
The Annals of Probability
2009, Vol. 37, No. 2, 654–675
DOI: 10.1214/08-AOP415
© Institute of Mathematical Statistics, 2009

STABILIZABILITY AND PERCOLATION IN THE INFINITE
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We study the sandpile model in infinite volume on Z
d . In particular, we

are interested in the question whether or not initial configurations, chosen ac-
cording to a stationary measure μ, are μ-almost surely stabilizable. We prove
that stabilizability does not depend on the particular procedure of stabiliza-
tion we adopt. In d = 1 and μ a product measure with density ρ = 1 (the
known critical value for stabilizability in d = 1) with a positive density of
empty sites, we prove that μ is not stabilizable.

Furthermore, we study, for values of ρ such that μ is stabilizable, percola-
tion of toppled sites. We find that for ρ > 0 small enough, there is a subcritical
regime where the distribution of a cluster of toppled sites has an exponential
tail, as is the case in the subcritical regime for ordinary percolation.

1. Introduction. The sandpile model was originally introduced as a dynam-
ical model to illustrate the concept of self-organized criticality [1]. The model is
defined on a finite subset � of Z

d , in discrete time. It starts with a stable config-
uration, that is, every site has a nonnegative height of at most 2d − 1 sand grains.
Every discrete time step, an addition of one sand grain is made to a random site.
If this site becomes unstable, that is, has at least 2d grains, it topples, that is, it
gives one grain to each neighbor. This may cause other sites to become unstable,
and the topplings continue until every site is stable again. The total of all neces-
sary topplings is called an avalanche, so after the avalanche we have reached the
new configuration. This is possible in a finite number of topplings because, at the
boundary of �, grains are dissipated. This model is abelian: the obtained configu-
ration is independent of the order of topplings.

This sandpile model is said to exhibit self-organized critical behavior, for the
following reasons. As the model evolves in time, it reaches a stationary state that
is characterized, in the large-volume limit, by long-range height correlations and
power law statistics for avalanche sizes, and thus reminds one of critical behavior
in statistical mechanical models. However, the sandpile model evolves naturally
toward this critical state, without apparent tuning of any parameters.

This seeming contrast has been discussed in [3, 4, 8]; it is argued that the model
definition in fact does involve tuning. Namely, the instantaneousness of topplings,
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and the vanishing of dissipation as � ↑ Z
d , can be viewed as a tuning of the ad-

dition and dissipation rate to 0 respectively. This tuning then would ensure that
the model evolves toward the critical point of a parametrized, nondynamical sand-
pile model, which can informally be described as follows. We start with an initial
height configuration on Z

d (not necessarily stable) according to a translation in-
variant probability measure with density ρ, which is the expected height, or num-
ber of sand grains per site. We keep toppling until there are no more unstable sites.
If this is possible with a finite number of topplings per site, then we obtain the final
configuration, and the initial configuration is said to be stabilizable. This version
of the sandpile model was introduced in [3], and mathematically investigated in
[4, 8]. Results so far obtained are as follows: for d = 1, any translation invariant
probability measure with density ρ < 1 is stabilizable, any translation invariant
probability measure with density ρ > 1 is not stabilizable and, for ρ = 1, there are
cases of stabilizability and nonstabilizability; see [8]. For general d , any translation
invariant probability measure with density ρ < d is stabilizable, and any transla-
tion invariant probability measure with density ρ > 2d − 1 is not stabilizable, in
between d and 2d − 1 there are nonstabilizable and stabilizable cases [4].

The present paper continues this investigation and from here on, when we talk
about the sandpile model, we mean the version in infinite volume. In Section 2
we introduce notation, introduce general toppling procedures and discuss stabiliz-
ability issues. In this section we also prove that if a random initial configuration
is stabilizable, then the expected height (density) is conserved by stabilization. In
Section 3 we define critical values, and investigate the behavior at the critical point
in d = 1. We find that configurations chosen according to a nondegenerate product
measure are a.s. not stabilizable. In Section 4 we investigate phase transitions for
the sandpile model from a new viewpoint: we consider, for stabilizable configura-
tions, percolation of the collection of toppled sites. We look for a critical ρ, not
necessarily equal to ρc mentioned above, such that, for all ρ below this value, there
is no infinite cluster of toppled sites.

For a general class of initial distributions and ρ small enough, we find a sub-
critical regime where not only there is a.s. no infinite cluster of toppled sites, but
the distribution of the cluster size has an exponential tail. This corresponds to the
subcritical regime for ordinary percolation, thus strengthening the idea of a critical
phase transition.

2. Toppling procedures and stabilizability. Denote by X = N
Z

d
the set of

all height configurations and by � = {0,1, . . . ,2d − 1}Z
d

the set of stable height
configurations.

A toppling at site x applied to the configuration η ∈ X is denoted by θx(η) and
defined via

θx(η)(y) =
⎧⎨
⎩

η(y) − 2d, if y = x,
η(y) + 1, if |y − x| = 1,
η(y), otherwise.

(1)
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A toppling at site x ∈ Z
d is called legal for the configuration η ∈ X, if it is applied

to an unstable site, that is, if η(x) ≥ 2d .
The above definition of a toppling gives rise to the definition of the toppling

matrix � associated to the sandpile model. This is a matrix indexed by sites x, y ∈
Z

d , with entries

�x,y = 2d1x=y − 1|x−y|=1.

With this definition, and with δx defined to be the vector with entry 1 at x and
entry 0 in all other positions, we can write

θx(η) = η − �δx.

DEFINITION 2.1. A toppling procedure is a measurable map (with respect to
the usual Borel sigma-algebra’s)

T : [0,∞) × Z
d × X → N(2)

such that, for all η ∈ X,

(a) for all x ∈ Z
d ,

T (0, x, η) = 0.

(b) for all x ∈ Z
d ,

t �→ T (t, x, η)

is right-continuous and nondecreasing with jumps of size at most one, that is, for
all t > 0, x ∈ Z

d , η ∈ X, we have

T (t, x, η) − T (t−, x, η) ≤ 1.

(c) for all x ∈ Z
d , in every finite time interval, there are finitely many jumps

at x.
(d) T does not contain an “infinite backward chain of topplings,” that is, there

is no infinite chain of topplings at sites xi , i = 1,2, . . . , occurring at times ti >

ti+1 > · · · , where for all i, xi+1 is a neighbor of xi .

