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LARGE DEVIATIONS FOR OCCUPATION TIMES OF MARKOV
PROCESSES WITH L2 SEMIGROUPS

BY NARESH JAIN AND NICOLAI KRYLOV1

University of Minnesota

Our aim is to unify and extend the large deviation upper and lower
bounds for the occupation times of a Markov process with L2 semigroups
under minimal conditions on the state space and the process trajectories; for
example, no strong Markov property is needed. The methods used here apply
in both continuous and discrete time. We present the proofs for continuous
time only because of the inherent technical difficulties in that situation; the
proofs can be adapted for discrete time in a straightforward manner.

1. Introduction. Let (E,B(E),m) be a σ -finite measure space with m(E) >

0. B(E) denotes the space of extended real-valued measurable functions on E. For
p ≥ 1, let

L̂p(m) =
{
f ∈ B(E) :

∫
|f |p dm < ∞

}
.

Members of L̂p(m) are functions. Lp(m) will denote the corresponding space
whose members are equivalence classes, as usual. The Lp-norm will be denoted
by ‖ · ‖p and for p = 2, the inner product in L2(m) will be denoted by 〈·, ·〉.
Our goal is to establish lower and local upper large deviation probability bounds
for occupation times of Markov processes with semigroups {Tt , t ∈ T } acting on
L2(m) under minimal conditions, where T = {0,1,2, . . .} or T = [0,∞). In the
latter case, we assume that the semigroup is strongly continuous on L2(m), that is

lim
t→0

‖Ttf − f ‖2 = 0, f ∈ L2(m).(1.1)

There is a large class of Markov processes where the semigroups are strongly
continuous on L2(m). Such processes include most of the Lévy processes with
E = R

n and m being Lebesgue measure, as well as many diffusion processes
and stationary Markov processes which are ergodic with an invariant probability
measure m. However, the study of large deviations for occupation times of such
processes has been done piecemeal under different sets of conditions in a num-
ber of papers. Most notable among these is the fundamental work of Donsker and
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Varadhan [3] and the paper of Fukushima and Takeda [5]. In [3] and their subse-
quent work, Donsker and Varadhan define the rate function in terms of the infini-
tesimal generator acting on bounded measurable functions Bb(E) and in [3], under
certain conditions, they identify the rate function in terms of the associated Dirich-
let form when the process is symmetric and m is the σ -finite invariant measure.
In [5], Fukushima and Takeda assume E to be a locally compact complete separa-
ble metric space and assume the process to be symmetric and ergodic, with m the
invariant probability measure. They show that in their setting, the m-exceptional
set that appears in the upper and lower bounds has capacity 0, where the notion of
capacity is the same as for a Hunt process; they also identify the rate function in
terms of the associated Dirichlet form. Motivated by [5], Mück [9] generalizes the
result to the case where E is a “topological Lusin space,” not necessarily metriz-
able. The existence of the underlying “right process” with a notion of “capacity” is
provided by Ma and Röckner [7], under the assumption that the associated Dirich-
let form (not necessarily symmetric) is “quasiregular.” Related to the work in [3],
there is also the interesting work of Deuschel and Stroock [2].

In the current paper, we introduce the notion of an m-thin set, which turns out to
have capacity 0 in the setting of [9]. Our exceptional sets will be m-thin, so the cor-
responding results of [5] and [9] are immediate corollaries. We also define the rate
function directly in terms of the L2(m)-generator when T = [0,∞). If the semi-
group is symmetric, so that m is a σ -finite invariant measure, we identify the rate
function in terms of the associated Dirichlet form. Our proof has the same outline
as in [3], but we hope it is more transparent. We prove a lemma (Proposition 4.7)
for the lower bound which would simplify the proof in the setting of [6] when the
process is m-irreducible; we also do away with the need to define stopping times,
as was done there.

We will always assume E to be a topological Lusin space, which means that E

is a Hausdorff space and there exists a Polish (complete separable metric) space S,
together with a one-to-one onto continuous map ϕ :S → E. Let B(S) and B(E)

denote the σ -algebras generated by open subsets of S and E, respectively. It is
known that ϕ−1 is measurable (cf. [1]), therefore the σ -algebras B(S) and B(E)

are σ -isomorphic. We also assume that B(E) is generated by C(E), the real-
valued continuous functions on E.

We will use the notation that if A denotes a class of (extended) real-valued
measurable functions on some measurable space, then A+ denotes the nonnega-
tive members of A and Ab denotes the bounded ones. We will also use 1A(x) =
1(A)(x) = 1(0) if x ∈ A(/∈ A).

In addition to (1.1), we assume that the semigroup is generated by a transition
probability function pt(x, ·), where for fixed t ≥ 0, x ∈ E, pt(x, ·) is a probability
measure on (E,B(E)) and for A ∈ B(E), pt(x,A) is a jointly measurable func-
tion of (t, x) with respect to B([0,∞)) × B(E), where B([0,∞)) denotes the
Borel subsets of [0,∞); if t = 0, then pt(x,A) = 1A(x). For f ∈ Bb(E), we write

ptf (x) =
∫

f (y)pt (x, dy)
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and the semigroup {Tt , t ≥ 0} is then given on L2(m) via

Ttf (x) = ptf (x), f ∈ L̂2(m) ∩ Bb(E),(1.2)

in the sense that the function on the right-hand side is in the equivalence class that
the left-hand side represents.

The [L2(m)] infinitesimal generator L of the semigroup {Tt , t ∈ [0,∞)} is de-
fined in the usual manner: D(L), the domain of L, consists of those members
f ∈ L2(m) for which

lim
t→0

Ttf − f

t
= g

exists in the L2(m)-norm, and then Lf := g. In view of (1.1), D(L) is dense in
L2(m). We define a resolvent function

Rf (x) =
∫ ∞

0
e−tptf (x) dt, f ∈ Bb(E),(1.3)

and note an important consequence of (1.1) and (1.2), which is that f = 0 m-a.e.
(almost everywhere with respect to m) implies that Rf = 0 m-a.e.

Next, we define an m-thin set.

DEFINITION 1.4. A set N ∈ B(E) is called m-thin if there exists a set B ∈
B(E) such that m(B) = 0 and

N ⊂ {x ∈ E :R1B(x) > 0}.
Clearly, an m-thin set is m-null and it is also easy to see that a countable union

of m-thin sets is m-thin.
We also need to make assumptions concerning the associated Markov process.

When dealing with discrete time, we will take the path space � and the associated
σ -algebras to have the product space representation. When T = [0,∞), we assume
that there exists a progressively measurable Markov process {�,F o

t ,Xt ,P
x, t ∈

T ,x ∈ E} with transition probability function pt(x, ·), where Xt(ω) = ω(t) for
ω ∈ �, t ∈ T , F o

t = σ {Xs, s ≤ t} and P x(X0 = x) = 1 for each x ∈ E. The life-
time of the process starting from each x is assumed to be +∞. This structure
will suffice for the local upper bound results. For the lower bound, we will use
the entropy approach of Donsker and Varadhan [4] which requires E to be Polish
and � to be the corresponding Skorokhod space, which is also Polish. However,
we would also like to include the setup of Ma and Röckner [7] and the results
of [5] and [9] as special cases. For this reason, as far as the lower bound results are
concerned, we assume that there exists a Polish space Ẽ such that E ∈ B(Ẽ), the
Borel subsets of Ẽ. The space �̃ is the Skorokhod space (the set of functions from
[0,∞) to Ẽ, which are right-continuous and have left limits, with the Skorokhod
topology). We assume that a Markov process {�̃, F̃ o

t , X̃t , P̃
x, t ∈ T ,x ∈ Ẽ} ex-

ists with transition probability function p̃t (x, ·), where p̃t (x,A) = pt(x,A ∩ E) if
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A ∈ B(Ẽ), x ∈ E, t ≥ 0 and where p̃t (x, {x}) = 1 if x /∈ E, t ≥ 0. Furthermore, we
assume that there exists a Borel subset � of �̃ such that if ω ∈ �, then X̃t (w) ∈ E

for all t ≥ 0 and if x ∈ E, then P x(�) = 1. We also assume that P x(X̃0 = x) = 1,
and that the lifetime of the process is +∞, for all x ∈ Ẽ. If E itself is Polish, then
the above assumption simply concerns the existence of the appropriate Markov
process. As usual, θt , t ≥ 0, will denote the shift operator on the path space, that
is, θtω(s) = ω(s + t). For the case where, more generally, E is a topological Lusin
space, we will briefly describe the framework of Ma and Röckner [7] in the next
paragraph.

