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MARTINGALE APPROACH TO STOCHASTIC DIFFERENTIAL
GAMES OF CONTROL AND STOPPING1

BY IOANNIS KARATZAS AND INGRID-MONA ZAMFIRESCU

Columbia University and Baruch College, CUNY

We develop a martingale approach for studying continuous-time stochas-
tic differential games of control and stopping, in a non-Markovian framework
and with the control affecting only the drift term of the state-process. Under
appropriate conditions, we show that the game has a value and construct a
saddle pair of optimal control and stopping strategies. Crucial in this con-
struction is a characterization of saddle pairs in terms of pathwise and mar-
tingale properties of suitable quantities.

1. Introduction and synopsis. We develop a theory for zero-sum stochas-
tic differential games with two players, a “controller” and a “stopper.” The state
X(·) in these games evolves in Euclidean space according to a stochastic func-
tional/differential equation driven by a Wiener process; via his choice of instanta-
neous, nonanticipative control u(t), the controller can affect the local drift of this
state process X(·) at time t , though not its local variance.

The stopper decides the duration of the game, in the form of a stopping rule τ

for the process X(·). At the terminal time τ the stopper receives from the controller
a “reward”

∫ τ
0 h(t,X,ut ) dt + g(X(τ)) consisting of two parts: The integral up to

time τ of a time-dependent running reward h, which also depends on the past
and present states X(s),0 ≤ s ≤ t , and on the present value ut of the control; and
the value at the terminal state X(τ) of a continuous terminal reward function g

(“reward” always refers to the stopper).
Under appropriate conditions on the local drift and local variance of the state

process, and on the running and terminal cost functions h and g, we establish the
existence of a value for the resulting stochastic game of control and stopping, as
well as regularity and martingale-type properties of the temporal evolution for the
resulting value process. We also construct optimal strategies for the two players,
in the form of a saddle point (u∗, τ∗), to wit: the strategy u∗(·) is the controller’s
best response to the stopper’s use of the stopping rule τ∗, in the sense of minimiz-
ing total expected cost; and the stopping rule τ∗ is the stopper’s best response to
the controller’s use of the control strategy u∗(·), in the sense of maximizing total
expected reward.
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The approach of the paper is direct and probabilistic. It draws on the Dubins–
Savage (1965) theory, and builds on the martingale methodologies developed for
the optimal stopping problem and for the problem of optimal stochastic control
over the last three decades; see, for instance, Neveu (1975), El Karoui (1981),
Beneš (1970, 1971), Rishel (1970), Duncan and Varaiya (1971), Davis and Varaiya
(1973), Davis (1973, 1979) and Elliott (1977, 1982). It proceeds in terms of a char-
acterization of saddle points via martingale-type properties of suitable quantities,
which involve the value process of the game.

An advantage of the approach is that it imposes no Markovian assumptions
on the dynamics of the state-process; it allows the local drift and variance of the
state-process, as well as the running cost, to depend at any given time t on past-
and-present states X(s),0 ≤ s ≤ t , in a fairly general, measurable manner. (The
boundedness and continuity assumptions can most likely be relaxed.)

The main drawback of this approach is that it imposes a severe nondegener-
acy condition on the local variance of the state-process, and does not allow this
local variance to be influenced by the controller. We hope that subsequent work
will be able to provide a more general theory for such stochastic games, possibly
also for their nonzero-sum counterparts, without such restrictive assumptions—at
least in the Markovian framework of, say, Fleming and Soner (2006), El Karoui,
Nguyen and Jeanblanc-Picqué (1987), Bensoussan and Lions (1982) or Bismut
(1973, 1978). It would also be of considerable interest to provide a theory for con-
trol of “bounded variation” type (admixture of absolutely continuous, as in this
paper, with pure jump and singular, terms).
Extant work: A game between a controller and a stopper, in discrete time and
with Polish (complete separable metric) state-space, was studied by Maitra and
Sudderth (1996b); under appropriate conditions, these authors obtained the exis-
tence of a value for the game and provided a transfinite induction algorithm for its
computation.

In Karatzas and Sudderth (2001) a similar game was studied for a linear dif-
fusion process, with the unit interval as its state-space and absorption at the end-
points. The one-dimensional nature of the setup allowed an explicit computation of
the value and of a saddle pair of strategies, based on scale-function considerations
and under a nondegeneracy condition on the variance of the diffusion. Karatzas
and Sudderth (2007) studied recently nonzero-sum versions of these linear diffu-
sion games, where one seeks and constructs Nash equilibria, rather than saddle
pairs, of strategies. Always in a Markovian, one-dimensional framework, Weeras-
inghe (2006) was able to solve in a similar, explicit manner, a stochastic game with
variance that is allowed to degenerate; while Bayraktar and Young (2007) estab-
lished a very interesting convex-duality connection, between a stochastic game of
control and stopping and a probability-of-ruin-minimization problem.