Note that condition (d) is only relevant in continuous time. We interpret
T (t, x, η) as the number of topplings at site x in the time interval [0, t], when T is
applied to the initial configuration η ∈ X. The vector of all such numbers at time t

is denoted by T (t, ·, η). We say that for all t such that T (t−, x, η) < T (t, x, η),
site x topples at time t .

If T is a toppling procedure, then for η ∈ X, t > 0, we call

	
η
t (T ) = {x ∈ Z

d :T (t, x, η) > T (t−, x, η)}
the set of sites that topple at time t > 0 (for initial configuration η).
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DEFINITION 2.2. Let T be a toppling procedure. The configuration ηt at time
t > 0 associated to T and initial configuration η ∈ X is defined to be

ηt = η − �T (t, ·, η).(3)

DEFINITION 2.3. A toppling procedure T is called legal if for all η ∈ X, for
all t > 0 and for all x ∈ 	

η
t (T ), ηt−(x) ≥ 2d .

In words, this means that in a legal toppling procedure, only unstable sites are
toppled.

DEFINITION 2.4. (a) A toppling procedure T is called finite for initial config-
uration η ∈ X, if for all x ∈ Z

d ,

T (∞, x, η) := lim
t→∞T (t, x, η) = sup

t≥0
T (t, x, η)(4)

is finite.
(b) A legal toppling procedure T is called stabilizing for initial configuration

η ∈ X if it is finite and if the limit configuration η∞, defined by

η∞ = η − �T (∞, ·, η),(5)

is stable.

A random toppling procedure is a random variable with values in the set of
toppling procedures. This can also be viewed as a measurable map

T : [0,∞) × Z
d × X × �̂ → N,

where �̂ denotes a probability space, and such that for all ω ∈ �̂ except a set of
measure 0, T (·, ·, ·,ω) is a toppling procedure.

DEFINITION 2.5. A toppling procedure is called stationary if for all t , the
distribution of T (t, ·, η) is translation invariant when we choose η according to a
translation invariant probability measure.

Next we discuss some examples. These examples have in common that for
every t , if ηt contains unstable sites, then each of these sites will topple within finite
time almost surely. As a consequence, for every η, these toppling procedures are
either stabilizing or infinite. Moreover, if they are infinite, then T (∞, x, η) = ∞
for every x. This can be seen as follows: if there is one site x that topples infinitely
many times, then the neighbors of x receive infinitely many sand grains. Therefore,
these neighbors need to topple infinitely many times, etc.
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1. Markov toppling processes. These are examples of random stationary toppling
procedures and are defined as follows. Each site x ∈ Z

d has a Poisson clock
(different clocks are independent) with rate one. When the clock at site x rings
at time t and in the configuration ηt−, x is unstable, then x is toppled. More for-
mally, the configuration ηt of (3) is evolving according to the Markov process
with generator, defined on local functions f :X → R via

Lf (η) = ∑
x

1η(x)≥2d

(
f (θxη) − f (η)

)
.

It is not hard to see that this procedure satisfies all requirements, in particular,
(d) of Definition 2.1.

It is also possible to adapt the rate at which unstable sites are toppled accord-
ing to their height. In that case the Markov process becomes

Lcf (η) = ∑
x

1η(x)≥2dc(η(x))
(
f (θxη) − f (η)

)
,

where c : N → R has to satisfy certain conditions in order to make the process
well-defined.

2. Toppling in nested volumes. This is a deterministic, discrete time toppling pro-
cedure. Choose a sequence Vn ⊂ Vn+1 ⊂ Z

d such that
⋃

n Vn = Z
d , but all Vn

contain finitely many sites. We start toppling all the unstable sites in V0 until the
configuration in V0 has no unstable sites left, then we do the same with V1, etc.
We put this into the framework of Definition 2.1 as follows. At time t = 1, we
topple all the unstable sites in V0 once, at time t = 2, we topple all the unstable
sites in V0 if there are still unstable sites left after the topplings at time t = 1,
etc., until at time t = t (V0, η), no unstable sites are left in V0; we then start
toppling at time t = t (V0, η) all unstable sites in V1, etc. Since the volumes Vn

are finite, all t (Vn, η) are finite.
We will use this procedure several times, but for ease of notation we will

reparametrize time such that Vn is stabilized at time n instead of at time
t (Vn, η).

3. Topplings in parallel. Topplings in parallel consists simply in toppling at time t

all unstable sites of ηt−1 once. This toppling procedure is discrete time, deter-
ministic and stationary.

4. Topplings in waves. This procedure is only used for initial configurations having
a single unstable site, say, at x ∈ Z

d . For the formal definition of the toppling
function T (t, x, η), we put it equal to zero for configurations η that contain
more than one unstable site. Toppling in waves is defined for the sandpile model
on a finite grid as follows [6]: at t = 1, we topple x once and, subsequently, all
other sites that become unstable. All these topplings form the first wave. If after
these topplings, x is still unstable, then at t = 2 we perform the second wave,
etc. In each wave, no site topples more than once.

This does not fit into our framework, because in each wave all topplings,
except the toppling at x, are illegal. Nevertheless, we want each wave to be
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completed in finite time. Therefore, we define topplings in waves as follows:
At t = 1, we topple site x once. Then for i = 2,3, . . . , at times 2 − 1

i
, we

consecutively topple all sites that are unstable except site x. That way the first
wave is completed at time t = 2. All other waves proceed similarly. Since in
each wave no site topples more than once, this procedure is well defined.

DEFINITION 2.6. (a) A configuration η ∈ X is called stabilizable if there ex-
ists a stabilizing legal toppling procedure.

(b) A probability measure μ on (X,F ) is called stabilizable if μ-almost
every η is stabilizable.

EXAMPLE 2.7. We give an example of a configuration that is not stabilizable:
Consider the configuration ξ in Z where all sites have height 1, except the origin,
which has height 2. From trying out by hand, it should become clear that this con-
figuration is not stabilizable. We may choose to topple in waves, since there is only
one unstable site. In our case, in each wave every site topples exactly once, so that
after each wave we obtain the same configuration; hence, there are infinitely many
waves. Alternatively, we may choose to topple in parallel. Then in our case, the
height of the origin alternates between 0 and 2, so that the origin topples infinitely
many times. From the forthcoming Theorem 2.8, we can use either (3) or (4) to
conclude that ξ is not stabilizable.