In addition to (1.1) and (1.2), they assume in [7] that the semigroup is
m-contractive, that is ‖Ttf ‖2 ≤ ‖f ‖2 for f ∈ L2(m). This assumption makes −L

a nonnegative definite operator. If we let

E(u, v) = 〈−Lu,v〉, u, v ∈ D(L),

then E is a nonnegative definite bilinear form. Define the norm

‖u‖2
E = E(u,u) + ‖u‖2

2, u ∈ D(L),

and define D(E) to be the completion of D(L) under this norm. By the term “as-
sociated Dirichlet form” we mean the bilinear form E with domain D(E), which
is required to satisfy the conditions of Definition 4.5, page 34 of [7]. The quasi-
regularity of E is defined on page 101 of [7]. For the sets of “capacity 0” or the
notion of “quasi-everywhere,” we again refer to Chapter III of [7]. Roughly speak-
ing, A ∈ B(E) has capacity 0 if the process starting from m as the initial measure
never visits the set A. Under this framework, or where the notion of capacity in
terms of the potential theory of the Markov process is available (which may hap-
pen even if E is not quasiregular), we will only need the following.

CONDITION 1.5. If f = 0 m-a.e., then for t > 0, ptf = 0, except on a set of
capacity 0.

This condition is satisfied under the quasiregularity condition on E imposed
in [7] and implies that if a set is m-thin, then it has capacity 0 (cf. Lemma 2.19).
If the semigroup is strongly Feller, that is, Tt :Bb(E) → Cb(E) for t > 0, and if
for any A ∈ B(E), m(A) = 0 implies that the closure of Ac (= complement of A)
is E, then any m-thin set is empty. If E = R

n, a large class of Lévy processes,
many diffusion processes and ergodic stationary Markov processes have strongly
Feller semigroups and satisfy the property mentioned above. Our results apply to
these processes, even though their generators may not satisfy the sector condition
(given by (2.5), page 16 of [7]) which is used for constructing the “right” Markov
processes in [7].
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To describe our results, we first define the empirical measures: if A ∈ B(E),
ω ∈ �, then

Lt(ω,A) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

t

∫ t

0
1A(Xs(ω)) ds, t ∈ (0,∞),

1

n

n−1∑
j=0

1A(Xj (ω)), n ∈ {1,2, . . .}.

The following subsets of B(E) will play an important role:

D :=
{
u ∈ B+

b (E) :
∫

udm < ∞
}
.

Note that D is dense in L+
1 (m) and hence in L+

2 (m).

D0 :=
{
v :v = t−1

∫ t

0
psuds, for some u ∈ D, some t > 0

}
.

D1 := {pηv :v ∈ D0, η ≥ 0}.
Members of D,D0 and D1 are functions, not equivalence classes. Also, note that
D0 ⊂ D1.

We will see in Lemma 2.2, given in the next section that if v ∈ D1 so that
v = t−1 ∫ t

0 psũ ds, where ũ = pηu for some η ≥ 0 and u ∈ D, and t > 0, then
v ∈ D(L) and

L̂v := 1

t
(pt ũ − ũ)(1.6)

is an m-version of Lv.
We now define the rate function. M(E) denotes the set of probability measures

on (E,B(E)). For μ ∈ M(E), we define

Î (μ) := − inf
v∈D1
ε>0

∫
L̂v

v + ε
dμ when T = [0,∞)

:= − inf
u∈Bb(E)

ε>0

∫
log

p1(u + ε)

(u + ε)
dμ when T = {0,1,2, . . .}

and

I (μ) :=
{

Î (μ), if μ � m,
∞, otherwise.

A τ -neighborhood of μ ∈ M(E) is a set Nμ given by{
ν ∈ M(E) :

∣∣∣∣
∫

fj dμ −
∫

fj dν

∣∣∣∣ < ε,1 ≤ j ≤ r

}
(1.7)
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for some ε > 0 and f1, . . . , fr in Bb(E). This neighborhood system forms a basis
for the τ -topology on M(E). We denote by Bτ (M(E)) the σ -algebra generated
by these neighborhoods (not by all τ -open sets). If the fj ’s are in Cb(E), then Nμ

is a weak neighborhood. A w-open subset of M(E) is one which is the union of
weak neighborhoods of the form (1.7).

Before stating the results, we would like to note that the proofs for discrete time
are obvious modifications of the ones that we are going to give for continuous
time. In fact, there are fewer technicalities to deal with in discrete time. We will
therefore simply state the results for discrete time in Section 6 without proofs.

We now state the local upper bound results when T = [0,∞), {Tt , t ≥ 0} sat-
isfies (1.1) and (1.2), E is a topological Lusin space and the Markov process is
progressively measurable.

THEOREM 1.8 (Local upper bound). Let μ ∈ M(E) and let a < Î (μ). Then
there exists a τ -neighborhood Nμ of μ such that

lim sup
t→∞

1

t
sup
x∈E

logP x(Lt ∈ Nμ) ≤ −a.

We will see in Lemma 2.1 that τ -compact sets are elements of Bτ (M(E)) and
we obtain the following corollary of the theorem whose derivation uses standard
arguments.

COROLLARY 1.9. If K is a τ -compact subset of M(E), then

lim sup
t→∞

1

t
sup
x∈E

logP x(Lt ∈ K) ≤ − inf
μ∈K

Î (μ).

REMARK 1.10. Note that I (μ) ≥ Î (μ) and that if μ is not absolutely contin-
uous with respect to m, then I (μ) = +∞, in which case the lower bound in The-
orem 1.15 below trivially holds and μ � m is the case of interest. In this sense,
I (μ) is the natural rate function for the lower bound and the question naturally
arises as to whether the upper bound holds in terms of I (μ). The next theorem
answers this question.

THEOREM 1.11. Under the assumptions of Theorem 1.8, let μ ∈ M(E) and
a < I (μ). Then there exist a τ -neighborhood Nμ of μ and an m-thin set N such
that if x /∈ N , then

lim sup
t→∞

1

t
logP x(Lt ∈ Nμ) ≤ −a.

Furthermore, if (1.5) holds, then capacity(N) = 0.
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REMARK 1.12. The m-thin set in the theorem depends on Nμ and one can
give simple examples (cf. Example 3.5) to show that it need not be empty. The
same example shows that there exists μ, not absolutely continuous with respect
to m, such that Î (μ) < ∞, but the uniform upper bound does not hold if Î (μ) is
replaced by I (μ).

REMARK 1.13. The corollary of Theorem 1.11 corresponding to Corol-
lary 1.9 also remains valid with an m-thin (or capacity 0) exceptional set.

We now state the lower bound results for which we have already described the
setup. In addition to conditions (1.1) and (1.2), we will need the following.

CONDITION 1.14. m(A) > 0 ⇒ R1A(x) > 0,m-a.e.(x).

Even though we are considering L2(m)-semigroups, we would like to observe
that our rate functions are defined in terms of the transition probability function
pt(x, ·). The irreducibility condition used in [6] says that there is a σ -finite refer-
ence measure m on (E,B(E)) such that if A ∈ B(E) and m(A) > 0, then (1.14)
holds for every x. Under this stronger condition and an additional assumption that
if A is m-null, then pt1A(x) is zero for m-a.e. (x), the exceptional set for large de-
viation lower bounds is shown to be empty (cf. other references in [6] as well). Un-
der the weaker condition (1.14) together with the same additional assumption, we
show here that the corresponding exceptional set is m-thin. The results of [6] fol-
low from this result by simply observing that under the irreducibility assumption,
starting from an arbitrary point x, the complement of the exceptional set will be
visited at some time t > 0 with a positive probability and a routine argument then
shows that the lower bound result must hold starting from any x. Our arguments
here are simpler than those given in [6], in that we do not need to use stopping
times and therefore the strong Markov property of the process is not needed.

THEOREM 1.15 (Lower bound). Assume (1.1), (1.2) and (1.14). Let μ ∈
M(E) and let Nμ be a τ -neighborhood of μ. Then there exists an m-thin set N

such that if x /∈ N , then

lim inf
t→∞

1

t
logP x(Lt ∈ Nμ) ≥ −I (μ).

Furthermore, if (1.5) holds, then capacity(N) = 0.

By Lemma 2.1 in the next section, a w-open set U belongs to ∈ Bτ (M(E)) and
we get the following corollary.

COROLLARY 1.16. Let U be a w-open subset of M(E). Then there exists an
m-thin set N [capacity(N) = 0, if (1.5) holds] such that if x /∈ N , then

lim inf
t→∞

1

t
logP x(Lt ∈ U) ≥ − inf

μ∈U
I (μ).
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If the semigroup is symmetric, in which case the L2-generator L is self-adjoint,
then we obtain an appropriate form of Theorem 5 of [3] for the formula for I (μ)

in terms of the associated symmetric Dirichlet form. In this case, m is a σ -finite
invariant measure for the semigroup.

THEOREM 1.17. If H = (−L)1/2 denotes the canonical square root of the
positive definite operator −L, then for any μ ∈ M(E) such that μ � m, I (μ) < ∞
if and only if f = dμ/dm ∈ D(H), in which case

I (μ) = ‖Hf ‖2
2.

