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In this paper we first prove a Clark–Ocone formula for any bounded mea-
surable functional on Poisson space. Then using this formula, under some
conditions on the intensity measure of Poisson random measure, we prove a
variational representation formula for the Laplace transform of bounded Pois-
son functionals, which has been conjectured by Dupuis and Ellis [A Weak
Convergence Approach to the Theory of Large Deviations (1997) Wiley],
p. 122.

1. Introduction. Let W be a standard d-dimensional Brownian motion. The
following elegant formula for the Laplace transform of a bounded and measurable
functional F of Brownian motion was first established by Boué and Dupuis [1]:

− log E[e−F ] = inf
v

E

[
F

(
· +

∫ ·

0
vs ds

)
+ 1

2

∫ 1

0
|vs |2 ds

]
,(1)

where the infimum is taken for all processes v that are progressively measurable
with respect to the augmented filtration generated by Brownian motion. This re-
sult was later extended to Hilbert space-valued Brownian motion by Budhiraja and
Dupuis [3]. Furthermore, the author in [21] extended this representation to the ab-
stract Wiener space, and gave a simplified proof by using Clark–Ocone’s formula.
This formula has proven to be useful in deriving various asymptotic results in large
deviations (cf. [1–3, 16–18]).

For Poisson functionals, a similar representation formula has been conjectured
by Dupuis and Ellis in [4], page 122, from the background of control theory:

− log E[e−F ]

= inf
φ

E

[∫ 1

0

∫
Rd

[φ(y, t) logφ(y, t) − φ(y, t) + 1]νX̄(t)(dy) dt + F(X̄)

]
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where the infimum is taken over all suitable controls φ, and X̄ is a controlled
Markov process with jump defined by the generator∫

Rd
[f (x + y) − f (x)]φ(y, t)νx(dy).

Here, νx(dy) is the jump intensity of a Markov process.
However, there is no rigorous proof for this variational formula up to now. In

the present paper we will attempt to give a rigorous proof in a more general setting.
Roughly speaking, let (�,P) be the canonical Poisson space (simple configuration
space over [0,1]×R

d ) and ν an intensity measure on R
d . For any bounded random

variable F on �, we want to prove that

− log E(e−F ) = inf
φ

E

[∫ 1

0

∫
Rd

[φ(y, t) logφ(y, t)−φ(y, t)+1]ν(dy) dt +F ◦�−
φ

]
,

where the infimum runs over some classes of predictable processes, and �−
φ is a

predictable transformation on � associated with φ.
In contrast to the Wiener space case, the main difficulty of proving this for-

mula comes from the nonlinearity of Poisson space. In particular, the Girsanov
theorem for the Poisson measure is related to some nonlinear invertible and pre-
dictable transformations on R

d (cf. [5], Theorem 3.10.21). Indeed, the definition
of the above �−

φ depends on solving a mass transportation problem or the classical
Monge–Ampère equation. More precisely, to a given positive function φ, we need
to seek an invertible transformation x �→ y(x) of R

d such that, for all test functions
f ∈ C0(R

d), ∫
Rd

f (y(x))ν(dx) =
∫

Rd
f (x)φ(x)ν(dx),

which is formally equivalent to solving the following nonlinear PDE in the case of
ν(dx) = θ(x) dx:

θ(y−1(x)) · det(∇y−1(x)) = θ(x)φ(x).

For an optimal mass transportation problem, we refer to the book of Villani [20].
Since our problem has no constraint conditions on y, an easy solution can be con-
structed when ν has full support and no charges on d − 1-dimensional subspaces,
and satisfies an extra mild assumption. More detailed discussions are given in Sec-
tion 5.

In order to prove the above variational representation formula, the first step is
to establish the following Clark–Ocone formula: for any bounded functional F ,

F = EF +
∫ 1

0

∫
U

pD(u,t)F μ̃(du, dt),

where μ̃ is the compensated Poisson random measure, pD(u,t)F is the predictable
projection of D(u,t)F and D is the difference operator [see (6) below]. The proof
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of this formula depends on an integration by parts formula given in Picard [11, 12].
Although there are many martingale representation formulas for Poisson function-
als (e.g., see [8, 9, 13]), the well-known results are mainly concentrated on the
representation for functionals in the first order Sobolev space by using the Chaos
decomposition. The main point for us is that pD(u,t)F is a bounded predictable
process.

This paper is organized as follows: In Section 2 some notation and necessary
lemmas are given as preliminaries. In Section 3 we prove the Clark–Ocone formula
for bounded Poisson functionals. In Section 4 we shall prove two variational rep-
resentation formulas for Poission functionals. One (Theorem 4.4 below) is weaker,
and needs no assumption. Another (Theorem 4.11 below) is stronger, and needs to
work in a locally compact metric space, and also requires some extra assumptions
[see (H1) and (H2) below]. In Section 5 we discuss these two extra assumptions,
and give a solution when U = R

d and the intensity ν satisfies certain assumptions.

2. Preliminaries. Let U be a Lusin space, that is, a Hausdorff space that is the
image of a Polish space under a continuous bijection. We fix a σ -finite and infinite
measure ν on (U,B(U)). Since U × [0,1] is still a Lusin space and has the same
cardinality with R, it is well known that (U × [0,1],B(U × [0,1])) is isomorphic
to ([0,1],B([0,1])) (cf. [6], Proposition 8.6.12, and [10], Theorem 2.12). This
property was used in the proof of [12], Theorem 1, and so in [11], Lemma 1.4 (see
Theorem 3.2 below), which will be our basis for subsequent proofs.

Let � be the space of all integer-valued measures ω on U × [0,1] such that
ω({u, t}) ≤ 1 for any (u, t) ∈ U × [0,1], and ω(A × [0,1]) < +∞ for any
A ∈ B(U) with ν(A) < ∞. The canonical random measure on � is then defined
by

μω(A × (0, t]) := ω(A × (0, t]), t ∈ [0,1],A ∈ B(U).

The filtration (Ft )t∈[0,1] is defined by

Ft := σ {μω(A × (0, s]) : s ≤ t,A ∈ B(U)}.
We shall simply write F1 as F . Let P be the probability measure on (�,F ) such
that μω is a Poisson random measure with the intensity measure ν(du). That is, for
any A ∈ B(U) and t ∈ [0,1], the random variable ω �→ μω(A× (0, t]) is a Poisson
random variable with mean ν(A) · t , and ω �→ μω(Ii × Aj) are independent if the
sets Ii × Aj are disjoint. We shall also denote by μ̃ω the compensated Poisson
random measure μω − π , where π(du, dt) := ν(du) × dt , and dt is the Lebesgue
measure on [0,1].

Let F P
t be the completion of Ft with respect to P, then (�,F P,P; (F P

t )t∈[0,1])
forms a complete filtration probability space. We shall denote by P the predictable
σ -field associated with (F P

t )t∈[0,1], which is generated by all left continuous F P
t -

adapted processes. For the simplicity of notation, we shall write for p ∈ [1,∞]
L

p := Lp(
U × [0,1] × �,B(U × [0,1]) × F P, π × P

)
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and

L
p
P := Lp(

U × [0,1] × �,B(U) × P , ν × dt × P
)
.