In [4], Definition 2.4, stabilizability is defined in terms of toppling in nested
volumes, and in [4], Lemma 6.12, it is proved that this definition of stabilizability
is equivalent for this toppling procedure and the Markov toppling procedure. Here,
we extend this result: we prove that if η is stabilizable, then irrespective of what le-
gal toppling procedure we choose, it will always be finite, and irrespective of what
stabilizing procedure we choose, we always obtain the same stable configuration.
On the other hand, if we find one infinite legal toppling procedure for η, then we
know that η is not stabilizable. This can also be concluded from the existence of a
legal toppling procedure in which every site topples at least once.

Let T , T ′ be two toppling procedures, which are finite for initial configuration η.
Then we write

T ′ �η T ,

if for all x ∈ Z
d

T ′(∞, x, η) ≤ T (∞, x, η).

THEOREM 2.8. Let T , T ′ be two legal toppling procedures, which are both
finite for initial configuration η:

1. If T is stabilizing for η, then

T ′ �η T .(6)
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2. If T and T ′ are two stabilizing toppling procedures for η, then for all x ∈ Z
d ,

T ′(∞, x, η) = T (∞, x, η).

In particular, this means that for stabilizable η, the limit configuration η∞ is
well defined.

3. For stabilizable η ∈ X, there does not exist a nonfinite legal toppling procedure.
4. If T is stabilizing for η, then there is at least one site x that does not topple,

that is, there is at least one site x for which T (∞, x, η) = 0.

PROOF. The proof of Statement 1 is inspired by an argument that appears in
[2] and [9] in the context of finite grids or discrete time toppling procedures.

For every x, we define a time τx := sup{t :T ′(t, x, η) ≤ T (∞, x, η)}, and we
call all topplings in T ′ that occur at times strictly larger than τx “extra” topplings.
We suppose the converse of Statement 1, that is, we suppose that there is at least
one extra toppling.

Suppose an extra toppling occurs at site y, at time ty < ∞. Then just before
time ty , the number of topplings at site y is at least T (∞, y, η). Moreover, in order
for this extra toppling to be legal, site y must be unstable just before time ty . Thus,
we find, following T ′, that

2d ≤ ηty−(y) = η(y) − (�T ′(ty−, ·, η))(y)

= η(y) − 2dT ′(ty−, y, η) + ∑
x∼y

T ′(ty−, x, η)

≤ η(y) − 2dT (∞, y, η) + ∑
x∼y

T ′(ty−, x, η),

where the sum
∑

x∼y runs over all neighbors of y. Since T is stabilizing, we have

2d > η(y) − 2dT (∞, y, η) + ∑
x∼y

T (∞, x, η),

so for at least one x ∼ y, T ′(ty−, x, η) > T (∞, x, η). In other words, for an extra
toppling at site s to be legal, it is necessary that it is preceded by at least one extra
toppling at one of its neighbors. Then for this extra toppling, we can make the same
observation. Continuing this reasoning, we find that in order for the extra toppling
at s to be legal, we need an infinite backward chain of extra topplings, occurring
in finite time. But then T ′ does not satisfy item (d) of Definition 2.1. This proves
Statement 1.

To prove Statement 2, we simply observe that if T and T ′ are both stabilizing,
then according to the above, T ′ �η T and T �η T ′, so that they must be equal.

To prove Statement 3, let T be a stabilizing toppling procedure, and T ′′ a non-
finite legal toppling procedure. Since T ′′ is nonfinite, there exists x ∈ Z

d such
that T ′′(t, x, η) ↑ ∞ as t ↑ ∞. For some w < ∞, we define T ′′

w as follows: for
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all t ≤ w, T ′′
w(t, ·, η) = T ′′(t, ·, η), but for all t > w, T ′′

w(t, ·, η) = T ′′(w, ·, η). In
words, T ′′

w performs all topplings according to T ′′ up to time w, but then stops
toppling. T ′′

w is a finite legal toppling procedure by item (c) of Definition 2.1
and, hence, by Statement 1 of this theorem, T ′′

w(∞, x, η) ≤ T (∞, x, η). By let-
ting w → ∞, we obtain a contradiction.

To prove Statement 4, suppose that there is a stabilizing toppling procedure T

such that T (∞, x, η) > 0 for all x. For every x, we call the toppling that occurs
according to T at time tx := min{t : T (t, x, η) = T (∞, x, η)} the “last” toppling.
Since T is stabilizing, tx is finite for all x.

We define T̄ as

T̄ (t, x, η) := min{T (t, x, η), T (∞, x, η) − 1},
so that for all x, T̄ (∞, x, η) = T (∞, x, η) − 1. In words, T̄ contains all topplings
according to T except the last one at each site. Note that T̄ is a finite, but not a
priori legal toppling procedure. However, we have

η − �T̄ (∞, ·, η) = η − �T (∞, ·, η) = η∞,

so that after all topplings according to T̄ , we have a stable configuration. Now the
argument proceeds as in the proof of Statement 1: we have, for some site v,

2d ≤ ηtv−(v) = η(v) − 2dT (tv−, v, η) + ∑
x∼v

T (tv−, x, η)

= η(v) − 2dT̄ (∞, v, η) + ∑
x∼v

T (tv−, x, η),

whereas

2d > η(v) − 2dT̄ (∞, v, η) + ∑
x∼v

T̄ (∞, x, η).

Similarly, as in the proof of Statement 1, we conclude that for the last toppling at v

to occur legally, it must have been preceded by an infinite backward chain of last
topplings, so that T cannot satisfy item (d) of Definition 2.1. �

REMARK 2.9. Note that if μ is stabilizable and ergodic, then the induced
measure on limit configurations is also ergodic since it is a factor of μ.

We now prove that a finite legal toppling procedure conserves the density. From
here on, we will denote by Eμ, Pμ expectation resp. probability with respect to μ.

LEMMA 2.10. Let μ be a translation invariant probability measure on X
such that Eμ(η(0)) = ρ < ∞. Suppose, furthermore, that μ is stabilizable. Then
the expected height is conserved by stabilization, that is,

Eμ(η∞(0)) = ρ.