REMARK 1.18 (Feller semigroups). If {Tt } is a Feller semigroup, that is, Tt :
Cb(E) → Cb(E) for each t > 0, in discrete or continuous time, in addition to
being an L2(m) semigroup, Theorem 1.8 can be strengthened to the effect that Nμ

may be chosen to be a w-neighborhood. As will be noted in the proof, no essential
change in proof will be necessary if we modify the definition of the rate function Î

appropriately. Once Î has been modified, I is defined in terms of Î as before. For
h > 0, it will be useful to define Îh(μ) by

Îh(μ) = − inf
u∈Cb(E)

ε>0

∫
log

ph(u + ε)

u + ε
dμ(1.19)

and note that (even if the semigroup is not Feller)

Îh(μ) = − inf
u∈B+

b (E)

ε>0

∫
log

ph(u + ε)

u + ε
dμ.(1.20)

To see (1.20), given any h > 0, any μ ∈ M(E) and any ε > 0, let

H = {u ∈ Bb(E) :∃un ∈ Cb(E) such that J (un;h, ε) → J (u;h, ε)},
where J (u;h, ε) denotes the integral on the right-hand side of (1.19). It is eas-
ily verified that H satisfies the conditions of T20, page 11 of [8], and it fol-
lows that H = Bb(E) since H ⊃ Cb(E) and we are assuming that B(E) is gen-
erated by Cb(E). In discrete time, we then define Î (μ) = Î1(μ) as before and
no modification of the definition of the rate function is necessary; consequently,
the upper (Theorem 1.8 and its Corollary 1.9) and the lower bound results will
hold if “τ -neighborhood” and “τ -compact” are replaced by “w-neighborhood”
and “w-compact,” respectively.

In continuous time, the situation is slightly more complicated. This time, we
will need to take

D =
{
u ∈ C+

b (E) :
∫

udm < ∞
}
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and assume that D is dense in L+
1 (m) [in the L1(m)-norm], hence also in L+

2 (m).
(Note that this assumption is satisfied if E is Polish.) Then D0 and D1 are defined
in terms of D as before and the new rate function Î (μ) is defined as

Î (μ) = − inf
v∈D1
ε>0

∫
L̂v

v + ε
dμ.

It will be shown in Lemma 2.15 that this new definition of Î (μ) agrees with our old
definition [provided the modified D is dense in L+

1 (m)]. We note that this require-
ment on D is satisfied in many “usual” situations, where either m is a probability
measure or E is a metric space and m(K) < ∞ for any compact K and when-
ever open Un ↘ K , m(Un) ↘ m(K). Once the new definition of Î (μ) agrees with
the one given earlier, the proof of Theorem 1.8 needs an obvious modification, as
noted there, so that Nμ may be chosen to be a w-neighborhood. Corollary 1.9 is
valid for w-compact sets, and for the lower bound, Theorem 1.15 and its corollary
remain valid as stated.

We would like to make some further comments about the methods of proof.
As far as the upper bounds are concerned, we follow the approach of Donsker
and Varadhan—use a form of the Feynman–Kac formula and apply the Chebyshev
inequality. The form of this formula, which is very general, has been taken from
Deuschel and Stroock [2]. Our lower bound result follows the method of Donsker
and Varadhan [4], where they introduce the entropy of a stationary process relative
to the given Markov process. A careful examination of the construction in [7] of
a “right Markov process” with state space a topological Lusin space allows us to
reduce this situation to the one where the state space and � are Polish, which is
needed in [4]. We would like to note that dealing with the more general E is not
where the problem lies, one also needs � to be Polish to apply the results of [4]
and the construction of appropriate � and Markov process requires considerable
work [7], even when E is Polish.

We present some preliminary results in Section 2. The upper bound results are
in Section 3 and those for lower bounds are in Section 4. Section 5 deals with the
symmetric situation (Theorem 1.17). Finally, the results for discrete time are stated
in Section 6, without proofs.

2. Some preliminary results. We present some useful lemmas in this section.

LEMMA 2.1. Let E be a topological Lusin space and let Bτ (M(E)) and
Bw(M(E)) denote the σ -algebras of subsets of M(E) generated by the τ and
weak neighborhoods of the form (1.7), respectively. Then the w-open subsets of
M(E) belong to Bτ (M(E)). Consequently, w-closed and τ -compact subsets of
M(E) belong to Bτ (M(E)).
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PROOF. Let S be a Polish space and let ϕ :S → E be a continuous one-to-one
and onto map. Let �(μ) := μϕ−1 if μ ∈ M(S). It is then easy to check (note,
again, that ϕ−1 is measurable) that � :M(S) → M(E) is a one-to-one and onto
continuous map if M(S) and M(E) are given the w-topology. This makes M(E)

a topological Lusin space and �−1 a measurable map, that is, �(Bw(M(S))) ⊂
Bw(M(E)). If U is a w-open subset of M(E), then �−1(U) is w-open in M(S),
which implies that �−1(U) ∈ Bw(M(S)) and its image U under � belongs to
Bw(M(E)) ⊂ Bτ (M(E)). This proves the assertion about w-open sets. It follows
that w-closed subsets of M(E) are in Bτ (M(E)). Since a τ -compact subset of
M(E) is w-compact, it belongs to Bτ (M(E)) and the lemma is proved. �

LEMMA 2.2. Let v ∈ D1 so that for some u ∈ D, some t > 0 and some η ≥ 0,
v = t−1 ∫ t

0 psũ ds, where ũ = pηu. Then for h > 0, |h−1(phv − v)| ≤ c for some
c > 0 independent of h and

L̂v := t−1(pt ũ − ũ)

is bounded by c and is an m-version of Lv.

PROOF. We have

1

h
(phv − v) = 1

t

{
1

h

(∫ t+h

t
psũ ds −

∫ h

0
psũ ds

)}
.

Since u is in D, it follows that 0 ≤ u ≤ c1 for some c1 > 0 and the boundedness
assertions follow. The strong continuity of the semigroup implies that as h → 0,
the right-hand side converges in L2(m) to t−1(pt ũ − ũ) and the lemma is pro-
ved. �

LEMMA 2.3. D0 is dense in L+
2 (m). If the semigroup is symmetric, then D0

is a dense subset of L+
1 (m).

PROOF. Since D is dense in L+
2 (m), for the first assertion, it suffices to

show that if u ∈ D, then there exist vn ∈ D0 such that vn → u in L2(m). Let
tn ↓ 0 and let vn = t−1

n

∫ tn
0 psuds. By the strong continuity of the semigroup,

‖vn − u‖2 → 0, so the first assertion is proved. For the second assertion, the
symmetry of the semigroup implies that m is an invariant measure for {Tt }, and
for u ∈ D,

∫
phudm = ∫

udm < ∞. It follows that D0 ⊂ D. Since D is dense
in L+

1 (m), it suffices to show that if u ∈ D, then there exist vn ∈ D0 such that∫ |vn − u|dm → 0 as n → ∞. Taking vn in terms of u as above, we have∫
|vn − u|dm = 2

∫
(u − vn)

+ dm −
∫

(u − vn) dm.

The second term on the right-hand side is 0 and (u − vn)
+ ≤ u ∈ L+

1 (m) for all n;
since vn → u in m-measure by the strong continuity of the semigroup,

∫
(vn −

u)+ dm → 0, and the lemma is proved. �
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The next lemma is a version of the Feynman–Kac formula (see Deuschel and
Stroock [2], page 121).

LEMMA 2.4. If ϕ and V are in Bb(E), then the equation

u(t, x) = ptϕ(x) +
∫ t

0
pt−s(V (·)u(s, ·))(x) ds(2.5)

has a unique solution u(t, x), t ≥ 0, x ∈ E, such that sup0≤t≤a ‖u(t, x)‖∞ < ∞
for all a ≥ 0.

The following corollary of this lemma is what we really need.

COROLLARY 2.6. Let v ∈ D1 so that for some η > 0, u ∈ D and t0 > 0,

v = 1

t0

∫ t0

0
psũ ds,

where ũ = pηu. For ε > 0, let

vε(x) = v(x) + ε(2.7)

and

Vε(x) := 1

vε(x)

pt0 ũ(x) − ũ(x)

t0
= L̂v

vε

(x).(2.8)

Then for all t > 0, x ∈ E, we have

vε(x) = Ex{
vε(Xt)e

− ∫ t
0 Vε(Xs) ds}.(2.9)

PROOF. Let vε(t, x) denote the right-hand side of (2.9). By (4.2.25) in [2], we
get that vε(t, x) is the unique solution of

vε(t, x) = ptvε(x) −
∫ t

0
pt−s(Vε(·)vε(s, ·))(x) ds.(2.10)

We will show that vε(t, x) = vε(x) satisfies (2.10). Substituting for Vε and
vε(s, x) = vε(x) from (2.7) in the right-hand side of (2.10), we get

ptvε(x) −
∫ t

0
ps

(
1

t0
(pt0 ũ − ũ)

)
(x) ds

and by the definition of v, this equals

ε + 1

t0

∫ t0

0
pt+s ũ(x) ds − 1

t0

∫ t

0
ps(pt0 ũ − ũ)(x) ds = ε + v(x) = vε(x),

which proves the corollary. �
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LEMMA 2.11. Let μ ∈ M(E), μ � m. Given h > 0, and writing uε = u + ε

for ε > 0, u ∈ B+
b (E), let

θ(u;h, ε) := log(phuε/uε), Jμ(u;h, ε) :=
∫

θ(u;h, ε) dμ.

