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CONCENTRATION INEQUALITIES FOR DEPENDENT RANDOM
VARIABLES VIA THE MARTINGALE METHOD

BY LEONID (ARYEH) KONTOROVICH1 AND KAVITA RAMANAN2

Weizmann Institute of Science and Carnegie Mellon University

The martingale method is used to establish concentration inequalities for
a class of dependent random sequences on a countable state space, with the
constants in the inequalities expressed in terms of certain mixing coefficients.
Along the way, bounds are obtained on martingale differences associated with
the random sequences, which may be of independent interest. As applications
of the main result, concentration inequalities are also derived for inhomoge-
neous Markov chains and hidden Markov chains, and an extremal property
associated with their martingale difference bounds is established. This work
complements and generalizes certain concentration inequalities obtained by
Marton and Samson, while also providing different proofs of some known
results.

1. Introduction.

1.1. Background. Concentration of measure is a fairly general phenomenon
which, roughly speaking, asserts that a function ϕ :� → R with “suitably small”
local oscillations defined on a “high-dimensional” probability space (�,F ,P),
almost always takes values that are “close” to the average (or median) value of ϕ on
�. Under various assumptions on the function ϕ and different choices of metrics,
this phenomenon has been quite extensively studied in the case when P is a product
measure on a product space (�,F ) or, equivalently, when ϕ is a function of a large
number of i.i.d. random variables (see, e.g., the surveys of Talagrand [29, 30],
Ledoux [17], McDiarmid [25] and references therein). Concentration inequalities
have found numerous applications in a variety of fields (see, e.g., [6, 25, 28]).

The situation is naturally far more complex for nonproduct measures, where
one can trivially construct examples where the concentration property fails. For
functions of dependent random variables (Xi)i∈N, the crux of the problem is often
to quantify and bound the dependence among the random variables Xi , in terms
of various types of mixing coefficients. A sufficiently rapid decay of the mixing
coefficients often allows one to establish concentration results [22, 23, 27].
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A number of techniques have been used to prove measure concentration. Among
these are isoperimetric inequalities and the induction method of Talagrand [29,
30], log-Sobolev inequalities developed by Ledoux and others [5, 16, 23, 27],
information-theoretic techniques [1, 9, 12, 19–21, 27], martingale methods based
on the Azuma–Hoeffding inequality [2, 11, 25, 8], transportation inequalities (see,
e.g., [10, 26]), and Stein’s method of exchangeable pairs, recently employed by
Chatterjee [7]. The information-theoretic approach has proved quite useful for
dealing with nonproduct measures. In a series of papers, Marton [19–23] success-
fully used these techniques to establish concentration inequalities for collections
of dependent random variables under various assumptions. In this work we adopt
a completely different approach, based on the martingale method, to establish con-
centration bounds for dependent random variables. In the process we establish
bounds on certain martingale differences, which may be of independent interest.

In the next subsection we provide a precise description of our main results and
discuss their relation to prior work. The subsequent subsections provide an outline
of the paper and collect some common notation that we use.

1.2. Description of main results. Consider a collection of random variables
(Xi)1≤i≤n taking values in a countable space S. Let F be the set of all subsets
of Sn and let P be the probability distribution induced by the finite sequence
X = (X1, . . . ,Xn) on (Sn,F ). Then we can (and will) assume without loss of
generality that Xi,1 ≤ i ≤ n, are the coordinate projections defined on the proba-
bility space (Sn,F ,P). Given 1 ≤ i < j ≤ n, xj

i is used to denote the subsequence

(xi, xi+1, . . . , xj ). Similarly, for 1 ≤ i < j ≤ n, X
j
i represents the random vector

(Xi, . . . ,Xj ). For further simplicity of notation, x
j
1 and X

j
1 will be sometimes

written simply as xj and Xj , respectively. Let Sn be equipped with the Hamming
metric d :Sn × Sn → [0,∞), defined by

d(x, y)
.=

n∑
i=1

1{xi �=yi}.

Also, let d̄(x, y)
.= d(x, y)/n denote the normalized Hamming metric on Sn. In

addition, let E denote expectation with respect to P. Given a function ϕ :Sn →
R, we will use the shorthand notation P{|ϕ − Eϕ| ≥ t} instead of P{|ϕ(X) −
E[ϕ(X)]| ≥ t}. Also, given two random variables Y and Z, L(Z | Y = y) denotes
the conditional distribution of Z given Y = y.

Our main result is a concentration inequality on the metric probability space
(Sn, d,P), which is expressed in terms of the following mixing coefficients. For
1 ≤ i < j ≤ n, define

η̄ij
.= sup

yi−1∈Si−1,w,ŵ∈S

P(Xi=Y i−1w)>0,P(Xi=Y i−1ŵ)>0

ηij (y
i−1,w, ŵ),(1.1)
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where, for yi−1 ∈ Si−1 and w, ŵ ∈ S,

ηij (y
i−1,w, ŵ)

.= ‖L(Xn
j | Xi = yi−1w) − L(Xn

j | Xi = yi−1ŵ)‖
TV

(1.2)

and ‖Q − R‖TV denotes the total variation distance between the probability mea-
sures Q and R [see (1.17) for a precise definition]. Moreover, let �n be the n × n

upper triangular matrix defined by

(�n)ij =
⎧⎨
⎩

1, if i = j ,
η̄ij , if i < j ,
0, otherwise.

Observe that the (usual �∞) operator norm of the matrix �n is given explicitly by

‖�n‖∞ = max
1≤i≤n

Hn,i,(1.3)

where, for 1 ≤ i ≤ n − 1,

Hn,i
.= (1 + η̄i,i+1 + · · · + η̄i,n)(1.4)

and Hn,n
.= 1.

We can now state the concentration result.

THEOREM 1.1. Suppose S is a countable space, F is the set of all subsets of
Sn, P is a probability measure on (Sn,F ) and ϕ :Sn → R is a c-Lipschitz function
(with respect to the Hamming metric) on Sn for some c > 0. Then for any t > 0,

P{|ϕ − Eϕ| ≥ t} ≤ 2 exp
(
− t2

2nc2‖�n‖2∞

)
.(1.5)

Theorem 1.1 follows from Theorem 2.1 and Remark 2.1. For the particular case
when (X1, . . . ,Xn) is a (possibly inhomogeneous) Markov chain, the bound in
Theorem 1.1 simplifies further. More precisely, given any initial probability dis-
tribution p0(·) and stochastic transition kernels pi(· | ·), 1 ≤ i ≤ n − 1, let the
probability measure P on Sn be defined by

P{(X1, . . . ,Xi) = x} = p0(x1)

i−1∏
j=1

pj (xj+1 | xj )(1.6)

for every 1 ≤ i ≤ n and every x = (x1, . . . , xi) ∈ Si . Moreover, let θi be the ith
contraction coefficient of the Markov chain:

θi
.= sup

x′,x′′∈S
‖pi(· | x′) − pi(· | x′′)‖TV(1.7)

for 1 ≤ i ≤ n − 1, and set

Mn
.= max

1≤i≤n−1
(1 + θi + θiθi+1 + · · · + θi · · · θn−1).(1.8)

Then we have the following result.
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THEOREM 1.2. Suppose P is the Markov measure on Sn described in (1.6),
and ϕ :Sn → R is a c-Lipschitz function with respect to the Hamming metric on
Sn for some c > 0. Then for any t > 0,

P{|ϕ − Eϕ| ≥ t} ≤ 2 exp
(
− t2

2nc2M2
n

)
,(1.9)

where Mn is given by (1.8). In addition, if ϕ is c-Lipschitz with respect to the
normalized Hamming metric, then

P{|ϕ − Eϕ| ≥ t} ≤ 2 exp
(
− nt2

2c2M2
n

)
.(1.10)

In particular, when

M
.= sup

n

M2
n

n
< ∞,(1.11)

the concentration bound (1.10) is dimension-independent.

Theorem 1.2 follows from Theorem 1.1 and the observation (proved in
Lemma 7.1) that ‖�n‖∞ ≤ Mn for any Markov measure P. In the special
case when P is a uniformly contracting Markov measure, satisfying θi ≤ θ < 1
for 1 ≤ i ≤ n − 1, we have Mn ≤ 1/(1 − θ) for every n and the dimension-
independence condition (1.11) of Theorem 1.2 also holds trivially. The constants
in the exponent of the upper bounds in (1.5) and (1.9) are not sharp—indeed, for
the independent case (i.e., when P is a product measure) it is known that a sharper
bound can be obtained by replacing n/2 by 2n (see [24] and [29]).

Another application of our technique yields a novel concentration inequality for
hidden Markov chains. Rather than state the (natural but somewhat long-winded)
definitions here, we defer them to Section 7. The key result (Theorem 7.1) is that
the mixing coefficients of a hidden Markov chain can be entirely controlled by the
contraction coefficients of the underlying Markov chain, and so the concentration
bound has the same form as (1.10). The latter result is at least somewhat surprising,
as this relationship fails for arbitrary hidden-observed process pairs.

For the purpose of comparison with prior results, it will be useful to derive some
simple consequences of Theorem 1.1. If ϕ is a 1-Lipschitz function with respect to
the normalized Hamming metric, then it is a 1/n-Lipschitz function with respect
to the regular Hamming metric, and so it follows from Theorem 1.1 that

P{|ϕ − Eϕ| ≥ t} ≤ α(t),(1.12)

where, for t > 0,

α(t)
.= 2 exp

(
− nt2

2‖�n‖2∞

)
.(1.13)
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In turn, this immediately implies the following concentration inequality for any
median mϕ of ϕ: for t > ‖�n‖∞

√
(2 ln 4)/n,

P{|ϕ(X) − mϕ| ≥ t} ≤ 2 exp
(
−n

2

(
t

‖�n‖∞
−

√
2 ln 4

n

)2)
.(1.14)

Indeed, this is a direct consequence of the fact (stated, as Proposition 1.8 of [17])
that if (1.12) holds, then the left-hand side of (1.14) is bounded by α(t − t0),
where t0

.= α−1(1/2). In addition (see, e.g., Proposition 3 of [17]), this also shows
that αP(·) = α(· − t0)/2 acts as a concentration function for the measure P on Sn

equipped with the normalized Hamming metric: in other words, for any set A ⊂ Sn

with P(A) ≥ 1/2 and t > t0,

P(At ) ≥ 1 − 1
2α(t − t0),(1.15)

where At = {y ∈ Sn : d̄(y, x) ≤ t for some x ∈ A} is the t-fattening of A with re-
spect to the normalized Hamming metric.