Let C be the linear span of the following simple processes:

φ(u, t,ω) := 1(t0,t1](t) · g(u,ω),(2)

where 0 ≤ t0 < t1 ≤ 1 and g is bounded and B(U) × Ft0 -measurable and satisfies

g(u,ω) · 1Uc(u) = 0 for some U ∈ B(U) with ν(U) < +∞.(3)

REMARK 2.1. For g ∈ B(U) × F P
t0

, by the monotone class theorem, we can
find a g̃ ∈ B(U) × Ft0 such that g̃ = g, ν × P-a.s.

The following lemma is standard. The construction will also be used in the proof
of Lemma 4.8 below.

LEMMA 2.2. C is dense in L
p
P for any p ∈ [1,∞).

PROOF. We sketch the proof. Let φ ∈ L
p
P . For ε ∈ (0,1/2), we first extend φ

to [−2ε,0] by setting φ(u, t,ω) = 0 for t ∈ [−2ε,0], and then define

φε(u, t,ω) := 1

ε2

∫ t

t−ε

∫ s

s−ε
φ(u, r,ω)dr ds, t ∈ [0,1].

Obviously, t �→ φε(u, t,ω) is a continuous differentiable and F P
t -adapted process,

and satisfies ∫ 1

0
|φε(u, t,ω)|p dt ≤

∫ 1

0
|φ(u, t,ω)|p dt,

∫ 1

0
|φ′

ε(u, t,ω)|p dt ≤ 2p+1

εp

∫ 1

0
|φ(u, t,ω)|p dt.

Second, for ε ∈ (0,1/2) and n ∈ N, we define

φε,n(u, t,ω) :=
n−1∑
k=0

1(kn−1,(k+1)n−1](t) · φε(u, kn−1,ω).

Then ∫ 1

0
|φε,n(u, t,ω)|p dt ≤ sup

t∈[0,1]
|φε(u, t,ω)|p ≤

∫ 1

0
|φ′

ε(u, t,ω)|p dt.

Last, let (Um)m∈N be an increasing sequence of Borel subsets of U such that⋃
m Um = U and ν(Um) < +∞, and define

φm
ε (u, kn−1,ω) := (−m) ∨ (

φε(u, kn−1,ω) ∧ m
) · 1Um(u).

By the diagonalization method and the dominated convergence theorem, we may
find the desired approximation in L

p
P by Remark 2.1. �

We recall the notion about the relative entropy as follows (cf. [4]).
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DEFINITION 2.3. Let P(�) denote the set of all probability measures defined
on (�,F ). For γ ∈ P(�), the relative entropy function R(·‖γ ) is a mapping from
P(�) into R ∪ ∞ given by

R(γ ′‖γ ) := E
γ ′

(
log

dγ ′

dγ

)
,

whenever γ ′ ∈ P(�) is absolutely continuous with respect to γ such that the
above integral is finite, where E

γ ′
denotes the expectation with respect to γ ′. In all

other cases, R(γ ′‖γ ) := ∞.

The following proposition can be found in [4], Proposition 1.4.2.

PROPOSITION 2.4. Let γ ∈ P(�), and F a bounded random variable on
(�,F ).

(i) We have the following variational formula:

− log E
γ (e−F ) = inf

γ ′∈P(�)
[R(γ ′‖γ ) + E

γ ′
(F )].

(ii) The infimum in (i) is uniquely attained at the probability measure γ0 de-
fined by

γ0(dω) = e−F(ω)/E
γ (e−F ) · γ (dω).(4)

The following contents will be used in the second part of Section 4. In order
to prove the variational representation formula for Poisson functionals, we need to
endow � with a suitable topology such that � becomes a Polish space. For this, we
assume that U is a noncompact locally compact connected complete metric space,
and ν is a Radon measure on U. Let Cc(U×[0,1]) denote the set of all continuous
functions on U × [0,1] with compact supports. The topology on � is taken as the
weakest topology such that, for any f ∈ Cc(U × [0,1]), the function

ω �→ 〈f,μω〉 :=
∫ 1

0

∫
U

f (u, t)μω(du, dt) = ∑
(u,t)∈supp(ω)

f (u, t)(5)

is continuous, where supp(ω) is the support of integer-valued Radon measure ω,
and the sum only has finite terms. By [15], Theorem 1.8, � is a Polish space under
the above topology.

The following result can be found in [1], Lemma 2.8.

LEMMA 2.5. Let γ ∈ P(�) and {γn,n ∈ N} ⊂ P(�) satisfy

sup
n∈N

R(γn‖γ ) < +∞.
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(i) If {Fk, k ∈ N} is a sequence of uniformly bounded random variables con-
verging to F , γ -a.s., then

lim
k→∞ sup

n∈N

E
γn |Fk − F | = 0.

(ii) If γn converges weakly to the probability measure γ , then for any bounded
random variable F on (�,F )

lim
n→∞ E

γn(F ) = E
γ (F ).

Let C be the set of all cylindrical functions on � with the form

F(ω) := h(〈f1,μω〉, . . . , 〈fn,μω〉), h ∈ C∞
c (Rn), fi ∈ Cc(U × [0,1]).

We also need the following standard result.

LEMMA 2.6. Let F be a bounded random variable on (�,F P,P). Then there
exists a family of functions Fn ∈ C with supn ‖Fn‖∞ ≤ ‖F‖∞ such that for P-
almost all ω

Fn(ω) → F(ω), as n → ∞.

PROOF. We sketch it. Let C0(U × [0,1]) be the completion of Cc(U × [0,1])
with respect to the uniform norm, which is then a separable Banach space. Let
{fi, i ∈ N} ⊂ Cc(U × [0,1]) be a countable dense subset of C0(U × [0,1]). We
define Qn := σ {〈fi,μω〉, i = 1, . . . , n}. Then QP

n ↑ QP∞ = F P. First, let Gn :=
E(F |Qn), then there exists some bounded measurable function gn on R

n such that

Gn(ω) = hn(〈f1,μω〉, . . . , 〈fn,μω〉).
Next, using the usual localizing and mollifying techniques, we may approach hn by
hn,k ∈ C∞

c (Rn). By the diagonalization method and extracting some subsequence
if necessary, we then get the desired approximation sequence. �

3. Clark–Ocone formula. Let us first recall some definitions about the dif-
ference operator given in [11, 12]. For a fixed (u, t) ∈ U × [0,1], define the trans-
formation ε−

(u,t) and ε+
(u,t) on � by removing and adding a mass as follows: for

A ∈ B(U × [0,1]), (
ε−
(u,t)ω

)
(A) := ω

(
A ∩ {(u, t)}c)

and (
ε+
(u,t)ω

)
(A) := (

ε−
(u,t)ω

)
(A) + 1A(u, t).

