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SOME LOCAL APPROXIMATIONS OF
DAWSON–WATANABE SUPERPROCESSES

BY OLAV KALLENBERG

Auburn University

Let ξ be a Dawson–Watanabe superprocess in R
d such that ξt is a.s.

locally finite for every t ≥ 0. Then for d ≥ 2 and fixed t > 0, the singular ran-
dom measure ξt can be a.s. approximated by suitably normalized restrictions
of Lebesgue measure to the ε-neighborhoods of supp ξt . When d ≥ 3, the
local distributions of ξt near a hitting point can be approximated in total vari-
ation by those of a stationary and self-similar pseudo-random measure ξ̃ . By
contrast, the corresponding distributions for d = 2 are locally invariant. Fur-
ther results include improvements of some classical extinction criteria and
some limiting properties of hitting probabilities. Our main proofs are based
on a detailed analysis of the historical structure of ξ .

1. Introduction. By a Dawson–Watanabe superprocess (or DW-process, for
short) we mean a vaguely continuous, measure-valued Markov process ξ on R

d

satisfying Eμ exp(−ξtf ) = exp(−μvt) for any f ∈ C+
K(Rd), where v is the unique

solution on R+ × R
d to the evolution equation v̇ = 1

2�v − v2 with initial condi-
tion v0 = f . The more general process with v2 replaced by 1

2γ v2 can be reduced
to the present version by a suitable scaling. The usual construction for bounded
initial measures μ extends by independence to any σ -finite initial measure μ. By
Lemma 3.2 below, ξt is then a.s. locally finite for every t > 0 iff μpt < ∞ for all t ,
where pt denotes the standard normal density pt(x) = (2πt)−d/2 exp(−|x|2/2t)

on R
d .

The DW-process has been studied intensely, along with more general super-
processes, for the last 30 years, and the literature on the subject is absolutely
staggering with respect to both volume and depth. Several excellent surveys ex-
ist, including the lecture notes and monographs [3, 7, 8, 22, 26].

For d ≥ 2 and a fixed t > 0, ξt is known to be a.s. singular and diffuse with a
support of Hausdorff dimension 2 (cf. Theorem 6.15 in [8]). Writing ξε

t for the
restriction of Lebesgue measure λd to the ε-neighborhood of supp ξt it was shown
by Tribe [27] that ε2−dξε

t

v→ cdξt a.s. as ε → 0 when d ≥ 3, where
v→ denotes

vague convergence and cd > 0 is a universal constant. For d = 2 we prove in
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Theorem 7.1 that m̃(ε)| log ε|ξε
t

v→ ξt a.s., where the function m̃ is such that log m̃

is bounded with strong continuity properties. In particular, this confirms that ξt

“distributes its mass over supp ξt in a deterministic manner” (cf. [8], page 115, or
[26], page 212), as previously inferred from some deep results involving the exact
Hausdorff measure (cf. [5]).

Our proofs depend crucially on some basic hitting estimates, due to Dawson,
Iscoe and Perkins [4] for d ≥ 3 and Le Gall [21] for d = 2. The former paper gives
ε2−dPμ{ξtB

ε
0 > 0} → cdμpt for d ≥ 3 as ε → 0, where Br

x denotes an open ball
around x of radius r . Likewise, combining Le Gall’s results with an analysis of the
historical structure, we show in Theorem 5.3 that m̃(ε)| log ε|Pμ{ξtB

ε
0 > 0} → μpt

for d = 2, with m̃ as before. A simple rescaling argument in Theorem 4.5 shows

that the local extinction property ξt
d→ 0 as t → ∞, first noted by Dawson

[2] when d = 2 and ξ0 = λ2, is equivalent to the seemingly stronger support

property supp ξt
d→ 0. (Note that the two properties are given by ξtB

P→ 0 and

1{ξtB > 0} P→ 0, respectively, for any bounded Borel set B .)
Another main result is Theorem 8.1, where we show for d ≥ 3 that the condi-

tional distribution of ξt , given that ξt charges a small set B , can be approximated
in total variation by the corresponding conditional distribution for a certain sta-
tionary and self-similar pseudo-random measure ξ̃ . (The prefix “pseudo” indicates
that the underlying “probability” measure P̃ is not normalized and may even be
unbounded. This anomaly is prompted by the self-similarity of ξ̃ , as explained in
[28]. In our context it causes no problems, since the associated hitting probabilities
remain finite.) By contrast, we prove in Theorem 9.1 that for d = 2, the random
measure ξt is asymptotically invariant near a hitting point.

The present work is part of a general program outlined in [16], where we in-
dicate how a whole class of local properties seem to be shared by three totally
different types of random objects—by simple point processes, local time random
measures, and certain measure-valued diffusion processes. The point process case
is classical and has been thoroughly explored in [11, 17]. Versions of the Lebesgue
approximation in Theorem 7.1 are known for the local time random measures of re-
generative sets and exchangeable interval partitions (cf. [18] and Proposition 6.13
in [15]), and some delicate approximations related to Theorem 8.1 below appear
in [12, 14].

As a referee points out, certain intersection local time random measures may
be added to our list of random objects with related properties. For example, a
Lebesgue approximation analogous to ours was proved in this context by Le Gall
[20] (though with convergence in Lp , p ≥ 1, rather than a.s.), and similar results
on the average density have been obtained for DW-processes and intersection local
times by Mörters and Shieh [23, 24], giving further evidence of the profound di-
chotomy between the cases when d ≥ 3 or d = 2. It is also interesting to note that
their results for the intersection local time are stated in terms of the Palm distribu-
tion associated with a suitable stationary and self-similar pseudo-random measure
(cf. [24], pages 3f), corresponding to our P̃ 0 in Theorem 8.2.
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We proceed with some general remarks on terminology and notation. A random
measure on R

d is defined as a locally finite kernel ξ from some basic probability
space (	,A,P ) into (Rd,Bd), where Bd denotes the Borel σ -field on R

d . Thus,
ξ(ω,B) is a locally finite measure in B ∈ Bd for fixed ω ∈ 	 and is measurable
in ω for fixed B . A pseudo-random measure is defined in the same way, except
that the underlying measure P̃ is now allowed to be σ -finite. We may also regard
ξ as a measurable function from 	 to the space Md of locally finite measures on
R

d , equipped by the σ -field generated by all evaluation maps πB :μ �→ μB with
B ∈ Bd . The subclasses of bounded sets and measures are denoted by B̂d and
M̂d , respectively.

The vague topology in Md is generated by all integration maps πf :μ �→ μf =∫
f dμ with f belonging to the space Cd

K of continuous functions R
d → R+ with

bounded support. Similarly, the weak topology in M̂d is generated by the maps
πf for all f in the class Cd

b of bounded, continuous functions R
d → R+. Thus,

μn
v→ μ in Md iff μnf → μf for all f ∈ Cd

K , and similarly for μn
w→ μ in M̂d .

For random measures ξn and ξ on R
d , the associated L1-convergence ξn → ξ

means that ξnf → ξf in L1 for all f in Cd
K or Cd

b , respectively. Convergence

in distribution of random measures, denoted by ξn
d→ ξ , is understood to be with

respect to the vague topology, unless something else is said. Note that this is equiv-

alent to ξnf
d→ ξf for all f ∈ Cd

K (cf. Theorem 16.16 in [13]).
Convergence of closed random sets is defined as usual with respect to the Fell

topology (cf. [13], pages 324, 566). However, in this paper we need only the special
cases of convergence to the empty set or the whole space, which are explained
whenever they occur.

Throughout the paper we use relations such as =
�

, <
�

, ∼� and �, where the
first three mean equality, inequality and asymptotic equality up to a constant fac-
tor, and the last one is the combination of <

�
and >

�
. We often write a 	 b to

mean a/b → 0. The double bars ‖ · ‖ denote the supremum norm when applied to
functions and total variation when applied to signed measures. We also write ‖ · ‖B

for the supremum or total variation over the set B . For functions fn or signed mea-
sures μn on R

d , the convergence ‖fn‖ → 0 or ‖μn‖ → 0 is said to hold locally
if ‖fn‖B → 0 or ‖μn‖B → 0, respectively, for all B ∈ B̂d . In Section 8 we also
use the notation ‖μn‖B → 0 for signed measures μn on Md and sets B ∈ B̂d , in
which case the precise meaning is explained in connection with Theorem 8.1.

In any Euclidean space R
d , we write Br

x for the open ball of radius r > 0
centered at x ∈ R

d . The shift and scaling operators θx and Sr are given by
θxy = x + y and Srx = rx, respectively, and for measures μ on R

d we define
μθx and μSr by (μθx)B = μ(θxB) and (μSr)B = μ(SrB), respectively. In par-
ticular, (μSr)f = μ(f ◦ S−1

r ) for measurable functions f on R
d . Convolutions

of measures μ with functions f are given by (μ ∗ f )(x) = ∫
f (x − u)μ(du).

Product measures are written as μ ⊗ ν or μn = μ ⊗ · · · ⊗ μ, and in particular λd
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denotes Lebesgue measure on R
d . The functional notations f (x) and fx are used

interchangeably, depending on typographical convenience. Notation pertaining to
Palm measures or DW-processes is explained in the next section.

The paper is organized as follows. In Section 2 we prove some preliminary
technical results and explain the crucial ideas about DW-processes, cluster rep-
resentations and Palm measures needed in subsequent sections. In Section 3 we
characterize the locally finite DW-processes in terms of their initial measures and
derive some useful estimates of the second moments. In Section 4 we use the clas-
sical hitting estimates to give bounds on the associated multiplicities, and we es-
tablish some weak extinction criteria for d ≥ 2. In Section 5 we identify and study
the proper normalization for the hitting probabilities to converge when d = 2. In
Section 6 we estimate the second moments of the neighborhood measures ηε

t as-
sociated with the clusters ηt of a DW-process. In Section 7 we are ready to prove
the mentioned Lebesgue approximation for DW-processes of dimensions d ≥ 2.
In Section 8 we prove the mentioned approximation in total variation for DW-
processes of dimension d ≥ 3. Finally, we show in Section 9 that DW-processes of
dimension 2 are locally invariant in a number of different ways.

2. Preliminaries. In this paper DW-processes are often denoted by ξ = (ξt ),
and we write Pμ{ξ ∈ ·} for the distribution of the process ξ with initial measure μ.
The same notation is used for the entire historical process. In all the mentioned
literature, ξ is first constructed for bounded μ. To extend the definition to the σ -
finite case, we may write μ = ∑

n μn for some bounded measures μn, and choose
ξ1, ξ2, . . . to be independent DW-processes starting from μ1,μ2, . . . . Then ξ =∑

n ξn is a locally finite DW-process with initial measure μ, provided that μpt < ∞
for all t > 0.

For every fixed μ, the DW-process ξ is infinitely divisible under Pμ and admits a
decomposition into a Poisson “forest” of conditionally independent clusters, cor-
responding to the excursions of the contour process in the ingenious “Brownian
snake” representation of Le Gall [22]. In particular, this yields a cluster repre-
sentation of ξt for every fixed t > 0. More generally, the “ancestors” of ξt at an
earlier time s = t − h form a Cox process ζs directed by h−1ξs (meaning that
ζs is conditionally Poisson with intensity h−1ξs , given ξs ; cf. [13], page 226),
and the generated clusters ηi

h are conditionally independent and identically dis-
tributed apart from shifts. This is all explained in [8], pages 60ff, and some more
precise statements with detailed proofs appear in Theorem 3.11 of [5] and Corol-
lary 11.5.3 of [3]. In this paper, a generic cluster of age t > 0 is denoted by ηt ;
we write Px{ηt ∈ ·} for the distribution of a t-cluster centered at x ∈ R

d and put
Pμ{ηt ∈ ·} = ∫

μ(dx)Px{ηt ∈ ·}.
For the ease of reference, we state some basic scaling properties of DW-proces-

ses and their associated clusters (cf. Theorem 6.6 in [5]).

LEMMA 2.1. Let ξ be a DW-process in R
d starting at μ and with associated

clusters ηt . Then for any r, t > 0, we have:
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(i) ξ̃t = r−2ξr2t Sr is a DW-process starting from μ̃ = r−2μSr ,

(ii) ηt
d= r−2ηr2t Sr under P0.