The above theorems complement the results of Marton [20–22] and Samson
[27]. Theorem 1 of Marton [22] (combined with Lemma 1 of [21] and the com-
ment after Proposition 4 of [20]) shows that when S is a complete, separable metric
space, equipped with the normalized Hamming distance d̄ , for any Lipschitz func-
tion with ‖ϕ‖Lip ≤ 1, the relation (1.15) holds with t0 = C

√
(ln 2)/2n and

α(t)
.= 2 exp

(
−2nt2

C2

)
,

where

C
.= max

1≤i≤n
sup

y∈Si−1,w̄,ŵ∈S

inf
π∈Mi (y,w̄,ŵ)

Eπ [d̄(X̄n, X̂n)],

with Mi (y, w̄, ŵ) being the set of probability measures π = L(X̄n, X̂n) on
Sn × Sn, whose marginals are L(Xn | Xi = yw̄) and L(Xn | Xi = yŵ), respec-
tively. Moreover, concentration inequalities around the median that are qualita-
tively similar to the one obtained in Theorem 1.2 were obtained for strictly con-
tracting Markov chains in [20] (see Proposition 1) and for a class of stationary
Markov processes in [21] (see Proposition 4′). On the other hand, our result in
Theorem 1.2 is applicable to a broader class of Markov chains, which could be
nonstationary and not necessarily uniformly contracting.

The mixing coefficients η̄ij defined in (1.1) also arise in the work of Samson,
who derived concentration bounds for dependent random variables, but in a dif-
ferent space with a different metric, and for a more restrictive class of functions.
Specifically, for the case when S = [0,1], equipped with the Euclidean metric, it
was shown in Samson [27] that if a function ϕ : Sn → R is convex with Lipschitz
constant ‖ϕ‖Lip ≤ 1, then

P{|ϕ − Eϕ| ≥ t} ≤ 2 exp
(
− t2

2‖
‖2
2

)
,
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where ‖
‖2 is the usual �2 operator norm of the upper-triangular n × n matrix 


of the form


ij
.=

⎧⎨
⎩

1, if j = i,
(η̄ij )

1/2, if i < j ,
0, otherwise.

The results of both Marton and Samson cited above were obtained using a com-
bination of information-theoretic and coupling techniques, as well as the duality
method of [4]. In contrast, in this paper we adopt a completely different approach,
based on the martingale method (described in Section 2) and a linear algebraic
perspective, thus also providing alternative proofs of some known results.

The concentration inequality in Theorem 1.1 was obtained almost contempora-
neously with the publication of [8], whose coupling matrix Dσ is a close analogue
of our �n. We derive essentially the same martingale difference bound as Cha-
zottes et al. by a rather different method—they employ a coupling argument while
we rely on the linear programming inequality in Theorem 4.1. The latter is proved
in greater generality (for weighted Hamming metrics), and in a much simpler way,
in Kontorovich’s Ph.D. thesis [15].

1.3. Outline of paper. In Section 1.4 we summarize some basic notation used
throughout the paper. In Section 2, we set up the basic machinery for applying
the martingale method, or equivalently the method of bounded differences, to our
problem. In particular, as stated precisely in Theorem 2.1, this reduces the proof of
Theorem 1.1 to showing that certain martingale differences Vi(ϕ;y), 1 ≤ i ≤ n−1,
associated with the measure P on Sn are uniformly bounded by the �∞ opera-
tor norm of the matrix �n of mixing coefficients. Sections 3–5 are devoted to
establishing these bounds when S is finite. The proof uses linear algebraic tech-
niques and establishes a functional inequality that may be of independent interest.
Section 6 then uses an approximation argument to extend the bounds to the case
when S is countable. As applications of the main result, Section 7.1 considers
the case when P is a (possibly inhomogeneous) Markov measure, and Section 7.2
performs a similar calculation for measures induced by hidden Markov chains.
Specifically, Lemma 7.1 establishes the bound ‖�n‖∞ ≤ Mn, which then allows
Theorem 1.2 to be deduced immediately from Theorem 1.1. Finally, in Section 7.3
we describe a class of extremal functions for martingale differences associated
with Markov measures. Some lemmas not central to the paper are collected in the
Appendix.

1.4. Notation and definitions. In addition to the notation introduced in Sec-
tion 1.2, we shall use the following common notation throughout the paper. Given
a finite or countable set S and finite sequences x ∈ Sk and y ∈ S�, we use ei-
ther xy ∈ Sk+� or [x y] ∈ Sk+� to denote concatenation of the two sequences. The
space S0 represents the null string. Also, we will use the shorthand notation

∑
x

j
i

to
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mean
∑

x
j
i ∈Sj−i+1 . The random variables X = (X1, . . . ,Xn) defined on (Sn,F ,P)

will always represent coordinate projections: Xi(x) = xi . Therefore for concise-
ness, we will sometimes simply write P(x) and P(xn

j | xi) to denote P{X = x}
and P{Xn

j = xn
j | Xi = xi}, respectively. As in (1.1), we will always assume (of-

ten without explicitmention) that terms involving conditional probabilities are re-
stricted to elements for which the probability of the conditioned event is strictly
positive.

The indicator variable 1{·} takes on the value 1 if the predicate in the bracket
{·} is true, and 0 otherwise. The sign function is defined by sgn(z) = 1{z>0} −
1{z≤0} and the positive function is defined by (z)+ = max(z,0) = z1{z>0}. We use
the standard convention that

∑
z∈A z = 0 and

∏
z∈A z = 1 whenever A is empty

(A = ∅).
Throughout the paper, Kn denotes the space of all functions κ :Sn → R (for

finite S) and 
n ⊂ Kn the subset of 1-Lipschitz functions ϕ :Sn → [0, n].
For a discrete, signed measure space (X,B, ν), recall that the �1 norm is given

by

‖ν‖1 = ∑
x∈X

|ν(x)|.(1.16)

Given two probability measures ν1, ν2 on the measurable space (X,B), we define
the total variation distance between the two measures as follows:

‖ν1 − ν2‖TV = sup
A∈B

|ν1(A) − ν2(A)|(1.17)

(which, by common convention, is equal to half the total variation of the signed
measure ν1 − ν2). It is easy to see that in this case,

‖ν1 − ν2‖TV = 1
2‖ν1 − ν2‖1 = ∑

x∈X

(
ν1(x) − ν2(x)

)
+.(1.18)

2. Method of bounded martingale differences. Since our proof relies on the
so-called martingale method of establishing concentration inequalities, here we
briefly introduce the method (see [24, 25] or Section 4.1 of [17] for more thorough
treatments). Let X = (Xi)1≤i≤n be a collection of random variables defined on a
probability space (�,F ,P), taking values in a space S. Then given any filtration
of sub-σ -algebras,

{∅,�} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F ,

and a function ϕ :Sn → R, define the associated martingale differences by

Vi(ϕ) = E[ϕ(X) | Fi] − E[ϕ(X) | Fi−1](2.1)

for i = 1, . . . , n. It is a classical result, going back to Hoeffding [11] and Azuma
[2], that

P{|ϕ − Eϕ| ≥ r} ≤ 2 exp(−r2/2D2)(2.2)
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for any D such that D2 ≥ ∑n
i=1 ‖Vi(ϕ)‖2∞.

In the setting of this paper, we have (�,F ,P) = (Sn,F ,P), where S is a count-
able set, F is the set of all subsets of Sn and X = (Xi)1≤i≤n is the collection of
coordinate projections. For i = 1, . . . , n, we set F0

.= {∅,Sn}, Fn
.= F and for

1 ≤ i ≤ n − 1, let Fi be the σ -algebra generated by Xi = (X1, . . . ,Xi). Given any
function ϕ on Sn, for 1 ≤ i ≤ n, define the martingale differences Vi(ϕ) in the
standard way, by (2.1).

The following theorem shows that when ϕ is Lipschitz, these martingale differ-
ences can be bounded in terms of the mixing coefficients defined in Section 1.2.
The proof of the theorem is given in Section 6.

THEOREM 2.1. If S is a countable set and P is a probability measure on
(Sn,F ) such that mini=1,...,n infyi∈Si : P(Xi=yi)>0 P(Xi = yi) > 0, then for any 1-
Lipschitz function ϕ on Sn, we have for 1 ≤ i ≤ n,

‖Vi(ϕ)‖∞ ≤ Hn,i = 1 +
n∑

j=i+1

η̄ij ,(2.3)

where {Vi(ϕ)} are the martingale differences defined in (2.1) and the coefficients
η̄ij and Hn,i are as defined in (1.1) and (1.4), respectively.

REMARK 2.1. Since ‖Vi(·)‖∞ is homogeneous in the sense that ‖Vi(aϕ)‖∞ =
a‖Vi(ϕ)‖∞ for a > 0, and a−1ϕ is 1-Lipschitz whenever ϕ is a-Lipschitz, Theo-
rem 2.1 implies that for 1 ≤ i ≤ n,

‖Vi(ϕ)‖∞ ≤ cHn,i

for any c-Lipschitz ϕ. Along with the relation (1.3), this shows that

n∑
i=1

‖Vi(ϕ)‖2∞ ≤ n max
1≤i≤n

‖Vi(ϕ)‖2∞ ≤ nc2 max
1≤i≤n

H 2
n,i = nc2‖�n‖2∞.

When combined with Azuma’s inequality (2.2), this shows that Theorem 2.1 im-
plies Theorem 1.1.

REMARK 2.2. The quantity Vi(·) is translation-invariant in the sense that
Vi(ϕ+a) = Vi(ϕ) for every a ∈ R. Since the length of the range of any 1-Lipschitz
function on Sn is equal to n, the Hamming diameter of Sn, for the proof of Theo-
rem 2.1 there is no loss of generality in assuming that the range of ϕ lies in [0, n].