We then have (Feller case included)

inf
v∈D0
ε>0

Jμ(v;h, ε) = inf
v∈D1
ε>0

Jμ(v;h, ε) = inf
u∈B+

b (E)

ε>0

Jμ(u;h, ε).(2.12)

PROOF. Note that D0 ⊂ D1 ⊂ B+
b (E), so it suffices to show that the first and

last terms are equal. We first consider the general case without assuming that the
semigroup is Feller. The left-hand side in (2.12) is larger than the right-hand side.
Let u ∈ B+

b (E). Since m is σ -finite, there exist An ↗ E such that m(An) < ∞ for
n ≥ 1. Let un = u1An . Then un ∈ D. Clearly, θ(un;h, ε) → θ(u;h, ε) boundedly
as n → ∞ for a fixed ε > 0. Therefore, Jμ(un;h, ε) → Jμ(u;h, ε) as n → ∞. It
follows that (2.12) holds if D0 is replaced by D. To complete the proof, it suffices
to show that

inf
v∈D0
ε>0

J (v;h, ε) ≤ inf
u∈D
ε>0

J (u;h, ε).(2.13)

To see this, let u ∈ D and for some tn ↓ 0, let vn = t−1
n

∫ tn
0 psuds. Then vn ∈

D0 and by the strong continuity of the semigroup in L2(m), vn → u in L2(m).
Since vn and u are bounded by some c > 0 and μ � m, we have vn → u in L2(μ),
hence in μ-measure, so Jμ(vn;h, ε) → Jμ(u;h, ε) as n → ∞ and the lemma is
proved for the general case. We now consider the Feller case.

Let D0 and D be as in the general case and, for the moment, let D′
0 = {v : v =

1
t

∫ t
0 psudu for some t > 0 and some u ∈ D ∩Cb(E)}. It then suffices to show that

inf
v∈D′

0
ε>0

J (v;h, ε) ≤ inf
v∈D0
ε>0

J (v;h, ε).(2.14)

Let v ∈ D0. Then v = 1
t

∫ t
0 psudu for some t > 0 and some u ∈ D. By our as-

sumption in the Feller case namely, that D ∩ Cb(E) is dense in L+
1 , it is easy

to see (μ � m) that there exist un ∈ D ∩ Cb(E) such that un → u boundedly in
μ-measure. Therefore, vn := 1

t

∫ t
0 psun ds → v boundedly in μ-measure, hence

J (vn;h, ε) → J (v;h, ε) as n → ∞. Since vn ∈ D′
0, (2.14) is proved and (2.12)

holds in the Feller case as well. �

LEMMA 2.15. Let μ ∈ M(E),μ � m. Then (including the Feller case)

lim
h→0

1

h
Îh(μ) = Î (μ).(2.16)
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PROOF. If v ∈ D1, then there exists c > 0 such that for all h > 0,

1

h
|phv − v| ≤ c.

Therefore, writing vε = v + ε, we have

logphvε = logvε + (phvε − vε) · 1

vε

+ O(h2),

where O depends only on ε. As h → 0, h−1(phv − v) → L̂v in L2(m) boundedly
by Lemma 2.2, hence in μ-measure boundedly, and we get

lim sup
h→0

1

h
inf

v∈D1
ε>0

∫
log

phvε

vε

dμ ≤
∫

L̂v

vε

dμ

for any v ∈ D1, ε > 0. By Lemma 2.11, we get

lim inf
h→0

1

h
Îh(μ) ≥ Î (μ).(2.17)

We now consider the opposite inequality and use an argument of Donsker and
Varadhan. For v ∈ D0, define

ϕ(h) =
∫

log
phvε

vε

dμ,

where vε = v + ε. Then v ∈ D(L) and we have

dϕ

dh
=

∫
L̂phv

phvε

dμ ≥ inf
v∈D1
ε>0

∫
L̂v

vε

dμ = −Î (μ).

Integrating in h from 0 to h and using ϕ(0) = 0, we get (for all v ∈ D1, ε > 0,
h > 0) ∫

log
phvε

vε

dμ ≥ −hÎ (μ),(2.18)

which, together with (2.17) and Lemma 2.11, finishes the proof of the lemma. �

When the potential-theoretic framework is available, such as in [7], the follow-
ing lemma shows that an m-thin set has capacity 0.

LEMMA 2.19. If (1.5) and the related framework hold, then an m-thin set N

has capacity 0.

PROOF. Let N = {x ∈ E :R1A(x) > 0}, where m(A) = 0. Then u(x) =
R1A(x) = 0 m-a.e. Hence, psu(x) = ∫ ∞

s e−tpt (x,A)dt = 0, except on a set Ns

of capacity 0, by (1.5). Since N = ⋃∞
j=1 N1/j and capacity(N1/j ) = 0, we have

capacity(N) = 0 because a countable union of sets of capacity 0 has capacity 0.
The lemma is proved. �
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3. The local upper bound proofs. In this section, we prove Theorems 1.8
and 1.11.

PROOF OF THEOREM 1.8. Let v ∈ D1 and for ε > 0 let vε = v + ε. By Corol-
lary 2.6, for x ∈ E, t > 0 and ε > 0, we have

vε(x) = Ex

{
vε(Xt) exp

(
−

∫ t

0

L̂v

vε

(Xs) ds

)}
.

Writing Vε := L̂v/vε , we have, for A ∈ Bτ (M(E)),

vε(x) = Ex

{
vε(Xt) exp

(
−t

∫
Vε dLt

)}

≥ εEx

{
exp

(
−t

∫
Vε dLt

)
1[Lt∈A]

}

≥ εEx

{
exp

(
−t sup

ν∈A

∫
Vε dν

)
1[Lt∈A]

}
.

Since vε ≤ α for some 0 < α < ∞, where α may depend on ε, we get

1

t
log sup

x
P x(Lt ∈ A) ≤ logα − log ε

t
+ sup

ν∈A

∫
Vε dν.

Therefore, for any ε > 0 and any v ∈ D1 any A ∈ Bτ (M(E)), we have

lim sup
t→∞

1

t
log sup

x∈E

P x(Lt ∈ A) ≤ sup
ν∈A

∫
L̂v

v + ε
dν.(3.1)

Since a < Î(μ), for some ε0 > 0 and some v0 ∈ D1, we have, for some δ > 0,∫
L̂v0

v0 + ε0
dμ = −a − δ.

We now select Nμ = {ν ∈ M(E) : | ∫ f dν − ∫
f dμ| < δ

2}, where f = L̂v0/(v0 +
ε0), so Nμ is a τ -neighborhood of μ. In the Feller case, since the members of D1

are in Cb(E), L̂v0 ∈ Cb(E). Consequently, this choice of Nμ automatically yields
a w-neighborhood. In either case, we have

sup
ν∈Nμ

∫
L̂v0

v0 + ε0
dν < −a.(3.2)

If we take A = Nμ, v = v0 and ε = ε0 in (3.1) and use (3.2), then the theorem
follows. �

PROOF OF THEOREM 1.11. If μ � m, then I (μ) = Î (μ) and we get the result
for all x, as in Theorem 1.8. Now, let μ have a nonzero singular component with
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respect to m. There then exists a set A such that μ(A) > 0 and m(A) = 0. In this
case, I (μ) = +∞ and we will first show that there exist a τ -neighborhood Nμ of
μ and an m-thin set N such that if x /∈ N , then

lim sup
t→∞

1

t
logP x(Lt ∈ Nμ) = −∞.(3.3)

Let μ(A) = η > 0 and define

Nμ =
{
ν ∈ M(E) :

∣∣∣∣
∫

1A dν −
∫

1A dμ

∣∣∣∣ < η/2
}
.

By (1.2), if m(A) = 0, then for all t > 0, m-a.e.(x), pt(x,A) = 0, hence∫ ∞
0

∫
m(dx)ps(x,A)ds = 0,

which implies that ∫
m(dx)Ex

∫ ∞
0

1A(Xs) ds = 0.