PROOF. Part (i) may be proved by the argument in [8], page 51. A similar
scaling property is then obtained for the cluster representation of ξ , and (ii) follows
by the uniqueness of the associated Lévy measure (cf. Theorem 6.1 in [11]). �

Given a random measure ξ on R
d with σ -finite intensity Eξ , we define the

kernel of associated Palm distributions Qx by the disintegration formula

E

∫
f (x, ξ)ξ(dx) =

∫
Eξ(dx)

∫
f (x,μ)Qx(dμ),

for any measurable function f ≥ 0 on R
d × Md . If ξ is defined on the canonical

probability space with distribution P , we also write P x = Qx . When ξ is station-
ary, we may choose the measures P 0 = P x ◦ θ−1−x to be independent of x, in which
case P x = P 0 ◦ θ−1

x for all x. What is said above applies even to the Palm distribu-
tions of pseudo-random measures ξ̃ on R

d , as long as Ẽξ̃ is σ -finite. (In particular,
the P̃ x are still probability measures in this case, even if P̃ is not.)

In the nonstationary case, the Palm distributions P x are only determined for
x ∈ R

d a.e. Eξ . However, the function x �→ P x may have a version with nice
continuity properties. In Lemma 3.5 below, we show that when ξ is a locally fi-
nite DW-process with initial measure μ, the family of shifted Palm distributions
P x

μ ◦ θ−1−x can be chosen to be locally continuous in total variation. The continuous
version is then unique, and the Palm distribution P 0

μ becomes well defined. This is
the version with a nice probabilistic representation, given by Corollary 4.1.6 in [5]
or Theorem 11.7.1 in [3].

In this paper, Palm distributions figure prominently only in Sections 8 and 9.
The following uniform convergence criterion for shifted Palm measures will be
needed in Section 8.

LEMMA 2.2. Let ξ and ξn be random measures on R
d with locally finite in-

tensities, where ξ is stationary, and let Q and Qn
s be versions of the associated

shifted Palm distributions. Fix a set B ∈ B̂d satisfying:

(i) EξnB → EξB > 0,
(ii) ‖E[ξnB; ξn ∈ ·] − E[ξB; ξ ∈ ·]‖ → 0,

(iii) supr,s∈B ‖Qn
r − Qn

s ‖ → 0.

Then sups∈B ‖Qn
s − Q‖ → 0.

PROOF. For measurable A ⊂ Md , we define

fA(μ) = (μB)−1
∫
B

μ(ds)1A(μθs), μ ∈ Md,
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where 0−10 = 0. Then∫
B

Eξn(ds)Qn
s A = E

∫
B

ξn(ds)1A(ξnθs)

= EξnBfA(ξn) =
∫

E[ξnB; ξn ∈ dμ]fA(μ),

and similarly for ξ and Q. Since |νf | ≤ ‖ν‖ for any signed measure ν and mea-
surable function f into [0,1], we get for s ∈ B

EξB‖Qn
s − Q‖ ≤ ‖EξBQn

s − EξnBQn
s ‖ +

∥∥∥∥EξnBQn
s −

∫
B

Eξn(dr)Qn
r

∥∥∥∥
+

∥∥∥∥
∫
B

Eξn(dr)Qn
r − EξBQ

∥∥∥∥
≤ |EξB − EξnB| +

∫
B

Eξn(dr)‖Qn
s − Qn

r ‖
+ ‖E[ξnB; ξn ∈ ·] − E[ξB; ξ ∈ ·]‖.

By (i)–(iii) the right-hand side tends to 0 as n → ∞, uniformly in s ∈ B , and the
assertion follows since EξB > 0. �

We conclude this section with an elementary but somewhat technical interpola-
tion principle that will be needed in Section 7.

LEMMA 2.3. Let the functions f,g > 0 on (0,1] and constants p, c > 0 be
such that f is nondecreasing, logg(e−t ) is bounded and uniformly continuous
on R+, and t−pf (t)g(t) → c as t → 0 along every sequence (rn) with r in some
dense set D ⊂ (0,1). Then the same convergence holds along (0,1).

PROOF. Letting w be the modulus of continuity of logg(e−t ), we get

e−w(h)g(e−t ) ≤ g(e−t−h) ≤ ew(h)g(e−t ), t, h ≥ 0.

Writing br = expw(− log r), we obtain

b−1
r g(t) ≤ g(rt) ≤ brg(t), t, r ∈ (0,1).

For any r, t ∈ (0,1), define n = n(r, t) by rn+1 < t ≤ rn. Then by the monotonicity
of f

rp(rn+1)−pf (rn+1)b−1
r g(rn+1) ≤ t−pf (t)g(t)

≤ r−p(rn)−pf (rn)brg(rn).

Letting t → 0 for fixed r ∈ D, we get by the hypothesis

rpb−1
r c ≤ lim inf

t→0
t−pf (t)g(t) ≤ lim sup

t→0
t−pf (t)g(t) ≤ r−pbrc.

It remains to note that r−pbr → 1 as r → 1 along D. �
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3. Moments and continuity. Throughout the paper we need some basic
results involving the first and second moment measures Eμξt and Eμξ2

t of a
DW-process ξ in R

d . Here a simple estimate for the normal densities pt will be
useful.

LEMMA 3.1. Let pt , t > 0, denote the standard normal density functions
on R

d . Then for fixed d and t we have

pt(x + y) <
�

pt+h(x), x ∈ R
d, |y| ≤ h ≤ t.

PROOF. If |x| ≥ 4t and |y| ≤ h, then |y|/|x| ≤ h/4t , and so for r = h/t ≤ 1

|x + y|2
t

(t + h)

|x|2 ≥
(

1 − |y|
|x|

)2(
1 + h

t

)
≥

(
1 − r

2

)
(1 + r) ≥ 1,

which implies pt(x + y) <
�

pt+h(x) when h ≤ t . The same relation holds trivially
for |x| ≤ 4t and |y| ≤ h ≤ t . �

Let us now consider the intensity measures Eμξt of a DW-process ξ starting
from an arbitrary σ -finite measure μ.

LEMMA 3.2. Let ξ be a DW-process in R
d with associated clusters ηt , and

fix a σ -finite measure μ. Then for any fixed t > 0, the following two conditions are
equivalent:

(i) ξt is locally finite a.s. Pμ,
(ii) Eμξt is locally finite.

Furthermore, (i) and (ii) hold for all t > 0 iff:

(iii) μpt < ∞ for all t > 0,

in which case we have for any t > 0:

(iv) Eμξt = t−1Eμηt has the finite, continuous density μ ∗ pt ,
(v) Eμ(ξtθx) is locally continuous in total variation in x, and the same conti-

nuity holds globally when μ is bounded.

PROOF. The formula Eμξt = (μ ∗ pt) · λd , well known for bounded μ (cf.
Lemma 2.1 in [8]), extends by monotone convergence to any σ -finite measure μ

(though Eμξt may fail to be σ -finite, in general). The relation Eμηt = tEμξt fol-
lows from the cluster representation of ξt .

Condition (ii) clearly implies (i). Conversely, let B = Bε
x with ε2 < t and 0 <

EμξtB < ∞. Using the Paley–Zygmund inequality (cf. [13], page 63) and Hint (2)
in [26], page 239, we get for any r ∈ (0,1)

Pμ

{
ξtB

EμξtB
> r

}
≥ (1 − r)2 (EμξtB)2

Eμ(ξtB)2 ≥ (1 − r)2

1 + c(EμξtB)−1 ,



APPROXIMATION OF SUPERPROCESSES 2183

for some constant c > 0 depending only on d , t and ε. Now assume instead that
EμξtB = ∞, and choose some bounded measures μn ↑ μ with EμnξtB > n. Ap-
plying the previous inequality to each μn gives

Pμ{ξtB > rn} ≥ Pμn{ξtB > rEμnξtB} ≥ (1 − r)2

1 + c/n
.

Letting n → ∞ and then r → 0, we obtain ξtB = ∞ a.s. In particular, this shows
that (i) implies (ii).

Next assume (iii). Fixing x ∈ R
d and choosing r ≥ t + 2|x|, we see from

Lemma 3.1 that pt(x − u) <
�

pr(u) and hence (μ ∗ pt)(x) <
�

μpr < ∞, which
shows that Eμξt has the finite density μ ∗ pt . Next we may write

|(μ ∗ pt)(x + y) − (μ ∗ pt)(x)| ≤
∫

|pt(x + y − u) − pt(x − u)|μ(du),

where the integrand tends to 0 as y → 0. Furthermore, Lemma 3.1 yields

|pt(x + y − u) − pt(x − u)| <
�

p2t (x − u), |y| ≤ t.(1)

Since μ∗p2t (x) < ∞, the continuity of μ∗pt follows by dominated convergence.
This proves (iv), which in turn implies (ii) for every t > 0. Conversely, (ii) yields
(μ ∗ pn)(x) < ∞ for all n ∈ N and for x ∈ R

d a.e. λd . Fixing such an x and using
Lemma 3.1 as before, we obtain condition (iii).

To prove (v), we write for any y ∈ R
d and t > 0

‖Eμ(ξtθy) − Eμξt‖ =
∫

|(μ ∗ pt)(x − y) − (μ ∗ pt)(x)|dx

≤
∫

μ(du)

∫
|pt(x − y − u) − pt(x − u)|dx,

where the integrand tends to 0 as y → 0. For bounded μ, we may use (1) again and
note that

∫
μ(du)

∫
p2t (x − u)dx = ‖μ‖ < ∞, which justifies taking limits under

the integral sign. For general μ as in (iii), fix any B ∈ B̂d , and note that

‖Eμ(ξtθy) − Eμξt‖B ≤
∫

μ(du)

∫
B

|pt(x − y − u) − pt(x − u)|dx.

Choosing r > 0 so large that t + 2|x − y| ≤ r for x ∈ B and |y| ≤ 1, we see from
Lemma 3.1 that pt(x − y − u) <

�
pr(u) for any such x and y. Since μpr < ∞

by (iii), this justifies the dominated convergence in this case, and (v) follows. �

Assuming the DW-process ξ in R
d to be locally finite under Pμ, in the sense that

condition (i) above holds for all t > 0, we go on to study the second moment mea-
sures Eμξ2

t and the associated covariance measures Covμ ξt = Eμξ2
t − (Eμξt )

2

on R
2d .

LEMMA 3.3. Let the DW-process ξ in R
d be locally finite under Pμ, and

denote the associated clusters by ηt . Then for any t > 0 and x1, x2 = x̄ ± r in R
d ,

we have:

(i) Covμ ξt = t−1Eμη2
t = (μ ∗ qt ) · λ2d with qt = 2

∫ t
0 (ps ∗ p⊗2

t−s) ds,
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(ii) (μ ∗ qt )(x1, x2) <
�

(μ ∗ pt)(x̄)pt (r)|r|2−d td/2 for d ≥ 3,
(iii) (μ ∗ qt )(x1, x2) <

�
(μ ∗ pt)(x̄)(tpt/2(r) + log+(t/|r|2)) for d = 2,

(iv) (μ ∗ qt )(x1, x2) ∼� (μ ∗ pt)(x)| log |r|| for d = 2 as x1, x2 → x.

Note that the convolutions in (i) are defined, for any x, y ∈ R
d , by

(μ ∗ qt )(x, y) =
∫

μ(du)qt (x − u,y − u),

(ps ∗ p⊗2
t−s)(x, y) =

∫
ps(u)pt−s(x − u)pt−s(y − u)du.

PROOF. (i) The expression for Covμ ξt , well known for bounded μ (cf. [8],
page 37f), extends to the general case by monotone convergence. To see that
Eμη2

t = t Covμ ξt , let ζ0 be the process of ancestors of ξt at time 0, and denote
the generated clusters by ηi

t . Using the Poisson property of ζ0 and the conditional
independence of the clusters, we get

Eμξ2
t = (Eμξt )

2 + Covμ ξt = Eμ

∑
i,j

(ηi
t ⊗ η

j
t )

=
∫ ∫

x �=y
Eμζ 2

0 (dx dy) (Exηt ⊗ Eyηt ) +
∫

Eμζ0(dx)Exη
2
t

= t−2(Eμηt )
2 + t−1Eμη2

t = (Eμξt )
2 + t−1Eμη2

t .

(ii) By definition

qt (x1, x2) = 2
∫ t

0
ds

∫
ps(u)pt−s(x1 − u)pt−s(x2 − u)du.(2)

To estimate qt , we may use the parallelogram identity to get

pt(x1)pt (x2) =
�

t−d exp
(−(|x1|2 + |x2|2)/2t

)
= t−d exp

(−(|x̄|2 + |r|2)/t
) =

�
pt/2(x̄)pt/2(r).