3. A linear programming bound for martingale differences. In the next
three sections, we prove Theorem 2.1 under the assumption that S is finite. We
start by obtaining a slightly more tractable form for the martingale difference.



2134 L. (A.) KONTOROVICH AND K. RAMANAN

LEMMA 3.1. Given a probability measure P on (Sn,F ) and any function
ϕ :Sn → R, let the martingale differences {Vi(ϕ),1 ≤ i ≤ n} be defined as in (2.1).
Then, for 1 ≤ i ≤ n,

‖Vi(ϕ)‖∞ ≤ max
yi−1∈Si−1,w,ŵ∈S

P(Xi=Y i−1w)>0,P(Xi=Y i−1ŵ)>0

|V̂i(ϕ;yi−1,w, ŵ)|,

where, for yi−1 ∈ Si−1 and w, ŵ ∈ S,

V̂i(ϕ;yi−1,w, ŵ)
.= E[ϕ(X) | Xi = yi−1w] − E[ϕ(X) | Xi = yi−1ŵ].(3.1)

PROOF. Since Vi(ϕ) is Fi -measurable and Fi = σ(Xi), it follows immedi-
ately that

‖Vi(ϕ)‖∞ = max
zi∈Si

|Vi(ϕ; zi)|,(3.2)

where for 1 ≤ i ≤ n and zi ∈ Si , we define

Vi(ϕ; zi) = E[ϕ(X) | Xi = zi] − E[ϕ(X) | Xi−1 = zi−1].(3.3)

Expanding Vi(ϕ; zi), we obtain

Vi(ϕ; zi)

= E[ϕ(X) | Xi = zi] − ∑
ŵ∈S

E[ϕ(X) | Xi = zi−1ŵ]P(zi−1ŵ | zi−1)

= ∑
ŵ∈S

P(zi−1ŵ | zi−1)
(
E[ϕ(X) | Xi = zi] − E[ϕ(X) | Xi = zi−1ŵ])

= ∑
ŵ∈S

P(zi−1ŵ | zi−1)V̂i(ϕ; zi−1, zi, ŵ),

where the second equality uses the fact that
∑

ŵ∈S P(zi−1ŵ | zi−1) = 1 with, as
usual, P(zi−1ŵ | zi−1) representing P{Xi = zi−1ŵ | Xi−1 = zi−1}. In turn, since
0 ≤ P(zi−1ŵ | zi−1) ≤ 1, the last display implies (via Jensen’s inequality) that for
every zi ∈ Si ,

|Vi(ϕ; zi)| ≤ ∑
ŵ∈S

P(zi−1ŵ | zi−1)|V̂i(ϕ; zi−1, zi, ŵ)| ≤ max
ŵ∈S

|V̂i(ϕ; zi−1, zi, ŵ)|.

Taking the maximum of both sides over zi ∈ Si and invoking (3.2), the desired
inequality is obtained. �

For n ∈ N, define the finite-dimensional vector space

Kn
.= {κ :Sn → R}(3.4)
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which becomes a Euclidean space when endowed with the inner product

〈κ,λ〉 .= ∑
x∈Sn

κ(x)λ(x).(3.5)

Also, let K0 be the collection of scalars.
Now, note that for yn−1 ∈ Sn−1 and w, ŵ ∈ S,

V̂n(ϕ;yn−1,w, ŵ) = ϕ(yn−1w) − ϕ(yn−1ŵ),

and thus for all 1-Lipschitz functions ϕ, the bound

|V̂n(ϕ;yn−1,w, ŵ)| ≤ 1 = Hn,n(3.6)

holds immediately. On the other hand, given 1 ≤ i ≤ n − 1, yi−1 ∈ Si−1 and
w, ŵ ∈ S, the map ϕ �→ V̂i(ϕ;yi−1,w, ŵ) defined in (3.1) is clearly a linear func-
tional on Kn. It therefore admits a representation as an inner product with some
element κ = κ[yi−1,w, ŵ] ∈ Kn (where the notation [·] is used to emphasize the
dependence of the function κ ∈ Kn on yi−1,w and ŵ):

V̂i(ϕ;yi−1,w, ŵ) = 〈κ,ϕ〉.(3.7)

Indeed, expanding (3.1), it is easy to see that the precise form of κ = κ[yi−1,w, ŵ]
is given by

κ(x) = 1{xi=yi−1w}P(xn
i+1 | yi−1w) − 1{xi=yi−1ŵ}P(xn

i+1 | yi−1ŵ)(3.8)

for x ∈ Sn.
Define 
n ⊂ Kn to be the subset of 1-Lipschitz functions (with respect to the

Hamming metric) with range in [0, n]. As observed in Remark 2.2, in order to
prove Theorem 2.1, it suffices to establish the martingale difference bounds (2.3)
just for ϕ ∈ 
n. In light of Lemma 3.1 and the representation (3.7), it is therefore
natural to study the quantity

‖κ‖
 = max
ϕ∈
n

|〈κ,ϕ〉|(3.9)

for κ ∈ Kn. The notation used reflects the fact that ‖ · ‖
 defines a norm on Kn.
Since we will not be appealing to any properties of norms, we relegate the proof
of this fact to Appendix A.1.

REMARK 3.2. The title of this section is motivated by the fact that the op-
timization problem maxϕ∈
n〈κ,ϕ〉 is a linear program. Indeed, f (·) = 〈κ, ·〉 is a
linear function and 
n is a finitely generated, compact, convex polytope. We make
no use of this simple fact in our proofs and therefore do not prove it, but see
Lemma 4.4 for a proof of a closely related claim.
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4. A bound on the �-norm. In Section 3 we motivated the introduction of
the norm ‖ · ‖
 on the space Kn. In this section we bound ‖ · ‖
 by another, more
tractable, norm, which we call the �-norm. In Section 5 we then bound the �-
norm in terms of the coefficients Hn,i .

For n ∈ N, define the marginal projection operator (·)′, which takes κ ∈ Kn to
κ ′ ∈ Kn−1 as follows: if n > 1, for each y ∈ Sn−1,

κ ′(y)
.= ∑

x1∈S

κ(x1y);(4.1)

if n = 1, then κ ′ is the scalar

κ ′ = ∑
x1∈S

κ(x1).

We define the Positive-Summation-Iterated (Psi) functional �n :Kn → R recur-
sively using projections: �0(·) = 0 and for n ≥ 1,

�n(κ)
.= ∑

x∈Sn

(κ(x))+ + �n−1(κ
′),(4.2)

where we recall that (z)+ = max(z,0) is the positive part of z. The norm associated
with �n is then defined to be

‖κ‖�
.= max

s∈{−1,1}�n(sκ).(4.3)

As in the case of ‖ · ‖
, it is easily verified that ‖ · ‖� is a valid norm on Kn (see
Lemma A.1).

The next theorem is the main result of this section.

THEOREM 4.1. For all n ∈ N and κ ∈ Kn,

‖κ‖
 ≤ ‖κ‖�.

The remainder of the section is devoted to proving this theorem. See Kon-
torovich’s Ph.D. thesis [15] for a considerably simpler proof of a more general
claim (which covers the weighted Hamming metrics).

REMARK 4.2. We will assume for simplicity that z �= 0 whenever expressions
of the form sgn(z) or 1{z>0} are encountered below. This incurs no loss of general-
ity [the inequalities proved for this special case will hold in general by continuity
of (·)+] and affords us a slightly cleaner exposition, obviating the need to check
the z = 0 case.

First, we need to introduce a bit more notation. For n ∈ N and y ∈ S, define the
y-section operator (·)y :Kn → Kn−1 that takes κ to κy by

κy(x)
.= κ(xy)(4.4)
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for x ∈ Sn−1. By convention, for n = 1 and x ∈ S0, κy(x) is equal to the scalar
κy = κ(y).

Note that for any y ∈ S, the marginal projection and y-section operators com-
mute; in other words, for κ ∈ Kn+2, we have (κ ′)y = (κy)

′ ∈ Kn and so we can
denote this common value simply by κ ′

y ∈ Kn: for each z ∈ Sn,

κ ′
y(z) = ∑

x1∈S

κy(x1z) = ∑
x1∈S

κ(x1zy).(4.5)

Moreover, summing both sides of the first equality in (4.5) over z ∈ Sn, we obtain∑
z∈Sn

κ ′
y(z) = ∑

z∈Sn

∑
x1∈S

κy(x1z) = ∑
x∈Sn+1

κy(x).(4.6)

We can use y-sections to recast the �n(·) functional in an alternative form:

LEMMA 4.3. For all n ≥ 0 and κ ∈ Kn+1, we have

�n+1(κ) = ∑
y∈S

[
�n(κy) +

( ∑
x∈Sn

κy(x)

)
+

]
.(4.7)

PROOF. Suppose n = 0. Then for κ ∈ K1, κy ∈ K0 is the scalar κ(y),
�0(κy) = 0 by definition and S0 consists of just one element (the null string).
Thus the r.h.s. of (4.7) becomes

∑
y∈S(κ(y))+, which by definition [see (4.2)] is

equal to �1(κ). So the claim holds for n = 0.
Now suppose (4.7) holds for n = 0, . . . ,N for some N ≥ 0. In order to prove

the claim for n = N + 1, we pick any λ ∈ KN+2 and observe that

∑
y∈S

[
�N+1(λy) +

( ∑
x∈SN+1

λy(x)

)
+

]

= ∑
y∈S

[(
�N(λ′

y) + ∑
x∈SN+1

(λy(x))+
)

+
( ∑

x∈SN+1

λy(x)

)
+

]
(4.8)

= ∑
y∈S

[
�N(λ′

y) +
( ∑

u∈SN

λ′
y(u)

)
+

]
+ ∑

z∈SN+2

(λ(z))+

where the first equality results from the definition of �n in (4.2) and the second
equality uses the trivial identity∑

y∈S

∑
x∈SN+1

(λy(x))+ = ∑
z∈SN+2

(λ(z))+

and the relation (4.6) (with κ replaced by λ and n by N ).
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On the other hand, by the definition given in (4.2) we have

�N+2(λ) = ∑
z∈SN+2

(λ(z))+ + �N+1(λ
′).(4.9)

To compare the r.h.s. of (4.8) with the r.h.s. of (4.9), note that the term∑
z∈SN+2(λ(z))+ is common to both sides and, since (4.7) is satisfied with n = N

by the inductive hypothesis, the remaining two terms are also equal:

�N+1(λ
′) = ∑

y∈S

[
�N(λ′

y) +
( ∑

u∈SN

λ′
y(u)

)
+

]
.

