solution to the Dirichlet boundary value problem

L1g = 0 in D and g = f ev on ∂D.

Moreover, g is continuous on D with g = f ev on ∂D. Hence, u = e−vg is bounded
and continuous on D with u = f on ∂D. Note that for any ψ ∈ W

1,2
0 (D),

Q∗(g,ψ) := (−L1g,ψ)

= 1

2

n∑
i,j=1

∫
D

aij

∂g

∂xi

∂ψ

∂xj

dx

−
n∑

i=1

∫
D

(
bi − b̂i − (A∇v)i

) ∂g

∂xi

ψ dx(4.22)
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−
∫
D

qgψ dx +
∫

Rn
〈b − b̂,∇v〉gψ dx

− 1

2

∫
D

(∇v)A(∇v)∗(x)gψ dx

= 0.

Recalling the definition of the quadratic form Q from (1.6), we thus have for every
φ ∈ C∞

c (D),

Q(u,φ) = 1

2

n∑
i,j=1

∫
D

aij

∂(ge−v)

∂xi

∂φ

∂xj

dx −
n∑

i=1

∫
D

bi

∂(ge−v)

∂xi

φ dx

−
n∑

i=1

∫
D

b̂i

∂φ

∂xi

ge−v dx −
∫
D

qge−vφ dx

= 1

2

n∑
i,j=1

∫
D

aij

∂g

∂xi

∂(e−vφ)

∂xj

dx − 1

2

n∑
i,j=1

∫
D

aij

∂g

∂xi

∂e−v

∂xj

φ dx

(4.23)

+ 1

2

n∑
i,j=1

∫
D

aij

∂e−v

∂xi

∂φ

∂xj

g dx −
n∑

i=1

∫
D

bi

∂g

∂xi

e−vφ dx

−
n∑

i=1

∫
D

bi

∂e−v

∂xi

gφ dx −
n∑

i=1

∫
D

b̂i

∂φ

∂xi

ge−v dx

−
∫
D

qge−vφ dx.

Applying (4.22) with ψ = φe−v we obtain

1

2

n∑
i,j=1

∫
Rn

aij (x)
∂g

∂xi

∂(φe−v)

∂xj

dx

=
n∑

i=1

∫
Rn

(
bi(x) − b̂i(x) − (a∇v)i(x)

) ∂g

∂xi

φe−v dx

+
∫

Rn
q(x)g(x)φe−v dx

−
∫

Rn
〈b − b̂,∇v〉(x)g(x)φe−v dx

+ 1

2

∫
Rn

(∇v)A(∇v)∗(x)gφe−v dx.
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Substituting this expression into (4.23), we get after cancellations that

Q(u,φ) = −
n∑

i=1

∫
Rn

b̂i(x)
∂(gφ)

∂xi

e−v dx −
n∑

i=1

∫
Rn

(A∇v)i(x)
∂g

∂xi

φe−v dx

+
∫

Rn
〈̂b,∇v〉φge−v dx + 1

2

∫
Rn

(∇v)A(∇v)∗gφe−v dx

(4.24)

− 1

2

n∑
i,j=1

∫
Rn

aij (x)
∂g

∂xi

∂e−v

∂xj

φ dx

+ 1

2

n∑
i,j=1

∫
Rn

aij (x)
∂e−v

∂xi

∂φ

∂xj

g dx.

In the sequel, we write div(·) for the divergence in the distribution sense. Now,

−
n∑

i=1

∫
Rn

b̂i(x)
∂(gφ)

∂xi

e−v dx

=
∫

Rn
div(b̂e−v)gφ dx(4.25)

=
∫

Rn
div(b̂)e−vgφ dx −

∫
Rn

〈̂b,∇v〉φge−v dx.