If we let

N =
{
x :Ex

∫ ∞
0

1A(Xs) ds > 0
}
,

then N is m-thin. If x /∈ N , then
∫ ∞

0 pt(x,A)dt = 0 and we have, for all t > 0,

P x(|Lt(A) − μ(A)| < η/2
) = 0,(3.4)

which proves (3.3). If Condition 1.5 holds, then by Lemma 2.19, the set N which
is m-thin must have capacity 0 and the theorem is proved. �

EXAMPLE 3.5. This example is a trivial modification of standard Brownian
motion on R, but shows the necessity of an exceptional set in Theorem 1.11 if I (μ)

is to be used as the rate function. This example also shows that Î (μ) < ∞ and, of
course, Theorem 1.8 holds, but becomes false if I (μ) is used in place of Î (μ). Let
E = R ∪ {θ}, R have the usual topology of the real line and θ be an isolated point.
Let {Xt, t ≥ 0} be the standard Brownian motion on R. If X0 = x ∈ R, then so that
pt(x,R) = 1 for t ≥ 0 and if X0 = θ , then pt(θ, {θ}) = 1. The Lebesgue measure
on R plays the role of m with m({θ}) = 0. Let μ = δθ and let Nμ = {ν : | ∫ fj dν −∫

fj dμ| < ε,1 ≤ j ≤ r} be any τ -neighborhood of μ. Then pθ(Lt ∈ Nμ) = 1 and
since I (μ) = +∞, the upper bound can hold only m-a.e. The exceptional set in
this case is {θ}, which is m-thin. Note also that Î (μ) = 0, so the conclusion of
Theorem 1.8, though not very interesting, holds.
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4. Proof of the lower bound. Recall that Condition 1.14 is assumed in addi-
tion to (1.1) and (1.2) for the lower bound.

If E is Polish, then we assume that there exists a Markov process (as described
in Section 1) with path space �, the Skorokhod space corresponding to E. If E

is Lusin, then the Borel structure of E is the same as that of a Polish space S

(see Section 1), but the topology of E may not be metrizable. Under the main
assumption that the associated Dirichlet form is quasiregular, Ma and Röckner [7]
construct a “right” Markov process. In their construction, they imbed E as a Borel
subset into a Polish space Ẽ in such a way that the “right” Markov process has �̃

(the Skorokhod space corresponding to Ẽ) as the path space. Furthermore, there
exists a Borel subset � of �̃ such that the paths starting from x ∈ E all lie in �.
To obtain the lower bound results and use the framework of [4], we simply work
with the Markov process with state space Ẽ and path space �̃ and relativize these
results to E and �. Therefore, in the setting of [7], there is no loss of generality in
assuming E and � to be Polish and we will do so.

We start with the following, simple, lemma which is a consequence of Condi-
tion 1.14.

LEMMA 4.1. Let ν ∈ M(E), ν � m. If m(A) > 0, then there exists a t0 > 0
and a set B ∈ B(E) such that ν(B) > 0 and

inf
x∈B

pt0(x,A) > 0.

PROOF. An immediate consequence of Condition 1.14 is that∫
ν(dx)

∫ ∞
0

pt(x,A)dt > 0,

therefore for some t0 > 0,
∫

pt0(x,A)ν(dx) > 0. The conclusion of the lemma
immediately follows from this. �

To establish the lower bound, we will need a basic result of Donsker and Varad-
han [4] called the “contraction principle” and an approximation lemma from [6].
Let MS(�) denote the set of stationary probability measures on (�,F o). We state
these results here for ready reference, but first, we need to define the entropy of
Q ∈ MS(�) on (�,F o

t ) with respect to the Markov process, as introduced in [4].
For t > 0, let

H(t,Q) := EQ{
h
(
P ω(0)|F o

t ;Qω|F o
t

)}
,

where h(λ;μ) denotes the entropy of μ with respect to λ, λ | G denotes the re-
striction of λ to G, Qω is the regular conditional probability distribution of Q with
respect to F o

o and EQ denotes the expectation with respect to the stationary mea-
sure Q on (�,F o). The following facts about H(t,Q) are established in [4]:
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(i) either H(t,Q) = +∞ for all t > 0 or there exists a nonnegative constant
H(Q) such that H(t,Q) = tH(Q), and if H(Q) < ∞, then Q-a.s.(ω), Qω �
P ω(0);

(ii) if λ1 ≥ 0, λ2 ≥ 0, λ1 + λ2 = 1 and Q1,Q2 ∈ MS(�), then H(λ1Q1 +
λ2Q2) = λ1H(Q1) + λ2(Q2);

(iii) if Q ∈ MS(�) is ergodic and ψt(ω, ·) denotes the Radon–Nikodym deriv-
ative of Qω with respect to P ω(0), both restricted to F o

t , then H(Q) < ∞ implies
that Q-a.s.(ω),Qω-a.s.,

lim
t→∞

1

t
logψt(ω, ·) = H(Q).(4.2)

THEOREM 4.3 (Contraction principle). Let μ ∈ M(E),μ � m and I (μ) <

∞. Then I (μ) = inf{H(Q) :Q stationary with marginal μ}, where I (μ) is defined
in Section 1.

PROOF. It is proved in [4] that for any μ ∈ M(E), inf{H(Q) :Q stationary
with marginal μ} = Ī (μ), where

Ī (μ) := lim sup
h↓0

1

h
Îh(μ)

and Îh(μ) is given by (1.19). If μ � m, then by Lemma 2.15, we have Ī (μ) =
I (μ). �

The next lemma is Lemma 2.5 of [6].

LEMMA 4.4. Let Q0 ∈ MS(�). Let G be a τ -neighborhood of Q0 in MS(�),

G =
{
Q ∈ MS(�) :

∣∣∣∣
∫

gj dQ −
∫

gj dQ0

∣∣∣∣ < ε,1 ≤ j ≤ r

}
,

where the gj ’s are bounded measurable functions on (�,F o). Then, given δ > 0,
there exists a Q(δ) = ∑k

p=1 λpQp , where λp > 0, Qp ∈ MS(�) is ergodic, 1 ≤
p ≤ k, and

∑k
p=1 λp = 1, such that Q(δ) ∈ G and |H(Q(δ)) − H(Q0)| < δ.

PROOF. The proof in [6] is given when G is a weak neighborhood. However,
that proof is ergodic-theoretic and uses only the measurability and boundedness of
the fj ’s, hence it applies without modification to our present situation. �

PROOF OF THEOREM 1.15. Proposition 4.7 below is the first step in the proof.
We write

Nμ,ε =
{
ν ∈ M(E) :

∣∣∣∣
∫

fj dμ −
∫

fj dν

∣∣∣∣ < ε,1 ≤ j ≤ r

}

for μ ∈ M(E), ε > 0 and f1, . . . , fr ∈ Bb(E).
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Note that it suffices to consider the case when I (μ) < ∞ so that μ � m. By
the contraction principle, we can restrict our attention to those Qμ for which
H(Qμ) < ∞.

Before proceeding with the proof, we would like to make a remark which will
be used in the proof more than once.

REMARK 4.5. (i) Let

Nμ,ε =
{
ν ∈ M(E) :

∣∣∣∣
∫

fj dν −
∫

fj dμ

∣∣∣∣ < ε,1 ≤ j ≤ r

}
(4.6)

be a (τ - or w-) neighborhood of μ. Let 0 < ε1 < ε and let t0 > 0 be given. Then for
all t sufficiently large (depending only on ε1 and t0) and for all ω ∈ �, Lt(θt0ω) ∈
Nμ,ε1 implies that Lt(ω) ∈ Nμ,ε . To see this, note that Lt(θt0ω) ∈ Nμ,ε1 means∣∣∣∣1

t

∫ t0+t

t0

fj (Xs(ω)) ds −
∫

fj dμ

∣∣∣∣ < ε1, 1 ≤ j ≤ r,

which implies that∣∣∣∣1

t

∫ t

0
fj (Xs(ω)) ds −

∫
fj dμ

∣∣∣∣ < ε1 + 2ct0

t
, 1 ≤ j ≤ k,

where c = max1≤j≤r ‖fj‖∞, which proves the assertion.
(ii) The function

ϕ(x) := lim inf
t→∞ logEx

(
1(Lt ∈ Nμ,η)

1

εt

∫ t (1+ε)

t
1A(Xs) ds

)
,

where Nμ,η is a w- or a τ -neighborhood of μ and A ∈ B(E), is a measurable
function. The reason for this is that the lim inf can be taken along positive integers.
Indeed, if n ≤ t < n + 1, then for 1 ≤ j ≤ r ,

1

n

∫ n

0
fj (Xs) ds − 2c

n
≤ 1

t

∫ t

0
fj (Xs) ds ≤ 1

n

∫ n

0
fj (Xs) ds + 2c

n
,

where c is as in (i) above. Then, for all t sufficiently large, Lt ∈ Nμ,η if and only
if Ln ∈ Nμ,η. Also,

1

εn

∫ n(1+ε)

n
1A(Xs) ds − 1 + ε

n
≤ 1

εt

∫ t (1+ε)

t
1A(Xs) ds

≤ 1

εn

∫ n(1+ε)

n
1A(Xs) ds + 1 + ε

n
,

which shows that the lim inf in the definition of ϕ(x) can be taken along positive
integers, hence ϕ is measurable.
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PROPOSITION 4.7. Let μ ∈ M(E), μ � m. Let Nμ,η be a τ -neighborhood
of μ. Assume that Qμ ∈ MS(�) with marginal μ and that Qμ is ergodic with
H(Qμ) < ∞. If we let A be such that μ(A) > 0, then for m-a.e.(x), we have

lim inf
t→∞

1

t
logEx

(
1(Lt ∈ Nμ,η)

1

εt

∫ t (1+ε)

t
1A(Xs) ds

)
≥ −(1 + ε)H(Qμ).(4.8)

PROOF. For any ω ∈ �,∫
(Lt∈Nμ,η)

1

εt

∫ t (1+ε)

t
1A(Xs) ds dP ω(0)

(4.9)

≥
∫
(Lt∈Nμ,η)

1

εt

∫ t (1+ε)

t
1A(Xs) ds

dP ω(0)

dQμ,ω

∣∣∣∣
F o

t (1+ε)

dQμ,ω.