Along a parallel tack, stochastic games of stopping have been treated via the
theory of Backwards Stochastic Differential Equations starting with Cvitanić and
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Karatzas (1996), and continuing with Hamadène and Lepeltier (1995, 2000) and
Hamadène (2006) for games of mixed control/stopping.

The methods used in the present paper are entirely different from those in all
these works.
• The coöperative version of the game has received far greater attention. In the
standard model of stochastic control, treated, for instance, in the classic mono-
graph Fleming and Soner (1992), the controller may influence the state dynamics
but must operate over a prescribed time-horizon. If the controller is also allowed
to choose a quitting time adaptively, at the expense of incurring a termination
cost, one has a problem of control with discretionary stopping [or “leavable”
control problem, in the terminology of Dubins and Savage (1976)]. General ex-
istence/characterization results for such problems were obtained by Dubins and
Savage (1976) and by Maitra and Sudderth (1996a) under the rubric of “leavable”
stochastic control; by Krylov (1980), El Karoui (1981), Bensoussan and Lions
(1982), Haussmann and Lepeltier (1990), Maitra and Sudderth (1996a), Mori-
moto (2003), Ceci and Basan (2004); and by Karatzas and Zamfirescu (2006) in
the present framework. There are also several explicitly solvable problems in this
vein: see Beneš (1992), Davis and Zervos (1994), Karatzas and Sudderth (1999),
Karatzas et al. (2000), Karatzas and Wang (2000, 2001), Kamizono and Morimoto
(2002), Karatzas and Ocone (2002), Ocone and Weerasinghe (2006).

Such problems arise, for instance, in target-tracking models, where one has to
stay close to a target by spending fuel, declare when one has arrived “sufficiently
close,” then decide whether to engage the target or not. Combined stochastic con-
trol/optimal stopping problems also arise in mathematical finance, namely, in the
context of computing the upper-hedging prices of American contingent claims un-
der constraints; these computations lead to stochastic control of the absolutely
continuous or the singular type [e.g. Karatzas and Kou (1998), Karatzas and Wang
(2000)].

The computation of the lower-hedging prices for American contingent claims
under constraints leads to stochastic games of control and stopping; see Karatzas
and Kou (1998) for details.
Synopsis: We set up in the next section the model for a controlled stochastic func-
tional/differential equation driven by a Wiener process, that will be used through-
out the paper; this setting is identical to that of Elliott (1982) and of our earlier
paper Karatzas and Zamfirescu (2006). Within this model, we formulate in Sec-
tion 3 the stochastic game of control and stopping that will be the focus of our
study. Section 4 reviews in the present context the classical results for optimal
stopping on the one hand, and for optimal stochastic control on the other, when
these problems are viewed separately.

Section 5 establishes the existence of a value for the stochastic game, and studies
the regularity and some simple martingale-like properties of the resulting value
process evolving through time. This study continues in earnest in Section 6 and
culminates with Theorem 6.3.
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Section 7 then builds on these results, to provide necessary and sufficient con-
ditions for a pair (u, τ ) consisting of a control strategy and a stopping rule, to be
a saddle point for the stochastic game. These conditions are couched in terms of
martingale-like properties for suitable quantities, which involve the value process
and the cumulative running reward. A similar characterization is provided in Sec-
tion 8 for the optimality of a given control strategy u(·).

With the help of the predictable representation property of the Brownian filtra-
tion under equivalent changes of probability measure, and of the Doob–Meyer de-
composition for sufficiently regular submartingales, this characterization leads—in
Section 9, and under appropriate conditions—to a specific control strategy u∗(·)
as a candidate for optimality. These same martingale-type conditions suggest τ∗,
the first time the value process V (·) of the game agrees with the terminal reward
g(X(·)), as a candidate for optimal stopping rule. Finally, it is shown that the pair
(u∗, τ∗) is indeed a saddle point of the stochastic game, and that V (· ∧ τ∗) has
continuous paths.

NOTATION. The paper is quite heavy with notation, so here is a partial list for
ease of reference:
X(t),Wu(t): Equations (1), (6) and equation (4), respectively.
�u(t),�u(t, τ ): Exponential likelihood ratios (martingales); equations (3) and
(25).
Yu(t, τ ), Y u(τ ): Total (i.e., terminal, plus running) cost/reward on the interval
[[t, τ ]]: equations (8), (23).
V ,V and V (t),V (t): Upper and lower values of the game; equations (9), (11),
(12).
J (t, τ ): Minimal conditional expected total cost on the interval [[t, τ ]]; equation
(14).
Zu(t): Maximal conditional expected reward under control u(·), from time t on-
ward; equation (19).
Qu(t): Cumulative maximal conditional expected reward under control u(·), at
time t; equation (20).
Ru(t): Cumulative value of game under control u(·), at t; equation (36).
τu
t (ε), τu

t : Stopping rules; equation (22).
�t(ε), �t: Stopping rules; equation (33).
H(t,ω, a,p): Hamiltonian function; equation (72).
Saddle Point: Inequalities (10).
Thrifty Control Strategy: Requirement (66).