Moreover, if μ is a translation invariant probability measure on X such that
Eμ(η(0)) = ∞, then μ is not stabilizable.
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PROOF. Using ergodic decomposition, we can assume that μ is ergodic. We
start with the case Eμ(η(0)) = ρ < ∞. Without loss of generality, we assume that
the toppling procedure that stabilizes μ is stationary, and, is moreover, such that
for all t , Eμ(T (t, x, η)) < ∞ [we can, e.g., choose the Markov toppling procedure,
where T (t, x, η) is dominated by a Poisson process].

At time t , we then have

ηt (x) = η(x) − ∑
y

�x,yT (t, y, η),

which upon integrating over the distribution of η gives

Eμ(ηt (x)) = Eμ(η(x)) = ρ.

Therefore, using Fatou’s lemma,

ρ∞ := Eμ(η∞(0)) = Eμ

(
lim

t→∞ηt (0)

)
≤ lim inf

t→∞ Eμ(ηt (0)) = ρ.

The inequality Eμ(η∞(0)) ≥ ρ is proved in [4]; we give a somewhat different
argument here. Let Xn denote the position of a simple random walk starting at the
origin (independent of η), and denote Erw,Prw expectation and probability with
respect to this random walk. We start by choosing a stabilizable η with limit η∞,
and for a moment we consider this η and η∞ fixed.

From the relation

η∞(x) = η(x) − ∑
y

�x,yT (∞, y, η),

we obtain

1

n
Erw

(
n−1∑
k=0

(
η∞(Xk)−η(Xk)

)) = 2d

n
Erw(T (∞,Xn, η))− 2d

n
T (∞,0, η).(7)

By letting n → ∞, using that T (∞,0, η) < ∞ by assumption, and that Erw(T (∞,

Xn, η)) ≥ 0, this leads to

lim inf
n→∞

1

n
Erw

(
n−1∑
k=0

η∞(Xk)

)
≥ lim inf

n→∞
1

n
Erw

(
n−1∑
k=0

η(Xk)

)
.(8)

If we now finally choose η according to μ, which is ergodic, then the limiting
measure is also ergodic according to Remark 2.9. By ergodicity of the scenery
process {η(Xn) :n ∈ N} (see, e.g., [4], Proposition 8.1), it follows that for μ-a.e. η,
the right-hand side is equal to ρ, and the left-hand side is equal to ρ∞. This proves
that ρ∞ ≥ ρ.

Finally, if Eμ(η(0)) = ∞, then the right-hand side of (8) goes to +∞ as
n → ∞. Therefore, if μ would be stabilizable, then η∞ would have infinite den-
sity, a contradiction. �
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3. Criticality and critical behavior. Let P (X) denote the set of all transla-
tion invariant probability measures on (X,F ). We say that a subset M of P (X)

is density complete if for all ρ ∈ [0,∞) there exists μ ∈ M such that μ(η(0)) = ρ.
Let M ⊆ P (X) be density complete. We define the M-critical density for sta-

bilizability to be

ρc(M) = sup{ρ > 0 :∀μ ∈ M with μ(η(0)) = ρ,μ is stabilizable}.(9)

Of course, it can be questioned whether the density is the only relevant parame-
ter distinguishing between stabilizability and nonstabilizability. It is certainly the
most natural parameter, and is considered in the numerical experiments of [3]. In
[4] a related notion of maximal stabilizability is introduced.

It is clear that ρc(M) ≤ ρc(M
′) for M ⊇ M′. Natural choices for M are a one-

parameter family of product measures such as the set of Poisson product measures
with parameter ρ, the set of all product measures or simply M = P (X).

The following results are reformulations of results in [4] and [8].

THEOREM 3.1. (a) For M = P (X), and for all d ,

ρc(M) = d.

(b) For all M density complete, we have

d ≤ ρc(M) ≤ 2d − 1.

In particular, when d = 1 and for all M density complete, we have

ρc(M) = 1.

We now specialize to the case d = 1. Accordingly, let μ be a one-dimensional
translation invariant product measure with density ρ = 1. From Theorem 3.1, we
know that for ρ < 1, μ is stabilizable, and that for ρ > 1, it is not. The next result
deals with the critical case ρ = 1.

THEOREM 3.2. Let μ be a one-dimensional product measure with ρ = 1 such
that μ(η(0) = 0) > 0. Then μ is not stabilizable.

Our strategy will be to show that there a.s. exists a nonfinite legal toppling pro-
cedure. This implies, using Theorem 2.8, that μ is not stabilizable. In order to do
so, we will use topplings in nested volumes, but for the proof it will be important to
define an intermediate toppling procedure, during which we only stabilize in vol-
umes of the form [0, n], that is, we increase the stabilized volume only to one side.
After stabilization of the interval [0, n], the outer boundary sites −1 and n + 1
possibly contain, on top of their original height, extra grains that were removed
from the interval [0, n] during stabilization; all other sites outside [−1, n + 1] still
have their original height.
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FIG. 1. The first 10,000 time steps for stabilizing η according to Poisson(1) product measure in
nested volumes [0, n]. The y-axis represents time. A black dot indicates an empty site (a “0”). In
addition, the outer boundary sites of [0, n] are also colored black. See the text for further explanation.

For a while we concentrate on this one-sided procedure. In this section we de-
note by ηn the configuration that results from stabilizing in the interval [0, n]. As
in the nested volumes toppling procedure, we re-define time as to match this no-
tation: stabilization of [0, n] takes place at time n so that ηn is the configuration
reached at time n.

We will work with the number and positions of empty sites of ηn in [0, n], and
we will call such an empty site “a 0” of ηn. In Figure 1 we illustrate the dynamics of
the 0’s in this procedure. Time (in the new sense) is plotted vertically going down-
ward; space is plotted horizontally. At every time, when you look horizontally, the
black dots you see represent the positions of the 0’s at that time in the interval
[0, n]. In addition, the outer boundary sites of [0, n] are also colored black. The
configuration outside the stabilized interval is not shown. Thus, the picture does
not give complete information about the configuration ηn, it only shows the po-
sitions of the 0’s and the width of the stabilized interval. One can clearly follow
the trajectory of the leftmost 0. For instance, just before time 4000, the leftmost 0
starts to move, and reaches the outer boundary somewhere between times 6000
and 7000. Shortly after that, a new leftmost 0 starts to move to the right, etc.