[The Radon–Nikodym derivative here is that of the absolutely continuous part of
P ω(0) with respect to Qμ,ω. We observed before that Qμ,ω � P ω(0), Qμ-a.s., if
H(Qμ) < ∞, but the converse need not be true, hence the inequality.] Now, Qμ-
a.s.(ω), as t → ∞, by the ergodic theorem, we have

Qμ,ω(Lt ∈ Nμ,ε) → 1,

1

t (1 + ε)
log

dP ω(0)

dQμ,ω

∣∣∣∣
F o

t (1+ε)

→ −H(Qμ)

and
1

εt

∫ t (1+ε)

t
1A(Xs) ds → μ(A).

It follows that given δ > 0, for all t sufficiently large (depending on ω and δ)
Qμ-a.s.(ω), Qμ,ω-a.s., the left-hand side of (4.9) is

≥ μ(A)

2
(1 − δ) exp

(−H(Qμ) − δ
)(

t (1 + ε)
)
.

Therefore, for μ-a.e.(x), the left-hand side of (4.8) is

≥ −(1 + ε)
(
H(Qμ) + δ

)
,

where the null set depends on δ. Taking δn ↓ 0 and combining the countable num-
ber of null sets, we conclude that (4.8) holds. We now go from μ-a.e. to m-a.e.

Since (4.8) holds μ-a.e.(x), given δ > 0, there exist a t0 > 0 and a set B with
μ(B) > 0 such that for all x ∈ B , t ≥ t0, we have

1

t
logEx

(
1(Lt ∈ Nμ,η)

1

εt

∫ t (1+ε)

t
1A(Xs) ds

)
≥ −(1 + ε)H(Qμ) − δ.(4.10)

Since μ � m, μ(B) > 0 implies m(B) > 0. By Condition 1.14, we have R1B(x) >

0 m-a.e.(x). Let

C = {x :R1B(x) > 0}.
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If x0 ∈ C, then there exists t1 > 0 such that pt1(x0,B) = α > 0. For any t > 0, we
have ∫

B
pt1(x0, dy)Ey

(
1(Lt ∈ Nμ,η)

1

εt

∫ t (1+ε)

t
1A(Xs) ds

)

≤ Ex0

(
1
(
Lt(θt1 ·) ∈ Nμ,η

) 1

εt

∫ t (1+ε)

t
1A(Xs+t1) ds

)

and by Remark 4.5(i), for all sufficiently large t ,

≤ Ex0

(
1(Lt ∈ Nμ,2η)

1

εt

∫ (t+t1)(1+ε)

t+t1

1A(Xs) ds

)

≤ Ex0

(
1(Lt ∈ Nμ,2η)

1

εt

∫ t (1+ε)

t
1A(Xs) ds + t1(1 + ε)

εt

)
.

Taking logarithms and applying Jensen’s inequality, we get

1

α

∫
B

pt1(x0, dy) logEy

(
1(Lt ∈ Nμ,η)

1

εt

∫ t (1+ε)

t
1A(Xs) ds

)

≤ − logα + logEx0

(
1(Lt ∈ Nμ,2η)

1

εt

∫ t (1+ε)

t
1A(Xs) ds + t1(1 + ε)

εt

)
.

If y ∈ B , and t ≥ t0, then the log term on the left-hand side divided by t is bounded
below [by (4.10)]. Hence, dividing by t , by Fatou’s lemma, as t → ∞, we get [via
(4.10)] for x0 ∈ C,

−(1 + ε)H(Qμ) − δ ≤ lim inf
t→∞

1

t
logEx0

(
1(Lt ∈ Nμ,2η)

1

εt

∫ t (1+ε)

t
1A(Xs) ds

)

and since δ is arbitrary and the right-hand side does not depend on δ, the proposi-
tion is proved. �

The following corollary will be used in the next step.

COROLLARY 4.11. Let ν ∈ M(E), ν � m. Then given δ > 0, there exist a
t0 > 0 and a set B ∈ B(E) with ν(B) > 0 such that for all t ≥ t0,

inf
x∈B

Ex

(
1(Lt ∈ Nμ,η)

1

εt

∫ t (1+ε)

t
1A(Xs) ds

)
≥ exp

(−t (1 + ε)
(
H(Qμ) + δ

))
.

PROOF. Since ν � m, and (4.8) holds m-a.e., it holds ν-a.e. The conclusion
of the corollary follows immediately, as did (4.10).

The next step in the proof is to establish (4.15) below for a Qμ which is a convex
combination of ergodic ones, that is,

Qμ =
k∑

p=1

λpQμp,
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where λp > 0,1 ≤ p ≤ k, and
∑k

p=1 λp = 1, each Qμp is stationary ergodic and
each μp � m. We will prove this case for k = 2. The general case can then be
proven inductively. So, let

Qμ = λ1Qμ1 + λ2Qμ2, λ1 > 0, λ2 > 0, λ1 + λ2 = 1,

where Qμ1 and Qμ2 are stationary ergodic and μp � m, p = 1,2. Then

P x(
Lt(ω, ·) ∈ Nμ,η

)
= P x

(
1

(λ1 + λ2)t

∫ (λ1+λ2)t

0
1.(Xs(ω)) ds ∈ Nμ,η

)

= P x

(
λ1 · 1

λ1t

∫ λ1t

0
1.(Xs(ω)) ds(4.11)

+ λ2
1

λ2t

∫ λ2t

0
1.(Xs(θλ1tω)) ds ∈ Nμ,η

)

≥ P x(
Lλ1t (ω, ·) ∈ Nμ1,η,Lλ2t (θλ1tω, ·) ∈ Nμ2,η

)
,

by the simple convexity property of the neighborhoods. By Corollary 4.11, given
δ > 0, we can find a set B with μ1(B) > 0 and a t0 > 0 such that for all y ∈ B and
all t ≥ t0, we have

P y(Lλ2t ∈ Nμ2,η/2) ≥ exp
(−(1 + ε)λ2t

(
H(Qμ2) + δ

))
(4.12)

and for m-a.e.(x), we have, by Proposition 4.7,

lim inf
t→∞

1

t
logEx

(
1(Lλ1t ∈ Nμ1,η)

∫ λ1t (1+ε)

λ1t
1B(Xs) ds

)
(4.13)

≥ −λ1(1 + ε)H(Qμ1).

By (4.11), we have

P x(Lt ∈ Nμ,η)

≥ Ex(
1(Lλ1t (ω, ·)) ∈ Nμ1,η

)
(4.14)

× 1

ελ1t

∫ λ1t (1+ε)

λ1t
1B(Xs(ω)) ds 1

(
Lλ2t (θλ1tω, ·) ∈ Nμ2,η)

)
,

hence, for all sufficiently large t [cf. Remark 4.5(i)] the right-hand side is

≥ Ex

(
1
(
Lλ1t (ω, ·) ∈ Nμ1,η

)

× 1

ελ1t

∫ λ1t (1+ε)

λ1t
1B(Xs(ω))1

(
Lλ2t (θsω) ∈ Nμ2,η/2

)
ds

)
,
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provided ε ≤ ηλ2/2λ1. For the last expression, we condition on F o
λ1t

, take the
conditioning under the integral sign and then condition on F o

s first to get that it

= Ex

(
1
(
Lλ1t (ω, ·) ∈ Nμ1,η

)

× 1

ελ1t

∫ λ1t (1+ε)

λ1t
Ex{

1B(Xs(ω))

× EXs(ω)(1(Lλ2t ∈ Nμ2,η/2)
) | F o

λ1t

}
ds

)

and now applying (4.12),

≥ Ex

(
1(Lλ1t ∈ Nμ1,η)

1

ελ1t

×
∫ λ1t (1+ε)

λ1t
Ex(

1B(Xs)e
−(1+ε)λ2t (H(Qμ2 )+δ) | F o

λ1t

)
ds

)

= e−(1+ε)λ2t (H(Qμ2 )+δ)Ex

(
1(Lλ1t ∈ Nμ1,η)

1

ελ1t

∫ λ1t (1+ε)

λ1t
1B(Xs) ds

)
.

Now applying (4.13), we get via (4.14) for m-a.e.(x) that

lim inf
t→∞

1

t
logP x(Lt ∈ Nμ,η) ≥ −(1 + ε)

(
H(Qμ) + δ

)
.