2. The model. Consider the space � = C([0, T ];R
n) of continuous func-

tions ω : [0, T ] → R
n, defined on a given bounded interval [0, T ] and taking

values in some Euclidean space R
n. The coördinate mapping process will be

denoted by W(t,ω) = ω(t),0 ≤ t ≤ T , and F W
t = σ(W(s);0 ≤ s ≤ t), 0 ≤ t ≤ T ,
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will stand for the natural filtration generated by this process W . The measur-
able space (�,F W

T ) will be endowed with Wiener measure P, under which
W becomes a standard n-dimensional Brownian motion. We shall denote by
F = {Ft }0≤t≤T the P-augmentation of this natural filtration, and use the notation
‖ω‖∗

t := max0≤s≤t |ω(s)|, ω ∈ �,0 ≤ t ≤ T .
The σ -algebra of predictable subsets of the product space [0, T ]×� will be de-

noted by P , and S will stand for the collection of stopping rules of the filtration F.
These are measurable mappings τ : � → [0, T ] with the property

{τ ≤ t} ∈ Ft ∀0 ≤ t ≤ T .

Given any two stopping rules ρ and ν with ρ ≤ ν, we shall denote by Sρ,ν the
collection of all stopping rules τ ∈ S with ρ ≤ τ ≤ ν.

Consider now a predictable (i.e., P -measurable) σ : [0, T ] × � → L(Rn;R
n)

with values in the space L(Rn;R
n) of (n × n) matrices, and suppose that σ(t,ω)

is nonsingular for every (t,ω) ∈ [0, T ]×� and that there exists some real constant
K > 0 for which

‖σ−1(t,ω)‖ ≤ K and |σij (t,ω) − σij (t, ω̃)| ≤ K‖ω − ω̃‖∗
t ∀1 ≤ i, j ≤ n,

hold for every ω ∈ �, ω̃ ∈ � and every t ∈ [0, T ]. Then for any initial condition
x ∈ R

n, there is a pathwise unique, strong solution X(·) of the stochastic equation

X(t) = x +
∫ t

0
σ(s,X)dW(s), 0 ≤ t ≤ T ;(1)

see Theorem 14.6 in Elliott (1982). In particular, the augmentation of the natural
filtration generated by X(·) coincides with the filtration F itself.

Now let us introduce an element of control in this picture. We shall denote by U

the class of admissible control strategies u : [0, T ]×� → A. These are predictable
processes with values in some given separable metric space A. We shall assume
that A is a countable union of nonempty, compact subsets, and is endowed with
the σ -algebra A of its Borel subsets.

We shall consider also a P ⊗A-measurable function f : ([0, T ]×�)×A → R
n

with the following properties:

• for each a ∈ A, the mapping (t,ω) 
→ f (t,ω, a) is predictable; and
• there exists a real constant K > 0 such that

|f (t,ω, a)| ≤ K(1 + ‖ω‖∗
t ) ∀0 ≤ t ≤ T ,ω ∈ �,a ∈ A.(2)

For any given admissible control strategy u(·) ∈ U, the exponential process

�u(t) := exp
{∫ t

0
〈σ−1(s,X)f (s,X,us), dW(s)〉

(3)

− 1
2

∫ t

0
|σ−1(s,X)f (s,X,us)|2 ds

}
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0 ≤ t ≤ T , is a martingale under all these assumptions; namely, E(�u(T )) = 1 [see
Beneš (1971), as well as Karatzas and Shreve (1991), pages 191 and 200 for this
result]. Then the Girsanov theorem (ibid., Section 3.5) guarantees that the process

Wu(t) := W(t) −
∫ t

0
σ−1(s,X)f (s,X,us) ds, 0 ≤ t ≤ T(4)

is a Brownian motion with respect to the filtration F, under the new probability
measure

P
u(B) := E[�u(T ) · 1B], B ∈ FT ,(5)

which is equivalent to P. It is now clear from the equations (1) and (4) that

X(t) = x +
∫ t

0
f (s,X,us) ds +

∫ t

0
σ(s,X)dWu(s), 0 ≤ t ≤ T ,(6)

holds almost surely. This will be our model for a controlled stochastic func-
tional/differential equation, with the control appearing only in the drift (bounded
variation) term.

3. The stochastic game of control and stopping. In order to specify the ob-
jective of our stochastic game of control and stopping, let us consider two bounded,
measurable functions h : [0, T ] × � × A → R and g : Rn → R. We shall assume
that the running reward function h satisfies the measurability conditions imposed
on the drift-function f above, except of course that (2) is now strengthened to the
boundedness requirement

|h(t,ω, a)| ≤ K ∀0 ≤ t ≤ T , ω ∈ �, a ∈ A.(7)

To simplify the analysis, we shall assume that the terminal reward function g is
continuous.