This establishes (4.7) for n = N + 1 and the lemma follows by induction. �

We will need one more definition to facilitate the main proof. Fix a function
κ ∈ Kn and consider some properties that any other function α ∈ Kn might have
relative to κ :

(SL1) for all x ∈ Sn,

0 ≤ α(x) ≤ n − 1{κ(x)>0}
(SL1′) for all x ∈ Sn,

0 ≤ α(x) ≤ n − 1{κ(x)>0} + 1
(SL2) for all x, y ∈ Sn,

sgnκ(x) = sgnκ(y) �⇒ |α(x) − α(y)| ≤ d(x, y)

(SL3) for all x, y ∈ Sn with d(x, y) = 1,

sgnκ(x) > sgnκ(y) �⇒ α(x) ≤ α(y) ≤ α(x) + 2

We define An(κ) to be the set of α ∈ Kn that satisfy (SL1), (SL2) and (SL3).
Similarly, we write Bn(κ) to denote the set of all β ∈ Kn that satisfy (SL1′),
(SL2) and (SL3). (A possible descriptive name for these objects is “sub-Lipschitz
polytopes”—hence the letters SL.)

The following is almost an immediate observation.

LEMMA 4.4. For n ∈ N and κ ∈ Kn, the following two properties hold:

(a) An(κ) and Bn(κ) are compact, convex polytopes in [0, n + 1]Sn
;

(b) for all y ∈ S,

κα ∈ An(κ) �⇒ αy ∈ Bn−1(κy).(4.10)

PROOF. Property (a) is verified by checking that each of (SL1), (SL1′), (SL2)
and (SL3) is closed under convex combinations. To verify property (b), fix y ∈
S and choose α ∈ An(κ). Using the definition αy(x) = α(xy) and the fact that
d(x, z) = d(xy, zy) for x, z ∈ Sn−1, it is straightforward to check that the fact that
α satisfies (SL2) [resp., (SL3)] relative to κ implies that αy also satisfies the same
property relative to κy . Moreover, since

n − 1{κ(x)>0} = (n − 1) − 1{κ(x)>0} + 1,



CONCENTRATION INEQUALITIES FOR DEPENDENT VARIABLES 2139

the fact that α satisfies (SL1) relative to κ implies that αy satisfies (SL1′) relative
to κy . This proves property (b) and hence the lemma. �

We will also need the following simple fact about Bn(κ) [which, in fact, also
holds for An(κ)].

LEMMA 4.5. For n ∈ N and any κ ∈ Kn, if β̂ is an extreme point of Bn(κ),
then β̂(x) is an integer between 0 and n + 1 for every x ∈ Sn [in other words,
β̂ ∈ Bn(κ) ∩ ZSn

+ ].

PROOF. Fix n ∈ N and κ ∈ Kn. We will establish the lemma using an argu-
ment by contradiction. Suppose that Bn(κ) has an extreme point β that takes on
a noninteger value for some x ∈ Sn. Let E ⊆ Sn be the set of elements of Sn on
which β is not an integer:

E
.= {x ∈ Sn :β(x) /∈ N}.

Define β+
ε by

β+
ε (x)

.= β(x) + ε1{x∈E},(4.11)

and similarly

β−
ε (x)

.= β(x) − ε1{x∈E},(4.12)

where ε ∈ (0,1/2) is chosen small enough to satisfy

�β(x)� ≤ β̄(x) ≤ �β(x)�,(4.13)

for β̃ = β−
ε and β̃ = β+

ε and

β(x) < β(y) �⇒ β(x) + ε < β(y)(4.14)

for all x, y ∈ Sn (such a choice of ε is feasible because Sn is a finite set).
We claim that β+

ε ∈ Bn(κ). If x /∈ E, then β+
ε (x) = β−

ε (x) = β(x). On the other
hand, if x ∈ E, then (SL1′) must hold with strict inequalities:

0 < β(x) < n − 1{κ(x)>0} + 1.

Together with the condition (4.13), this ensures that β+
ε and β−

ε also satisfy (SL1′).
Similarly, the relation (4.14) can be used to infer that β+

ε and β−
ε satisfy (SL3).

It only remains to verify (SL2). First observe that β+
ε (x) − β+

ε (y) = β(x) − β(y)

whenever {x, y} ⊆ E, {x, y} ⊆ Ec. Thus to prove (SL2), by symmetry it suffices
to only consider x, y ∈ Sn such that sgnκ(x) = sgnκ(y), x ∈ E and y /∈ E. In this
case, we have β(x) �= β(y) and

β+
ε (x) − β+

ε (y) = β(x) − β(y) + ε.(4.15)

If β(x) < β(y), then (4.14) and the fact that β satisfies (SL2) show that

−d(x, y) ≤ ε − d(x, y) ≤ β(x) − β(y) + ε < 0.
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The last two displays, together, show that then β+
ε satisfies (SL2). On the other

hand, suppose β(x) > β(y). Since d(·, ·) is the Hamming metric and x �= y,
d(x, y) is an integer greater than or equal to 1. Moreover, β(y) is also an inte-
ger since y /∈ E. Together with the fact that β satisfies (SL2) this implies that
β(x) < β(y) + d(x, y). Therefore, since S is finite, by choosing ε > 0 smaller if
necessary, one can assume that β+

ε (x) ≤ β+
ε (y) + d(x, y). When combined with

the elementary inequality β+
ε (x) − β+

ε (y) = β(x) + ε − β(y) > 0, this proves that
β+

ε satisfies (SL2). The argument for β−
ε is analogous and thus omitted.

However, having proved that β−
ε , β+

ε ∈ Bn(κ), we now see that β = 1
2β+

ε + 1
2β−

ε

is a strict convex combination of two elements of Bn(κ), which contradicts the fact
that it is an extreme point of this set. �

Let us observe that An(κ) ⊂ Bn(κ). More importantly, we will utilize the struc-
tural relationship between An and Bn stated in the next lemma.

LEMMA 4.6. Let κ ∈ Kn be given. For any β ∈ Bn(κ) there is an α ∈ An(κ)

such that

〈κ,β〉 ≤
( ∑

x∈Sn

κ(x)

)
+

+ 〈κ,α〉.(4.16)

PROOF. Fix κ ∈ Kn throughout the proof. Since we are trying to bound
〈κ,β〉 for β ∈ Bn(κ) and linear functions achieve their maxima on the extreme
points of convex sets, and An(κ) is convex, it suffices to establish (4.16) only for β

that are extreme points of Bn(κ). By Lemma 4.5, this implies that β ∈ Bn(κ)∩ZSn

+ .
If, in addition, β ∈ An(κ), the statement of the lemma is trivial; so we need only
consider

β ∈ (
Bn(κ) \ An(κ)

) ∩ ZSn

+ .(4.17)

For β satisfying (4.17), define α by

α(x)
.= (

β(x) − 1
)
+ for x ∈ Sn.(4.18)

We first claim that α ∈ An(κ). To see why this is true, first observe that the fact
that β satisfies (SL1′) immediately implies that α satisfies (SL1). Moreover, for
x, y ∈ Sn, if β(x) ≤ 1, β(y) ≤ 1, then α(x) − α(y) = 0; if β(x) > 1, β(y) > 1,
then α(x) − α(y) = β(x) − β(y); if β(x) ≤ 1, β(y) > 1, then

0 ≥ α(x) − α(y) = −β(y) + 1 ≥ β(x) − β(y),

with an analogous relation holding if β(x) > 1, β(y) ≤ 1.

Combining the above relations with the fact that β satisfies properties (SL2)
and (SL3), it is straightforward to see that α also satisfies the same properties.
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Having shown that α ∈ An(κ), we will now show that α satisfies (4.16). Proving
(4.16) is equivalent to showing that

〈κ, δ〉 = ∑
x∈Sn

κ(x)δ(x) ≤
( ∑

x∈Sn

κ(x)

)
+

(4.19)

where δ(x) = β(x) − α(x) = 1{β(x)≥1}. To this end, we claim (and justify below)
that for β satisfying (4.17) and for δ defined as above, we have for all z ∈ Sn

κ(z) < 0 �⇒ δ(z) = 1;(4.20)

the relation (4.19) then easily follows from (4.20).
Suppose, to get a contradiction, that (4.20) fails; this means that there exists a

z ∈ Sn such that

κ(z) < 0, β(z) = 0.(4.21)

Recall that by assumption, β /∈ An(κ); since β ∈ Bn(κ), this can only happen if β

violates (SL1), which can occur in one of only two ways:

(i) β(y) = n + 1 for some y ∈ Sn with κ(y) ≤ 0;
(ii) β(y) = n for some y ∈ Sn with κ(y) > 0.

We can use (4.21) to rule out the occurrence of (i) right away. Indeed, in this case
(4.21) and (i) imply that

β(y) − β(z) = n + 1 − 0 > n ≥ d(y, z).

Since sgnκ(y) = sgnκ(z) = −1, this means β does not satisfy (SL2), which leads
to a contradiction.