It is clear that (u, t,ω) �→ ε±
(u,t)ω are B(U × [0,1]) × F P/F P-measurable.
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For a functional F on �, the difference operator D is defined by

D(u,t)F (ω) := F ◦ ε+
(u,t)(ω) − F(ω).(6)

Clearly, it is well defined except on a π ×P-null set N . In the following, we always
put D(u,t)F (ω) = 0 for (u, t,ω) ∈ N . For a φ ∈ L

1, the divergence operator δ is
defined by

δ(φ)(ω) :=
∫ 1

0

∫
U

φ
(
u, t, ε−

(u,t)ω
)
μ̃ω(du, dt).

We need the following simple lemma.

LEMMA 3.1. For any φ ∈ C , we have

δ(φ)(ω) =
∫ 1

0

∫
U

φ(u, t,ω)μ̃ω(du, dt).

PROOF. Let φ ∈ C have the form (2). Notice that for any A ∈ Ft0 and t >

t0, u ∈ U,

1A ◦ ε−
(u,t) = 1A.

Since g is bounded and B(U) × Ft0 -measurable, by the monotone class theorem,
we have for any t > t0

g
(
u, ε−

(u,t)ω
) = g(u,ω).

Hence,

δ(φ)(ω) =
∫ 1

0

∫
U

1(t0,t1](t) · g(
u, ε−

(u,t)ω
)
μ̃ω(du, dt)

=
∫ 1

0

∫
U

1(t0,t1](t) · g(u,ω)μ̃ω(du, dt)

=
∫ 1

0

∫
U

φ(u, t,ω)μ̃ω(du, dt).

The result follows. �

The following integration by parts formula can be found in [11], Lemma 1.4.

THEOREM 3.2. Let φ ∈ L
1 and F be a bounded random variable. Then

E(Fδ(φ)) = E

(∫ 1

0

∫
U

D(u,t)F · φ(u, t)π(du, dt)

)
.

Before proving the Clark–Ocone formula, we recall the following classical pre-
dictable projection theorem (cf. [19], page 173, Theorem 5.6).
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LEMMA 3.3. Let ψ be a bounded measurable process on U × [0,1] × �.
There exists a unique (up to indistinguishability with respect to t for each u) pre-
dictable process φ ∈ L

∞
P such that for every predictable stopping time τ and u ∈ U

E
(
ψ(u, τ) · 1{τ<∞}|F P

τ−
) = φ(u, τ ) · 1{τ<∞}, P-a.s.(7)

We shall write φ as pψ , which is called the predictable projection of ψ .

PROOF. (Uniqueness) Let φ1 and φ2 be two predictable projections of ψ . Set

A := {(u, t,ω) :φ1(u, t,ω) �= φ2(u, t,ω)}.
Then for each u ∈ U, the section �u(A) := {(t,ω) : (u, t,ω) ∈ A} ∈ P . By the sec-
tion theorem (cf. [19], page 172, Theorem 5.5) and (7), we have P(�(�u(A))) = 0,
where �(�u(A)) = {ω : (t,ω) ∈ �u(A),∃t ∈ [0,1]}. Hence, for every u ∈ U,
φ1(u, ·, ·) and φ2(u, ·, ·) are indistinguishability.

(Existence) Let M be the class of all bounded measurable processes ψ pos-
sessing a predictable projection. It is clear that M is a vector space containing the
constants. Moreover, M is also a monotone class. In fact, let ψn ∈ M be a uni-
formly bounded increasing sequence with limit ψ . Let φn be the corresponding
predictable projection of ψn. It is then easily checked by the monotone conver-
gence theorem that limφn is the predictable projection of ψ .

Hence, it is enough to prove that M contains all the processes of the form
ψ(u, t,ω) = 1[0,t0](t) · g(u,ω), which generates the σ -field B(U) × B([0,1]) ×
F P, where g is bounded and B(U) × F P-measurable. Define

φ(u, t) = 1[0,t0](t) · E(g(u)|F P

t−).

By Doob’s optional stopping theorem, one then finds that such φ is a predictable
projection of ψ . The proof is complete. �

We now prove the following Clark–Ocone formula.

THEOREM 3.4. Let F be any bounded random variable on �. Then

F = EF +
∫ 1

0

∫
U

pD(u,t)F μ̃(du, dt),(8)

where pD(u,t)F ∈ L
2
P ∩ L

∞
P is the predictable projection of D(u,t)F . Moreover,

E

(∫ 1

0

∫
U

∣∣pD(u,t)F
∣∣2π(du, dt)

)2

< +∞.

PROOF. It is well known that there exists a predictable process ϕ ∈ L
2
P such

that (cf. [7])

F = E(F ) +
∫ 1

0

∫
U

ϕ(u, t)μ̃(du, dt).
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By Lemma 3.1 and the isometry formula of the stochastic integral, we have for any
φ ∈ C

E(Fδ(φ)) = E

(∫ 1

0

∫
U

ϕ(u, t) · φ(u, t)π(du, dt)

)
.(9)

On the other hand, by Theorem 3.2 and Fubini’s theorem, we have for any φ ∈ C

E(Fδ(φ)) = E

(∫ 1

0

∫
U

D(u,t)F · φ(u, t)π(du, dt)

)

=
∫ 1

0

∫
U

E
(
E

(
D(u,t)F |F P

t−
) · φ(u, t)

)
π(du, dt),

(10)

[by (7)] =
∫ 1

0

∫
U

E
(pD(u,t)F · φ(u, t)

)
π(du, dt)

= E

(∫ 1

0

∫
U

pD(u,t)F · φ(u, t)π(du, dt)

)
.

The formula (8) now follows by combining (9), (10) and Lemma 2.2.
By BDG’s inequality (cf. [5], Theorem 4.1.12) and (8), we have

E

(∫ 1

0

∫
U

∣∣pD(u,t)F
∣∣2μ(du, dt)

)2

≤ CE

(∫ 1

0

∫
U

pD(u,t)F μ̃(du, dt)

)4

≤ CE(F − EF)4,

where C is a universal constant. Hence,

E

(∫ 1

0

∫
U

∣∣pD(u,t)F
∣∣2π(du, dt)

)2

≤ CE

(∫ 1

0

∫
U

∣∣pD(u,t)F
∣∣2μ̃(du, dt)

)2

+ CE

(∫ 1

0

∫
U

∣∣pD(u,t)F
∣∣2μ(du, dt)

)2

≤ CE

(∫ 1

0

∫
U

∣∣pD(u,t)F
∣∣4μ(du, dt)

)

+ CE(F − EF)4

= CE

(∫ 1

0

∫
U

∣∣pD(u,t)F
∣∣4π(du, dt)

)

+ CE(F − EF)4 < +∞.