We shall study a stochastic game of control and stopping with two players: The
controller, who chooses an admissible control strategy u(·) in U; and the stopper,
who decides the duration of the game by his choice of stopping rule τ ∈ S. When
the stopper declares the game to be over, he receives from the controller the amount
Yu(τ ) ≡ Yu(0, τ ), where

Yu(t, τ ) := g(X(τ)) +
∫ τ

t
h(s,X,us) ds for τ ∈ St,T , t ∈ S.(8)

It is thus in the best interest of the controller (resp., the stopper) to make the amount
Yu(τ ) as small (resp., as large) as possible, at least on the average. We are thus led
to a stochastic game, with

V := inf
u∈U

sup
τ∈S

E
u(Y u(τ )), V := sup

τ∈S
inf
u∈U

E
u(Y u(τ ))(9)

as its upper- and lower-values, respectively; clearly, V ≤ V .
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We shall say that the game has a value, if its upper- and lower-values coincide,
that is, V = V ; in that case we shall denote this common value simply by V .

A pair (u∗, τ∗) ∈ U × S will be called saddle point of the game, if

E
u∗

(Y u∗
(τ )) ≤ E

u∗
(Y u∗

(τ∗)) ≤ E
u(Y u(τ∗))(10)

holds for every u(·) ∈ U and τ ∈ S. In words, the strategy u∗(·) is the controller’s
best response to the stopper’s use of the rule τ∗; and the rule τ∗ is the stopper’s
best response to the controller’s use of the strategy u∗(·).

If such a saddle-point pair (u∗, τ ∗) exists, then it is quite clear that the game
has a value. We shall characterize the saddle property in terms of simple, pathwise
and martingale properties of certain crucial quantities; see Theorem 7.1. Then, in
Sections 8 and 9, we shall use this characterization in an effort to show that a
saddle point indeed exists and to identify its components.

In this effort we shall need to consider, a little more generally than in (9), the
upper-value-process

V (t) := essinf
u∈U

esssup
τ∈St,T

E
u(Y u(t, τ )|Ft)(11)

and the lower-value-process

V (t) := esssup
τ∈St,T

essinf
u∈U

E
u(Y u(t, τ )|Ft)(12)

of the game, for each t ∈ S. Clearly, V (0) = V , V (0) = V , as well as

g(X(t)) ≤ V (t) ≤ V (t) ∀ t ∈ S.(13)

We shall see in Theorem 5.1 that this last inequality holds, in fact, as an equality:
the game has a value at all times.

4. Optimal control and stopping problems, viewed separately. Given any
stopping rule t ∈ S, we introduce the minimal conditional expected cost

J (t, τ ) := essinf
v∈U

E
v(Y v(t, τ )|Ft),(14)

that can be achieved by the controller over the stochastic interval

[[t, τ ]] := {(s,ω) ∈ [0, T ] × � : t(ω) ≤ s ≤ τ(ω)},(15)

for each stopping rule τ ∈ St,T . With the notation (14), the lower value (12) of the
game becomes

V (t) = esssup
τ∈St,T

J (t, τ ) ≥ J (t, t) = g(X(t)) a.s.(16)

By analogy with the classical martingale approach to stochastic control [devel-
oped by Rishel (1970), Duncan and Varaiya (1971), Davis and Varaiya (1973),



1502 I. KARATZAS AND I.-M. ZAMFIRESCU

Davis (1973) and outlined in Davis (1979), El Karoui (1981)], for any given ad-
missible control strategy u(·) ∈ U and any stopping rules t, ν, τ with 0 ≤ t ≤ ν ≤
τ ≤ T , we have the P

u-submartingale property

E
u(�u(ν, τ )|Ft) ≥ �u(t, τ )

(17)

for �u(t, τ ) := J (t, τ ) +
∫ t

0
h(s,X,us) ds,

or equivalently,

E
u

[
J (ν, τ ) +

∫ ν

t
h(s,X,us) ds

∣∣∣Ft

]
≥ J (t, τ ) a.s.(18)

A very readable account of this theory appears in Chapter 16, pages 222–241 of
Elliott (1982).

4.1. A family of optimal stopping problems. For each admissible control strat-
egy u(·) ∈ U, we define the maximal conditional expected reward

Zu(t) := esssup
τ∈St,T

E
u(Y u(t, τ )|Ft), t ∈ S,(19)

that can be achieved by the stopper from time t onward, as well as the “cumulative”
quantity

Qu(t) := Zu(t) +
∫ t

0
h(s,X,us) ds = esssup

τ∈St,T

E
u(Y u(τ )|Ft);(20)

in particular,

Zu(t) ≥ Yu(t, t) = g(X(t)), V (t) = essinf
u∈U

Zu(t).(21)

Let us introduce the stopping rules

τu
t (ε) := inf{s ∈ [t, T ] :g(X(s)) ≥ Zu(s) − ε}, τu

t := τu
t (0)(22)

for each t ∈ S,0 ≤ ε < 1. Then τu
t (ε) ≤ τu

t .
From the classical martingale approach to the theory of optimal stopping [e.g.,

El Karoui (1981) or Karatzas and Shreve (1998), Appendix D], the following re-
sults are well known.