On the other hand, suppose (ii) holds. Let x(0) = z [where z satisfies (4.21)],
x(r) = y and let {x(i)}r−1

i=0 ⊂ Sn be such that d(x(i), x(i+1)) = 1. Note that we
can always choose r ≤ n because the diameter of Sn is no greater than n. Let
f (i) = β(x(i)); thus f (0) = 0 and f (r) = n. We say that a “sign change” oc-
curs on the ithstep if sgnκ(x(i)) �= sgnκ(x(i+1)); we call this sign change posi-
tive if sgnκ(x(i)) < sgnκ(x(i+1)) and negative otherwise. Since κ(x(0)) < 0 and
κ(x(r)) > 0 there must be an odd number of sign changes; furthermore, the number
of positive sign changes exceeds the number of negative ones by 1. The fact that β

satisfies property (SL3) implies that f cannot increase on a positive sign change
and can increase by at most 2 on a negative sign change. Moreover, since β also
satisfies (SL2), we know that the value of f can change by at most 1 when there
is no sign change. This means that after r steps, f can increase by at most r − 1,
contradicting the fact that f (0) = 0 and f (r) = n, as implied by (ii), and r ≤ n.
This establishes the claim (4.20) and hence completes the proof of the lemma. �

We need one more lemma before we can state the main result.
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LEMMA 4.7. For n ∈ N, for every κ ∈ Kn and every α ∈ An(κ), we have

〈κ,α〉 ≤ �n−1(κ
′).(4.22)

PROOF. Fix n ∈ N and κ ∈ Kn. Then for any α ∈ An(κ), we prove the relation
(4.22) by induction. For n = 1, property (SL1) dictates that 0 ≤ α(x) ≤ 1{κ(x)≤0},
and so

〈κ,α〉 = ∑
x∈S : κ(x)<0

κ(x)α(x) ≤ 0 = �0(κ
′).

[Recall that by definition �0(·) = 0.] Now suppose that, for some j ≥ 1 and n =
j , (4.22) holds for all κ ∈ Kn and all α ∈ An(κ). Pick any λ ∈ Kj+1 and any
α ∈ Aj+1(λ) and decompose

〈λ,α〉 = ∑
y∈S

〈λy,αy〉.(4.23)

By property (b) of Lemma 4.4, for all y ∈ S, α ∈ Aj+1(λ) implies αy ∈ Bj(λy).
Along with Lemma 4.6, this ensures the existence of γ (y) ∈ Aj(λy) such that

〈λy,αy〉 ≤
( ∑

x∈Sj

λy(x)

)
+

+ 〈λy, γ
(y)〉.

Applying the induction hypothesis to γ (y) ∈ Aj(λy) in the last display and using
the trivial identity ∑

x∈Sj

λy(x) = ∑
u∈Sj−1

λ′
y(u),

we see that

〈λy,αy〉 ≤
( ∑

u∈Sj−1

λ′
y(u)

)
+

+ �j−1(λ
′
y).

Together with (4.23) and Lemma 4.3, the last display yields the inequality

〈λ,α〉 ≤ ∑
y∈S

[( ∑
u∈Sj−1

λ′
y(u)

)
+

+ �j−1(λ
′
y)

]
= �j(λ

′),

which proves that (4.22) holds for n = j +1. The lemma then follows by induction.
�

We now state the main result of this section.

THEOREM 4.8. For n ∈ N, and every κ ∈ Kn and every ϕ ∈ 
n, we have

〈κ,ϕ〉 ≤ �n(κ).
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PROOF. Fix n ≥ 1, κ ∈ Kn and ϕ ∈ 
n. Define the function ϕ̃ on Sn by

ϕ̃(x)
.= (

ϕ(x) − 1{κ(x)>0}
)
+

for x ∈ Sn. Then

〈κ,ϕ〉 ≤ ∑
x∈Sn

(κ[x])+ + 〈κ, ϕ̃〉

holds, since for any k ∈ R and f ∈ R+,

kf ≤ (k)+ + k
(
f − 1{k>0}

)
+.

In addition, ϕ̃ is easily seen to be in An(κ). An application of Lemma 4.7 then
shows that 〈κ, ϕ̃〉 ≤ �n−1(κ

′). Since by definition, �n(κ) = ∑
x∈Sn(κ(x))+ +

�n−1(κ
′), we are done. �

REMARK 4.9. Recalling the definitions (3.9) and (4.3) of the ‖ · ‖
 and ‖ · ‖�

norms, respectively, and noting that �n(κ) ≤ ‖κ‖� for all κ ∈ Kn, it is clear that
Theorem 4.1 is an immediate consequence of Theorem 4.8.

5. The martingale bound for finite S . In Section 3—specifically, Lemma 3.1
and relation (3.7)—we showed that if S is finite, then given any probability mea-
sure P on (Sn,F ) and a 1-Lipschitz function ϕ, for 1 ≤ i ≤ n − 1,

‖Vi(ϕ)‖∞ ≤ max
yi−1∈Si−1,w,ŵ∈S

|〈κ[yi−1,w, ŵ], ϕ〉|,(5.1)

where Vi(ϕ) are the martingale differences defined in (2.1) and the function κ =
κ[yi−1,w, ŵ] ∈ Kn is given explicitly, as in (3.8), by

κ(x) = 1{xi−1=yi−1}
(
1{xi=w}P(xn

i+1 | yi−1w) − 1{xi=ŵ}P(xn
i+1 | yi−1ŵ)

)
.(5.2)

The crux of the proof of Theorem 2.1 for finite S is the following result, which is
proved using Theorem 4.1 of Section 4.

THEOREM 5.1. Suppose S is finite and P is a probability measure defined
on (Sn,F ). Moreover, given any 1 ≤ i ≤ n − 1, yi−1 ∈ Si−1 and w, ŵ ∈ S,
let the function κ[yi−1,w, ŵ] ∈ Kn be defined by (5.2) and the coefficients
ηij (y

i−1,w, ŵ) and Hn,i be defined by (1.2) and (1.4), respectively. Then for any
function ϕ ∈ 
n,

|〈κ[yi−1,w, ŵ], ϕ〉| ≤ 1 +
n∑

j=i+1

ηij (y
i−1,w, ŵ) ≤ Hn,i .(5.3)

PROOF. The second inequality is a direct consequence of the definition of the
coefficients Hn,i . In order to prove the first inequality, first fix n ∈ N, the measure P

on (Sn,F ), 1 ≤ i ≤ n − 1, yi−1 ∈ Si−1 and w, ŵ ∈ S, and set κ = κ[yi−1,w, ŵ].
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Then let L
.= n − i + 1 and for z ∈ Si−1, define the operator Tz :Kn → KL as

follows: for λ ∈ Kn and x ∈ SL,

(Tzλ)(x)
.= λ(zx).

Given ϕ ∈ 
n, note that Tyi−1ϕ ∈ 
L and, due to the structure of κ = κ[yi−1,w, ŵ]
given in (5.2), the relation

〈κ,ϕ〉 = 〈Tyi−1κ,Tyi−1ϕ〉
holds. Combining this with Theorem 4.1 and definitions (3.9) and (4.3) of the
norms ‖ · ‖
 and ‖ · ‖� , we observe that

|〈κ,ϕ〉| ≤ ‖Tyi−1κ‖
 ≤ ‖Tyi−1κ‖� = max
s∈{−1,1}ψL(sTyi−1κ).

Thus in order to prove the theorem it suffices to show that for s ∈ {−1,1},

ψL

(
sκ(L)) ≤ 1 +

n∑
j=i+1

ηij (y
i−1,w, ŵ),(5.4)

where κ(L) .= Tyi−1κ .
Now for � = L,L − 1, . . . ,2, define

κ(�−1) .= (
κ(�))′,

where (′) :Kn → Kn−1 is the marginal projection operator defined in (4.1). Then
κ(�) ∈ K� and a direct calculation shows that for i < j ≤ n and x ∈ Sn−j+1,

κ(n−j+1)(x) = P{Xn
j = x | Xi = yi−1w} − P{Xn

j = x | Xi = yi−1ŵ}.(5.5)

Since κ(n−j+1) is a difference of two probability measures on Sn−j+1, we have by
(1.18) that ∥∥κ(n−j+1)

∥∥
TV = 1

2

∥∥κ(n−j+1)
∥∥

1 = ∑
x∈Sn−j+1

(
κ(n−j+1)(x)

)
+.

Together with (5.5), this immediately shows that for i < j ≤ n,∑
x∈Sn−j+1

(
κ(n−j+1)(x)

)
+ = ηij (y

i−1,w, ŵ).

Now, from the definition of the �n functional (4.2), we see that

�L

(
κ(L)) = ∑

x∈SL

(
κ(L)(x)

)
+ + �L−1

(
κ(L−1))

=
L∑

j=1

∑
x∈Sj

(
κ(j)(x)

)
+

= ∑
x∈SL

(
κ(L)(x)

)
+ +

n∑
j=i+1

∑
x∈Sn−j+1

(
κ(n−j+1)(x)

)
+.
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It follows trivially that
∑

x∈SL(κ(L)(x))+ ≤ 1. Together, the last three statements
show that (5.4) holds when s = 1. The inequality (5.4) with s = −1 can be estab-
lished analogously, and hence the proof of the theorem is complete. �

PROOF OF THEOREM 2.1 FOR FINITE S . Given a finite set S, choose any
probability measure P on Sn. By Remark 2.2, in order to prove Theorem 2.1 it
suffices to establish the bound ‖Vi(ϕ)‖∞ ≤ Hn,i for 1 ≤ i ≤ n only for functions
ϕ ∈ 
n. When i = n, the bound follows from (3.6) and Lemma 3.1, while for
1 ≤ i ≤ n − 1, it can be obtained by taking the maximum of the left-hand side
of (5.3) over yi−1 ∈ Si−1,w, ŵ ∈ S and combining the resulting inequality with
(5.1). �

6. Extension of the martingale bound to countable S . In this section we
use an approximation argument to extend the proof of Theorem 2.1 from finite S
to countable S. The key to the approximation is the following lemma.

LEMMA 6.1. Let S be a countable space and for some n ∈ N, let ϕ be a 1-
Lipschitz function on Sn. Let P be a probability measure defined on (Sn,F ) such
that mini,...,n infyi∈Si : P(Xi=yi)>0 P(Xi = yi) > 0 as defined in (2.1) and (1.1), re-

spectively. If there exists a sequence of probability measures {P(m),m ∈ N} such
that

lim
m→∞

∥∥P − P(m)
∥∥

TV = 0,(6.1)

then

lim
m→∞ η̄

(m)
ij = η̄ij and lim

m→∞
∥∥V (m)

i (ϕ)
∥∥∞ = ‖Vi(ϕ)‖∞(6.2)

where, for m ∈ N, {V (m)
i (ϕ)} and {η̄(m)

ij } are the martingale differences and mixing

coefficients associated with P(m), defined in the obvious manner.