The proof is complete. �

REMARK 3.5. In general, it is not known whether E(D(u,t)F |F P
t−) is pre-

dictable, although for fixed (u, t) ∈ U × [0,1], E(D(u,t)F |F P
t−) = pD(u,t)F a.s.

by (7). However, Løkka in [8], Theorem 7 and Proposition 10, proved that
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for Lévy functional F , if F belongs to the first-order Sobolev space, (u, t) �→
E(D(u,t)F |F P

t−) is predictable. Compared with Løkka’s result, Theorem 3.4 only
requires that F is bounded, and more importantly, the bound of pD(u,t)F can be
explicitly calculated from F , which is crucial for the next section. Moreover, this
would also have some applications in mathematical finance as in [8], Section 5.

4. Variational representation formula. We begin with the following ele-
mentary lemma.

LEMMA 4.1. Let c0 > −1. Then for some C > 0 and any x ≥ c0,

| log(1 + x)| ≤ C|x|, | log(1 + x) − x| ≤ C|x|2(11)

and

|(1 + x) log(1 + x) − x| ≤ C|x|2.(12)

Let φ ∈ L
2
P be a bounded predictable process satisfying

φ(u, t,ω) ≥ cφ > −1(13)

and

E

(∫ 1

0

∫
U

φ(u, t)2π(du, dt)

)2

< +∞,(14)

and such that t �→ Et (φ) is a square integrable F P
t -martingale, where

Et (φ) := exp
{∫ t

0

∫
U

log
(
1 + φ(u, s)

)
μ̃(du, ds)

(15)

+
∫ t

0

∫
U

[
log

(
1 + φ(u, s)

) − φ(u, s)
]
π(du, ds)

}
.

By (11), Et (φ) is well defined. All such predictable processes will be denoted
by G .

PROPOSITION 4.2. Let 0 < c0 ≤ F ≤ c1 be a random variable on �. Then for
some φ ∈ G ,

E(F |Ft ) = EF · Et (φ), ∀t ∈ [0,1].
More precisely,

φ(u, t) =
pD(u,t)F

E(F |Ft−)
, π × P-a.s.(16)
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PROOF. By Theorem 3.4, we have

Mt := E(F |Ft ) = EF +
∫ t

0

∫
U

pD(u,s)F μ̃(du, ds).

Let φ be given by (16). Then, it is clear by Theorem 3.4 that φ ∈ L
2
P ∩L

∞
P and (14)

holds. For (13), it only needs to notice that by (7) and (6)

φ(u, t) = E(F ◦ ε+
(u,t)|Ft−)

E(F |Ft−)
− 1

≥ c0

c1
− 1, π × P-a.s.

On the other hand, if we define

Xt :=
∫ t

0

∫
U

φ(u, s)μ̃(du, ds),

then by φ ∈ L
2
P , X is a square-integrable F P

t -martingale, �Xs ≥ c0
c1

− 1, and

Mt = EF +
∫ t

0
Ms− dXs.

By [14], page 84, Theorem 37, we have

Mt = EF · exp{Xt } · ∏
0<s≤t

[(1 + �Xs) · exp{−�Xs}]
(17)

= EF · exp

{
Xt + ∑

0<s≤t

[log(1 + �Xs) − �Xs]
}
.

Observing that by (11)

∑
0<s≤t

[log(1 + �Xs) − �Xs] =
∫ t

0

∫
U

[
log

(
1 + φ(u, s)

) − φ(u, s)
]
μ(du, ds)

=
∫ t

0

∫
U

[
log

(
1 + φ(u, s)

) − φ(u, s)
]
μ̃(du, ds)

+
∫ t

0

∫
U

[
log

(
1 + φ(u, s)

) − φ(u, s)
]
π(du, ds),

we obtain by substituting this into (17)

E(F |Ft ) = Mt = EF · Et (φ),

which then implies that t �→ Et (φ) is a square integrable F P
t -martingale, and so

φ ∈ G . �
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PROPOSITION 4.3. For φ ∈ G , define a new probability measure on (�,F P)

by

dPφ := E1(φ) dP,(18)

then for any ψ ∈ L
2
P ,

t �→
∫ t

0

∫
U

ψ(u, s)μ̃(du, ds) −
∫ t

0

∫
U

ψ(u, s)φ(u, s)π(du, ds)

is a square integrable F P
t -martingale under Pφ .

PROOF. Note that by Itô’s formula, Et (φ) solves the following linear equation:

Et (φ) = 1 +
∫ t

0

∫
U

Es−(φ) · φ(u, s)μ̃(du, ds).

If we put Zt := ∫ t
0

∫
U

ψ(u, s)μ̃(du, ds), then

〈Z,E (φ)〉t =
∫ t

0

∫
U

Es−(φ) · ψ(u, s)φ(u, s)π(du, ds).

By the Meyer–Girsanov theorem (cf. [14], page 133, Theorem 36), we know that

t �→ Zt −
∫ t

0

1

Es−(φ)
d〈Z,E (φ)〉s

is a square integrable F P
t -martingale under Pφ . The result follows. �

We may prove the following representation formula.

THEOREM 4.4. Let F be a bounded random variable on �. Then

− log E(e−F ) = inf
φ∈G

E
Pφ

(
F + L(φ)

)
,(19)

where Pφ is defined by (18), and

L(φ) :=
∫ 1

0

∫
U

[(
1 + φ(u, s)

)
log

(
1 + φ(u, s)

) − φ(u, s)
]
π(du, ds)(20)

is well defined by (12). Moreover, the infimum is uniquely attained at some φ ∈ G .

PROOF. For any φ ∈ G , by Jensen’s inequality, we have

− log E(e−F ) = − log E
Pφ

(
e−F−log(dPφ/dP))

≤ E
Pφ (F ) + R(Pφ‖P).
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By (18) and (15), we have

R(Pφ‖P) = E
Pφ

(∫ 1

0

∫
U

log
(
1 + φ(u, s)

)
μ̃(du, ds)

+
∫ 1

0

∫
U

[
log

(
1 + φ(u, s)

) − φ(u, s)
]
π(du, ds)

)
.

By Proposition 4.3, we know that

t �→
∫ 1

0

∫
U

log
(
1 + φ(u, s)

)
μ̃(du, ds) −

∫ 1

0

∫
U

φ(u, s) log
(
1 + φ(u, s)

)
π(du, ds)

is a square integrable F P
t -martingale under Pφ . Hence, by (12), (14) and Hölder’s

inequality,

R(Pφ‖P) = E
Pφ

(∫ 1

0

∫
U

[(
1 + φ(u, s)

)
log

(
1 + φ(u, s)

) − φ(u, s)
]
π(du, ds)

)

≤ E

(
E1(φ) ·

∫ 1

0

∫
U

|φ(u, s)|2π(du, ds)

)
< +∞.

Thus, the upper bound is obtained.
For the lower bound, by Proposition 4.2, there exists a φ ∈ G such that

E(e−F ) = e−F · E −1
1 (φ). Thus, we have

− log E(e−F ) = E
Pφ (F ) + R(Pφ‖P) = E

Pφ
(
F + L(φ)

)
.