PROPOSITION 4.1. The process Qu(·) ≡ {Qu(t),0 ≤ t ≤ T } is a P
u-super-

martingale with paths that are RCLL (Right-Continuous, with Limits from the
Left); it dominates the continuous process Yu(·) given as

Yu(t) ≡ Yu(0, t) = g(X(t)) +
∫ t

0
h(s,X,us) ds, 0 ≤ t ≤ T ;(23)

and Qu(·) is the smallest RCLL supermartingale which dominates Yu(·).
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In other words, Qu(·) of (20) is the Snell Envelope of the process Yu(·).

PROPOSITION 4.2. For any stopping rules t, ν, θ with t ≤ ν ≤ θ ≤ τu
t , we

have the martingale property E
u[Qu(θ)|Fν] = Qu(ν) a.s.; in particular, Qu(· ∧

τu
0 ) is a P

u-martingale. Furthermore, Zu(t) = E
u[Yu(t, τ u

t )|Ft] holds a.s.

4.2. A preparatory lemma. For the proof of several results in this work, we
shall need the following observation; we list it separately, for ease of reference.

LEMMA 4.3. Suppose that t, θ are stopping rules with 0 ≤ t ≤ θ ≤ T , and
that u(·), v(·) are admissible control strategies in U.

(i) Assume that u(·) = v(·) holds a.e. on the stochastic interval [[t, θ ]], in the
notation of (15). Then, for any bounded and Fθ -measurable random variable ran-
dom variable , we have

E
v[|Ft] = E

u[|Ft] a.s.(24)

In particular, with t = 0 this gives E
v[] = E

u[].
(ii) More generally, assume that u(·) = v(·) holds a.e. on {(u,ω) : t(ω) ≤ u ≤

θ(ω),ω ∈ A} for some A ∈ Ft. Then (24) holds a.e. on the event A.

The reasoning is simple: with the notation �u(t, θ) := �u(θ)/�u(t) from (3),
and using the martingale property of �u(·) under P

u, we have E
u[�u(t, θ)|Ft] = 1

a.s. In conjunction with the Bayes rule for conditional expectations under equiva-
lent probability measures, this gives

E
u[|Ft] = �u(t) · E[�u(t, θ)|Ft]

�u(t) · E[�u(t, θ)|Ft] = E[�u(t, θ)|Ft]
(25)

= E[�v(t, θ)|Ft] = · · · = E
v[|Ft] a.s.

The second claim is proved similarly.

4.3. Families directed downward. For any given control strategy v(·) ∈ U and
stopping rules t, θ with 0 ≤ t ≤ θ ≤ T , we shall denote by V[t,θ ] the set of ad-
missible control strategies u(·) as in Lemma 4.3 (i.e., with u(·) = v(·) a.e. on the
stochastic interval [[t, θ ]]).

We observe from (19), (8) and Lemma 4.3 that Zu(θ) depends only on the
values that the admissible control strategy u(·) takes over the stochastic interval
]]θ, T ]] := {(s,ω) ∈ [0, T ] × � : θ(ω) < s ≤ T } (its values over the stochastic in-
terval [[0, θ ]] are irrelevant for computing Zu(θ)). Thus, for any given admissible
control strategy v(·) ∈ U, we can write the upper value (11) of the game as

V (θ) = essinf
u∈U

Zu(θ) = essinf
u∈V[0,θ ]

Zu(θ) a.s.(26)
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LEMMA 4.4. The family of random variables {Zu(θ)}u∈V[0,θ ] is directed
downward: for any two u1(·) ∈ V[0,θ ] and u2(·) ∈ V[0,θ ], there exists an admis-
sible control strategy û(·) ∈ V[0,θ ] such that we have a.s.

Zû(θ) = Zu1
(θ) ∧ Zu2

(θ).

PROOF. Consider the event A := {Zu1
(θ) ≤ Zu2

(θ)} ∈ Fθ , and define an ad-
missible control process u(·) ∈ U via û(s,ω) := v(s,ω) for 0 ≤ s ≤ θ(ω),

û(s,ω) := u1(s,ω) · 1A(ω) + u2(s,ω) · 1Ac(ω) for θ(ω) < s ≤ T .(27)