Our strategy is to show that during the one-sided procedure, despite the fact that
infinitely often new 0’s are created, we infinitely often encounter a configuration
that does not contain a 0. Every time this occurs, there is a fixed positive lower
bound for the probability that the origin topples. This will then imply that the
origin topples infinitely many times a.s.

In order to show that infinitely often there are no 0’s, we need to analyze the
dynamics of the 0’s in great detail. We are going to view the 0’s as objects that can
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move, disappear or be created. In order to precisely define these terms, we organize
the topplings that occur in time step n into waves. If at time n− 1 site n is unstable
(at time n − 1, all sites 0, . . . , n − 1 are stable), then in the first wave at time n,
we topple site n once and then all other sites in [0, n] that become unstable, except
site n again. If after this wave site n is still unstable, then the second wave starts,
etc. We will number the waves k = 0, . . . ,K , and call η̃n−1,k the configuration after
the kth wave, so that η̃n−1,0 = ηn−1 and η̃n−1,K = ηn. Depending on the position
of the rightmost 0 after wave k − 1, wave k has the following effect:

1. If the rightmost 0 of η̃n−1,k−1 is at site n − 1, and after wave k site n is not
empty, then the number of 0’s has decreased by 1;

2. If there are no 0’s in η̃n−1,k−1, then all sites in [0, n] topple, after which there
is a 0 at the origin, and site −1 has gained a grain.

3. In all other cases, if the rightmost 0 is at position x − 1 (so that x is the leftmost
site that topples during wave k), then site x − 1 gains a grain and site x loses
one. In addition, site n loses one grain and site n + 1 gains one.

These observations inspire the following definition.

DEFINITION 3.3. Let, at time n, K be the number of waves. If K > 0, then
let, in wave k, x be the leftmost site that topples:

• If x = n, and after wave k site n is not empty, we say that the 0 at site n − 1
disappears.

• If x = 0, we say that a new 0 is created at the origin.
• If x > 0, and no 0 disappears, we say that the 0 at site x − 1 moves to site x.

If ηn−1(n) = 0 (this implies K = 0), we say that a new 0 is created at the right
boundary.

Since there may be multiple waves in one time step, multiple things can happen
to the 0’s. However, note that we have the following restrictions: in each wave,
only the rightmost 0 can move. For instance, in the example in Figure 1, the 0
that is present at position 472, at time 10,000, has been in that position for almost
2000 time steps, and we cannot be sure if it will ever move again some future
time (actually, as our proof will show, it will a.s.). Furthermore, only when, after
a previous wave, there are no 0’s left can a new 0 be created at the origin. For
instance, in the realization in Figure 1, this occurs seven times between n = 6000
and n = 8000.

We stress that, according to the above definition, we actually identify certain 0’s
in different time steps. A look at Figure 1 should convince the reader that this is a
natural way to view the 0’s, even though in order to do so, it is necessary to break
the topplings in each time step up into waves to ensure a correct identification.
Once a 0 has been created, it exists until it disappears at the right boundary. This
may be in the same time step, but it could also require many time steps. During
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this time, it may move to the right or remain for some periods of time in the same
position.

The time intervals between successive instances where the number of 0’s is
equal to some given number z are not i.i.d. time intervals. However, we will show
in the following lemma that, for all z > 0, the time intervals, from the moment that,
the number of 0’s becomes z + 1 until the first return to a value that is at most z,
are i.i.d. time intervals, whose distribution does not depend on z. In the proof we
use that, for z > 0, the number of 0’s can only increase from z to z + 1 when a
new 0 is created at the right boundary. When z = 0 we can have that the number
of 0’s increases because a new 0 is created at the origin, in which case the proof
does not apply.

LEMMA 3.4. Let z > 0. Let Z(n) be the number of 0’s after time n. For i =
0,1, . . . , let N0(z) = 0, Mi(z) = min{n > Ni(z) :Z(n) ≤ z}, and Ni(z) = min{n >

Mi−1(z) :Z(n) = z + 1}. Then:

1. The random variables �i(z) = Mi(z) − Ni(z) are i.i.d., for all i > 0.
2. The distribution of �i(z) does not depend on z, and we denote by � a random

variable with this distribution.
3. If lim infn→∞ Z(n) < ∞ a.s., then lim infn→∞ Z(n) ≤ 1 a.s. and P(� =

∞) = 0.

PROOF. Since at all times Ni(z) a new 0 is created at the right boundary, it
must be the case that

ηNi(z)−1(Ni(z)) = 0.

This new 0 will be present until time Mi(z) and, during this time, it cannot move
to the left. The key observation is that the dynamics of this new 0 depend only
on η(j), j ≥ Ni(z). In particular, conditioned on the creation of the new 0 at time
Ni(z), the value of Mi(z) only depends on these random variables. Since

1. the Mi(z) and Ni(z) are all stopping times, and
2. μ is a product measure,

it follows that the �i(z) are i.i.d. random variables for every fixed z. Furthermore,
it follows immediately that the distribution of �i(z) is also independent of z. This
proves the first two parts of the lemma.

We now proceed with Part 3. Suppose that lim infn→∞ Z(n) > 1 with posi-
tive probability, that is, there is a random variable N , finite with positive prob-
ability, such that Z(n) > 1 for all n > N . We denote by Ne(1) the total num-
ber of time intervals �i(1) [during which Z(n) > 1]. If Ne(1) < ∞, then the
last interval has infinite length. However, since P(lim infn→∞ Z(n) > 1) > 0,
it is the case that P(Ne(1) < ∞) > 0. We calculate, using that the �i(1)’s
are independent, P(Ne(1) < ∞) = ∑∞

k=1 P(Ne(1) = k) = ∑∞
k=1

∏k−1
i=1 P(�i(1) <
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∞)P(�k(1) = ∞). This equals
∑∞

k=1 P(� < ∞)k−1
P(� = ∞), so that we obtain

P(� = ∞) > 0.
So far, we showed that lim infn→∞ Z(n) > 1, with positive probability, implies

that P(� = ∞) > 0. Now we show that P(� = ∞) > 0 implies
lim infn→∞ Z(n) = ∞ a.s. Denote by Ne(z) the total number of time inter-
vals �i(z) [during which Z(n) > z], and call P(� = ∞) = p. Similarly to the
above computation, we calculate P(Ne(z) < ∞) = ∑∞

k=1 P(� < ∞)k−1
P(� =

∞) = ∑∞
k=0(1 − p)kp = 1. Therefore, P(Ne(z) < ∞) = 1 for all z > 0, so that

lim infn→∞ Z(n) > z a.s. for all z > 0. It follows that lim infn→∞ Z(n) = ∞ a.s.
�

PROOF OF THEOREM 3.2. We choose η according to μ. As mentioned before,
we will show that there a.s. exists a nonfinite legal toppling procedure. We will use
toppling in nested volumes [−m,m]. However, in order to compare this procedure
with the one-sided procedure introduced above, we will reach ηm from η in the fol-
lowing way: First, we stabilize the interval [0,m]. After this step, site −1 received
a number A+(m) of grains, and [0,m] contains a number Z+(m) of 0’s. Then,
we stabilize the interval [−m,−2], in the same way as we stabilized in [0,m].
After this step, site −1 received another number A−(m) of grains, and [−m,−2]
contains a number Z−(m) of 0’s. Site −1 is now the only possibly unstable site
in [−m,m]. Finally, we stabilize all of [−m,m]. Note that in this description, for
every m, we obtain ηm starting from η, whereas in the above presented one-sided
procedure we obtained ηn from ηn−1. The numbers A+(m) and A−(m) are non-
decreasing in m. The sequences (Z+(m)) and (Z−(m)) are independent of each
other, and also have the same distribution.

The following discussion will repeatedly involve both the one-sided and the
nested volume toppling procedure. To make the distinction clear, we will use in-
dices n or N to refer to time steps for the one-sided procedure, and indices m or M

to refer to time steps of the nested volume procedure.
First case. We assume that, with positive probability, lim infn→∞ Z±(m) = ∞.

If both liminfs are actually infinite and we apply the right one-sided procedure
to η, then for every z > 0 there is a time N(z) such that, for all n > N(z), [0, n]
contains at least z 0’s. This, however, implies that the leftmost z−1 0’s never move
again, which in turn implies that from some n on, grains can never reach site −1
again; a similar argument is valid for the left one-sided procedure on the inter-
val [−n,−2]. Hence, there is positive probability that both A+(m) and A−(m) do
not increase anymore eventually, and therefore remain bounded. However, since
both Z+(m) and Z−(m) tend to infinity, the number of 0’s with fixed positions
in both the left and right one-sided procedure tends to infinity. This now is in-
compatible with stabilization, since after toppling site −1 in the end, we should
(if stabilization occurs) obtain a stable configuration η∞ which should be equal
to 1̄, by Lemma 2.10. However, there are simply not enough grains at −1 to fill all
the 0’s that were created by the one-sided procedures.
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Second case. We now know that lim infm→∞ Z±(m) < ∞ a.s. By Lemma 3.4,
part 3, we conclude that a.s. lim infn→∞ Z(n) ≤ 1, and P(� = ∞) = 0. This im-
plies that all 0’s, possibly except the leftmost one, will eventually disappear. Al-
though the proof of Lemma 3.4, Part 3, does not work when z = 0, we can a
fortiori conclude that also the leftmost 0 must eventually disappear. Indeed, since
all other 0’s eventually disappear, and since the occurrence of this event only de-
pends on the configurations to the right of such a 0, it follows that no matter what
the configuration to the right of a certain 0 is, it will always disappear eventually.
Clearly, this is then also true for the leftmost 0. [Note though that the leftmost 0
may disappear without Z(n) decreasing; if in a time step where the leftmost 0
disappears also the origin topples, then a new 0 is created at the origin.]

Finally, since clearly infinitely many 0’s are created at the right boundary, we
conclude that infinitely often the leftmost 0 disappears. Now consider one time
instant N ′ such that the leftmost 0 disappears at time N ′. Whether a new 0 is
created at this time depends on the precise value of ηN ′−1(N

′). Given that this
amount is large enough to make the leftmost 0 disappear, we can either have that
the origin topples as well, or we can have that the origin does not topple, so that at
time N ′ there are no 0’s. In the last case, if ηN ′(N ′ +1) ≥ 2, then the origin topples
at time N ′ + 1. The probability that ηN ′(N ′ + 1) ≥ 2 is bounded from below by
P(η(N ′ + 1) ≥ 2). Thus, we have that at every time instant where the leftmost 0
disappears, either the origin topples, or it topples with at least a fixed positive
probability one time step later. We conclude that during the one-sided procedure
the origin topples infinitely often, so that the procedure is nonfinite. �

If the initial measure μ satisfies a central limit theorem, then a shorter proof is
possible:

THEOREM 3.5. Let μ be a translation invariant probability measure on X
such that Eμ(η(0)) = 1 and such that 1√

n

∑n
x=−n(η(x) − 1) converges in distri-

bution, as n → ∞ to a nondegenerate normal random variable. Then μ is not
stabilizable.

PROOF. Suppose that μ is stabilizable. Then there exist random variables
N(x) such that, for all x ∈ Z,

η − �N(x) = 1,(10)

where �N(x) := ∑
y �xyN(y), and where 1 denotes the configuration with

height 1 everywhere. Indeed, if μ is stabilizable, then the only final stable config-
uration can be the configuration which is constant and equal to 1 [by conservation
of density (Lemma 2.10) and stability]. The variables N(x) are then the number of
topplings needed at x to stabilize η. By stationarity of the toppling mechanism, the
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joint distribution of N(x) is stationary under translations. From (10), we obtain

1√
n

n∑
x=−n

(
η(x) − 1

) = 1√
n

(
n∑

x=−n

�N(x)

)

(11)

= 1√
n

(
N(−n − 1) − N(n) + N(n + 1) − N(−n)

)
.