Applying this to (2) and using the semigroup property of the normal densities, we
obtain

qt (x1, x2) =
�

∫ t

0
ds

∫
ps(u)p(t−s)/2(x̄ − u)p(t−s)/2(r) du

=
∫ t

0
p(t−s)/2(r)p(t+s)/2(x̄) ds

<
�

pt(x̄)

∫ t

0
ps/2(r) ds =

�
pt(x̄)

∫ t

0
s−d/2e−|r|2/s ds

= pt(x̄)|r|2−d
∫ ∞
|r|2/t

vd/2−2e−v dv

<
�

pt(x̄)|r|2−de−|r|2/2t =
�

pt(x̄)pt (r)|r|2−d td/2.
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The required estimate now follows by convolution with μ.
(iii) Here we see as before that

qt (x1, x2) <
�

pt(x̄)

∫ ∞
|r|2/t

v−1e−v dv.

For |r|2 ≤ t/2 we have∫ ∞
|r|2/t

v−1e−v dv <
�

∫ 1

|r|2/t
v−1 dv = log(t/|r|2),

and for |r|2 ≥ t/2 we get∫ ∞
|r|2/t

v−1e−v dv ≤
∫ ∞
|r|2/t

e−v dv = exp(−|r|2/t) <
�

tpt/2(r).

(iv) For fixed ε > 0 we have

qt (x1, x2) =
�

∫ t

0
p(t−s)/2(r)p(t+s)/2(x̄) ds

∼
∫ t

t−ε
p(t−s)/2(r)p(t+s)/2(x̄) ds,

since ∫ t−ε

0
p(t−s)/2(r)p(t+s)/2(x̄) ds <

�
pt(x̄)

∫ |r|2/ε
|r|2/t

v−1 dv

→ pt(x) log(t/ε) < ∞.

Noting that p(t+s)/2(x̄) → pt(x̄) → pt(x) as s → t and then x1, x2 → x, we get
for fixed b > 0

qt (x1, x2) ∼� pt(x)

∫ t

0
ps/2(r) ds = pt(x)

∫ ∞
|r|2/t

v−1e−v dv

∼ pt(x)

∫ b

|r|2/t
v−1e−v dv,

where the last relation holds since
∫ ∞
b v−1e−v dv < ∞. Since e−v → 1 as v → 0,

we obtain

qt (x1, x2) ∼� pt(x)

∫ 1

|r|2/t
v−1 dv = pt(x) log(t/|r|2) ∼� pt(x)| log |r||.

This proves the assertion for μ = δ0. For general μ, let c > 0 be such that
qt (x1, x2) ∼ cpt (x)| log |r||. We need to show that

| log |r||−1
∫

μ(du)qt (x1 − u,x2 − u) → c

∫
μ(du)pt (x − u),
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as x1, x2 → x for fixed μ and t . Then note that by (iii) and Lemma 3.1

| log |r||−1qt (x1 − u,x2 − u) <
�

pt(x̄ − u) <
�

pt+h(x − u),

as long as |x̄ − x| ≤ h. Since (μ ∗ pt+h)(x) < ∞, the desired relation follows by
dominated convergence. �

Part (iv) of the last lemma yields a useful scaling property for the second mo-
ments of a DW-process in R

2. This will be needed in Section 9.

LEMMA 3.4. Let the DW-process ξ in R
2 be locally finite under Pμ. Consider

a measurable function f ≥ 0 on R
4 such that f (x, y) log(|x − y|−1 ∨ e) is inte-

grable, where x, y ∈ R
2, and suppose that either μ or suppf is bounded. Then as

ε → 0 for fixed t > 0, we have

Eμ(ξtSε)
2f ∼� ε4| log ε|λ4f μpt .

This holds in particular when both f and its support are bounded. The statement
remains true with ξt replaced by the associated clusters ηt .

PROOF. By Lemma 3.3(iv), the density g of Eμξ2
t satisfies

g(x1, x2) ∼ c| log |x1 − x2||(μ ∗ pt)
(1

2(x1 + x2)
)
, x1 ≈ x2 in R

2,

for some constant c > 0, and is otherwise bounded for bounded μ. Furthermore,
we have

Eμξ2
t f =

∫
f (u/ε)g(u)du = ε4| log ε|

∫
f (x)

g(εx)

| log ε| dx.

Here the ratio in the last integrand tends to cμpt as ε → 0. If μ or suppf is
bounded, then the integral tends to cμptλ

4f by dominated convergence. To check
the stated integrability condition when f is bounded, we may change (x1, x2) into
the new coordinates x1 ± x2, then replace x1 − x2 by polar coordinates (r, θ) and
note that

∫ 1
0 r| log r|dr < ∞. �

Next we prove the strong continuity under shifts for the distributions of a DW-
process and the associated Palm distributions. This result will be needed in Sec-
tions 8 and 9.

LEMMA 3.5. Let the DW-process ξ in R
d be locally finite under Pμ. Then

for fixed t > 0, the distributions Pμ{ξt θx ∈ ·} and P x
μ{ξt θx ∈ ·} are continuous in

total variation, locally in x ∈ R
d . The continuity holds even globally when μ is

bounded.
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PROOF. First let ‖μ‖ < ∞. Let ζs denote the ancestral process at time s ∈
[0, t], and put τ = inf{s > 0; ‖ζs‖ > ‖ζ0‖}. Then ζ0 is Poisson with intensity
μ/t , and each ancestor in ζ0 branches before time h ∈ (0, t) with probability h/t .
Hence, the number of such branching individuals is Poisson with mean ‖μ‖h/t2,
and so P {τ > h} = exp(−‖μ‖h/t2). Conditionally on τ > h, the process ζh is
again Poisson with intensity t−1(μ ∗ ph) · λd = Eμξh/t , and ξt is conditionally
independent of the event {τ > h}, given ζh. Therefore,

‖Pμ{ξt θr ∈ ·} − Pμ{ξt ∈ ·}‖
≤ Pμ{τ ≤ h} + ‖Pμ[ζhθr ∈ ·|τ > h] − Pμ[ζh ∈ ·|τ > h]‖
≤ (

1 − e−‖μ‖h/t2) + t−1‖Eμξhθr − Eμξh‖,
which tends to 0 as r → 0 and then h → 0 by Lemma 3.2(v).

For general μ, we may choose some bounded measures μn ↑ μ, so that μ′
n =

μ − μn ↓ 0. Fixing any B ∈ B̂d , we have

‖Pμ{ξt θr ∈ ·} − Pμ{ξt ∈ ·}‖B

≤ ‖Pμn{ξt θr ∈ ·} − Pμn{ξt ∈ ·}‖ + 2Pμ′
n
{ξt (B ∪ θrB) > 0},

which tends to 0 as r → 0 and then n → ∞, by the previous case and the simple
Lemma 4.3 below (whose proof is independent of the present result). This yields
the continuity of Pμ{ξt θr ∈ ·}.

We turn to the Palm distributions P 0
μ{ξt ∈ ·}. By Lemma 10.6 in [11] (cf.

Lemma 11.4.2 in [3]), the measure P 0
μ{ξt ∈ ·} is the convolution of Pμ{ξt ∈ ·} with

the Palm distribution at 0 of the Lévy measure Pμ{ηt ∈ ·} = ∫
μ(dx)Px{ηt ∈ ·}. By

the previous result and Fubini’s theorem, it is then enough to show that the latter
factor is continuous in total variation under shifts in μ. By Corollary 4.1.6 in [5]
(cf. Theorem 11.7.1 in [3]), the corresponding historical path is a Brownian bridge
X on [0, t] from α to 0, where α has distribution (pt · μ)/μpt . The measure ηt is
the sum of independent clusters rooted along the path of X, with birth times given
by an independent Poisson process ζ on [0, t] with rate 2/(t − s) at time s.

Let τ be the first point of ζ . Since P {τ ≤ h} → 0 as h → 0 and since the event
τ > h is independent of the restriction of ζ to the interval [h, t], it suffices, for
any fixed h > 0, to prove the continuity in total variation for the sum of clusters
born after time h. Since X is again a Brownian bridge on [h, t], conditionally on α

and Xh, the mentioned sum is conditionally independent of α given Xh, and it is
enough to prove that Pμ{Xh ∈ ·} is continuous in total variation under shifts in μ.

Then put s = t − h, and note that Xh is conditionally N(sα, sh) given α = X0.
Thus, the conditional density of Xh equals psh(x − sα). Since α has density
(pt · μ)/μpt , the unconditional density of Xh becomes

fμ(x) = (μpt)
−1

∫
psh(x − su)pt (u)μ(du), x ∈ R

d .
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Replacing μ by the shifted measure μθr yields the density

fμθr (x) = (
(μ ∗ pt)(r)

)−1
∫

psh(x − su + sr)pt (u − r)μ(du),

and we need to show that fμθr → fμ in L1 as r → 0. Since (μ ∗ pt)(r) → μpt

by Lemma 3.2(iv), it is enough to prove convergence of the μ-integrals. Here the
L1-distance is bounded by∫

dx

∫
μ(du)|psh(x − su + sr)pt (u − r) − psh(x − su)pt (u)|,

which tends to 0 as r → 0 by Lemma 1.32 in [13], since the integrand tends to 0
by continuity and∫

dx

∫
μ(du)psh(x − su + sr)pt (u − r)

= (μ ∗ pt)(r) → μpt =
∫

dx

∫
μ(du)psh(x − su)pt (u),

by Fubini’s theorem and Lemma 3.2(iv). �

4. Hitting bounds and extinction. In this section we derive some hitting es-
timates at fixed times for a DW-process ξ in R

d and the associated clusters ηt .
Those results will be useful throughout the remainder of the paper. We also dis-
cuss some extinction and related properties for DW-processes of dimension d ≥ 2.
For the ease of reference, we begin with a well-known relationship between the
hitting probabilities of ξt and ηt . Here and below Pμ{ηt ∈ ·} = ∫

μ(dx)Px{ηt ∈ ·}.
LEMMA 4.1. Let the DW-process ξ in R

d with associated clusters ηt be lo-
cally finite under Pμ, and fix any B ∈ Bd . Then

Pμ{ηtB > 0} = −t log(1 − Pμ{ξtB > 0}),
Pμ{ξtB > 0} = 1 − exp(−t−1Pμ{ηtB > 0}).

In particular, Pμ{ξtB > 0} ∼ t−1Pμ{ηtB > 0} as either side tends to 0.

PROOF. Under Pμ we have ξt = ∑
i η

i
t , where the ηi

t are conditionally inde-
pendent clusters of age t rooted at the points of a Poisson process with inten-
sity μ/t . For a cluster rooted at x, the hitting probability is bx = Px{ηtB > 0}.
Hence (e.g., by Proposition 12.3 in [13]), the number of clusters hitting B is Pois-
son distributed with mean μb/t , and so Pμ{ξtB = 0} = exp(−μb/t), which yields
the asserted formulas. �

Next we extend some classical hitting estimates for DW-processes of dimension
d ≥ 2. By Lemma 4.1 it is enough to consider the corresponding clusters ηt , and
by shifting it suffices to consider balls centered at the origin.



APPROXIMATION OF SUPERPROCESSES 2189

LEMMA 4.2. Let the ηt be clusters of a DW-process in R
d , and consider a

σ -finite measure μ on R
d .

(i) For d ≥ 3, let tε = t + ε2. Then for 0 < ε ≤ √
t , we have

μpt <
�

t−1ε2−dPμ{ηtB
ε
0 > 0} <

�
μpt(ε).

(ii) For d = 2, we may choose 0 ≤ lε − 1 <
�

| log ε|−1/2 and put tε = t lε/
√

t , so

that uniformly for x ∈ R
2 and 0 < ε < 1

2

√
t

μpt <
�

t−1 log(t/ε2)Pμ{ηtB
ε
0 > 0} <

�
μpt(ε).

PROOF. (i) For bounded μ we have by Theorem 3.1 in [4] (cf. Theo-
rem III.5.11 and Exercise III.5.2 in [26])

μpt <
�

ε2−dPμ{ξtB
ε
0 > 0} <

�
μpt(ε),

and the asserted relations follow by Lemma 4.1. The result extends by linearity to
any σ -finite measure μ.

(ii) It is enough to take t = 1, since by Lemma 2.1(ii) we then obtain for general
t > 0

Px{ηtB
ε
0 > 0} = P0{ηtB

ε
x > 0} = P0

{
η1B

ε/
√

t

x/
√

t
> 0

}
<
�

∣∣log
(
ε/

√
t
)∣∣−1

pl(ε/
√

t)(x/
√

t)

<
�

t(log(t/ε2))−1pt(ε)(x),

and similarly for the lower bound.
For t = 1 we have by Theorem 2 in [21]

p1(x) <
�

| log ε|Px{η1B
ε
0 > 0}

<
�

(1 + 1{|x|2 > | log ε|}|x|4)p1(|x| − ε).