Consider also the stopping rule τ̂θ := τu1

θ · 1A + τu2

θ · 1Ac ∈ Sθ,T [notation of (22)].
Then from Lemma 4.3(ii) we have

Zû(θ) = E
û[Y û(θ, τ û

θ )|Fθ ]
= E

u1[Yu1
(θ, τ û

θ )|Fθ ] · 1A + E
u2[Yu2

(θ, τ û
θ )|Fθ ] · 1Ac

≤ Zu1
(θ) · 1A + Zu2

(θ) · 1Ac

(28)
= E

u1[Yu1
(θ, τu1

θ )|Fθ ] · 1A + E
u2[Yu2

(θ, τu2

θ )|Fθ ] · 1Ac

= E
û[Y û(θ, τu1

θ )|Fθ ] · 1A + E
û[Y û(θ, τu2

θ )|Fθ ] · 1Ac

= E
û[Y û(θ, τ̂θ )|Fθ ] ≤ Zû(θ),

thus, also Zû(θ) = Zu1
(θ) · 1A + Zu2

(θ) · 1Ac = Zu1
(θ) ∧ Zu2

(θ), a.s. �

Now we can appeal to basic properties of the essential infimum [e.g., Neveu
(1975), page 121], to obtain the following.

LEMMA 4.5. For each θ ∈ S, there exists a sequence of admissible control
processes {uk(·)}k∈N ⊂ V[0,θ ], such that the corresponding sequence of random

variables {Zuk
(θ)}k∈N is decreasing, and the essential infimum in (26) becomes a

limit:

V (θ) = lim
k→∞ ↓ Zuk

(θ) a.s.(29)

5. Existence and regularity of the game’s value process. For any given
θ ∈ S, and with {uk(·)}k∈N ⊂ V[0,θ ] the sequence of (29), let us look at the cor-
responding stopping rules

τuk

θ := inf{s ∈ [θ, T ] :Zuk

(s) = g(X(s))}, k ∈ N,

via (22). Recall that we have Zuk
(·) ≥ Zu�

(·) ≥ g(X(·)) for any integers � ≥ k,
thus, also τuk

θ ≥ τu�

θ ≥ θ . In other words, the resulting sequence {τuk

θ }k∈N is de-
creasing, so the limit

τ ∗
θ := lim

k→∞ ↓ τuk

θ(30)
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exists a.s. and defines a stopping rule in Sθ,T . The values of the process uk(·) on
the stochastic interval [[0, θ ]] are irrelevant for computing Zuk

(s), s ≥ θ or, for
that matter, τuk

θ . But clearly,

τuk

θ = inf{s ∈ [τ ∗
θ , T ] :Zuk

(s) = g(X(s))}, k ∈ N,

holds a.s., so the values of uk(·) on [[0, τ ∗
θ ]] are irrelevant for computing τuk

θ ,

k ∈ N.
Thus, there exists a sequence {uk(·)}k∈N ⊂ V[0,τ∗

θ ] of admissible control strate-
gies, which agree with the given control strategy v(·) ∈ U on the stochastic interval
[[0, τ ∗

θ ]], and for which (30) holds.
We are ready to state and prove our first result.

THEOREM 5.1. The game has a value: for every θ ∈ S, we have V (θ) = V (θ),
a.s. In particular, V = V in (9). A bit more generally, for every t ∈ S and any
θ ∈ St,T , we have, almost surely,

essinf
u∈U

esssup
τ∈Sθ,T

E
u(Y u(t, τ )|Ft) = esssup

τ∈Sθ,T

essinf
u∈U

E
u(Y u(t, τ )|Ft).(31)

PROOF. From the preceding remarks, we get the a.s. comparisons

V (θ) ≤ E
uk [Yuk

(θ, τuk

θ )|Fθ ]
= E[�uk

(θ, τuk

θ )Y uk

(θ, τuk

θ )|Fθ ]

= E

[
�v(θ, τ ∗

θ )�uk

(τ ∗
θ , τ uk

θ )

{
Y v(θ, τ ∗

θ ) +
∫ τuk

θ

τ∗
θ

h(s,X,uk
s ) ds

}∣∣∣Fθ

]

for every k ∈ N; recall the computation (25). Passing to the limit as k → ∞, and
using (30), the boundedness of σ−1, f, h, and the dominated convergence theo-
rem, we obtain the a.s. comparisons

V (θ) ≤ E[�v(θ, τ ∗
θ )Y v(θ, τ ∗

θ )|Fθ ] = E
v[Y v(θ, τ ∗

θ )|Fθ ].
Because v(·) is arbitrary, we can take the infimum of the right-hand side of this
inequality over v(·) ∈ U, and conclude

V (θ) ≤ essinf
v∈U

E
v[Y v(θ, τ ∗

θ )|Fθ ]
≤ esssup

τ∈Sθ,T

essinf
v∈U

E
v[Y v(θ, τ )|Fθ ] = V (θ).