We claim that the right-hand side of (11) converges to 0 in probability as n → ∞.
Indeed, for ε > 0, by stationarity, we have

Pμ

(
1√
n

(
N(−n − 1) − N(n) + N(n + 1) − N(−n)

) ≥ ε

)

≤ 4Pμ

(
N(0) ≥ ε

√
n

4

)
,

which tends to zero by the assumption that N(0) < ∞ a.s. This leads to a contra-
diction since, by assumption, the left-hand side of (11) converges to a nondegen-
erate normal random variable. �

4. Sandpile percolation. We call Tt the set of all sites that have toppled at
least once up to (and including) time t , that is, Tt = {x :Tt (x) > 0}. Likewise,
we introduce the set of nonempty sites at time t , Vt = {x :ηt (x) > 0}, and finally
Wt = Tt ∪ Vt , the set of sites that have toppled or are nonempty at time t .

For η stabilizable, these sets have a limit, for example, T∞ = limt→∞ Tt . We de-
compose the set T∞ in clusters T∞(x), where T∞(x) is the largest connected com-
ponent of T∞ containing x. Likewise, we decompose W∞ into clusters W∞(x),
where W∞(x) is the largest connected component of W∞ containing x. Sandpile
percolation is the study of these clusters.

As in classical percolation, one can define critical densities for the existence or
absence of infinite clusters and distinguish between a sub- and supercritical regime.
In this section we are interested in the tail of the cluster size distribution

Pμ

(|T∞(0)| ≥ n
)

and in the percolation probability

Pμ

(|T∞(0)| = ∞)
.

For the other sets, definitions and notation are similar. In this section we will need
the following large deviation result.

LEMMA 4.1. Let μρ , 0 < ρ < 1 be a one-parameter family of translation
invariant product measures satisfying the following:

(i) For all t ∈ R, the moment generating function

Gρ(t) = Eμρ

(
etη(0)) < ∞(12)

exists;
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(ii) The first moment satisfies

Eμρ (η(0)) = ρ;
(iii) If aρ ≥ 0 are nonnegative such that aρ → ∞ for ρ → 0, then

G−1
ρ (aρ) := sup{x :Gρ(x) ≤ aρ}

also tends to ∞ as ρ → 0.

Then we have, for any sequence x1, x2, . . . of lattice points and any ε > 0,

lim sup
ρ→0

lim sup
n→∞

1

n
log Pμρ

(
n∑

i=1

η(xi) ≥ εn

)
= −∞.(13)

PROOF. By the Markov inequality, for any t ≥ 0, using that under the η(xi)

are i.i.d., we obtain

Pμρ

(
n∑

i=1

η(xi) ≥ εn

)
≤ e−εntGρ(t)n,

which gives

1

n
log Pμρ

(
n∑

i=1

η(xi) ≥ εn

)
≤ −εt + logGρ(t).(14)

We now show that there exists tρ > 0 such that

logGρ(tρ) ≤ 1

and such that tρ → ∞ as ρ → 0. Using that η(0) takes only integer values, the
elementary inequality log(1+x) ≤ x, the Cauchy–Schwarz inequality and, finally,
the Markov inequality, we obtain

logGρ(t) ≤ log
(
1 + Eμρ

(
etη(0)1η0≥1

))
≤ Eμρ

(
etη(0)1η(0)≥1

)
(15)

≤ (
Eμρ

(
e2tη(0)))1/2(

Pμρ

(
η(0) ≥ 1

))1/2

≤ Gρ(2t)1/2ρ1/2,

so we can choose tρ = 1
2G−1

ρ (1/ρ1/2) and, by condition (iii), we have that tρ → ∞
as ρ → 0. We can now finish the proof by returning to (14), choosing t = tρ in the
right-hand side of the inequality, and letting ρ → 0. �

We remark that an elementary computation shows that conditions (i)–(iii) are
satisfied when μρ has Poisson-ρ one-dimensional marginals.

We now first deal with the tail of |T∞(0)|.
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THEOREM 4.2. (a) Let d = 1 and let μ be a translation invariant product
measure satisfying Eμ(etη(0)) < ∞ and with density ρ < 1. Then there exists a
constant c1 > 0 such that

Pμ

(|T∞(0)| ≥ n
) ≤ e−c1n.

(b) Let d > 1 and let μρ , 0 < ρ < 1 be a collection of product measures sat-
isfying conditions (i)–(iii) of Lemma 4.1. Then for all ρ sufficiently small, there
exists a constant cd = cd(d, ρ) > 0 such that

Pμρ

(|T∞(0)| ≥ n
) ≤ e−cdn.

For the proof, we need the following result which goes back to at least [7]. For
completeness, we give the short proof.

LEMMA 4.3. Let � be a subset of Tt , for some toppling procedure. Let β� be
the number of internal bonds in �, that is, bonds with both endpoints in �. Then∑

x∈�

ηt(x) ≥ β�.

PROOF. For each internal bond of �, consider the last particle that traversed
this bond via a toppling. This particle remains in � up to time t . The result now
follows. �

PROOF OF THEOREM 4.2. Let μ be a product measure in dimension d ≥ 1.
We then have

Pμ

(|T∞(0)| ≥ n
) =

∞∑
m=n

Pμ

(|T∞(0)| = m
) + Pμ

(|T∞(0)| = ∞)
.

We choose to stabilize in nested boxes Bk of radius k. Recall that we reparametrize
time so that, at time k, the whole box Bk has been stabilized. Then for every k, the
maximum size of Tk(0) is (2k + 1)d , so that we can rewrite

Pμ

(|T∞(0)| ≥ n
) = lim

k→∞Pμ

(|Tk(0)| ≥ n
) = lim

k→∞

(2k+1)d∑
m=n

Pμ

(|Tk(0)| = m
)
.(16)

We will derive a bound for Pμ(|Tk(0)| = m). We write

Pμ

(|Tk(0)| = m
) = ∑

|C|=m

0∈C

Pμ

(
Tk(0) = C

)
,

where the sum runs over all finite connected subsets C of size m containing the
origin. Then, by Lemma 4.3, this implies a minimum number of at least m−1 sand
grains in C in η∞. But since no sand can have entered C during stabilization—in
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fact, grains must have left C—it also implies that C contains at least m grains
at t = 0. Since μ is a product measure, this corresponds for ρ < 1 to a classical
large deviation of 1

m

∑
x∈C η(x), and we can bound the corresponding probability

by a Chernov bound for sums of independent random variables, that is, there is a
constant α = α(ρ) > 0 such that, for all m,