In particular, this gives the required lower bound. Next, Lemma 3.1 yields
p1(|x| − ε) <

�
p1+ε(x), and by elementary estimates we get for | log ε| ≥ e

1 + 1{|x|2 > | log ε|}|x|4 <
�

exp
(

2 log | log ε|
| log ε| |x|2

)
.

Hence, by combination, we get for ε bounded by some constant c > 0

| log ε|Px{η1B
ε
0 > 0} <

�
exp

{
−|x|2

2

(
1

1 + ε
− 4 log | log ε|

| log ε|
)}

<
�

pl(ε)(x),

where

l(ε) =
(

1

1 + ε
− 4 log | log ε|

| log ε|
)−1

, 0 < ε ≤ c.
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As ε → 0, we note that

0 ≤ l(ε) − 1 <
�

ε + 4 log | log ε|
| log ε| <

�
| log ε|−1/2.

When c < ε < 1
2 , we have instead

| log ε|Px{η1B
ε
0 > 0} <

�
(1 + |x|4)p1(|x| − ε)

<
�

exp(a|x|2)p1+ε(x),

for any fixed a > 0. Choosing a small enough, we get again a bound of the form
pl(ε), for a suitable choice of l(ε) ≥ 1. �

The following simple result is often useful to extend results for bounded initial
measures μ to the general case.

LEMMA 4.3. Let the DW-process ξ in R
d be locally finite under Pμ, and

suppose that μ ≥ μn ↓ 0. Then Pμn{ξtB > 0} → 0 as n → ∞ for fixed t > 0 and
B ∈ B̂d .

PROOF. We may assume that B = Br
0 for some r > 0. Using Lemmas 3.2, 4.1

and 4.2, along with a projection argument when d = 1, we get for small enough
ε > 0 and for suitable tε > 0

Pμ{ξtB > 0} <
�

∫
B

Pμ{ξtB
ε
x > 0}dx <

�

∫
B

(
μ ∗ pt(ε)

)
(x) dx < ∞.

The assertion now follows by dominated convergence. �

Next we need to estimate the probability that a small ball in R
d is hit by more

than one subcluster of our DW-process ξ . This result will play a crucial role
throughout the remainder of the paper.

LEMMA 4.4. Let the DW-process ξ in R
d be locally finite under Pμ. For any

t ≥ h > 0 and ε > 0, let κε
h be the number of h-clusters hitting Bε

0 at time t . Then:

(i) for d ≥ 3 and as ε2 	 h ≤ t , we have with tε = t + ε2

Eμκε
h(κε

h − 1) <
�

ε2(d−2)(h1−d/2μpt + (
μpt(ε)

)2)
,

(ii) for d = 2 we may choose 0 < th,ε − t <
�

h| log ε|−1/2, such that as
ε 	 h ≤ t

Eμκε
h(κε

h − 1) <
�

| log ε|−2(
log(t/h)μpt + (

μpt(h,ε)

)2)
.
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PROOF. (i) Let ζs be the Cox process of ancestors to ξt at time s = t − h, and
write ηi

h for the associated h-clusters. Using Lemma 4.2(i), the conditional inde-
pendence of the clusters and the fact that Eμζ 2

s = h−2Eμξ2
s outside the diagonal,

we get with pε
h(x) = Px{ηhB

ε
0 > 0}

Eμκε
h(κε

h − 1) = Eμ

∑
i �=j

1{ηi
hB

ε
0 ∧ η

j
hB

ε
0 > 0}

=
∫ ∫

x �=y
pε

h(x)pε
h(y)Eμζ 2

s (dx dy)

<
�

ε2(d−2)
∫ ∫

ph(ε)(x)ph(ε)(y)Eμξ2
s (dx dy).

By Lemma 3.2, Fubini’s theorem and the semigroup property of (pt ), we get∫
ph(ε)(x)Eμξs(dx) =

∫
ph(ε)(x)(μ ∗ ps)(x) dx

=
∫

μ(du)(ph(ε) ∗ ps)(u) = μpt(ε).

Next, we get by Lemma 3.3(i), Fubini’s theorem, the properties of (pt ) and the
relations t ≤ tε ≤ 2t − s∫ ∫

ph(ε)(x)ph(ε)(y)Covμ ξs(dx dy)

= 2
∫ ∫

ph(ε)(x)ph(ε)(y) dx dy

∫
μ(du)

∫ s

0
dr

×
∫

pr(v − u)ps−r (x − v)ps−r (y − v) dv

= 2
∫

μ(du)

∫ s

0
dr

∫
pr(u − v)

(
pt(ε)−r (v)

)2
dv

<
�

∫
μ(du)

∫ s

0
(t − r)−d/2(

pr ∗ p(t(ε)−r)/2
)
(u) dr

=
∫

μ(du)

∫ s

0
(t − r)−d/2p(t(ε)+r)/2(u) dr

<
�

∫
pt(u)μ(du)

∫ t

h
r−d/2 dr <

�
μpth

1−d/2.

The assertion follows by combination of these estimates.
(ii) Here we may proceed as before, with the following changes: Using

Lemma 4.2(ii) instead of (i), we see that the factor ε2(d−2) should be replaced
by | log(ε/

√
h)|−2 <

�
| log ε|−2. In the last computation, we have now

∫ t
h r−1 dr =

log(t/h). Since hε = hlε/
√

h with 0 ≤ lε − 1 <
�

| log ε|−1/2, we may choose th,ε =
t + (hε − h) in the second term on the right. As for the estimates leading up to the
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first term, we note that the bound th,ε + s ≤ 2t remains valid for sufficiently small
ε/h. �

Using the bounds in Lemma 4.2, we may improve some known extinction cri-
teria for DW-processes of dimension d ≥ 2.

THEOREM 4.5. Let ξ be a locally finite DW-process in R
d , d ≥ 2, with arbi-

trary initial distribution. Then these conditions are equivalent as t → ∞:

(i) ξt
d→ 0,

(ii) supp ξt
d→ ∅,

(iii)

{
ξ0pt

P→ 0, d ≥ 3,

(log t)−1ξ0pt
P→ 0, d = 2.

Already Dawson [2] noted that ξt
d→ 0 for a DW-process in R

2 with ξ0 = λ2.
The equivalence of (i) and (iii) was proved for d = 2 by Bramson, Cox and Greven

[1] (see also [19]). Condition (ii) means that 1{ξB > 0} P→ 0 for all B ∈ B̂2. The
corresponding a.s. convergence fails for d = 2 and ξ0 = λ2, for example, by the
ergodic theorem in [9] (cf. Theorem 2.25 of [8]). However, for d = 1 such an a.s.
result was obtained by Iscoe [10].

PROOF. First let d = 2. Using Lemmas 2.1(i), 4.1 and 4.2(ii), along with the
properties of pt , we get for any measure μ and constants r, t, ε > 0 with tε2 = 1

Pμ{ξtB
r
0 > 0} = Pε2μS1/ε

{ξε2tB
rε
0 > 0}

<
�

ε2μS1/εpl(rε)| log(rε)|−1

<
�

ε2| log ε|−1μ(p2 ◦ Sε) <
�

(log 2t)−1μp2t ,

since 1 ≤ lε ≤ 2 for sufficiently small ε > 0. Combining with the corresponding
lower bound gives

(log t)−1μpt ∧ 1 <
�

Pμ{ξtB
r
0 > 0} <

�
(log 2t)−1μp2t ∧ 1,

and so for a general initial distribution

E[(log t)−1ξ0pt ∧ 1] <
�

P {ξtB
r
0 > 0} <

�
E[(log 2t)−1ξ0p2t ∧ 1].

As t → ∞, we obtain 1{ξtB
r
0 > 0} P→ 0 iff (log t)−1ξ0pt

P→ 0, and the equivalence
of (ii) and (iii) follows since r was arbitrary.

For d ≥ 3, we may use Lemma 4.2(i) instead to write

Pμ{ξtB
r
0 > 0} = Pε2μS1/ε

{ξε2tB
rε
0 > 0}

<
�

ε2μS1/εpl(rε)(rε)
d−2 <

�
εdtd/2μp2t = μp2t ,
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and similarly for the lower bound. Hence, for a general initial distribution,

E[ξ0pt ∧ 1] <
�

P {ξtB
ε
0 > 0} <

�
E[ξ0p2t ∧ 1],

which shows again that (ii) and (iii) are equivalent. Since clearly (ii) implies (i), it
remains to prove that (i) implies (iii).

Then put B = B1
0 , and suppose that ξ is locally finite under Pμ. Noting that

Varμ ξtB <
�

EμξtB for d ≥ 3 by Hint (2) in [26], page 239, we see as in the proof
of Lemma 3.2 that

Pμ

{
ξtB

EμξtB
> r

}
≥ (1 − r)2

1 + c(EμξtB)−1 , r ∈ (0,1),

where the constant c > 0 depends only on d . Hence, if ξtB
P→ 0 along some

sequence tn → ∞, we get EμξtB → 0 along the same sequence. Noting that
EμξtB >

�
μpt−1 by Lemma 3.1, we obtain μptn−1 → 0.

For general ξ0, (i) implies ξtB
P→ 0. Hence, for any tn → ∞ we have ξtB → 0

a.s. along some subsequence (tn′). Since this remains conditionally true given ξ0,
we see as before that ξ0pt → 0 a.s. along the shifted sequence (tn′ − 1). Since the

sequence (tn − 1) was arbitrary, ξ0pt
P→ 0 follows by Lemma 4.2 in [13]. �

In the stationary case, we can also estimate the rate of clustering. For a sta-
tionary random measure ζ on R

d , the associated sample intensity ζ̄ is defined by
ζ̄ · λd = E[ζ |I], where I denotes the invariant σ -field.

PROPOSITION 4.6. Let ξ be a DW-process in R
2, starting from a stationary

random measure ξ0 �= 0 with sample intensity ξ̄0 < ∞ a.s. Then P {ξtB
r
0 > 0} → 0

as t → ∞ iff r2/t → 0.

PROOF. Letting tε2 = 1 and r2/t → 0, we get as in the previous proof

Pμ{ξtB
r
0 > 0} <

�
ε2| log(rε)|−1μ(p2 ◦ Sε)

<
�

(log(t/r2))−1μp2t .

Hence, for a general initial distribution

P {ξtB
r
0 > 0} <

�
E[(log(t/r2))−1ξ0p2t ∧ 1],

which tends to 0 as r2 	 t → ∞, since ξ0p2t → ξ̄0 < ∞ a.s. by Corollary 10.19
in [13].

Conversely, truncating rε at 1
2 , we get as before

P {ξtB
r
0 > 0} >

�
E

[∣∣log
(
rε ∧ 1

2

)∣∣−1
ξ0pt ∧ 1

]
,

and so P {ξtB
r
0 > 0} → 0 implies∣∣log

(
rε ∧ 1

2

)∣∣−1
ξ̄0 <

�

∣∣log
(
rε ∧ 1

2

)∣∣−1
ξ0pt

P→ 0.

Since P {ξ̄0 > 0} > 0, we get | log(rε ∧ 1
2)| → ∞ and therefore r2/t → 0. �



2194 O. KALLENBERG

5. Hitting asymptotics. For a DW-process ξ of dimension d ≥ 3, we know
from Theorem 3.1 of Dawson, Iscoe and Perkins [4] (cf. Remark III.5.12 in [26])
that, as ε → 0 for fixed t > 0, x ∈ R

d and bounded μ,

ε2−dPμ{ξtB
ε
x > 0} → cd(μ ∗ pt)(x),(3)

where cd > 0 is a constant depending only on d , and the convergence is uniform
for x ∈ R

d and for bounded t−1 and ‖μ‖. Here we prove a similar result for d = 2,
with cd replaced by a suitable normalizing function m.

Writing pε
h(x) = Px{ηhB

ε
0 > 0}, where ηh denotes an h-cluster associated with

a DW-process in R
d , we define our normalizing function for d = 2 by

m(ε) = | log ε|λ2pε
1 = | log ε|Pλ2{η1B

ε
0 > 0}, ε > 0.

The following technical result will play a crucial role below, especially in Sec-
tion 7.

LEMMA 5.1. The function t �→ logm(exp(−et )) is bounded and uniformly
continuous on [1,∞).