The reverse inequality V (θ) ≥ V (θ) is obvious, so we obtain the first claim of the
theorem, namely, V (θ) = V (θ) a.s.
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• As for (31), let us observe that for every given u(·) ∈ U we have, on the strength
of Proposition 4.2, the a.s. comparisons

essinf
w∈U

esssup
τ∈Sθ,T

E
w

(
Yw(θ, τ ) +

∫ θ

t
h(s,X,ws) ds

∣∣∣Ft

)

≤ esssup
τ∈Sθ,T

E
u

(
Yu(θ, τ ) +

∫ θ

t
h(s,X,us) ds

∣∣∣Ft

)

≤ E
u

(
esssup
τ∈Sθ,T

E
u[Yu(θ, τ )|Fθ ] +

∫ θ

t
h(s,X,us) ds

∣∣∣Ft

)

= E
u

(
E

u[Yu(θ, τu
θ )|Fθ ] +

∫ θ

t
h(s,X,us) ds

∣∣∣Ft

)

= E
u

(
Yu(θ, τu

θ ) +
∫ θ

t
h(s,X,us) ds

∣∣∣Ft

)

= E
u[Yu(t, τ u

θ )|Ft].
Now repeat the previous argument: fix v(·) ∈ U, write this inequality with u(·)

replaced by uk(·) ∈ V[0,τ∗
θ ] [the sequence of (29), (30)] for every k ∈ N, and ob-

serve that the last term in the above string is now equal to E
v[Y v(t, τ uk

θ )|Ft]. Then
pass to the limit as k → ∞ to get, a.s.,

essinf
w∈U

esssup
τ∈Sθ,T

E
w

(
Yw(θ, τ ) +

∫ θ

t
h(s,X,ws) ds

∣∣∣Ft

)
≤ E

v[Y v(t, τ ∗
θ )|Ft].

The arbitrariness of v(·) allows us to take the (essential) infimum of the right-
hand side over v(·) ∈ U, and obtain

essinf
w∈U

esssup
τ∈Sθ,T

E
w[Yw(t, τ )|Ft] ≤ essinf

v∈U
E

v[Y v(t, τ ∗
θ )|Ft]

≤ esssup
τ∈Sθ,T

essinf
v∈U

E
v[Y v(t, τ )|Ft],

that is, the inequality (≤) of (31); once again, the reverse inequality is obvious.
�

From now on we shall denote by V (·) = V (·) = V (·) the common value process
of this game, and write V = V (0).

PROPOSITION 5.2. The value process V (·) is right-continuous.

PROOF. The Snell Envelope Qu(·) of (20) can be taken in its RCLL modifica-
tion, as we have already done; so the same is the case for the process Zu(·) of (19).
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Consequently, we obtain lim sups↓t V (s) ≤ lims↓t Z
u(s) = Zu(t), a.s. Taking the

infimum over u(·) ∈ U, we deduce lim sups↓t V (s) ≤ V (t), a.s.
In order to show that the reverse inequality

lim inf
s↓t

V (s) ≥ V (t) a.s.,(32)

also holds, recall the submartingale property of (17) and (18) and deduce from it,
and from Proposition 1.3.14 in Karatzas and Shreve (1991), that the right-hand
limits

J (t+, τ ) := lim
s↓t

J (s, τ ) on {t < τ }, J (t+, τ ) := g(X(τ)) on {t = τ }
exist and are finite, a.s. on the respective events. Now for any t ∈ [0, T ] and every
stopping rule τ ∈ St,T , recall (16) to obtain

lim inf
s↓t

V (s) ≥ lim inf
s↓t

J (s, s ∨ τ)

= lim inf
s↓t

J (s, τ ) · 1{t<τ } + lim inf
s↓t

J (s, s) · 1{t=τ }.

But on the event {t = τ }, we have almost surely

lim inf
s↓t

J (s, s) = lim inf
s↓t

g(X(s)) = lim
s↓t

g(X(s)) = g(X(t)) = J (t, t)

by the continuity of g(·); whereas on the event {t < τ }, we have the a.s. equalities
lim infs↓t J (s, τ ) = lims↓t J (s, τ ) = J (t+, τ ). Recalling (18), we obtain from the
bounded convergence theorem the a.s. comparisons

lim inf
s↓t

V (s) ≥ lim
s↓t

J (s, τ ) = E
u

(
lim
s↓t

J (s, τ )
∣∣∣Ft+

)
= E

u

(
lim
s↓t

J (s, τ )
∣∣∣Ft

)

= E
u

[
lim
s↓t

(
J (s, τ ) +

∫ s

t
h(r,X,ur) dr

)∣∣∣Ft

]

= lim
s↓t

E
u

[
J (s, τ ) +

∫ s

t
h(r,X,ur) dr

∣∣∣Ft

]
≥ J (t, τ ).