PROOF. The convergence (6.1) automatically implies the convergence in total
variation of the conditional distributions P(m)(· | A) to P(A) for any A ∈ Sn with
P(A) > 0 (in fact the convergence is uniform with respect to such A under the
stipulated condition). As an immediate consequence, we see that η̄

(m)
ij → η̄ij as

m → ∞, and (since ϕ is bounded) that ‖V (m)
i (ϕ) − Vi(ϕ)‖∞ → 0, which implies

the convergence in (6.2). �

PROOF OF THEOREM 2.1. Suppose S = {si : i ∈ N} and for m ∈ N define
Sm

.= {sk ∈ S :k ≤ m}. For any probability measure P on (Sn,F ), define the m-
truncation of P to be the following measure on (Sn,F ): for x ∈ Sn,

P(m)(x)
.= 1{x∈Sn

m}P(x) + 1{x=(sm,sm,...,sm)}P(Sn \ Sn
m).(6.3)
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Since by construction P(m) also defines a probability measure on Sn
m and Sm is a

finite set, it follows from Section 5 [specifically, inequality (5.1) and Theorem 5.1]
that for any 1-Lipschitz function and 1 ≤ i ≤ n,

∥∥V (m)
i (ϕ)

∥∥∞ ≤ 1 +
n∑

j=i+1

η̄
(m)
ij ,(6.4)

where V
(m)
i (ϕ) and {η̄(m)

ij } are defined in the obvious fashion.

On the other hand, it is easy to see that the sequence P(m) converges to P in total
variation norm. Indeed, ∥∥P − P(m)

∥∥
TV ≤ ∑

z∈Sn\Sn
m

P(z),(6.5)

and the r.h.s. must tend to zero, as m → ∞, being the tail of a convergent sum.
Theorem 2.1 then follows by taking limits as m → ∞ in (6.4) and applying
Lemma 6.1. �

7. Applications of the main result.

7.1. Bounding Hn,i for Markov chains. Given a countable set S, let P be a
(possibly inhomogeneous) Markov measure on (Sn,F ) with transition kernels
pk(· | ·), 1 ≤ k ≤ n − 1, as defined in (1.6), and let θi be the ith contraction coef-
ficient of the Markov chain, as defined in (1.7). The main result of this section is
Lemma 7.1, which shows that Theorem 1.2 follows from Theorem 1.1 by estab-
lishing the bound (7.3).

For 1 ≤ k ≤ n, let P (k) be the S × S transition probability matrix associated
with the kth step of the Markov chain: for 1 ≤ k ≤ n − 1,

P
(k)
ij = pk(j | i) for i, j ∈ S.

Then, using (1.18), the contraction coefficients θk can be rewritten as

θk = 1
2 sup

i,i′∈S

∑
j∈S

∣∣P (k)
ij − P

(k)
i′j

∣∣.(7.1)

It is a well-known fact that if ‖u‖1 < ∞ and
∑

i∈S ui = 0 and P is a transition
probability matrix, then

‖u�P‖1 ≤ θP ‖u‖1,(7.2)

with θP defined as in the right-hand side of (7.1), but with P (k) replaced by P (for
completeness, this fact is included as Lemma A.2 of the Appendix) and where uT

denotes the transpose of u.
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LEMMA 7.1. Let S be a countable set, P a Markov measure on (Sn,F ) with
transition matrices {P (k)}, 1 ≤ k ≤ n− 1, and let {η̄ij } and {θi} be defined by (1.1)
and (7.1), respectively. Then for 1 ≤ i < j ≤ n, we have

η̄ij ≤ θiθi+1 · · · θj−1(7.3)

and so

‖�n‖∞ ≤ Mn

where ‖�n‖∞ and Mn are given by (1.3) and (1.8), respectively.

PROOF. Let (Xi)1≤i≤n be the coordinate projections on (Sn,F ,P), that de-
fine a Markov chain of length n. Fix 1 ≤ i ≤ n, yi−1 ∈ Si−1 and w, ŵ ∈ S. Using
the relation (1.18) and the definition (1.2) of ηij (y

i−1,w, ŵ), we see that

ηij (y
i−1,w, ŵ)

= ‖L(Xn
j | Xi = yi−1w) − L(Xn

j | Xi = yi−1ŵ)‖TV

= 1
2

∑
xn
j

|P{Xn
j = xn

j | Xi = yi−1w} − P{Xn
j = xn

j | Xi = yi−1ŵ}|.

However, by the Markov property of P, for any xn
j ∈ Sn−j+1 and z ∈ Si ,

P{Xn
j = xn

j | Xi = z} = P{Xn
j+1 = xn

j+1 | Xj = xj }P{Xj = xj | Xi = zi}.
Since P{Xn

j+1 = xn
j+1 | Xj = xj } ≤ 1, we conclude that for j > i,

ηij (y
i−1,w, ŵ)

≤ 1
2

∑
xj∈S

∣∣P{Xj = xj | Xi = w} − P{Xj = xj | Xi = ŵ}∣∣

= 1
2

∑
xj∈S

∣∣(e(w) − e(ŵ))�P (i)P (i+1) · · ·P (j−1)e(xj )
∣∣

= 1
2

∥∥(
e(w) − e(ŵ))�P (i)P (i+1) · · ·P (j−1)

∥∥
1,

where, for x ∈ S, e(x) ∈ RS is the unit vector along the x coordinate, that is,
for y ∈ S, e

(x)
x = 1 and e

(x)
y = 0 for all y ∈ S, y �= x. Since ‖e(w) − e(ŵ)‖1 ≤ 2

and the fact that P (k) are transition matrices ensures that
∑

i∈S[((e(w))�P (k))i −
((e(ŵ))�P (k))i] = 0 for all k ≥ 0, a repeated application of property (7.2) then
yields the inequality

ηij (y
i−1,w, ŵ) ≤

j−1∏
k=i

θk.

The bound (7.3) follows by taking the supremum of the l.h.s. over all yi−1 ∈ Si−1

and w, ŵ ∈ S. The second bound is a trivial consequence of the first. �
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7.2. Bounding Hn,i for hidden Markov chains. In this section we apply the
apparatus developed above to hidden Markov chains. Roughly speaking, the dis-
tribution of a hidden Markov chain with finite state space S (the so-called “ob-
served” state space) is governed by an underlying Markov chain on a “hidden”
state space Ŝ and a family of stochastic kernels q�(·|·) :S × Ŝ �→ [0,1], which
quantify the probability of observing the state x� ∈ S, given that the Markov chain
is in the (hidden) state ŝ� at the lth step. A rigorous definition is as follows. Given
transition kernels pi(·|·), i = 1, . . . , n, on Ŝ, let μ be the associated Markov mea-
sure on Ŝn: in other words, for x̂ ∈ Ŝn, we have

μ(x̂) = p0(x̂1)

n−1∏
k=1

pk(x̂k+1 | x̂k).

Let ν be the probability measure on (Ŝ × S)n, equipped with the σ -algebra of all
subsets, defined by

ν(x̂, x) = μ(x̂)

n∏
�=1

q�(x� | x̂�),(7.4)

where q�(· | ŝ) is a probability measure on S for each ŝ ∈ Ŝ and 1 ≤ � ≤ n. It is easy
to see that ν is a Markov measure on (Ŝ×S)n. Indeed, if Z = ((X̂i,Xi),1 ≤ i ≤ n)

is a random variable defined on some probability space (�,F ,P) taking values
in (Ŝ × S)n with distribution ν, then the above construction shows that for any
(x̂, x) ∈ Ŝ × S and (ŷi

1, y
i
1) ∈ (Ŝ × S)i ,

P{(X̂i+1,Xi+1) = (x̂, x) | (X̂i
1,X

i
1) = (ŷi

1, y
i
1)}

= pi(x̂ | ŷi)qi+1(x | x̂)

= P{(X̂i+1,Xi+1) = (x̂, x) | (X̂i,Xi) = (ŷi , yi)}.
The hidden Markov chain measure is then defined to be the Sn-marginal ρ of

the distribution ν:

ρ(x) = P{X = x} = ∑
βx∈βSn

ν(x̂, x).(7.5)

The random process (Xi)1≤i≤n (or measure ρ) on Sn is called a hidden Markov
chain (resp., measure); it is well known that (Xi) need not be Markov to any order.
We will refer to (X̂i) as the underlying chain, which is Markov by construction.

THEOREM 7.1. Let (Xi)1≤i≤n be a hidden Markov chain, whose underlying
chain (X̂i)1≤i≤n is defined by the transition kernels pi(· | ·). Define the kth con-
traction coefficient θk of the underlying chain by

θk = sup
x̂,x̂′∈Ŝ

‖pk(· | x̂) − pk(· | x̂′)‖TV.(7.6)
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Then the mixing coefficients η̄ij associated with the hidden Markov chain X satisfy

η̄ij ≤ θiθi+1 · · · θj−1,(7.7)

for 1 ≤ i < j ≤ n.

The proof of Theorem 7.1 is quite straightforward, basically involving a care-
ful bookkeeping of summation indices, rearrangement of sums, and probabilities
marginalizing to 1. As in the ordinary Markov case in Section 7.1, the Markov
contraction lemma (Lemma A.2) plays a central role.

PROOF OF THEOREM 7.1. For 1 ≤ i < j ≤ n, yi−1
1 ∈ Si−1 and wi,w

′
i ∈ S, by

(1.18) we have

ηij (y
i−1
1 ,wi,w

′
i )

= 1
2

∑
xn
j

|P{Xn
j = xn

j | Xi
1 = [yi−1

1 wi]} − P{Xn
j = xn

j | Xi
1 = [yi−1

1 w′
i]}|.