PROOF. The boundedness of logm is clear from Lemma 4.2(ii). For any
h ∈ (0,1], let ζs be the process of ancestors to ξ1 at time s = 1 − h, and denote
the generated h-clusters by ηi

h. Then for 0 < r 	 1 and 0 < ε 	 h we get the
following chain of relations, to be explained and justified below:

m(ε)| log ε|−1 ≈ r−1Prλ2{ξ1B
ε
0 > 0}

≈ r−1Erλ2

∑
i

1{ηi
hB

ε
0 > 0} = r−1Erλ2ζsp

ε
h

= h−1Pλ2{ηhB
ε
0 > 0} = Pλ2

{
η1B

ε/
√

h
0 > 0

}
= m

(
ε/

√
h
)∣∣log

(
ε/

√
h
)∣∣−1 ≈ m

(
ε/

√
h
)| log ε|−1.

Here the first two steps are suggested by Lemmas 4.1 and 4.4(ii), respectively, the
third step holds by the conditional independence of the clusters, the fourth step
holds by the Cox property of ζs , the fifth step holds by Lemma 2.1(ii), the sixth
step holds by the definition of m and the last step is suggested by the relation
ε 	 h.

To estimate the approximation errors, we see from Lemmas 4.1 and 4.2(ii) that∣∣m(ε) − r−1| log ε|Prλ2{ξ1B
ε
0 > 0}∣∣

= r−1| log ε||Prλ2{η1B
ε
0 > 0} − Prλ2{ξ1B

ε
0 > 0}|

<
�

r−1| log ε|(Prλ2{η1B
ε
0 > 0})2

<
�

r−1| log ε|−1(
rλ2pl(ε)

)2 = r| log ε|−1.
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Next, Lemma 4.4(ii) yields

r−1| log ε|
∣∣∣∣∣Erλ2

∑
i

1{ηi
hB

ε
0 > 0} − Prλ2{ξ1B

ε
0 > 0}

∣∣∣∣∣
= r−1| log ε|Erλ2(κ

ε
h − 1)+

<
�

| logh|rλ2p1 + (rλ2pt(h,ε))
2

r| log ε| = | logh| + r

| log ε| .

Finally, we note that

m(ε/
√

h)

∣∣∣∣ | log ε|
| log(ε/

√
h)| − 1

∣∣∣∣ <� | logh|
| log ε| ,

by the boundedness of m. Combining these estimates and letting r → 0, we obtain

∣∣m(ε) − m
(
ε/

√
h
)∣∣ <

�

| logh|
| log ε| .

Taking ε = e−t and ε/
√

h = e−s with t − s 	 t gives∣∣∣∣log
m(e−t )

m(e−s)

∣∣∣∣ <
�

∣∣∣∣m(e−t )

m(e−s)
− 1

∣∣∣∣ <� |m(e−t ) − m(e−s)|
<
�

(t − s)/t <
�

| log(t/s)|,
which extends immediately to arbitrary s, t ≥ 1. Replacing s and t by es and et

gives

| logm(exp(−et )) − logm(exp(−es))| <
�

|t − s|,
which implies the asserted uniform continuity. �

We proceed to approximate the hitting probabilities pε
h by suitably normalized

Dirac functions. Even this result will play a crucial role in the sequel, both here
and in Section 7.

LEMMA 5.2. Write pε
h(x) = Px{ηhB

ε
0 > 0}, where the ηh are clusters of a

DW-process in R
d , and fix a bounded, uniformly continuous function f ≥ 0 on R

d .
Then:

(i) for d ≥ 3 and as 0 < ε2 	 h → 0, we have

‖h−1ε2−d(pε
h ∗ f ) − cdf ‖ → 0,

(ii) for d = 2 and as 0 < ε ≤ h → 0 with | logh| 	 | log ε|, we have

‖h−1| log ε|(pε
h ∗ f ) − m(ε)f ‖ → 0.
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Both results hold uniformly over any class of uniformly bounded and equicontinu-
ous functions f ≥ 0 on R

d .

PROOF. (i) Using (3) and Lemmas 2.1(ii), 4.1 and 4.2(i), we get by dominated
convergence

λdpε
h = hd/2λdp

ε/
√

h
1 ∼ cdhd/2(

ε/
√

h
)d−2

λdp1 = cdεd−2h.(4)

Similarly, Lemma 4.2(ii) yields for fixed r > 0 and a standard normal random
vector γ in R

d

ε2−dh−1
∫
|x|>r

pε
h(x) dx <

�

∫
|u|>r/

√
h
pl(ε)(u) du

(5)
= P {|γ |l1/2

ε > r/
√

h} → 0.

By (4) it is enough to show that ‖p̂ε
h ∗ f − f ‖ → 0 as h, ε2/h → 0, where

p̂ε
h = pε

h/λ
dpε

h. Writing wf for the modulus of continuity of f , we get

‖p̂ε
h ∗ f − f ‖ = sup

x

∣∣∣∣
∫

p̂ε
h(u)

(
f (x − u) − f (x)

)
du

∣∣∣∣
≤

∫
p̂ε

h(u)wf (|u|) du

≤ wf (r) + 2‖f ‖
∫
|u|>r

p̂ε
h(u) du,

which tends to 0 as h, ε2/h → 0 and then r → 0, by (5) and the uniform continuity
of f .

(ii) By Lemmas 2.1(ii) and 5.1 we have

λ2pε
h = hλ2p

ε/
√

h
1 = hm

(
ε/

√
h
)∣∣log

(
ε/

√
h
)∣∣−1 ∼ hm(ε)| log ε|−1.

We also see that, with tε as in Lemma 4.2(ii),

h−1| log ε|
∫
|x|>r

pε
h(x) dx <

�

∫
|u|>r/

√
h
pt(ε)(u) du → 0.

The proof may now be completed as in case of (i). The last assertion is clear from
the estimates in the preceding proofs. �

We may now prove the mentioned convergence of suitably normalized hitting
probabilities, a result that is often needed in subsequent sections. The case d ≥ 3
is included for convenience of reference.

THEOREM 5.3. Let ξ be a DW-process in R
d . Then for any t > 0 and

bounded μ, we have as ε → 0:
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(i) ‖ε2−dPμ{ξtB
ε· > 0} − cd(μ ∗ pt)‖ → 0 for d ≥ 3,

(ii) ‖| log ε|Pμ{ξtB
ε· > 0} − m(ε)(μ ∗ pt)‖ → 0 for d = 2,

and similarly for the clusters ηt with pt replaced by tpt . The results hold locally
whenever ξ is locally finite under Pμ.

PROOF. (i) For bounded μ, this is just the uniform version of (3). In general,
we may write μ = μ′ +μ′′ for bounded μ′ and let ξ = ξ ′ +ξ ′′ be the corresponding
decomposition of ξ . Then

Pμ{ξtB
ε
x > 0} ≤ Pμ{ξ ′

t B
ε
x > 0} + Pμ{ξ ′′

t Bε
x > 0}

= Pμ′ {ξtB
ε
x > 0} + Pμ′′ {ξtB

ε
x > 0},

and so by Lemmas 4.1 and 4.2(i)

|Pμ{ξtB
ε
x > 0} − Pμ′ {ξtB

ε
x > 0}| ≤ Pμ′′ {ξtB

ε
x > 0}

<
�

tεd−2(
μ′′ ∗ pt(ε)

)
(x).

For any r > 0 and for ε0 > 0 small enough, there exists by Lemma 3.1 a t ′ > 0
such that

pt(ε)(u − x) <
�

pt ′(u), |x| ≤ r, ε < ε0, u ∈ R
d,

which implies (μ′′ ∗ pt(ε))(x) ≤ μ′′pt ′ for the same x and ε. Hence,

‖ε2−dPμ{ξtB
ε· > 0} − cd(μ ∗ pt)‖Br

0

<
�

‖ε2−dPμ′ {ξtB
ε· > 0} − cd(μ′ ∗ pt)‖ + μ′′pt ′,

which tends to 0 as ε → 0 and then μ′ ↑ μ, by the result for bounded μ and
dominated convergence.

(ii) First suppose that μ is bounded. Let ε,h → 0 with | logh| 	 | log ε|, and
write ζs for the ancestral process at time s = t − h. Then we get, uniformly on R

2,

Pμ{ξtB
ε· > 0} ≈ Eμ(ζs ∗ pε

h) = h−1Eμ(ξs ∗ pε
h)

= h−1(μ ∗ ps ∗ pε
h) ≈ m(ε)| log ε|−1(μ ∗ ps)

≈ m(ε)| log ε|−1(μ ∗ pt).

To justify the first approximation, we see from Lemma 4.4(ii) that

| log ε|‖Pμ{ξtB
ε
x > 0} − Eμ(ζs ∗ pε

h)‖

<
�

| logh|‖μ ∗ pt‖ + ‖μ ∗ pt(h,ε)‖2

| log ε| <
�

| logh|
| log ε| → 0.

For the second approximation, Lemma 5.2(ii) yields

‖h−1| log ε|(μ ∗ ps ∗ pε
h) − m(ε)(μ ∗ ps)‖

≤ ‖μ‖‖h−1| log ε|(ps ∗ p̃ε
h) − m(ε)ps‖ → 0,
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since the functions ps = pt−h are uniformly bounded and equicontinuous for small
h > 0. The third approximation holds since m is bounded and

‖μ ∗ ps − μ ∗ pt‖ ≤ ‖μ‖‖ps − pt‖ → 0.

This completes the proof for bounded μ. The extension to the general case may be
accomplished by the same argument as for (i).

To prove the indicated version of (i) for the clusters ηt , we see from Lemmas
4.1 and 4.2(i) that

ε2−d |t−1Pμ{ηtB
ε
x > 0} − Pμ{ξtB

ε
x > 0}| <

�
ε2−d(

t−1Pμ{ηtB
ε
x > 0})2

<
�

εd−2((
μ ∗ pt(ε)

)
(x)

)2
.

For bounded μ, this clearly tends to 0 as ε → 0, uniformly in x. In general,
Lemmas 3.1 and 3.2(iv) show that the right-hand side tends to 0, uniformly for
bounded x. This proves the cluster version of (i), and the proof in case of (ii) is
similar. �

6. Neighborhood measures. For any measure μ on R
d and constant ε > 0,

we define the associated neighborhood measure με as the restriction of Lebesgue
measure λd to the ε-neighborhood of suppμ, so that με has Lebesgue density
1{μBε

x > 0}. In this section, we study the neighborhood measures of clusters ηh as-
sociated with a DW-process in R

d . This will prepare for the proof of the Lebesgue
approximation of DW-processes in Section 7. We begin with some estimates of
first and second moments.

LEMMA 6.1. Let η1 be the unit cluster of a DW-process in R
d . Then as ε → 0,

we have:

(i) ‖ε2−dE0η
ε
1 − cd(p1 · λd)‖ → 0 for d ≥ 3,

(ii) ‖| log ε|E0η
ε
1 − m(ε)(p1 · λ2)‖ → 0 for d = 2,

(iii) E0‖ηε
1‖2 � (E0‖ηε

1‖)2 � ε2(d−2) for d ≥ 3,
(iv) E0‖ηε

1‖2 � (E0‖ηε
1‖)2 � | log ε|−2 for d = 2.

PROOF. (i) Fubini’s theorem yields E0η
ε
1 = pε

1 · λd , and so for d ≥ 3

‖ε2−dE0η
ε
1 − cd(p1 · λd)‖ = λd |ε2−dpε

1 − cdp1|.(6)

Here the integrand on the right tends to 0 as ε → 0 by Theorem 5.3(i), and by
Lemma 4.2(i) it is bounded by Cdp1′ + cdp1 → (Cd + cd)p1 for some constant
Cd > 0, where 1′ = 1 + ε2. Since both sides have the same integral Cd + cd , the
integral in (6) tends to 0 by Theorem 1.21 in [13].

(ii) Use a similar argument based on Theorem 5.3(ii) and Lemma 4.2(ii).
(iii) For a DW-process ξ , let ζs be the process of ancestors of ξ1 at time

s = 1 − h, where ε2 ≤ h ≤ 1, and denote the generated h-clusters by ηi
h. For any
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x1, x2 ∈ R
d , write xi = x̄ ± r . Using Lemmas 3.3(i)–(ii) and 4.2(i), the conditional

independence of the subclusters, the Cox property of ζs and the semigroup prop-
erty of pt , we obtain with h′ = h + ε2 and 1′ = 1 + ε2

Eδ0

∑
i �=j

1{ηi
hB

ε
x1

∧ η
j
hB

ε
x2

> 0}

=
∫ ∫

u1 �=u2

pε
h(x1 − u1)p

ε
h(x2 − u2)Eδ0ζ

2
s (du1 du2)

<
�

ε2(d−2)
∫ ∫

ph′(x1 − u1)ph′(x2 − u2)Eδ0ξ
2
s (du1 du2)

= ε2(d−2)((p⊗2
s + qs) ∗ p⊗2

h′
)
(x1, x2)

≤ ε2(d−2)(p⊗2
1′ + q1′)(x1, x2)

<
�

ε2(d−2)p1′(x̄)p1′(r)|r|2−d .