Taking εn ↓ 0 and δn ↓ 0, we can combine a countable number of m-null sets to
conclude that for m-a.e.(x), we have

lim inf
t→∞

1

t
logP x(Lt ∈ Nμ,η) ≥ −H(Qμ).(4.15)

We note that the m-null set may depend on the choice of Qμ of the form∑k
p=1 λpQμp for given μ.
We now complete the proof of Theorem 1.15. Let Qμ ∈ MS(�), with mar-

ginal μ. Let

Nμ,ε =
{
ν ∈ M(E) :

∣∣∣∣
∫

fj dν −
∫

fj dμ

∣∣∣∣ < ε,1 ≤ j ≤ r

}

be a τ -neighborhood of μ. Let gj (ω) = fj (X0(ω)), 1 ≤ j ≤ r , and define

G =
{
Qν ∈ MS(�) :

∣∣∣∣
∫

gj dQν −
∫

gj dQμ

∣∣∣∣ < ε,1 ≤ j ≤ r

}
.

By Lemma 4.4, given δ > 0, there exists a Qν0 ∈ G, where Qν0 = ∑k
p=1 λpQνp ,

0 < λp < 1,
∑

λp = 1, each Qνp is ergodic and |H(Qν0)−H(Qμ)| < δ. It follows
that ν0 ∈ Nμ,ε and by (4.15) for m-a.e.(x), we have

lim inf
t→∞

1

t
logP x(Lt ∈ Nμ,ε) ≥ −H(Qν0) ≥ −(

H(Qμ) + δ
)
.
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The m-null set may depend on δ > 0, but we can take δn ↓ 0 and combine the
countable number of m-null sets to get (4.16) for Qμ ∈ MS(�).

We now go from an m-null exceptional set to an m-thin set. Given Qμ with
marginal μ, let N0 denote the m-null set such that if x /∈ N0, then (4.15) holds. If
we let

N = {x :R1N0(x) > 0},
then N is m-thin by definition and x0 /∈ N implies that there exists t0 such that
pt0(x0,N

c
0 ) = 1. Given δ > 0, we can find B ⊂ Nc

0 such that pt0(x0,B) = β > 0
and t1 > 0 such that for all t ≥ t1,

inf
y∈B

1

t
logP y(Lt ∈ Nμ,ε) ≥ −H(Qμ) − δ.(4.16)

Now, using Remark 4.5(i), we have for all t sufficiently large (depending on t0
and ε),

1

β
P x0(Lt ∈ Nμ,2ε) ≥ 1

β

∫
B

pt0(x0, dy)P y(Lt ∈ Nμ,ε).

By Jensen’s inequality,

− logβ + logP x0(Lt ∈ Nμ,2ε) ≥ 1

β

∫
B

pt0(x0, dy) logP y(Lt ∈ Nμ,ε)

and now dividing by t and letting t → ∞, because of the lower boundedness
[by (4.16)], we apply Fatou’s lemma to get

lim inf
t→∞

1

t
logP x0(Lt ∈ Nμ,2ε) ≥ −H(Qμ) − δ.

δ > 0 being arbitrary, it can be dropped on the right-hand side and we get (4.15) for
x0 /∈ N . For a given μ ∈ M(E), Qμ is by no means unique and N may depend on
the choice of Qμ. However, by the contraction principle, there exists a sequence

Q
(n)
μ such that H(Q

(n)
μ ) → I (μ) as n → ∞. The countable number of m-thin

sets corresponding to each Q
(n)
μ may be combined and we finally conclude that if

μ � m, then there exists an m-thin set N such that if x /∈ N , then

lim inf
t→∞

1

t
logP x(Lt ∈ Nμ,ε) ≥ −I (μ).

If Condition 1.5 holds with the associated framework, then the m-thin set has ca-
pacity 0 and Theorem 1.15 is established. �

REMARK 4.17. If the semigroup is Feller, since a weak neighborhood is
a τ -neighborhood, we get a stronger result than the one which applies only to
w-neighborhoods.
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PROOF OF COROLLARY 1.16. Let α = inf{I (μ) :μ ∈ U}. We may assume
that α < ∞. For j ≥ 1, there exist μj ∈ U such that I (μj ) < α + j−1. Let Vj be
a τ -neighborhood of μj contained in U . Then, by Theorem 1.15, there exists an
m-thin set Nj such that if x /∈ Nj , then

lim inf
t→∞

1

t
logP x(Lt ∈ Vj ) ≥ −(α + j−1).

It follows that if x /∈ N = ⋃∞
j=1 Nj , then

lim inf
t→∞

1

t
logP x(Lt ∈ U) ≥ −(α + j−1)

for all j ≥ 1, hence the corollary follows. �

5. The self-adjoint case. In this section, we assume that {Tt } is a symmetric
semigroup, so its L2(m)-generator L is self-adjoint, the domain D(L) of which
is dense in L2(m). We denote by H the canonical square root of −L. Then
D(L) ⊂ D(H). As far as the Markov process is concerned, we only need it to
be progressively measurable.

To prove Theorem 1.17, we need some lemmas. Let v ∈ D1 and ε > 0 be fixed.
With vε := v + ε, let

V = L̂v/vε.

Recall that V is a bounded L1(m) function. If f is a function which is in an
L2(m)-equivalence class, define

p̃tf (x) = Ex(
f (Xt)e

− ∫ t
0 V (Xs)ds).(5.1)

Let T̃tf denote the corresponding operator on L2(m).

LEMMA 5.2. {T̃t , t ≥ 0} is a self-adjoint strongly continuous semigroup on
L2(m), its L2(m)-generator L̃ is given by

L̃f = Lf − Vf(5.3)

and D(L̃) = D(L).

PROOF. The fact that {T̃t } is a strongly continuous self-adjoint semigroup in
L2(m) is proved in [2], page 130. The function V is bounded and in L2(m), hence,
for any function f in L2(m),

(ptf − p̃tf )(x) = Ex(
f (Xt) − f (Xt)e

− ∫ t
0 V (Xs)ds)

= Ex

(
f (Xt)

∫ t

0
V (Xs) ds + f (Xt)O(t2)

)
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as t → 0, where O(t2) is uniform in ω. Therefore,

lim sup
t→0

∥∥∥∥1

t
(ptf − p̃tf ) − Vf

∥∥∥∥
2

(5.4)

= lim sup
t→0

∥∥∥∥Ex

(
f (Xt) · 1

t

∫ t

0
V (Xs) ds

)
− V (x)f (x)

∥∥∥∥
2
.

Letting W(t) = t−1 ∫ t
0 V (Xs) ds, the right-hand side in (5.4) is

≤ lim sup
t→0

∥∥Ex((
f (Xt) − f (x)

)
W(t)

)∥∥
2

+ lim sup
t→0

‖f (x)ExW(t) − f (x)V (x)‖2.

Since |W(t)| ≤ c for some c > 0 independent of t ,

‖Exf (Xt)W(t) − f (x)ExW(t)‖2
2 ≤ c2

∫ (
Exf 2(Xt) − 2Exf (Xt)f + f 2)

dm

= c2
(

2‖f ‖2
2 − 2

∫
(ptf )f dm

)

→ 0 as t → 0.

Also,

‖f (x)ExW(t) − f (x)V (x)‖2
2 =

∫
f 2(x)

(
Ex(

W(t) − V (x)
))2

dm(x).

W and V are bounded and
∫
(Ex(W(t) − V (x)))2 dm(x) → 0 as t → 0 so

that Ex(W(t) − V (x)) → 0 in m-measure and by dominated convergence,
‖f ExW(t) − f V ‖2 → 0 as t → 0. Therefore, the right-hand side in (5.4) is 0.
It follows that for any f ∈ L2(m),∥∥∥∥Ttf − f

t
− T̃tf − f

t
− Vf

∥∥∥∥
2
→ 0 as t → 0,

hence, f ∈ D(L) if and only if f ∈ D(L̃) and L̃f = Lf − Vf , which proves the
lemma. �

LEMMA 5.5. {T̃t } is a contraction on L2(m).

PROOF. Let v, g ∈ D0. Let un ∈ D, un ↗ 1 and for some η > 0, let

vn = 1

η

∫ η

0
psun ds.

Then v + εvn ↗ vε(= v + ε) and by the self-adjointness of {T̃t } on L2(m) and the
Feynman–Kac formula (Corollary 2.6), we have that for n ≥ 1,∫

(v + εvn)p̃tg dm =
∫

p̃t (v + εvn)g dm =
∫

(v + εvn)g dm.
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Letting n → ∞, since 0 ≤ v + εvn ≤ vε and p̃tg and g belong to L1(m), we get∫
vεp̃tg dm =

∫
vεg dm.(5.6)

By Lemma 2.3, D0 is dense in L+
1 (m), hence (5.6) holds for all g ∈ L+

1 (m). This
shows that vε dm is an invariant measure for p̃t .