The uniqueness follows from that when the infimum is attained, then Jensen’s
inequality becomes an equality. The proof is thus complete. �

We now turn to proving another representation like (1) about the formula (19),
which was conjectured by Dupuis and Ellis [4], page 122. For further discussions,
we need to consider a noncompact locally compact connected complete metric
space (U, ρ), and assume that:

(H1) For each φ ∈ G , there exists an invertible transformation with respect to u,

γφ : U × [0,1] × � → U, U � u �→ γφ(u, t,ω) ∈ U,

such that
(i) γφ, γ −1

φ ∈ B(U) × P /B(U);

(ii) ν ◦γ −1
φ = (1+φ) ·ν, that is, for (ds ×dP)-almost all (s,ω) ∈ [0,1]×�

and any bounded measurable function f on U∫
U

f (γφ(u, s,ω))ν(du) =
∫

U

f (u) · (
1 + φ(u, s,ω)

)
ν(du);

(iii) for each t ∈ [0,1], γφt |[0,t] = γφ|[0,t] and γ −1
φt

|[0,t] = γ −1
φ |[0,t], where

φt := φ · 1[0,t].



CLARK–OCONE FORMULA AND POISSON FUNCTIONALS 519

FIG. 1. Transformation: �±
φ .

(H2) Let φ,φn ∈ G satisfy −1 < c0 ≤ φ,φn ≤ c1. If φn converges to φ in L
2
P ,

then there is a subsequence nk (still denoted by n) such that for (π × P)-
almost all (u, s,ω),

lim
n→∞ρ(γφn(u, s,ω), γφ(u, s,ω)) = lim

n→∞ρ(γ −1
φn

(u, s,ω), γ −1
φ (u, s,ω)) = 0,

where ρ is the metric on U.

REMARK 4.5. The invertibility is understood in the measure sense, that is,

γφ(γ −1
φ (u, t,ω), t,ω) = γ −1

φ (γφ(u, t,ω), t,ω) = u, π × P-a.s.

However, by a suitable redefinition procedure, one may assume that the above
identities hold for all (u, t,ω) ∈ U × [0,1] × �. In fact, for some (dt × P)-null
set A ∈ P and each (t,ω) /∈ A, there exists a ν-null set N(t,ω) ∈ B(U) such that
γφ(·, t,ω) is a one-to-one and onto mapping on Nc

(t,ω). Thus, γ +
φ := γφ and γ −

φ :=
γ −1
φ may be redefined as follows:

γ̃ ±
φ (u, t,ω) :=

{
γ ±
φ (u, t,ω), if (t,ω) ∈ Ac and u ∈ Nc

(t,ω),
u, otherwise.

In the sequel, we still use γ ±
φ to denote these redefinitions.

The above constructed γ ±
φ induce predictable transformations �±

φ on � as fol-
lows (see Figure 1):

ω �→ �±
φ(ω)(ω) := (γ ±

φ (ω))∗(ω),(21)

where (γ ±
φ )∗(ω) denote the image measures of ω under transformations (u, t) �→

(γ ±
φ (u, t,ω), t). In particular, for each ω ∈ �,

�+
φ(ω)

(
�−

φ(ω)(ω)
) = �−

φ(ω)

(
�+

φ(ω)(ω)
) = ω.(22)

In what follows, we sometimes simply write �+
φ(ω) (resp. �−

φ(ω)) as �φ

(resp. �−
φ ). The following Girsanov theorem can be found in [5], page 165.
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THEOREM 4.6. Assume (H1). For any φ ∈ G , the mapping ω �→ μ�φ(ω) is still
a Poisson random measure under Pφ with the same intensity measure ν, where Pφ

is defined by (18). In particular,

Pφ ◦ (�φ)−1 = P,

where Pφ ◦ (�φ)−1 denotes the image measure or distribution of ω �→ �φ(ω) un-
der Pφ .

We now prepare several lemmas for later use. The following lemma is direct.

LEMMA 4.7. Assume (H2). Then P◦ (�±
φn

)−1 weakly converges to P◦ (�±
φ )−1

as n → ∞.

PROOF. It only needs to prove that for P-almost all ω ∈ �, �±
φn

(ω) converges

to �±
φ (ω) with respect to the weak topology defined by (5). That is, for any f ∈

Cc(U × [0,1]), 〈
f,μ�±

φn
(ω)

〉 → 〈
f,μ�±

φ (ω)

〉
.

As in Remark 4.5, by (H2), we assume that for P-almost all ω and all (u, t) ∈
U × [0,1]

lim
n→∞ρ(γ ±

φn
(u, t,ω), γ ±

φ (u, t,ω)) = 0.

Since f has compact support in U × [0,1], we have〈
f,μ�±

φn
(ω)

〉 = ∑
(u,t)∈supp(ω)

f (γ ±
φn

(u, t,ω), t)

→ ∑
(u,t)∈supp(ω)

f (γ ±
φ (u, t,ω), t)

= 〈
f,μ�±

φ (ω)

〉
.

The result follows. �

We introduce the following subclasses of G and C : For −1 < c0 ≤ 0 and c1 > 0,
φ ∈ G c1

c0 ⊂ G or φ ∈ C c1
c0 ⊂ C if

c0 ≤ φ ≤ c1.

It is noticed that C c1
c0 ⊂ G c1

c0 by (3).

LEMMA 4.8. Let −1 < c0 ≤ 0 and c1 > 0. For any φ ∈ G c1
c0 , there exists a

sequence φn ∈ C c1
c0 such that

lim
n→∞

∫ 1

0

∫
U

E|φn(u, t) − φ(u, t)|2π(du, dt) = 0,(23)
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and

lim
n→∞ E|L(φn) − L(φ)| = 0.(24)

PROOF. As in the construction in Lemma 2.2, it is easy to find the desired φn.
As for the limit (24), it follows from the construction of φn in Lemma 2.2, (12) and
the dominated convergence theorem. �

LEMMA 4.9. Assume (H1). Let g be a bounded F P
t -measurable function.

Then for any φ ∈ G ,

g(�±
φ (ω)) = g(�±

φt
(ω)), P-a.a. ω,

where φt = φ · 1[0,t].

PROOF. By the monotone class theorem, it is enough to consider cylindrical
function g with the following form:

g(ω) = h(〈f1,μω〉, . . . , 〈fn,μω〉), h ∈ C∞
c (Rn), fi ∈ Cc(U × [0, t]).

For this type g, the desired equality follows by direct calculations and (iii) of (H1).
�

The following lemma is crucial for the proof of Theorem 4.11 below. The main
idea comes from [1, 3] (see also [21]).

LEMMA 4.10. Assume (H1). Let −1 < c0 ≤ 0 and c1 > 0. For any φ ∈ C c1
c0 ,

there are two φ̃, φ̂ ∈ C c1
c0 such that for any bounded random variable F on �

E
P

φ̃
(
F + L(φ̃)

) = E
(
F ◦ �−

φ + L(φ)
)
,(25)

E
Pφ

(
F + L(φ)

) = E
(
F ◦ �−

φ̂
+ L(φ̂)

)
,(26)

where the functional L is defined by (20). Moreover,

R
(
P ◦ (�−

φ )−1‖P
) = E

P
φ̃ (L(φ̃)) = EL(φ).(27)

PROOF. Let φ ∈ C c1
c0 have the form

φ(u, t,ω) :=
n∑

i=0

1(ti ,ti+1](t) · gi(u,ω), gi ∈ B(U) × Fti .