Next we may combine the previously mentioned properties with Lemmas
3.2(iv) and 4.2(i), Cauchy’s inequality, the parallelogram identity, and the special
form of the densities pt , to obtain

Eδ0

∑
i

1{ηi
hB

ε
x1

∧ ηi
hB

ε
x2

> 0} =
∫

Pu{ηhB
ε
x1

∧ ηhB
ε
x2

> 0}Eδ0ζs(du)

≤ h−1
∫ (

pε
h(x1 − u)pε

h(x2 − u)
)1/2

Eδ0ξs(du)

<
�

εd−2
∫ (

ph′(x1 − u)ph′(x2 − u)
)1/2

ps(u)du

<
�

εd−2
∫ (

ph′/2(x̄ − u)ph′/2(r)
)1/2

ps(u)du

<
�

εd−2hd/2(ph′ ∗ ps)(x̄)ph′(r)

= εd−2hd/2p1′(x̄)ph′(r).

Since ξ1 is the sum of κ independent unit clusters, where κ is Poisson under Pδ0

with mean 1, the previous estimates remain valid for the subclusters of η of age h.
Since ηε

1 has Lebesgue density 1{η1B
ε
x > 0}, Fubini’s theorem yields

E0‖ηε
1‖2 =

∫ ∫
P0{η1B

ε
xi

∧ η1B
ε
xi

> 0}dx1 dx2

<
�

∫ ∫
dx1 dx2 Eδ0

∑
i,j

1{ηi
hB

ε
x1

∧ η
j
hB

ε
x2

> 0}

<
�

∫ ∫ (
ε2(d−2)p1′(r)|r|2−d + εd−2hd/2ph′(r)

)
p1′(x̄) dx̄ dr

<
�

ε2(d−2) + εd−2hd/2,
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where, in the last step, we used the fact that∫
p1(r)|r|2−d dr <

�

∫ ∞
0

ve−v2/2 dv < ∞.

Taking h = ε2, we get by (i) and Jensen’s inequality

ε2(d−2) � ‖E0η
ε
1‖2 ≤ E0‖ηε

1‖2 <
�

ε2(d−2) + ε2d−2 � ε2(d−2).

(iv) Suppose that ε2 	 h → 0. Using Lemmas 3.3(iii) and 4.2(ii), we get as
before

Eδ0

∑
i �=j

1{ηi
hB

ε
x1

∧ η
j
hB

ε
x2

> 0} <
�

(log(h/ε2))−2(p⊗2
1′ + q1′)(x1, x2)

<
�

| log ε|−2p1′(x̄)p1(r) log(|r|−1 ∨ e),

Eδ0

∑
i

1{ηi
hB

ε
x1

∧ ηi
hB

ε
x2

> 0} <
�

h| log ε|−1p1′(x̄)ph′(r),

where 1′ − 1 = h′ − h <
�

h| log ε|−1/2. Noting that∫
p1(r) log(|r|−1 ∨ e) dr <

�

∫
|r|e<1

| log |r||dr +
∫

p1(r) dr < ∞,

we get by combination

E0‖ηε
1‖2 <

�

∫ ∫ (| log ε|−2p1(r) log(|r|−1 ∨ e) + h| log ε|−1ph′(r)
)
p1′(x̄) dx̄ dr

<
�

| log ε|−2 + h| log ε|−1.

Choosing h = | log ε|−1 � ε2 and combining with (ii) gives

| log ε|−2 � ‖E0η
ε
1‖2 ≤ E0‖ηε

1‖2 <
�

| log ε|−2. �

This leads to some moment estimates for a Poisson “forest” of clusters. Recall
that pε

h(x) = Px{ηhB
ε
0 > 0} and write (ηi

h)
ε = ηiε

h for convenience.

LEMMA 6.2. Let the ηi
h be conditionally independent h-clusters in R

d , rooted
at the points of a Poisson process ξ with Eξ = μ. Fix any measurable function
f ≥ 0 on R

d and let h ≥ ε → 0. Then:

(i) Eμ

∑
i η

iε
h = (μ ∗ pε

h) · λd for d ≥ 2,
(ii) Varμ

∑
i η

iε
h f <

�
h2ε2(d−2)‖f ‖2‖μ‖ for d ≥ 3,

(iii) Varμ
∑

i η
iε
h f <

�
h2| log ε|−2‖f ‖2‖μ‖ for d = 2.

PROOF. (i) By Fubini’s theorem and the definitions of ηε
h and pε

h, we have

Exη
ε
hf = Ex

∫
1{ηhB

ε
u > 0}f (u)du = (pε

h ∗ f )(x),
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and so by independence

E

[∑
i

ηiε
h f

∣∣∣ξ
]

=
∫

ξ(dx)Exη
ε
hf = ξ(pε

h ∗ f ).(7)

Hence, by Fubini’s theorem

Eμ

∑
i

ηiε
h f = Eμξ(pε

h ∗ f ) = μ(pε
h ∗ f ) = (

(μ ∗ pε
h) · λd)

f.

(ii) By Lemma 2.1(ii) we have

‖ηε
h‖ =

∫
1{ηhB

ε
x > 0}dx

d=
∫

1
{
η1B

ε/
√

h

x/
√

h
> 0

}
dx

= hd/2
∫

1
{
η1B

ε/
√

h
x > 0

}
dx = hd/2‖ηε/

√
h

1 ‖,
and so by Lemma 6.1(iii)

Varx(η
ε
hf ) ≤ Ex(η

ε
hf )2 ≤ E‖ηε

h‖2‖f ‖2 = hdE‖ηε/
√

h
1 ‖2‖f ‖2

<
�

hd(
ε/

√
h
)2(d−2)‖f ‖2 = ε2(d−2)h2‖f ‖2.

Hence, by independence

Eμ Var

[∑
i

ηiε
h f

∣∣∣ξ
]

= Eμ

∫
ξ(dx)Varx(η

ε
hf )

<
�

ε2(d−2)h2‖f ‖2‖μ‖.
Since λdpε

h
<
�

εd−2h by Lemma 4.2(i) and Varμ(ξf ) = μf 2, we get from (7)

Varμ E

[∑
i

ηiε
h f

∣∣∣ξ
]

= Varμ ξ(pε
h ∗ f ) = μ(pε

h ∗ f )2

≤ ‖f ‖2‖μ‖(λdpε
h)

2 <
�

ε2(d−2)h2‖f ‖2‖μ‖.
Combining those estimates yields

Varμ
∑
i

ηiε
h f = Eμ Var

[∑
i

ηiε
h f

∣∣∣ξ
]

+ Varμ E

[∑
i

ηiε
h f

∣∣∣ξ
]

<
�

ε2(d−2)h2‖f ‖2‖μ‖.
(iii) Since h ≥ ε, we get by Lemma 6.1(iv)

Varx(η
ε
hf ) <

�
h2∣∣log

(
ε/

√
h
)∣∣−2‖f ‖2 <

�
h2| log ε|−2‖f ‖2,
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and so

Eμ Var

[∑
i

ηiε
h f

∣∣∣ξ
]

<
�

h2| log ε|−2‖f ‖2‖μ‖.

Next Lemma 4.2(ii) yields λ2pε
h
<
�

h| log ε|−1, so as before

Varμ E

[∑
i

ηiε
h f

∣∣∣ξ
]

<
�

h2| log ε|−2‖f ‖2‖μ‖.

The stated estimate now follows by combination. �

We also need to estimate the overlap between subclusters.

LEMMA 6.3. Let ξ be a DW-process in R
d , and for fixed t > 0, let ηi

h denote
the subclusters in ξt of age h > 0. Fix a μ ∈ M̂d . Then:

(i) for d ≥ 3 and as ε2 ≤ h → 0,

Eμ

∥∥∥∥∥
∑
i

ηiε
h − ξε

t

∥∥∥∥∥ <
�

(
ε2/

√
h
)d−2

,

(ii) for d = 2 and as ε ≤ h → 0,

Eμ

∥∥∥∥∥
∑
i

ηiε
h − ξε

t

∥∥∥∥∥ <
�

| logh|| log ε|−2.

PROOF. (i) Let κε
h(x) denote the number of subclusters of age h hitting Bε

x at
time t . Then Lemma 4.4(i) yields, with t ′ = t + ε2,

Eμ

∥∥∥∥∥
∑
i

ηiε
h − ξε

t

∥∥∥∥∥ = Eμ

∫ ∣∣∣∣∣
∑
i

1{ηi
hB

ε
x > 0} − 1{ξBε

x > 0}
∣∣∣∣∣dx

=
∫

Eμ

(
κε
h(x) − 1

)
+ dx

<
�

ε2(d−2)λd(
h1−d/2(μ ∗ pt) + (μ ∗ pt ′)

2)
<
�

ε2(d−2)(h1−d/2‖μ‖ + t−d/2‖μ‖2).

(ii) Using Lemma 4.4(ii), we get instead

Eμ

∥∥∥∥∥
∑
i

ηiε
h − ξε

t

∥∥∥∥∥ <
�

| log ε|−2λ2(
log(t/h)(μ ∗ pt) + (μ ∗ pt ′)

2)

<
�

| log ε|−2(| logh|‖μ‖ + t−1‖μ‖2),

for a suitable choice of t ′ ≥ t . �
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7. Lebesgue approximation. Given a DW-process ξ in R
d , we prove for any

d ≥ 2 and for fixed t > 0 that ξt can be approximated, both a.s. and in L1, by
suitably normalized versions of the neighborhood measures ξε

t , as defined in Sec-
tion 6. For d ≥ 3, this result is essentially due to Tribe [27]. Write c̃d = 1/cd and
m̃ = 1/m for convenience, where cd and m are such as in Section 5.

THEOREM 7.1. Let the DW-process ξ in R
d be locally finite under Pμ, and

fix a t > 0. Then under Pμ, we have as ε → 0:

(i) c̃dε2−dξε
t

v→ ξt a.s. and in L1 for d ≥ 3,

(ii) m̃(ε)| log ε|ξε
t

v→ ξt a.s. and in L1 for d = 2.

This remains true in the weak sense when μ is bounded. The weak versions hold
even for the clusters ηt when ‖μ‖ = 1.

PROOF. We use a new approach, explained in detail only for d ≥ 3. (i) Let
d ≥ 3, and fix any t > 0, μ ∈ M̂d and f ∈ Cd

K . Write ηi
h for the subclusters of ξt

of age h. Since the ancestors of ξt at time s = t − h form a Cox process directed
by ξs/h, Lemma 6.2(i) yields

Eμ

[∑
i

ηiε
h f

∣∣∣ξs

]
= h−1ξs(p

ε
h ∗ f ),

and so by Lemma 6.2(ii)

Eμ

∣∣∣∣∣
∑
i

ηiε
h f − h−1ξs(p

ε
h ∗ f )

∣∣∣∣∣
2

= Eμ Var

[∑
i

ηiε
h f

∣∣∣ξs

]

<
�

ε2(d−2)h2‖f ‖2Eμ‖ξs/h‖
= ε2(d−2)h‖f ‖2‖μ‖.

Combining with Lemma 6.3(i) gives

Eμ|ξε
t f − h−1ξs(p

ε
h ∗ f )|

≤ Eμ

∣∣∣∣∣ξε
t f − ∑

i

ηiε
h f

∣∣∣∣∣ + Eμ

∣∣∣∣∣
∑
i

ηiε
h f − h−1ξs(p

ε
h ∗ f )

∣∣∣∣∣
<
�

ε2(d−2)h1−d/2‖f ‖ + εd−2h1/2‖f ‖
= εd−2(√

h + (
ε/

√
h
)d−2)‖f ‖.

Taking h = ε = rn for a fixed r ∈ (0,1) and writing sn = t − rn, we obtain

Eμ

∑
n

rn(2−d)|ξ rn

t f − r−nξsn(p
rn

rn ∗ f )| <
�

∑
n

(
rn/2 + rn(d−2)/2)‖f ‖ < ∞,
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which implies

rn(2−d)|ξ rn

t f − r−nξsn(p
rn

rn ∗ f )| → 0 a.s. Pμ.(8)

Now we write

|ε2−dξε
t f − cdξtf | ≤ ε2−d |ξε

t f − h−1ξs(p
ε
h ∗ f )| + cd |ξsf − ξtf |

+ ‖ξs‖‖ε2−dh−1(pε
h ∗ f ) − cdf ‖.