Expanding the first conditional probability above, we obtain

P{Xn
j = xn

j | Xi
1 = [yi−1

1 wi]}
= ∑

ŝn
j

∑
ŝi
1

P{Xn
j = xn

j , (X̂i
1, X̂

n
j ) = (ŝi

1, ŝ
n
j ) | Xi

1 = [yi−1
1 wi]}

= ∑
ŝn
j

∑
ŝi
1

P{(X̂i
1, X̂

n
j ) = (ŝi

1, ŝ
n
j )}

P{Xi
1 = [yi−1

1 wi]}

× P{(Xi
1,X

n
j ) = ([yi−1

1 wi], xn
j ) | (X̂i

1, X̂
n
j ) = (ŝi

1, ŝ
n
j )},

which can be further simplified using the fact that, by the definition of P,

P{(Xi
1,X

n
j ) = ([yi−1

1 wi], xn
j ) | (X̂i

1, X̂
n
j ) = (ŝi

1, ŝ
n
j )}

= ν(xn
j | ŝn

j )ν(yi−1
1 | ŝi−1

1 )qi(wi | ŝi )
and that, due to the Markov property of X and the definition of μ,

P{(X̂i
1, X̂

n
j ) = (ŝi

1, ŝ
n
j )} = μ(ŝn

j+1 | ŝj )μ(ŝj | ŝi )μ(ŝi
1).

Expanding P{Xn
j = xn

j | Xi
1 = [yi−1

1 w′
i]} in a similar way, we then have

ηij (y
i−1
1 ,wi,w

′
i)

= 1
2

∑
xn
j

∣∣∣∣∣
∑
ŝn
j

∑
ŝi
1

μ(ŝn
j+1 | ŝj )

× μ(ŝj | ŝi )μ(ŝi
1)ν(xn

j | ŝn
j )ν(yi−1

1 | ŝi−1
1 )δ(ŝi)

∣∣∣∣∣,
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where we set (recalling that ρ([yi−1
1 w]) = P{Xi

1 = [yi−1
1 w]} ∀w ∈ S)

δ(ŝi)
.= qi(wi | ŝi )

ρ([yi−1
1 wi])

− qi(w
′
i | ŝi )

ρ([yi−1
1 w′

i])
.

Since |∑ij aibj | ≤ ∑
i ai |∑j bj | for ai ≥ 0, bi ∈ R, taking the summation over

ŝn
j and the term μ(ŝn

j+1|ŝj )ν(xn
j |ŝn

j ) outside the absolute value on the right-hand
side, interchanging summations over xn

j and ŝn
j and then using the fact that∑

ŝn
j+1

μ(ŝn
j+1|ŝj )

∑
xn
j
ν(xn

j |ŝn
j ) = 1 for every ŝj , we obtain

ηij (y
i−1
1 ,wi,w

′
i ) ≤ 1

2

∑
ŝj

∣∣∣∣∣
∑
ŝi
1

μ(ŝi
1)μ(ŝj |ŝi )ν(yi−1

1 | ŝi−1
1 )δ(ŝi)

∣∣∣∣∣
(7.8)

= 1
2

∑
ŝj

∣∣∣∣∣
∑
ŝi

μ(ŝj |ŝi )hŝi

∣∣∣∣∣,

where h ∈ RŜ is the vector defined by

hv̂
.= δ(v̂)

∑
ŝi−1
1

μ([ŝi−1
1 v̂]) ν(yi−1

1 | ŝi−1
1 ).(7.9)

Let A(i,j) ∈ [0,1]Ŝ×Ŝ be the matrix with A
(i,j)

ŝ,ŝ′ = P(X̂j = ŝ′ | X̂i = ŝ) =
μ(ŝ′ | ŝ) for s, ŝ ∈ S. Then the bound (7.8) can be recast in the form

ηij (y
i−1
1 ,wi,w

′
i ) ≤ 1

2

∑
ŝj

∣∣(hT A(i,j))
ŝj

∣∣ = 1
2

∥∥hT A(i,j)
∥∥

1.

Since A(i,j) is simply the transition matrix of the Markov chain X̂ from step i to j ,
the contraction coefficient of A(i,j) is clearly bounded by

∏j−1
k=i θk . Therefore, to

prove the theorem, it suffices to verify that the assumptions∑
v̂∈Ŝ

hv̂ = 0 and 1
2‖h‖1 ≤ 1(7.10)

of the contraction Lemma A.2 are satisfied. Now, expanding (7.9), we have

hv̂ =
(

qi(wi | v̂)

ρ([yi−1
1 wi])

− qi(w
′
i | v̂)

ρ([yi−1
1 w′

i])
) ∑

ŝi−1
1

μ([ŝi−1
1 v̂]) ν(yi−1

1 | ŝi−1
1 ).

Summing the first term over v̂, and using (7.4) and (7.5), we obtain

∑
v̂∈Ŝ

qi(wi | v̂)

ρ([yi−1
1 wi])

∑
ŝi−1
1

μ([ŝi−1
1 v̂]) ν(yi−1

1 | ŝi−1
1 )
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= 1

ρ([yi−1
1 wi])

∑
ŝi−1
1

ν(yi−1
1 | ŝi−1

1 )
∑
v̂∈Ŝ

qi(wi | v̂)μ([ŝi−1
1 v̂])

= 1

ρ([yi−1
1 wi])

∑
ŝi−1
1

ν(yi−1
1 | ŝi−1

1 )P{(X̂i−1
1 ,Xi) = (ŝi−1

1 ,wi)} = 1.

An analogous identity holds for the summation over v̂ of the second term, which
proves (7.10) and, hence, the theorem. �

Observe that the η-mixing coefficients of a hidden Markov chain are bounded
by the contraction coefficients of the underlying Markov one. One might thus be
tempted to pronounce Theorem 7.1 as “obvious” in retrospect, based on the in-
tuition that, conditioned on the hidden Markov chain X̂, the observed process
(Xi)1≤i≤n is a sequence of independent random variables. Thus, the reasoning
might go, all the dependence structure is contained in X̂i , and it is not surpris-
ing that the underlying process alone suffices to bound η̄ij —which, after all, is
a measure of the dependence in the process. Such an intuition, however, would
be wrong, as it fails to carry over to the case where the underlying process is not
Markov. A numerical example of such an occurrence is given in Kontorovich’s
Ph.D. thesis [15] and, prior to that, in [13], which is also where Theorem 7.1 was
first proved. These techniques have been extended further to prove concentration
for Markov tree processes; see [14] or [15].

7.3. Tightness of martingale difference bound for Markov measures. Given a
probability measure P on (Sn,F ), from (3.2), we know that the associated mar-
tingale differences {Vi(ϕ)} satisfy

‖Vi(ϕ)‖∞ = max
zi∈Si

|Vi(ϕ; zi)|,(7.11)

where for 1 ≤ i ≤ n and xi ∈ Si ,

Vi(ϕ; zi) = E[ϕ(X) | Xi = zi] − E[ϕ(X) | Xi−1 = zi−1].
Just as V̂i(·;yi−1,w, ŵ) could be expressed as an inner product in (3.7) and (3.8),
Vi(·; zi), being a linear functional on Kn, also admits a representation in terms of
an inner product. Indeed, for zi ∈ Si , we have

Vi(ϕ; zi) = 〈κ[zi], ϕ〉
where κ = κ[zi] ∈ Kn has the form

κ(x) = 1{xi=zi}p(xn
i+1 | zi) − 1{xi−1=zi−1}p(xn

i | zi−1)(7.12)

for x ∈ Sn. When combined with the definition of the norm ‖·‖
 and Theorem 4.1,
this shows that

max
ϕ∈
n

‖Vi(ϕ)‖∞ = max
zi∈Si

max
ϕ∈
n

|〈κ(zi), ϕ〉| = max
zi∈Si

‖κ(zi)‖
 ≤ max
zi∈Si

‖κ(zi)‖�.
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It is of interest to ask whether this martingale difference bound is tight, and if so,
whether it is possible to obtain a simple description of a class of extremal functions
ϕ for which the right-hand side is attained. In this section, we identify such a class
when P is a Markov measure.

The main result is encapsulated in Theorem 7.5, whose statement requires the
definition of the BAR class of extremal functions.

DEFINITION 7.2. A function ϕ ∈ 
n is said to admit a binary additive repre-
sentation if there exist functions μ� :S → {0,1}, � = 1, . . . , n, such that for every
x ∈ Sn,

ϕ(x) =
n∑

�=1

μ�(x�).(7.13)

In this case, we call ϕ a BAR function and let 
̄n denote the collection of BAR
functions in 
n.

REMARK 7.3. Observe that any map xn
1 �→ R of the form (7.13) is 1-Lipschitz

and has range in [0, n]. Since 
n is an uncountable set while 
̄n is finite, we
trivially have 
̄n � 
n. To get a meaningful size comparison, let us examine the
integer-valued members of 
n, denoted by 
̂n

.= 
n ∩ NSn
. For |S| ≥ 2, a crude

lower bound on the cardinality of 
̂n is

|
̂n| ≥ 2|S|n .

On the other hand, the cardinality of 
̄n is easy to compute exactly:

|
̄n| = 2n|S|.

Thus the vast majority of ϕ ∈ 
̂n are not BAR functions.

We first begin with a lemma that shows that the norms ‖ · ‖
 and ‖ · ‖� coin-
cide on the subset of so-called Markov-induced functions in Kn. In order to state
the lemma, we need to introduce some notation. Fix an (inhomogeneous) Markov
measure P on (Sn,F ) and z ∈ S, and let p0(·) and {pk(· | ·) : 1 ≤ k < n} be the as-
sociated initial measure and transition kernels, respectively. In this case, κ = κ[zi]
in (7.12) can be rewritten as

κ(x) = σ(xi)

(
1{xi−1=zi−1}

n−1∏
k=i

pk(xk+1 | xk)

)
(7.14)

for x ∈ Sn, where σ = σ [zi] ∈ K1 is the real-valued function on S defined by

σ(y) = 1{y=zi} − pi−1(y | zi−1).(7.15)
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In the case i = 1, by our conventions, the above relations reduce to the following:

κ(x) = σ(x1)

n−1∏
k=1

pk(xk+1 | xk)(7.16)

for x ∈ Sn, where σ = σ(z) ∈ K1 is the function on S given by

σ(y) = 1{y=z} − p0(y).

For any n ∈ N and κ ∈ Kn, we say that κ is Markov-induced if it has the form
(7.14), for some collection of transition kernels {pk,1 ≤ k < n} with pk(z|y) > 0
for all 1 ≤ k < n and z, y ∈ S and function σ ∈ K1.

LEMMA 7.4. For any Markov-induced κ ∈ Kn, there exists a BAR function
ϕ̄ ∈ 
̄n such that

〈κ, ϕ̄〉 = �n(κ),

and so

|〈κ, ϕ̄〉| = ‖κ‖�.