If f ∈ D0, then∫
|T̃tf |2 dm =

∫ {
Ex(

f (Xt)e
− ∫ t

0 V (Xs) ds)}2
dm

and by the Schwarz inequality,

≤
∫

Ex{
vε(Xt))

1/2e−(1/2)
∫ t

0 V (Xs)ds}2

× Ex{
f (Xt)(vε(Xt))

−1/2e−(1/2)
∫ t

0 V (xs)ds}2
dm

=
∫

Ex(
vε(Xt)e

− ∫ t
0 V (Xs)ds)Ex(

f 2(Xt)(vε(Xt))
−1e− ∫ t

0 V (Xs)ds)dm.

By the Feynman–Kac formula (Corollary 2.6),

=
∫

vε(x)T̃t (f
2/vε)(x) dm(x)

and by (5.6) applied to g = f 2/vε (which is in L1 if f ∈ D0), we get that the last
expression

=
∫

vε(f
2/vε) dm =

∫
f 2 dm.

Since D0 is dense in L+
2 (m) and {T̃t } is strongly continuous on L2(m), we have

shown that

‖T̃tf ‖2 ≤ ‖f ‖2

for all f ∈ L+
2 (m), which suffices, and the lemma is proved. �

LEMMA 5.7. Let μ � m and f 2 = dμ/dm, where f as a function represents
a nonnegative version of the square root of f 2. Then, for all h ≥ 0,∫

(f − phf )f dm ≤ hI (μ).

PROOF. Let fn = f ∧ n for n ≥ 1, and let tk ↓ 0 and

f (k)
n = 1

tk

∫ tk

0
psfn ds
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for k ≥ 1. Then f
(k)
n ∈ D0 and f

(k)
n ≤ n. By (2.18), if v ∈ D0, ε > 0 and vε = v+ε,

we have ∫
log

phvε

vε

dμ ≥ −hI (μ).

Since logx ≤ x − 1 for x > 0, this gives∫
vε − phvε

vε

dμ ≤ hI (μ).

Taking v = f
(k)
n , we then get∫

f
(k)
n − phf

k
n

f
(k)
n + ε

f 2 dm ≤ hI (μ).

As k → ∞, we get, by dominated convergence,∫
fn − phfn

fn + ε
f 2 dm ≤ hI (μ).

Since
phfn

fn + ε
≤ n

n + ε
1[f >n] + phf

f + ε
1[f ≤n],

we can let n → ∞ to get ∫
f − phf

f + ε
f 2 dm ≤ hI (μ).

Finally, |f −phf |f 2/(f + ε) ≤ |f −phf |f ∈ L1(m), so we can let ε ↓ 0 and the
lemma is proved. �

PROOF OF THEOREM 1.17. Let μ � m,dμ = f 2 dm and f ≥ 0. By
Lemma 5.7, we have that for h > 0,

1

h

∫
(f − Thf )f dm ≤ I (μ).

If {Eλ,λ ≥ 0} is the spectral measure for the positive definite operator −L, then
following the argument of Donsker and Varadhan ([3], page 46), this implies that∫ ∞

0
λd〈Eλf,f 〉 ≤ I (μ),

so I (μ) < ∞ implies that f ∈ D(H) and

‖Hf ‖2
2 ≤ I (μ).

For the other direction, let v ∈ D1, ε > 0 and vε = v + ε. Let V = L̂v/vε and T̃t

be given via (5.1). Since, by Lemma 5.5, T̃t is a contraction on L2(m), we have

〈T̃tf − f,f 〉 ≤ 0,
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therefore, if f ∈ D(L), we get

〈L̃f, f 〉 ≤ 0,

which gives [by (5.3)]

〈−Lf + Vf,f 〉 ≥ 0,(5.8)

meaning that for every v ∈ D1, f ∈ D(L) and ε > 0,

〈Lf,f 〉 ≤ 〈Vf,f 〉,
that is, ∫

Lv

vε

f 2 dm ≥ 〈Lf,f 〉.
Therefore,

inf
v∈D1
ε>0

∫
Lv

vε

f 2 dm ≥ 〈Lf,f 〉.

It follows that

I (μ) ≤ −〈Lf,f 〉 = ‖Hf ‖2
2(5.9)

if f ∈ D(L). If f ∈ D(H), then we take 0 < λn ↗ ∞ and fn := Eλnf . From the
spectral representation, it is clear that fn ∈ D(L), fn → f in L2(m) and Hfn →
Hf . Since (5.9) holds for each fn, letting n → ∞, we then see that for f ∈ D(H),

lim inf
n→∞ I (μn) ≤ ‖Hf ‖2

2,

where dμn = f 2
n dm. Since I is lower semicontinuous with respect to the τ -

topology on M(E), we conclude that I (μ) ≤ lim infn→∞ I (μn), where dμ =
f 2 dm, and the theorem is proved. �

REMARK 5.10. It is easy to check that if E(u, v) is the associated Dirichlet
form, then u ∈ D(H) if and only if u ∈ D(E), and if u ∈ D(H), then

‖Hu‖2
2 = E(u,u)

(cf. [7], page 28).

REMARK 5.11 (Relation between Theorem 1.17 and Theorem 5 of [3]).
Donsker and Varadhan [3] consider a semigroup {Tt , t ≥ 0} acting on Bb(E). Let

B0 =
{
u ∈ Bb(E) : lim

t→0
‖ptu − u‖∞ = 0

}
,

where ‖ · ‖∞ denotes the sup norm. They assume that m is a σ -finite invariant
measure for the semigroup and that B0 ∩ L2(m) is dense in L2(m). Then, for
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u ∈ L2(m), given ε > 0, there exists u0 ∈ B0 ∩L2(m) such that
∫ |u−u0|2 dm < ε.

Furthermore,∫
|ptu − u|2 dm ≤ 3

{∫
|ptu − ptu0|2 dm

+
∫

|ptu0 − u0|2 dm +
∫

|u0 − u|2 dm

}

≤ 3
{

2
∫

|u − u0|2 dm +
∫

|ptu0 − u0|2 dm

}
.

Therefore, to show that {Tt } is a strongly continuous semigroup on L2(m), it suf-
fices to show that for u0 ∈ B0 ∩ L2(m),

lim
t→0

∫
|ptu0 − u0|2 dm = 0.

We have∫
|ptu0 − u0|2 dm =

∫
(ptu0)

2 dm − 2
∫

(pt/2u0)
2 dm +

∫
u2

0 dm

≤
∫

ptu
2
0 dm − 2

∫
(pt/2u0)

2 dm +
∫

u2
0 dm

and since m is invariant for the semigroup, the last expression

= 2
∫

u2
0 dm − 2

∫
(pt/2u0)

2 dm.

Since u0 ∈ B0, by Fatou’s lemma, we have

lim inf
t→0

∫
(pt/2u0)

2 dm ≥
∫

u2
0 dm,

hence, lim supt→0
∫ |ptu0 − u0|2 dm = 0, the semigroup {Tt } is strongly continu-

ous on L2(m) and our results apply without some extraneous assumptions.

6. The discrete-time case. We assume that {Tn,n ≥ 1} is a semigroup on
L2(m) for which (1.2) holds. Let Î1(μ) be as defined in Section 1. Let

I1(μ) =
{

Î1(μ), if μ � m,
∞, otherwise.

Then, if one uses the discrete analog of the Feynman–Kac formula (cf. [3] or [2]),
a proof analogous to that of Theorem 1.8 yields the following:

THEOREM 6.1. Let μ ∈ M(E) and let a < Î1(μ). There then exists a τ -
neighborhood Nμ of μ such that

lim sup
n→∞

1

n
log sup

x∈E

P x(Ln ∈ Nμ) ≤ −a.
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REMARK 6.2. This immediately implies the upper bound for τ -compact sets,
as in the continuous-time case. Furthermore, if the semigroup is Feller, then Nμ

may be chosen to be a weak neighborhood in the statement of the theorem and
“τ -compact” can be replaced by “w-compact” in the corollary.

The next theorem is the analog of Theorem 1.11, but first, we define an m-thin
set in the present context.

A set N is m-thin in the discrete-time context if there exists a set B such that
m(B) = 0 and

N =
{
x ∈ E :

∞∑
n=1

2−npn(x,B) > 0

}
.

We then have the following.

THEOREM 6.3. Let μ ∈ M(E) and let a < I1(μ). There then exists a τ -
neighborhood Nμ of μ and an m-thin set N such that if x /∈ N , then

lim sup
n→∞

1

n
logP x(Ln ∈ Nμ) ≤ −a.

For the lower bound, we also need the counterpart of Condition 1.14, which
reads as follows.

If A ∈ B(E) and m(A) > 0, then for m-a.e.(x),

∞∑
n=1

pn(x,A) > 0.(6.4)

Under this additional assumption, we have the following.

THEOREM 6.5. Let μ ∈ M(E) and let Nμ be a τ -neighborhood of μ. Then
there exists an m-thin set N such that if x /∈ N ,

lim inf
n→∞

1

n
logP x(Ln ∈ Nμ) ≥ −I (μ).

REMARK 6.6. The analog of Corollary 1.16 also holds for U a w-open subset
of M(E).
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