Using (8), Lemma 5.2(i) and the a.s. weak continuity of ξ (cf. Proposition 2.15
in [8]), we see that the right-hand side tends a.s. to 0 as n → ∞, which implies
ε2−dξε

t f − cdξtf a.s. as ε → 0 along the sequence (rn) for any fixed r ∈ (0,1).
Since this holds simultaneously, outside a fixed null set, for all rational r ∈ (0,1),
the a.s. convergence extends by Lemma 2.3 to the entire interval (0,1).

Now let μ ∈ Md be arbitrary with μpt < ∞ for all t > 0. Write μ = μ′ + μ′′
for bounded μ′, and let ξ = ξ ′ + ξ ′′ be the corresponding decomposition of ξ into
independent components with initial measures μ′ and μ′′. Fixing an r > 1 with
suppf ⊂ Br−1

0 and using the result for bounded μ, we get a.s. on {ξ ′′
t Br

0 = 0}
ε2−dξε

t f = ε2−dξ ′ε
t f → cdξ ′

t f = cdξtf.

As μ′ ↑ μ, we get by Lemma 4.3

Pμ{ξ ′′
t Br

0 = 0} = Pμ′′ {ξtB
r
0 = 0} → 1,

and the a.s. convergence extends to μ. Applying this result to a countable,
convergence-determining class of functions f (cf. Lemma 3.2.1 in [3]), we ob-
tain the required a.s. vague convergence. If μ is bounded, then ξt has a.s. bounded
support (cf. Corollary 6.8 in [8]), and the a.s. convergence remains valid in the
weak sense.

To prove the convergence in L1, we note that for any f ∈ Cd
K

ε2−dEμξε
t f = ε2−d

∫
Pμ{ξtB

ε
x > 0}f (x) dx

(9)
→

∫
cd(μ ∗ pt)(x)f (x) dx = cdEμξtf,

by Theorem 5.3(i). Combining this with the a.s. convergence under Pμ and
using Proposition 4.12 in [13], we obtain Eμ|ε2−dξε

t f − cdξtf | → 0. For
bounded μ, (9) extends to any f ∈ Cd

b by dominated convergence based on Lem-
mas 4.1 and 4.2(i), together with the fact that λd(μ ∗ pt) = ‖μ‖ < ∞ by Fubini’s
theorem.

(ii) Let d = 2, and fix any t , μ and f as before. Using Lemma 6.2(iii), we see
as in part (i) that

Eμ

∣∣∣∣∣
∑
i

ηiε
h f − h−1ξs(p

ε
h ∗ f )

∣∣∣∣∣
2

<
�

h| log ε|−2‖f ‖2‖μ‖.
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Combining with Lemma 6.3(ii), we now get for fixed μ and f

Eμ|ξε
t f − h−1ξs(p

ε
h ∗ f )| <

�
h1/2| log ε|−1 + | logh|| log ε|−2.

Choosing
√

h = | log ε|−1 = rn for a fixed r ∈ (0,1), we get

| log ε|Eμ|ξε
t f − h−1ξs(p

ε
h ∗ f )| <

�
h1/2 + | logh|| log ε|−1

(10)
= rn + 2n| log r|rn <

�
rn/2.

Now we write

|m̃(ε)| log ε|ξε
t f − ξtf | <

�
| log ε||ξε

t f − h−1ξs(p
ε
h ∗ f )| + |ξsf − ξtf |

+ ‖ξs‖‖h−1m̃(ε)| log ε|(pε
h ∗ f ) − f ‖.

Letting
√

h = | log ε|−1 = rn with n → ∞, we see from (10), Lemma 5.2(ii) and
the weak continuity of ξ that the right-hand side tends to 0 a.s. Writing ε = e−1/s

and putting ξ̃ s
t = ξε

t , we conclude that

m̃(e−1/s)s−1ξ̃ s
t f → ξtf a.s. Pμ,(11)

as s → 0 along (rn) for any r ∈ (0,1). Since the function t �→ log m̃(exp(−et ))

is bounded and uniformly continuous on R+ by Lemma 5.1, (11) remains true
along (0,1) by Lemma 2.3. Hence, m̃(ε)| log ε|ξε

t f → ξtf a.s. Pμ for fixed f and

bounded μ, which extends as before to m̃(ε)| log ε|ξε
t

v→ ξt a.s., even when μ is
unbounded.

To prove the corresponding L1-convergence, let f ∈ Cd
K and conclude from

Theorem 5.3(ii) that

m̃(ε)| log ε|Eμξε
t f = m̃(ε)| log ε|

∫
Pμ{ξtB

ε
x > 0}f (x) dx

→
∫

(μ ∗ pt)(x)f (x) dx = Eμξtf.

For bounded μ, this extends by dominated convergence to any f ∈ Cd
b . The as-

sertion now follows as before by combination with the corresponding a.s. conver-
gence.

To extend (i) and (ii) to the individual clusters ηt , let ζ0 denote the process of
ancestors of ξt at time 0, and note that

P0{ηt ∈ ·} = Pδ0[ξt ∈ ·|‖ζ0‖ = 1],
where Pδ0{‖ζ0‖ = 1} = t−1e−1/t > 0. The a.s. convergence then follows from the
corresponding statement for ξt . To obtain the weak L1-convergence in this case,
we note that for f ∈ Cd

b and d ≥ 3 or d = 2, respectively,

ε2−dE0η
ε
t f = ε2−dλd(pε

t f ) → cdtλd(ptf ) = cdE0ηtf,

m̃(ε)| log ε|E0η
ε
t f = m̃(ε)| log ε|λd(pε

t f ) → tλd(ptf ) = E0ηtf,



2206 O. KALLENBERG

by dominated convergence based on Lemma 4.2 and Theorem 5.3. �

For the intensity measures in Theorem 7.1, we have even convergence in total
variation.

COROLLARY 7.2. Let ξ be a DW-process in R
d . Then for any t > 0 and

bounded μ, we have as ε → 0:

(i) ‖ε2−dEμξε
t − cdEμξt‖ → 0 for d ≥ 3,

(ii) ‖| log ε|Eμξε
t − m(ε)Eμξt‖ → 0 for d = 2.

The results remain true for the clusters ηt , and they also hold locally for ξt when-
ever ξ is locally finite under Pμ.

PROOF. The two conditions are equivalent to the statements∫
|ε2−dPμ{ξtB

ε
x > 0} − cd(μ ∗ pt)(x)|dx → 0,

∫ ∣∣| log ε|Pμ{ξtB
ε
x > 0} − m(ε)(μ ∗ pt)

∣∣dx → 0,

which are L1-versions of Theorem 5.3 and follow as before by dominated conver-
gence. �

8. Strong approximation for d ≥ 3. Here we prove that the distribution of a
DW-process of dimension d ≥ 3 admits a local approximation, in the sense of total
variation, by a stationary and self-similar pseudo-random measure ξ̃ . A related but
weaker result is mentioned without proof in [5], page 119, with reference to some
unpublished work with Iscoe.

For any B ∈ B̂d we write ‖ · ‖B for the total variation on the set HB =
{μ;μB > 0}, equipped with the σ -field HB generated by the restriction map
μ �→ 1B · μ.

THEOREM 8.1. For d ≥ 3, let the DW-process ξ in R
d be locally finite un-

der Pμ. Then there exists a pseudo-random measure ξ̃ on R
d such that:

(i) as ε → 0 for fixed B ∈ B̂d and t > 0,

‖ε2−dPμ{ε−2ξtSε ∈ ·} − μpt P̃ {ξ̃ ∈ ·}‖B → 0,

and similarly for the clusters ηt with pt replaced by tpt ,
(ii) for any r > 0 and a ∈ R

d ,

P̃ {ξ̃Srθa ∈ ·} = rd−2P̃ {r2ξ̃ ∈ ·}.
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PROOF. Fix any t > h > 0 and B ∈ B̂d , and consider any HB -measurable
function f ≥ 0 on Md with f ≤ 1HB

. Consider the process ζs of ancestors of
ξt at time s = t − h, and let ηi

h denote the associated h-clusters. As h → 0 and
r = ε/

√
h → 0, we have the following chain of relations, explained in further

detail below:

Eμf (ε−2ξtSε) = Eμf

(
ε−2

∑
i

ηi
hSε

)
≈ Eμ

∑
i

f (ε−2ηi
hSε)

=
∫

Exf (ε−2ηhSε)Eμζs(dx)

= h−1
∫

μ(dy)

∫
ps(x − y)Exf (ε−2ηhSε) dx

(12)
≈ h−1μpt

∫
Exf (ε−2ηhSε) dx

= h−1μpt

∫
Ex/

√
hf (hε−2η1Sε/

√
h) dx

= (ε/r)d−2μpt

∫
Exf (r−2η1Sr) dx.

Here the third relation holds by the conditional independence of the clusters, the
fourth relation holds since Eμζs = h−1Eμξs = h−1(μ ∗ ps) · λd , and the sixth
relation holds by Lemma 2.1.

To justify the first approximation in (12), define κε
h as in Lemma 4.4 and fix a

c > 0 with B ⊂ Bc
0 . Then the mentioned lemma yields

ε2−dEμ

∣∣∣∣∣f
(
ε−2

∑
i

ηi
hSε

)
− ∑

i

f (ε−2ηi
hSε)

∣∣∣∣∣
≤ ε2−dEμ[κcε

h ;κcε
h > 1](13)

<
�

ε2−d(cε)2(d−2)(h1−d/2μpt + (
μpt(cε)

)2)
<
�

rd−2 → 0.

The second approximation in (12) amounts to replacing ps(x − y) by pt(y) in
the inner integral. To estimate the resulting error, we note that by Lemma 4.2(i)

ε2−dh−1
∣∣∣∣
∫

μ(dy)

∫ (
ps(y − x) − pt(y)

)
Exf (ε−2ηhSε) dx

∣∣∣∣
<
�

∫
μ(dy)

∫
|ps(y − x) − pt(y)|ph(cε)(x) dx(14)

=
∫

μ(dy)E|ps(y − γ h1/2
cε ) − pt(y)|,

where hε = h + ε2 and γ denotes a standard normal random vector in R
d . As

ε2 ≤ h → 0, we get ps(y −γ h
1/2
ε ) → pt(y) a.s. by the joint continuity of (x, t) �→
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pt(x). Since also

Eps(y − γ h1/2
cε ) = (

ps ∗ ph(cε)

)
(y) = pt(cε)(y) → pt(y),

the last expectation in (14) tends to 0 by Lemma 1.32 in [13]. Finally, since

E|ps(y − γ h1/2
cε ) − pt(y)| ≤ pt(cε)(y) + pt(y) <

�
p2t (y),

where μp2t < ∞, the right-hand side of (14) tends to 0 by dominated convergence.
This proves that, as ε 	 r → 0 for fixed μ ∈ Md , B ∈ B̂d and t > 0,∥∥∥∥ε2−dPμ{ε−2ξtSε ∈ ·} − r2−dμpt

∫
Px{r−2η1Sr ∈ ·}dx

∥∥∥∥
B

→ 0.(15)

In particular, the first term on the left is uniformly Cauchy convergent on HB

as ε → 0. Hence, both terms converge as ε → 0 and r → 0, respectively, to a
common limit of the form μptϕB , where the set function ϕB on HB is independent
of μ and t . Thus,

‖ε2−dPμ{ε−2ξtSε ∈ ·} − μptϕB‖B → 0,(16)

where the uniformity of the convergence ensures that ϕB is a bounded measure on
(HB,HB).

Comparing the statements (16) for different sets B , we see that the ϕB are all
restrictions of a common set function ϕ on

⋃
B HB . We need to prove that ϕ can

be extended to a measure ϕ̂ on
⋃

B HB = {μ ∈ Md;μ �= 0} = M′
d , endowed with

the σ -field H = ∨
B HB generated by all projection maps μ �→ μB . Choosing

P̃ = ϕ̂ and letting ξ̃ denote the identity map on M′
d , we may then write (16) in the

form (i).
To construct ϕ̂, it is enough for every fixed B ∈ B̂d to form the restriction ϕ̂B of

ϕ̂ to HB with the trace σ -field HB ∩ H , since the measure ϕ̂ = supB ϕ̂B has then
the required properties. Writing S = Md and Sn = M(Bn

0 ), for all n satisfying
Bn

0 ⊃ B , we introduce the restriction maps πn :S → Sn and πn,k :Sn → Sk , n ≥ k.
Put ϕ′

n = ϕBn
0
(HB ∩·) and form the bounded measures ψn = ϕ′

n ◦π−1
n on Sn. Since

ψn ◦π−1
n,k = ψk for all n ≥ k, and since measures in Md are measurably determined

by their restrictions to the balls Bn
0 , there exists by Corollary 6.15 in [13] a measure

ψ on S with ψn = ψ ◦ π−1
n for all n. Since the ψn are restricted to HB , so is ψ ,

and we see that ϕ̂B = ψ has the desired properties.
To show that (i) remains true for the clusters ηt with pt replaced by tpt , we may

apply the first four relations in (12)—as justified by (13)—with h = t and s = 0,
to get as ε → 0 for fixed B ∈ B̂d

‖tε2−dPμ{ε−2ξ1Sε ∈ ·} − ε2−dPμ{ε−2ηtSε ∈ ·}‖B → 0.