Let us construct g̃i as follows:

g̃0(u,ω) = g0(u,ω)

and for i = 1,2, . . . , n − 1,

g̃i(u,ω) = gi

(
u,�φ̃i(ω)(ω)

)
,
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where

φ̃i(u, t,ω) :=
i−1∑
j=0

1(tj ,tj+1](t) · g̃j (u,ω).

Finally, we let

φ̃(u, t,ω) := φ̃n(u, t,ω).

From the construction, it is clear that φ̃ ∈ C c1
c0 . Moreover, it is not hard to verify by

Lemma 4.9 and induction that φ̃ satisfies

φ̃(u, t,ω) = φ
(
u, t,�φ̃(ω)(ω)

)
.(28)

Similarly, one may construct φ̂ ∈ C c1
c0 such that

φ̂(u, t,ω) := φ
(
u, t,�−

φ̂(ω)
(ω)

)
.

As above, by induction, Lemma 4.9 and (22), one can verify

φ(u, t,ω) = φ̂
(
u, t,�φ(ω)(ω)

)
.(29)

Now by Theorem 4.6, we have

Pφ̃ ◦ (�φ̃)−1 = P = Pφ ◦ (�φ)−1.(30)

Hence, we obtain by (22) and (28)

E
P

φ̃
(
F + L(φ̃)

) = E
P

φ̃
(
F

(
�−

φ(�
φ̃
)(�φ̃(·))) + L(φ(�φ̃))

)
= E

(
F ◦ �−

φ + L(φ)
)
,

as well as by (22) and (29)

E
Pφ

(
F + L(φ)

) = E
Pφ

(
F

(
�−

φ̂(�φ)
(�φ(·))) + L(φ̂(�φ))

)
= E

(
F ◦ �−

φ̂
+ L(φ̂)

)
.

Moreover, by (30), (28) and (22), we also have

P ◦ (�−
φ )−1 = Pφ̃

and so,

R
(
P ◦ (�−

φ )−1‖P
) = R(Pφ̃‖P) = E

P
φ̃ (L(φ̃)) = E

P
φ̃ (L(φ(�φ̃))) = EL(φ).

The proof is complete. �

We are now in a position to prove our main result in the present paper.
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THEOREM 4.11. Assume that (H1) and (H2) hold. Let F be any bounded
random variable on �. Then

− log E(e−F ) = inf
φ∈G

E
(
F ◦ �−

φ + L(φ)
)

= inf
φ∈C

β
α

E
(
F ◦ �−

φ + L(φ)
)
,

where L(φ) and �−
φ are defined by (20) and (21) respectively, and

α := e−2‖F‖∞ − 1, β := 1 + e2‖F‖∞ .(31)

PROOF. (Upper bound) Let φ ∈ G . Then φ ∈ G c1
c0 for some c0 ∈ (−1,0],

c1 > 0. Let φn ∈ C c1
c0 be as in Lemma 4.8. Let φ̃n ∈ C c1

c0 be the corresponding
one constructed in Lemma 4.10. Then, by (19) and (25),

− log E(e−F ) ≤ E
P

φ̃n
(
F + L(φ̃n)

) = E
(
F ◦ �−

φn
+ L(φn)

)
.(32)

Noting that by (27) and (24)

sup
n

R
(
P ◦ (�−

φn
)−1‖P

) = sup
n

EL(φn) < +∞,

we have by Lemma 4.7 and (ii) of Lemma 2.5

lim
n→∞E(F ◦ �−

φn
) = E(F ◦ �−

φ ).

Hence, by (32) and (24),

− log E(e−F ) ≤ E
(
F ◦ �φ + L(φ)

)
,

which gives the upper bound.
Moreover, by the lower semi-continuity of R(·‖P) (cf. [4], Lemma 1.4.3), we

also have

R
(
P ◦ (�−

φ )−1‖P
) ≤ lim

n→∞
R

(
P ◦ (�−

φn
)−1‖P

)
(33)

= lim
n→∞

EL(φn) ≤ EL(φ), for all φ ∈ G .

(Lower bound) We divide the proof into two steps.

(Step 1): First of all, let F ∈ C have the following form:

F(ω) = g(〈f1,μω〉, . . . , 〈fn,μω〉), g ∈ C∞
c (Rn), fi ∈ Cc(U × [0,1]).

Then, by (6) and a simple calculation, we have

∣∣D(u,t)e
−F(ω)

∣∣ = ∣∣e−F(ε+
(u,t)ω) − e−F(ω)

∣∣ ≤ C

n∑
i=1

|fi(u, t)|,(34)
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where C is independent of (u, t,ω).
Set

φ(u, t) :=
pD(u,t)e

−F

E(e−F |Ft−)
.

It is clear by Proposition 4.2 that φ ∈ G
β
α , where α,β are given by (31). Let

φn ∈ C
β
α be as in Lemma 4.8. By (34) and the construction of φn, there exists

a U ⊂ U with ν(U) < +∞ such that for all n ∈ N

|φn(u, t,ω)| ≤ C · 1U(u), π × P-a.e.(35)

By limits (23), (24) and extracting a subsequence if necessary, we may further
assume that

φn → φ, π × P-a.e.

and

L(φn) → L(φ), μ̃(φn) → μ̃(φ), P-a.e.

By (35) and the dominated convergence theorem, we have

E
Pφn

(
F + L(φn)

) → E
Pφ

(
F + L(φ)

)
as n → ∞.(36)

Moreover, by Proposition 4.2, we have

e−F = E(e−F )E1(φ).

So, by (36) and (26), we have for any ε > 0 and n large enough

− log E(e−F ) = E
Pφ (F ) + R(Pφ‖P)

= E
Pφ

(
F + L(φ)

)
≥ E

Pφn
(
F + L(φn)

) − ε

= E
(
F ◦ �−

φ̂n
+ L(φ̂n)

) − ε.

The lower bound now follows by φ̂n ∈ C
β
α (see Lemma 4.10).

(Step 2): For any bounded random variable F on (�,F ), by Lemma 2.6, there
exists a sequence Fn ∈ C such that

sup
n

‖Fn‖∞ ≤ ‖F‖∞(37)

and

lim
n→∞Fn = F, P-a.s.

For any ε > 0 and Fn, by Step 1 and (37), there exists a φn ∈ C
β
α , where α,β are

given by (31), such that

− log E(e−Fn) ≥ E
(
Fn ◦ �−

φn
+ L(φn)

) − ε.(38)
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In view of (33), (38) and (37), we have

sup
n

R
(
P ◦ (�−

φn
)−1‖P

) ≤ sup
n

EL(φn) < +∞.