Pμ

(
Tk(0) = C

) ≤ e−αm.(17)

(For this statement we do not yet need Lemma 4.1.) We now distinguish between
(a) and (b):

(a) For d = 1, the number of clusters of size m containing the origin is equal
to m. Hence, for d = 1, we arrive at

(2k+1)d∑
m=n

Pμ

(|Tk(0)| = m
) ≤

(2k+1)d∑
m=n

∑
|C|=m

0∈C

e−αm ≤
(2k+1)d∑

m=n

me−αm ≤ e−c1n,

with c1 positive for all ρ < 1. Since this outcome does not depend on k, when
inserting this in (16), we obtain for d = 1

Pμ

(|T∞(0)| ≥ n
) ≤ e−c1n,

proving (a).
(b) For d > 1, we have, according to Lemma 4.1, that limρ↓0 α(ρ) = ∞. Also,

for d > 1, there is a constant α′ = α′(d) such that the number of clusters of size m

containing the origin is at most eα′m; see, for example, [5]. Hence, we calculate

(2k+1)d∑
m=n

Pμρ

(|Tk(0)| = m
) ≤

(2k+1)d∑
m=n

∑
|C|=m

0∈C

e−αm ≤
(2k+1)d∑

m=n

e(α′−α)m ≤ e−cdn,

with cd positive for ρ small enough. The proof is now finished as in case (a). �

REMARK 4.4. In the proof of Theorem 4.2, we used that μ is translation in-
variant, and that we have, for ρ small enough, a large deviation bound for sums like∑

x∈� η(x), with � some connected volume in Z
d . There are many more measures

that satisfy these requirements, for instance, Gibbs measures or other sufficiently
rapidly mixing measures.

The argument to prove the exponential tail of the distribution of |W∞(0)|, which
in turn implies the exponential tail of the distribution of |V∞(0)|, is similar, al-
though some extra arguments are needed.

THEOREM 4.5. Let μρ , 0 < ρ < 1 be a collection of product measures sat-
isfying conditions (i)–(iii) of Lemma 4.1. Then for all ρ sufficiently small, there
exists a constant γd = γd(d, ρ) > 0 such that

Pμρ

(|W∞(0)| ≥ n
) ≤ e−γdn.
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PROOF. As in the proof of Theorem 4.2, we stabilize η in nested boxes Bk ,
and write [see (16)]

Pμ

(|W∞(0)| ≥ n
) = lim

k→∞Pμ

(|Wk(0)| ≥ n
)

= lim
k→∞

( ∞∑
m=n

Pμ

(|Wk(0)| = m
) + Pμ

(|Wk(0)| = ∞))
.

The cluster Wk(0) consists of the following types of sites: sites that have top-
pled, sites that did not topple but received at least one grain, and sites that did
not topple nor received grains but which were nonempty in η. The first two types
of sites we can only find in the box Bk+1, but the third type we can also find
outside this box. Outside the box Bk+1, the configuration did not change yet, so
restricted to Z

d \ Bk+1, we just have independent site percolation of nonempty
sites. We take ρ so small that the density of nonempty sites is below the critical
value for independent site percolation, so that for every k, |Wk(0)| is finite a.s. We
write

Pμ

(|W∞(0)| ≥ n
) = lim

k→∞

∞∑
m=n

Pμ

(|Wk(0)| = m
)

= lim
k→∞

∞∑
m=n

∑
|C|=m

0∈C

Pμ

(
Wk(0) = C

)
,

and again derive a bound for Pμ(Wk(0) = C) using that, on the event {Wk(0) = C},
there must have been a certain minimal number of sand grains in C before sta-
bilization. Suppose Wk(0) = C. If C contains a cluster of size mt ≥ 1 of top-
pled sites, with mb ≥ 2d boundary sites, then the number of grains in this re-
gion of sites—after as well as before toppling—is at least mt − 1 + mb ≥ 2d ,
so that the density in this region is at least 2d

2d+1 . C might contain several of
these regions, as well as nonempty sites that did not topple nor receive any
grains. Thus, we cannot conclude more than that the density in C before top-
pling was at least 2d

2d+1 , which for ρ < 2d
2d+1 corresponds to a large deviation of

1
m

∑
x∈C η(x).

The rest of the proof proceeds the same as for Theorem 4.2. Note that the fact
that we now sum m from n to ∞ instead of to (2k + 1)d makes no difference for
the outcome. �

REMARK 4.6. For d = 1, the critical density of nonempty sites is 1, but for
all ρ we have that Pμ(η(0) = 1) < 1. Therefore, Theorem 4.5 is valid for ρ < 2

3 .
However, in d = 1 it is not hard to see that, for all ρ < 1, |W∞(0)| is finite a.s. In-
deed, it is not hard to see that there a.s. is a positive density of pairs of neighboring
sites which never topple (compare the last part of Theorem 2.8). This implies that
|W∞(0)| is finite.
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5. Some open problems. It is clear that our results are a first step in the study
of sandpile percolation and that many challenging open problems remain. We men-
tion some of them:

1. Infinite sandpile percolation clusters. Starting from a product measure μρ with
density ρ on X, we know that, for ρ > 2d − 1, the measure is not stabilizable,
and all sites will topple infinitely many times. For small ρ we have sandpile
percolation clusters that look like subcritical clusters (of ordinary percolation).
Are there values of ρ < 2d − 1 such that there is an infinite cluster of toppled
sites, but μρ is still stabilizable? A guess would be that this happens as soon as
ρ > d , the density of minimally recurrent configurations. If such a percolation
transition occurs, is there a unique infinite cluster?

2. Critical value. Let M be a one-parameter family of Poisson product measures
with parameter ρ. Is ρc(M) < 2d − 1? Since it is conjectured that ρc is the
expected height in the critical sandpile model, in the limit of large volumes, this
inequality should hold. However, we expect that, especially in high d , it will be
easier to show a product measure with expected height “close to 2d − 1,” and
not concentrating on stable configurations, is not stabilizable.

3. Behavior at the critical value. In d = 1 we proved that the Poisson measure μρ

is not stabilizable at the critical value ρ = 1. Is it true that, for all d ≥ 1, μρ is
not stabilizable at the critical value ρ = ρc, where ρc is the critical value of the
family of Poisson measures?
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