The required convergence now follows from (i).
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To prove (ii), we may use the shift and semigroup properties of the operators Sx

and the shift invariance of λd to get, for any r, ε > 0 and a ∈ R
d ,

ε2−d
∫

Px{ε−2η1SεSrθa ∈ ·}dx = rd−2(rε)2−d
∫

Px{r2(rε)−2η1Srε ∈ ·}dx.

Letting ε → 0 for fixed r and applying the cluster version of (i) to each side, we
obtain (ii) on (HB,HB) for every B ∈ B̂d , and the general result follows by a
monotone class argument. �

The previous convergence extends to the associated Palm distributions, which
will be useful in the next section.

THEOREM 8.2. For d ≥ 3, let the DW-process ξ in R
d be locally finite un-

der Pμ, and let ξ̃ be such as in Theorem 8.1. Then Ẽξ̃ = λd , and we may introduce
the associated Palm distributions P 0

μ and P̃ 0. Letting ε → 0 for fixed B ∈ B̂d and
t > 0, we have

‖P 0
μ{ε−2ξtSε ∈ ·} − P̃ 0{ξ̃ ∈ ·}‖B → 0,

and similarly with ξt replaced by ηt .

PROOF. Noting that Eμξt = t−1Eμηt = (μ ∗ pt) · λd and using the continuity
in Lemma 3.2(iv), we get as ε → 0 for fixed B ∈ B̂d

ε−dEμξt (εB) = t−1ε−dEμηt (εB) → μptλ
dB.(17)

Using Lemma 3.3(i) above and Hint (2) in [26], page 239, we obtain

Varμ ξtB
ε
0 <

�
EμξtB

ε
0

∫ t

0
(εds−d/2 ∧ 1) ds

<
�

εdμptλ
dB1

0

(∫ ε2

0
ds + εd

∫ t

ε2
s−d/2 ds

)
<
�

εd+2μpt .

Combining with (17) and Theorem 5.3(i), we get

Eμ[(ε−2ξtB
ε
0)2|ξtB

ε
0 > 0] = (ε−2EμξtB

ε
0)2 + Varμ(ε−2ξtB

ε
0)

Pμ{ξtB
ε
0 > 0}

(18)

<
�

(εd−2μpt)
2 + εd−2μpt

εd−2μpt

<
�

1.

Next we see from Theorem 8.1(i) that, for B1
0 ⊂ B ∈ B̂d ,

‖Pμ[ε−2ξtSε ∈ ·|ξtB
ε
0 > 0] − P̃ [ξ̃ ∈ ·|ξ̃B1

0 > 0]‖B → 0.(19)
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By (18) the random variables ε−2ξtB
ε
0 are uniformly integrable, conditionally on

ξtB
ε
0 > 0. Hence, by a uniform version of Lemma 4.11 in [13], we may extend (19)

to

‖Eμ[ε−2ξtB
ε
0; ε−2ξtSε ∈ ·|ξtB

ε
0 > 0] − Ẽ[ξ̃B1

0 ; ξ̃ ∈ ·|ξ̃B1
0 > 0]‖B → 0.

Combining this with Theorem 8.1(i) yields

‖ε2−dEμ[ε−2ξtB
ε
0; ε−2ξtSε ∈ ·] − μptẼ[ξ̃B1

0 ; ξ̃ ∈ ·]‖B → 0.(20)

Since B1
0 ⊂ B , we see from (17) and (20) that

t−1ε−dEμηtB
ε
0 = ε−dEμξtB

ε
0 → μptẼξ̃B1

0 = μptλ
dB1

0 .(21)

Hence, by stationarity Ẽξ̃ = λd , which justifies the definition of P̃ 0. From (21)
and Theorem 8.1(i) we obtain

Eμ[ε−2ηtB
ε
0 |ηtB

ε
0 > 0] → Ẽ[ξ̃B1

0 |ξ̃B1
0 > 0],

‖Pμ[ε−2ηtSε ∈ ·|ηtB
ε
0 > 0] − P̃ [ξ̃ ∈ ·|ξ̃B1

0 > 0]‖B → 0.

By Lemma 4.11 of [13], now used in the opposite direction, we conclude that the
variables ε−2ηtB

ε
0 are uniformly integrable, conditionally on ηtB

ε
0 > 0. Hence, by

the uniform version of the same lemma

‖ε2−dEμ[ε−2ηtB
ε
0; ε−2ηtSε ∈ ·] − tμpt Ẽ[ξ̃B1

0 ; ξ̃ ∈ ·]‖B → 0.(22)

The asserted convergence now follows by Lemma 2.2, adapted to the case of
a pseudo-random limiting measure ξ̃ with P̃ {ξ̃B > 0} < ∞. Here conditions (i)
and (ii) hold by (20) and (22), and Lemma 3.5 yields (iii) for the shifted Palm
distributions of ξt and ηt , based on an arbitrary initial measure μ. �

9. Local invariance for d = 2. In two dimensions, the DW-process exhibits
a completely different local behavior. Here we show that the measures ξt at fixed
times t > 0 are then locally invariant in a number of different ways. It is interesting
to compare with the diffusive clustering discussed by Klenke [19].

THEOREM 9.1. Let the DW-process ξ in R
2 be locally finite under Pμ, and

define ρε
t = ξtB

ε
0/π and P ε

μ = Pμ[·|ρε
t > 0]. Then as ε → 0 for fixed t > 0, we

have:

(i) ξtSε/ρ
ε
t

d→ λ2 under P 0
μ,

(ii) Eε
μ|ξtSεf − ρε

t λ
2f |/Eε

μρε
t → 0 for all f ∈ C2

K ,

(iii) supp(ξtSε)
d→ R

2 under P ε
μ.

All statements remain true for the clusters ηt when ‖μ‖ = 1.
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Here (iii) means that P ε
μ{ξtSεB > 0} → 1 for all open sets B . From (i) we see

that supp(ξtSε)
d→ R

2 holds even under P 0
μ. Statement (ii) is substantial, since the

variables ρε
t are uniformly integrable under P ε

μ. However, it is not strong enough

to imply (iii), and it is not clear whether (ii) can be strengthened to ξtSε/ρ
ε
t

d→ λ2

under P ε
μ.

PROOF. We consider only ξt , the proof for ηt being similar.
(i) Here Lemma 3.4 yields

Eμ(ξtSεf − ρε
t λ

2f )2 	 ε4| log ε|μpt , f ∈ C2
K.(23)

Using Cauchy’s inequality and Lemma 4.2(ii), we get for fixed f ∈ C2
K and r ∈

(0,1)

Eμρrε
t |ξtSεf/ρε

t − λ2f | ≤ (
Eμ(ξtSεf − ρε

t λ
2f )2Pμ{ρε

t > 0})1/2

	 (ε4| log ε|μpt | log ε|−1μpt)
1/2(24)

= ε2μpt <
�

Eμρrε
t .

Now define

f +
r (x) = sup

|u|≤r

f (x + u), f −
r (x) = inf|x|≤r

f (x + u), x ∈ R
2, r > 0,

and note that

Eμρrε
t inf|x|≤rε

E0
μθx

(|ξtSεf/ρε
t − λ2f | ∧ 1)

≤
∫
|x|≤rε

Eμξt (dx)E0
μθ−x

|ξtSεf/ρε
t − λ2f |

≤ Eμρrε
t sup

|x|≤r

∣∣∣∣ξtSεθxf

ξtBε
εx

− λ2f

∣∣∣∣
≤ Eμρrε

t

∣∣∣∣ ξtSεf
+
r

ξtB
ε(1−r)
0

− λ2f +
r

(1 − r)2

∣∣∣∣ + Eμρrε
t

∣∣∣∣ ξtSεf
−
r

ξtB
ε(1+r)
0

− λ2f −
r

(1 + r)2

∣∣∣∣
+ Eμρrε

t λ2(
(1 − r)−2f +

r − (1 + r)−2f −
r

)
.

Dividing by Eμρrε
t and applying (24) to f ±

r , we get as ε → 0

lim sup
ε→0

E0
μ(|ξtSεf/ρε

t − λ2f | ∧ 1)

≤ sup
|x|≤rε

‖P 0
μ − P 0

μθx
‖C + λ2(

(1 − r)−2f +
r − (1 + r)−2f −

r

)
,
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for any neighborhood C of 0. Here both terms on the right tend to 0 as r → 0,
the former by Lemma 3.5 and the latter by the continuity of f and dominated
convergence. Hence,

ξtSεf/ρε
t

d→ λ2f under P 0
μ, f ∈ C2

K,

and (i) follows by Theorem 16.16 in [13].
(iii) Letting ε → 0 for fixed x ∈ R

d and r > 0, we get by Theorem 5.3(ii) and
Lemmas 3.2(iv) and 5.1

Pμ{ξtB
εr
εx > 0}

Pμ{ξtB
ε
0 > 0} ∼ m(rε)

m(ε)

| log ε|
| log(rε)|

(μ ∗ pt)(εx)

μpt

→ 1.

Keeping x and r fixed and choosing c > 0 with Br
x ⊂ Bc

0 , we get in particular
Pμ[ξtB

ε
0 > 0|ξtB

cε
0 > 0] → 1, and so as ε → 0

Pμ[ξtB
εr
εx > 0|ξtB

ε
0 > 0]

≥ Pμ{ξtB
εr
εx > 0}

Pμ{ξtB
ε
0 > 0} − Pμ({ξtB

ε
0 > 0}�{ξtB

cε
0 > 0})

Pμ{ξtB
ε
0 > 0} → 1.

The assertion follows since x and r were arbitrary.
(ii) For any f ∈ C2

K , we get by (23), (iii), Lemma 4.2(ii) and Jensen’s inequality

(Eε
μ|ξtSεf − ρε

t λ
2f |)2 ≤ Eε

μ(ξtSεf − ρε
t λ

2f )2

<
�

Eμ(ξtSεf − ρε
t λ

2f )2

Pμ{ρε
t > 0} 	 ε4| log ε|2.

Similarly, we see from Lemmas 3.2 and 4.2(ii) that

Eμρε
t = Eμρε

t

Pμ{ρε
t > 0} � ε2| log ε|.

The result follows by combination of these estimates. �

We may finally use the results of Section 8 to show that the local invariance
fails for d ≥ 3. The argument also shows that the main results of Section 8 have no
counterparts for d = 2.

PROPOSITION 9.2. For d ≥ 3, let the DW-process ξ in R
d be locally finite

under Pμ, and fix any t > 0. Letting ε → 0 and then h → 0, we have:

(i) Pμ[ξtSεB
h
x = 0|ξtB

ε
0 > 0] → 1 for all x ∈ R

d ,
(ii) P 0

μ{ξtSεB
h
x = 0} → 1 for all x �= 0 in R

d .
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PROOF. For any bounded initial measure μ on R
d , we have λd(supp ξt ) = 0

a.s., for example, by Theorem 7.1(i). Using Fubini’s theorem (to ensure measura-
bility) and Theorem 8.1(i), we get for any B ∈ B̂d

0 = ε2−dPμ{λd(εB ∩ supp ξt ) > 0}
→ μpt P̃ {λd(B ∩ supp ξ̃ ) > 0},

which implies λd(supp ξ̃ ) = 0 a.e. P̃ . By the stationarity of ξ̃ and the shift invari-
ance of the function λd(suppμ), the same property holds a.s. under P̃ 0.

Next, Fubini’s theorem yields P̃ 0{x ∈ supp ξ̃} = 0 for x ∈ R
d a.e. λd . In par-

ticular, we may choose an x �= 0 with x /∈ supp ξ̃ a.e. P̃ 0. By rotational symmetry
and scaling invariance, this remains true for every x �= 0. Since supp ξ̃ is closed,
Theorem 8.2 yields

lim
h→0

lim sup
ε→0

P 0
μ{ξtSεB

h
x > 0} = lim

h→0
P̃ 0{ξ̃Bh

x > 0} = 0,

proving (ii). Assertion (i) holds by a similar argument based on Theorem 8.1(i).
�
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