Therefore, by (i) of Lemma 2.5,

lim
n→∞ E|Fn ◦ �−

φn
− F ◦ �−

φn
| = 0.

Using the dominated convergence theorem to the left-hand side of (38) gives that,
for sufficiently large n,

− log E(e−F ) ≥ E
(
F ◦ �−

φn
+ L(φn)

) − 2ε.

Since φn ∈ C
β
α and ε is arbitrary, we thus complete the proof of the lower bound.

�

REMARK 4.12. By the same argument as in the proof of [1], Theorem 5.1,
the F in Theorem 4.11 can be any random variable bounded from above.

5. (H1)–(H2) and mass transportation problem. In this section we give a
more concrete description for (H1)–(H2). Let (U, ρ) be a locally compact complete
metric space, and ν a σ -finite and infinite measure on (U,B(U)). Let U be the
set of all positive measurable functions on U bounded from above and also from
below.

QUESTION. Under what constraints, for each φ ∈ U , does there exist a unique
invertible measurable transformation γφ on U such that ν ◦ γ −1

φ = φ · ν, that is,∫
U

f (γφ(u))ν(du) =
∫

U

f (u)φ(u)ν(du), ∀f ∈ Cc(U)?(39)

Moreover, for 0 < C0 ≤ φ,φn ≤ C1, if φn converges ν-a.e. to φ, does it hold that

lim
n→∞ρ(γφn(u), γφ(u)) = lim

n→∞ρ(γ −1
φn

(u), γ −1
φ (u)) = 0, ν-a.a. u?(40)

Obviously, if this question has a solution, then (H1) and (H2) are satisfied. We
remark that the required predictability follows from continuous dependence (40)
with respect to φ. In the classical problem of optimal mass transportation, the
constraint is given by minimizing the following cost functional (cf. [20]):

inf
γφ

∫
U

c(ρ(u, γφ(u)))ν(du),

where c is a convex function on R+.
Let us look at the case of U = R

d and ν(dx) = θ(x) dx. It is clear that (39) can
be reduced to

θ(γ −1
φ (x))det(∇γ −1

φ (x)) = φ(x)θ(x),
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where ∇ denotes the gradient. If we further require that γ −1
φ (x) is the gradient of

some strictly convex function h(x), then we need to solve the following classical
Monge–Ampère equation:

θ(∇h(x))det(∇2h(x)) = φ(x)θ(x).

For this equation, there are many literatures to study it, for example, see [20] and
references therein. Since our problem is looser, we can find an easy solution when
U = R

d .
Let us first see the one-dimensional case. Let ν have full support and no atoms.

There are three possibilities:

(1) ν([0,+∞)) = ν((−∞,0]) = +∞,
(2) ν([0,+∞)) = +∞, ν((−∞,0]) < +∞,
(3) ν([0,+∞)) < +∞, ν((−∞,0]) = +∞.

It suffices to consider the first case. The others are analogous. Let φ ∈ U . In the
first case, note that for x ≥ 0

�+(x) :=
∫ x

0
φ(u)ν(du) and �−(x) :=

∫ 0

−x
φ(u)ν(du)

are strictly increasing continuous functions on [0,+∞), and �±(+∞) = +∞.
Define for x ≥ 0

γφ(x) := �−1+ (ν([0, x])), γφ(−x) := −�−1− (ν([−x,0])).
It is clear that γφ is an invertible continuous transformation of R, and for any
a < b,

ν([a, b]) =
∫ γφ(b)

γφ(a)
φ(u)ν(du),(41)

which means ν ◦ γ −1
φ = φ · ν.

We now verify (40). For 0 < C0 ≤ φ,φn ≤ C1, assume that φn converges ν-a.s.
to φ. Noticing that by (41)∫ γφn(x)

0
φn(u)ν(du) =

∫ γφ(x)

0
φ(u)ν(du),

we have by the dominated convergence theorem∣∣∣∣
∫ γφn(x)

γφ(x)
ν(du)

∣∣∣∣ ≤ 1

C0

∣∣∣∣
∫ γφn(x)

γφ(x)
φn(u)ν(du)

∣∣∣∣
= 1

C0

∣∣∣∣
∫ γφ(x)

0

(
φn(u) − φ(u)

)
ν(du)

∣∣∣∣ → 0.

Since ν has full support in R, it follows that

lim
n→∞|γφn(x) − γφ(x)| = 0.
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Similarly,

lim
n→∞|γ −1

φn
(x) − γ −1

φ (x)| = lim
n→∞

∣∣∣∣
∫ γ −1

φ (x)

0

(
φn(u) − φ(u)

)
ν(du)

∣∣∣∣ = 0.

For the multi-dimensional case, we assume that ν has full support and no
charges on d − 1-dimensional subspaces, and one of the following conditions
holds: For any xi ∈ R − {0}, i = 2, . . . , d , let x+

i = xi ∨ 0 and x−
i = xi ∧ 0,

(1′)
∫ ∞

0
∫ x+

2

x−
2

· · · ∫ x+
d

x−
d

dν = ∞,
∫ 0
−∞

∫ x+
2

x−
2

· · · ∫ x+
d

x−
d

dν < ∞;

(2′)
∫ ∞

0
∫ x+

2

x−
2

· · · ∫ x+
d

x−
d

dν < ∞,
∫ 0
−∞

∫ x+
2

x−
2

· · · ∫ x+
d

x−
d

dν = ∞;

(3′)
∫ ∞

0
∫ x+

2

x−
2

· · · ∫ x+
d

x−
d

dν = ∞,
∫ 0
−∞

∫ x+
2

x−
2

· · · ∫ x+
d

x−
d

dν = ∞.

REMARK 5.1. Let θ ≥ c0 > 0 be a continuous function on R
d . If ν(dx) =

θ(x) dx, then (3′) holds.

We consider the first case. The others are analogous. Without loss of generality,
we assume d = 2 and fix a φ ∈ U . For x1, x2 ∈ R, with x2 �= 0 let αφ(x1, x2) and
βφ(x1, x2) be the unique elements in R such that

∫ x1

−∞

∫ x+
2

x−
2

dν =
∫ αφ(x1,x2)

−∞

∫ x+
2

x−
2

φ dν

and ∫ βφ(x1,x2)

−∞

∫ x+
2

x−
2

dν =
∫ x1

−∞

∫ x+
2

x−
2

φ dν.

For x2 = 0, set αφ(x1,0) = x1 = βφ(x1,0). By the assumption (1′), αφ and βφ are
well defined functions on R × R, and αφ(∞, x2) = β(∞, x2) = ∞.

Thus, we may define for (x1, x2) ∈ R
2

γφ(x1, x2) = (αφ(x1, x2), x2)

and

γ −1
φ (x1, x2) = (βφ(x1, x2), x2).