By virtue of (4.18),∫
Rn

div(b̂)e−vgφ dx

= −1

2

∫
Rn

div(A∇v)e−vgφ dx

= 1

2

∫
Rn

〈A∇v,∇(e−vgφ)〉dx − 1

2

∫
Rn

〈A∇v,∇v〉e−vgφ dx(4.26)

+ 1

2

∫
Rn

〈A∇v,∇g〉e−vφ) dx

+ 1

2

∫
Rn

〈A∇v,∇φ〉e−vgφ dx.

Combining (4.24)–(4.26), we arrive at

Q(u,φ) = −
∫

Rn
(A(x)∇v(x) · ∇g(x))φ(x)e−v(x) dx

− 1

2

n∑
i,j=1

∫
Rn

aij (x)
∂g

∂xi

∂e−v

∂xj

φ dx + 1

2

∫
Rn

〈A∇v,∇g〉e−vφ dx

= 0.
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This shows that u is a weak solution to Lu = 0 in D. Recall that we have showed
earlier that u is continuous on D with u = f on ∂D.

It remains to show the uniqueness. Suppose that u is a weak solution to Lu =
0 in D and that u is bounded and continuous on D with u = f on ∂D. Then,
for any φ ∈ W

1,2
0 (D), Q(u,φ) = 0. Let v be the solution of (4.18). Put g(x) =

ev(x)u(x). Running the above proof backward, we can show that Q∗(g,ψ) = 0 for
any ψ ∈ W

1,2
0 (D). Hence g is a weak solution to L1g = 0 in D that is bounded

and continuous on D with g = f ev on ∂D. It follows from Theorem 4.3 that g is
given by (4.21). Arguing similarly as at the beginning of the proof, we conclude
that u can be expressed as in (4.20). This establishes the uniqueness. �

REMARK 4.6. For b̂ ∈ Lp(Rn;dx), by [26], Theorem 4.1, there is a unique
bounded weak solution v ∈ W

1,2
0 (BR) such that

div(A∇v) = −2 div(b̂) in BR.

Condition (3.1) of Lemma 3.1 is used to guarantee that ∇v ∈ Lp(BR;dx) for
some p > n [see (4.18)], which in turn by the Sobolev embedding theorem im-
plies that v ∈ C(Rn) if we extend v = 0 on Dc. Condition (3.1) can be dropped
from Theorems 4.4 and 4.5 if we assume directly that ∇v ∈ Lp(BR;dx) for some
p > n.

5. Generalized Feynman–Kac transform. In this section, we consider the
special case of (1.3) with b = b̂ = −A∇ρ, for some ρ ∈ W 1,2(Rn) with |∇ρ|2 ∈
Lp(Rn;dx) for some p > n. Note that by Sobolev embedding theorem, ρ ∈
C(Rn). As mentioned in the Introduction, the quadratic form (Q,W 1,2(Rn))

in (1.6) takes the following form:

Q(u, v) = 1

2

n∑
i,j=1

∫
Rn

aij (x)
∂u

∂xi

∂v

∂xj

dx + 1

2

n∑
i,j=1

∫
Rn

aij (x)
∂(uv)

∂xi

∂ρ

∂xj

dx

(5.1)
+

∫
Rn

u(x)v(x)q(x) dx

for u, v ∈ W 1,2(Rn). Let X be the symmetric diffusion with infinitesimal generator
1
2∇(A∇). When q = 0, it is established in Chen and Zhang [7] that (Q,W 1,2(Rn))

is the quadratic form associated with the generalized Feynman–Kac semigroup
{Tt , t ≥ 0} defined by

Ttf (x) = Ex[eN
ρ
t f (Xt)], x ∈ R

n, t ≥ 0,

where Nρ is the CAF of X in the Fukushima’s decomposition of

ρ(Xt) − ρ(X0) = M
ρ
t + N

ρ
t , t ≥ 0.
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(When A is the identity matrix, the above result is proved in [17].) Recall that M is
the martingale defined in (1.9) and that M

ρ
t = ∫ t

0 ∇ρ(Xs) dMs . Note that (cf. [3])

N
ρ
t = −1

2(M
ρ
t + M

ρ
t ◦ rt ), t ≥ 0.