PROOF. We shall first prove this result for the case when i = 1. In this case,
κ takes the form (7.16) and satisfies the key property that for x ∈ Sn,

sgn(κ(x)) = sgn(σ (x1)),(7.17)

meaning that sgn(κ(x)) is a function of x1 only. Thus we refer to σ as the sign
function of κ .

We first claim that for any � ∈ N, if κ(�) ∈ K� is of the form (7.16) with some
sign function σ (�) ∈ K1, then (κ(�))′ ∈ K�−1 is Markov-induced with sign function
σ (�−1) given by

σ (�−1)(z) = ∑
x∈S

σ (�)(x)p1(z | x) for z ∈ S.(7.18)

[Here, (′) :K� → K�−1 is the marginal projection operator defined in Section 4.]
This is readily verified by observing that for z ∈ S�−1,(

κ(�))′(z) = ∑
x∈S

(
κ(�))(xz)

= ∑
x∈S

σ (�)(x)p1(z1 | x)

�−1∏
k=2

pk(zk | zk−1)

=
(

�−1∏
k=2

pk(zk | zk−1)

) ∑
x∈S

σ (�)(x)p1(z1 | x)

= σ (�−1)(z1)

�−2∏
k=1

pk+1(zk+1 | zk),
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which is of the form (7.16) with sign function σ (�−1).
Thus, given a Markov-induced κ ∈ Kn with associated sign function σ ∈ K1,

first define κ(n) = κ , σ (n) = σ and, for � = n, . . . ,2, let κ(�−1) = (κ(�))′ and let
σ (�−1) ∈ K1 be the sign function of κ(�−1). Then, for � = 1, . . . , n, each κ(�) ∈ K�

satisfies

sgn
(
κ(�)(x)

) = sgn
(
σ (�)(x1)

)
.(7.19)

Next, construct the sequence of functions μ1, . . . ,μn, from the sequence κ(1),

κ(2), . . . , κ(n) with μ� :S → {0,1} given by

μ�(x) = 1{σ (n−�+1)(x)>0}.(7.20)

Then the function ϕ̄ : Sn → R defined by

ϕ̄(x) =
n∑

�=1

μ�(x�)(7.21)

for x ∈ Sn, is easily seen to belong to 
̄n. Moreover, note that

〈κ, ϕ̄〉 = ∑
x∈Sn

κ(x)ϕ̄(x)

= ∑
x∈Sn

κ(x)

n∑
�=1

μ�(x�)

= ∑
x∈Sn

μ1(x1)κ(x) + ∑
x∈Sn

μ2(x2)κ(x) + · · · + ∑
x∈Sn

μn(xn)κ(x)

= ∑
xn

1

μ1(x1)κ
(n)(xn

1 ) + ∑
xn

2

μ2(x2)κ
(n−1)(xn

2 ) + · · · + ∑
xn∈S1

μn(xn)κ
(1)(xn)

= ∑
xn

1

1{σ (n)(x1)>0}κ(n)(xn
1 ) + ∑

xn
2

1{σ (n−1)(x2)>0}κ(n−1)(xn
2 ) + · · ·

+ ∑
xn

1{σ (1)(xn)>0}κ(1)(xn)

= ∑
x∈Sn

(
κ(n)(x)

)
+ + ∑

x∈Sn−1

(
κ(n−1)(x)

)
+ + · · · + ∑

x∈S

(
κ(1)(x)

)
+

= �n(κ),

where the second to last equality uses the property (7.19) and the last equality
follows from the definition of the operator �n. This completes the proof of the
first statement of the lemma. Due to the definition of the norm ‖ · ‖� , the second
statement is a simple consequence of the first.

The case of general 1 ≤ i ≤ n can be dealt with by a corresponding extension
of Lemma 7.4 from Markov-induced κ of the form (7.16) to κ of the form (7.14),



CONCENTRATION INEQUALITIES FOR DEPENDENT VARIABLES 2155

which can be achieved by the dimension-reducing technique employed in Sec-
tion 4. We omit the details. �

The last lemma immediately implies the following extremal property of BAR
functions with respect to martingale differences of Markov measures.

THEOREM 7.5. Given a finite set S and a Markov measure P with full support
on (Sn,F ) as defined in (1.6), for every 1 ≤ i ≤ n− 1, there exists a BAR function
ϕ̄ ∈ 
̄n such that

‖Vi(ϕ̄)‖∞ = max
ϕ∈
n

‖Vi(ϕ)‖∞ = max
zi∈Si

‖κ[zi]‖
 = max
zi∈Si

‖κ[zi]‖�.(7.22)

PROOF. Given any ϕ ∈ 
n, let zi be the element of Si that achieves the max-
imum in the right-hand side of (7.11). Then the discussion at the beginning of the
section, along with Lemma 7.4 and Theorem 4.1, shows that (when i = 1) there
exists a BAR function ϕ̄ such that

|Vi(ϕ̄; zi)| = |〈κ[zi], ϕ̄〉| = ‖κ[zi]‖� ≥ ‖κ[zi]‖
 ≥ |〈κ[zi], ϕ〉| = ‖Vi(ϕ)‖∞.

Taking the maximum over zi ∈ Si , we conclude that

‖Vi(ϕ̄)‖∞ = max
zi∈Si

‖κ[zi]‖� ≥ max
zi∈Si

‖κ[zi]‖
 ≥ ‖Vi(ϕ)‖∞.

Taking the maximum of the left-hand side over BAR functions ϕ̄ (and, without
loss of generality, denoting a maximizing function there again by ϕ̄), and then
taking the maximum over the right-hand side over functions ϕ ∈ 
n, the fact that

̄n ⊂ 
n shows that the inequalities can be replaced by equalities and hence (7.22)
follows. �

APPENDIX

A.1. The norms ‖ · ‖� and ‖ · ‖� . The following result, while not directly
used in the paper, may be of independent interest.

LEMMA A.1. For n ≥ 1, both the functionals ‖ · ‖
 and ‖ · ‖� described in
(3.9) and (4.3), respectively, define norms on Kn.

PROOF. It follows trivially from the definition

‖κ‖
 = max
ϕ∈
n

|〈κ,ϕ〉| = max
ϕ∈
n

∣∣∣∣∣
∑
x∈S

κ(x)ϕ(x)

∣∣∣∣∣
that for κ ∈ Kn, ‖κ‖
 ≥ 0, ‖κ‖
 = 0 if and only if κ ≡ 0 (to see this, choose
ϕ(x) = 1{κ(x)>0}) and ‖aκ‖
 = |a|‖κ‖
 for a ∈ R. Last, the triangle inequality
‖κ1 + κ2‖
 ≤ ‖κ1‖
 + ‖κ2‖
 follows immediately from the linearity of 〈·, ·〉 in
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the first variable and the fact that | · | satisfies the triangle inequality. This shows
that ‖ · ‖
 defines a norm on Kn.

We now consider the functional

‖κ‖� = max{�n(κ),�n(−κ)}
with the operator �n defined recursively through the relation

�n(κ)
.= ∑

x∈Sn

(κ(x))+ + �n−1(κ
′),

with κ ′ ∈ Kn−1 given by κ ′(y) = ∑
x1∈S κ(x1y). The fact that �0 ≡ 0, along with

the above recursion relation, immediately guarantees that for all � = 0,1, . . . , and
λ ∈ K�, ��(λ) ≥ 0 and ��(λ) ≥ ∑

x∈S(λ(x))+. If κ(x) �= 0 for some x ∈ S, then
the latter quantity is strictly positive for either λ = κ or λ = −κ , which implies
that ‖κ‖� = 0 if and only if κ ≡ 0. The homogeneity property of the norm ‖ · ‖�

follows from the corresponding property, for the operator �n—namely, �n(aκ) =
a�n(κ) for a > 0. Last, the triangle inequality is a consequence of the property
�n(κ1 +κ2) ≤ �n(κ1)+�n(κ2) for every κ1, κ2 ∈ Kn, which can be deduced using
the subadditivity of the function f (z) = (z)+, the fact that �0 trivially satisfies the
triangle inequality and induction. �

A.2. Contraction lemma. For completeness, we include the elementary
proof of a bound that was used in the proof of Lemma 7.1. For finite S, a proof
of this result goes back to Markov [18] (see Section 5 of that work, or Lemma
10.6(ii) of [3]). We recall that u� denotes the transpose of the vector u ∈ RS .

LEMMA A.2. Let S be a countable set, u ∈ RS be such that
∑

i∈S ui = 0 and
‖u‖1 < ∞, and let P be an S × S matrix such that u�P is well defined. Then

‖u�P‖1 ≤ θP ‖u‖1,(A.1)

where θP is the contraction coefficient of P :

θP = 1
2 sup

i,i′∈S

∑
j∈S

|Pij − Pi′j |.(A.2)

PROOF. Let yi = |ui |, and define I+, I− as follows: I+ = {i ∈ S :ui > 0} and
I− = {i ∈ S :ui < 0}. Then for any finite J ⊆ S,

∑
j∈J

(u�P)j = ∑
j∈J

[ ∑
i∈I+

yiPij − ∑
i∈I−

yiPij

]

= ∑
i∈I+

Qiyi − ∑
i∈I−

Qiyi
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where Qi = ∑
j∈J Pij . Thus, we obtain∣∣∣∣∣

∑
j∈J

(u�P)j

∣∣∣∣∣ =
∣∣∣∣∣
∑
i∈I+

Qiyi − ∑
j∈I−

Qiyi

∣∣∣∣∣
≤

∣∣∣∣∣
(

sup
k∈I+

Qk

) ∑
i∈I+

yj −
(

inf
k∈I−

Qk

) ∑
i∈I−

yj

∣∣∣∣∣
= 1

2‖u‖1

∣∣∣∣ sup
k∈I+

Qk − inf
k∈I−

Qk

∣∣∣∣
≤ 1

2‖u‖1 sup
i,i′

∣∣∣∣∣
∑
j∈J

(Pij − Pi′j )

∣∣∣∣∣
≤ θP ‖u‖1.

Taking the supremum of the l.h.s. over all finite J ⊆ S yields the result. �
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