It is easy to see that

αφ(βφ(x1, x2), x2) = βφ(αφ(x1, x2), x2) = (x1, x2)

and

γφ ◦ γ −1
φ (x1, x2) = γ −1

φ ◦ γφ(x1, x2) = (x1, x2).
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Let 0 < C0 ≤ φ,φn ≤ C1 and φn converge ν-a.s. to φ. As in the one-dimensional
case, one can prove

lim
n→∞|αφn(x1, x2) − αφ(x1, x2)| = 0

and

lim
n→∞|βφn(x1, x2) − βφ(x1, x2)| = 0.

Hence,

lim
n→∞|γφn(x1, x2) − γφ(x1, x2)| = 0

and

lim
n→∞|γ −1

φn
(x1, x2) − γ −1

φ (x1, x2)| = 0.

Summarizing the above discussions, we obtain the following result by Theo-
rem 4.11 and Remark 4.12 when U = R

d .

THEOREM 5.2. Let ν be a σ -finite and infinite measure on R
d with full sup-

port in R
d and without charges on any d − 1-dimensional subspaces. Assume that

one of (1′), (2′) and (3′) holds. Then, for any random variable F on � bounded
from above,

− log E(e−F ) = inf
φ∈G

E
(
F ◦ �−

φ + L(φ)
)
,

where L(φ) and �−
φ are defined respectively by (20) and (21).

Acknowledgments. The author would like to thank Professor Benjamin
Goldys for providing him an excellent environment to work in the University
of New South Wales. He is also very grateful to Professor Jiagang Ren for his
valuable suggestions.

REFERENCES

[1] BOUÉ, M. and DUPUIS, P. (1998). A variational representation for certain functionals of
Brownian motion. Ann. Probab. 26 1641–1659. MR1675051

[2] BOUÉ, M., DUPUIS, P. and ELLIS, R. S. (2000). Large deviations for small noise diffusions
with discontinuous statistics. Probab. Theory Related Fields 116 125–149. MR1736592

[3] BUDHIRAJA, A. and DUPUIS, P. (2000). A variational representation for positive functionals
of infinite dimensional Brownian motion. Probab. Math. Statist. 20 39–61. MR1785237

[4] DUPUIS, P. and ELLIS, R. S. (1997). A Weak Convergence Approach to the Theory of Large
Deviations. Wiley, New York. MR1431744

[5] BICHTELER, K. (2002). Stochastic Integration with Jumps. Encyclopedia of Mathematics and
Its Applications 89. Cambridge Univ. Press, Cambridge. MR1906715

[6] COHN, D. L. (1980). Measure Theory. Birkhäuser, Boston, MA. MR578344

http://www.ams.org/mathscinet-getitem?mr=1675051
http://www.ams.org/mathscinet-getitem?mr=1736592
http://www.ams.org/mathscinet-getitem?mr=1785237
http://www.ams.org/mathscinet-getitem?mr=1431744
http://www.ams.org/mathscinet-getitem?mr=1906715
http://www.ams.org/mathscinet-getitem?mr=578344


CLARK–OCONE FORMULA AND POISSON FUNCTIONALS 529

[7] JACOD, J. (1974/75). Multivariate point processes: Predictable projection, Radon-Nikodým
derivatives, representation of martingales. Z. Wahrsch. Verw. Gebiete 31 235–253.
MR0380978

[8] LØKKA, A. (2004). Martingale representation of functionals of Lévy processes. Stoch. Anal.
Appl. 22 867–892. MR2062949

[9] NUALART, D. and SCHOUTENS, W. (2000). Chaotic and predictable representations for Lévy
processes. Stochastic Process. Appl. 90 109–122. MR1787127

[10] PARTHASARATHY, K. R. (1967). Probability Measures on Metric Spaces. Academic Press,
New York. MR0226684

[11] PICARD, J. (1996). On the existence of smooth densities for jump processes. Probab. Theory
Related Fields 105 481–511. MR1402654

[12] PICARD, J. (1996). Formules de dualité sur l’espace de Poisson. Ann. Inst. H. Poincaré Probab.
Statist. 32 509–548. MR1411270

[13] PRAT, J.-J. and PRIVAULT, N. (1999). Explicit stochastic analysis of Brownian motion and
point measures on Riemannian manifolds. J. Funct. Anal. 167 201–242. MR1710625

[14] PROTTER, P. E. (2004). Stochastic Integration and Differential Equations, 2nd ed. Springer,
Berlin. MR2020294

[15] PUGACHEV, O. V. (2002). The space of simple configurations is a Polish space. Mat. Zametki
71 581–589. MR1913587

[16] REN, J. and ZHANG, X. (2005). Schilder theorem for the Brownian motion on the diffeomor-
phism group of the circle. J. Funct. Anal. 224 107–133. MR2139106

[17] REN, J. and ZHANG, X. (2005). Freidlin–Wentzell’s large deviations for homeomorphism
flows of non-Lipschitz SDEs. Bull. Sci. Math. 129 643–655. MR2166732

[18] REN, J. and ZHANG, X. (2008). Freidlin–Wentzell’s large deviations for stochastic evolution
equations. J. Funct. Anal. 254 3148–3172. MR2418622

[19] REVUZ, D. and YOR, M. (1994). Continuous Martingales and Brownian Motion, 2nd ed.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathemat-
ical Sciences] 293. Springer, Berlin. MR1303781

[20] VILLANI, C. (2003). Topics in Optimal Transportation. Graduate Studies in Mathematics 58.
Amer. Math. Soc., Providence, RI. MR1964483

[21] ZHANG, X. (2009). A variational representation for random functionals on abstract Wiener
spaces. Preprint.

SCHOOL OF MATHEMATICS AND STATISTICS

UNIVERSITY OF NEW SOUTH WALES

SYDNEY, 2052
AUSTRALIA

AND

DEPARTMENT OF MATHEMATICS

HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

WUHAN, HUBEI 430074
P. R. CHINA

E-MAIL: XichengZhang@gmail.com

http://www.ams.org/mathscinet-getitem?mr=0380978
http://www.ams.org/mathscinet-getitem?mr=2062949
http://www.ams.org/mathscinet-getitem?mr=1787127
http://www.ams.org/mathscinet-getitem?mr=0226684
http://www.ams.org/mathscinet-getitem?mr=1402654
http://www.ams.org/mathscinet-getitem?mr=1411270
http://www.ams.org/mathscinet-getitem?mr=1710625
http://www.ams.org/mathscinet-getitem?mr=2020294
http://www.ams.org/mathscinet-getitem?mr=1913587
http://www.ams.org/mathscinet-getitem?mr=2139106
http://www.ams.org/mathscinet-getitem?mr=2166732
http://www.ams.org/mathscinet-getitem?mr=2418622
http://www.ams.org/mathscinet-getitem?mr=1303781
http://www.ams.org/mathscinet-getitem?mr=1964483
mailto:XichengZhang@gmail.com

	Introduction
	Preliminaries
	Clark-Ocone formula
	Variational representation formula
	(H1)-(H2) and mass transportation problem
	Acknowledgments
	References
	Author's Addresses