We thus have from (4.17) that, under the condition of Theorem 4.5, for every f ∈
C(∂D),

u(x) := Ex

[
exp

(
Nρ

τD
+

∫ τD

0
q(Xs) ds

)
f (XτD

)

]
, x ∈ ∂D,

is the unique weak solution to Lu = 0 in D that is continuous on D with u = f

on ∂D. However, we can do better in this case. More specifically, we can drop
condition (3.1) of Lemma 3.1 in this case.

THEOREM 5.1. Let D be a bounded Lipschitz domain in R
n. Let A be a sym-

metric n × n bounded positive definite measurable matrix on R
n, ρ ∈ W 1,2(Rn)

with ∇ρ ∈ Lp(Rn;dx) for some p > n. Let operator L be defined by (1.3) with
b = b̂ = −A∇ρ and q ∈ Kn. Define

Zt = exp
(
N

ρ
t +

∫ t

0
q(Xs) ds

)
, t ≥ 0.

Then Zt is well defined under Px for every x ∈ R
n.

(i) If Ex0[ZτD
] < ∞ for some x0 ∈ D, then x �→ Ex[ZτD

] is bounded between
two positive constants on D.

(ii) Suppose that Ex0[ZτD
] < ∞ for some x0 ∈ D and f ∈ C(∂D). Then

u(x) := Ex[ZτD
f (XτD

)], x ∈ D,

is the unique weak solution of Lu = 0 in D that is continuous on D with u = f

on ∂D.

PROOF. (i) Since ∇ρ ∈ Lp(Rn;dx) for some p > n, by Sobolev embedding
theorem, ρ can be taken to be continuous on R

n. By [13], Theorem 1, the following
Fukushima decomposition in the strict sense holds:

ρ(Xt) − ρ(X0) = M
ρ
t + N

ρ
t , t ≥ 0,

where Mρ is the MAF of X in the strict sense of finite energy and Nρ is the CAF
of X in the strict sense of zero energy. It follows

ZτD
= exp

(
ρ(XτD

) − ρ(X0) − Mρ
τD

+
∫ τD

0
q(Xs) ds

)
= exp(ρ(XτD

))

exp(u(X0))
RτD
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is well defined under Px for every x ∈ R
n, where

Rt := exp
(
−

∫ t

0
∇ρ(Xs) dMs − 1

2

∫ t

0
((∇ρ)A(∇ρ)∗)(Xs) ds

(5.2)

+
∫ t

0

(
1

2
(∇ρ)A(∇ρ)∗ + q

)
(Xs) ds

)
.

Since ρ is bounded on D and ∇ρ ∈ Lp(Rn;dx), Ex0[ZτD
] < ∞ if and only if

Ex0[RτD
] < ∞, and so the conclusion of (i) follows from Theorem 4.2.

(ii) By (5.2),

eρ(x)u(x) = Ex[RτD
(eρf )(XτD

)] for x ∈ D.

Define

G := 1

2

n∑
i,j=1

∂

∂xi

(
(aij (x))

∂

∂xj

)
− A(x)(∇ρ(x))∗ · ∇ + 1

2
(∇ρ)A(∇ρ)∗ + q.

It follows from Theorem 4.3 that v := eρu is the unique weak solution for Gv = 0
in D that is continuous on D with v = eρf on ∂D. Unwinding it for u similar
to that in the proof of Theorem 4.5, we conclude that u ∈ W

1,2
loc (D) is the unique

weak solution of Lu = 0 in D, that continuous on D with u = f on ∂D. �

REMARK 5.2. To better illustrate the main ideas of this paper, we have not
strived to establish our theorems in the most general possible form. For example,
in Theorems 4.4, 4.5 and 5.1, the potential function q can be replaced by a signed
Kato class measure μ, just like in Theorems 4.2 and 4.3.
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ful comments on an earlier version of this paper.
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