We have used here the right-continuity of the augmented Brownian filtration
[Karatzas and Shreve (1991), pages 89–92]. The stopping rule τ ∈ St,T is arbitrary
in these comparisons; taking the (essential) supremum over St,T and recalling (16),
we arrive at the desired inequality (32). �

5.1. Some elementary submartingales. By analogy with (22), let us introduce
now for each t ∈ S and 0 ≤ ε < 1 the stopping rules

�t(ε) := inf{s ∈ [t, T ] :g(X(s)) ≥ V (s) − ε}, �t := �t(0).(33)

Since

V (·) = essinf
u∈U

Zu(·) ≥ g(X(·))(34)
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holds a.s. thanks to (26), we have also

�t ∨ τu
t (ε) ≤ τu

t , �t(ε) ≤ τu
t (ε) ∧ �t.(35)

For each admissible control strategy u(·) ∈ U, let us introduce the family of
random variables

Ru(t) := V (t) +
∫ t

0
h(s,X,us) ds ≥ Yu(t), t ∈ S.(36)

For any time t ∈ S, the quantity Ru(t) represents the cumulative cost to the con-
troller of using the strategy u(·) on [[0, t]], plus the game’s value at that time.

PROPOSITION 5.3. For each u(·) ∈ U, the process Ru(· ∧ �0) is a P
u-sub-

martingale. A bit more generally, for any stopping rules t, ϑ with t ≤ ϑ ≤ �t, we
have

E
u[Ru(ϑ)|Ft ] ≥ Ru(t) a.s.,(37)

or, equivalently,

E
u

[
V (ϑ) +

∫ ϑ

t
h(s,X,us) ds

∣∣∣Ft

]
≥ V (t) a.s.(38)

Furthermore, for any stopping rules s, t, ϑ with 0 ≤ s ≤ t ≤ ϑ ≤ �t, we have al-
most surely

essinf
u∈U

E
u

[
V (ϑ) +

∫ ϑ

s
h(s,X,us) ds

∣∣∣Fs

]
(39)

≥ essinf
u∈U

E
u

[
V (t) +

∫ t

s
h(s,X,us) ds

∣∣∣Fs

]
.

PROOF. For any admissible control strategy u(·) ∈ U, and for any stopping
rules t, ϑ with 0 ≤ t ≤ ϑ ≤ �t, we have E

u[Qu(ϑ)|Ft] = Qu(t) or, equivalently,

E
u

[
Zu(ϑ) +

∫ ϑ

t
h(s,X,us) ds

∣∣∣Ft

]
= Zu(t) ≥ V (t) a.s.(40)

from (21), (35) and Propositions 4.1 and 4.2. Now fix a control strategy v(·) ∈
U, and denote again by V[t,ϑ] the set of admissible control strategies u(·) as in
Lemma 4.3 that agree with it [i.e., satisfy u(·) = v(·) a.e.] on the stochastic interval
[[t, ϑ]]. From this result and (40), we obtain

E
v

[
Zu(ϑ) +

∫ ϑ

t
h(s,X,vs) ds

∣∣∣Ft

]
= Zu(t) ≥ V (t) a.s.(41)

Now select some sequence {uk(·)}k∈N ⊂ V[t,ϑ] as in (29) of Lemma 4.5, substitute
uk(·) for u(·) in (41), let k → ∞, and appeal to the bounded convergence theorem
for conditional expectations to obtain

E
v

[
V (ϑ) +

∫ ϑ

t
h(s,X,vs) ds

∣∣∣Ft

]
≥ V (t) a.s.
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This gives (38), therefore, also

E
u

[
V (ϑ) +

∫ ϑ

s
h(s,X,us) ds

∣∣∣Fs

]
≥ E

u

[
V (t) +

∫ t

s
h(s,X,us) ds

∣∣∣Fs

]
,

for all u(·) ∈ U. The claim (39) follows now by taking essential infima over u(·) ∈
U on both sides. �

PROPOSITION 5.4. For every t ∈ S, we have

V (t) = essinf
u∈U

E
u

(
g(X(�t)) +

∫ �t

t
h(s,X,us) ds

∣∣∣Ft

)
a.s.(42)

As a consequence,

V (t) = essinf
u∈U

E
u

(
V (�t) +

∫ �t

t
h(s,X,us) ds

∣∣∣Ft

)
a.s.(43)

and for any given v(·) ∈ U, we get in the notation of (26):

Rv(t) = essinf
u∈V[0,t]

E
u(Ru(�t)|Ft) a.s.(44)

PROOF. The definition (11) for the upper value of the game gives the inequal-
ity (≥) in (42). For the reverse inequality (≤), write (38) of Proposition 5.3 with
ϑ = �t and recall the a.s.equality V (�t) = g(X(�t)), a consequence of the defini-
tion of �t in (33) and the right-continuity of V (·) from Proposition 5.2; the result
is

V (t) ≤ E
u

(
V (�t) +

∫ �t

t
h(s,X,us) ds

∣∣∣Ft

)

= E
u

(
g(X(�t)) +

∫ �t

t
h(s,X,us) ds

∣∣∣Ft

)
a.s.

for every u(·) ∈ U. Now (42) and (43) follow directly, and so does (44). �

REMARK 5.1. Proposition 5.3 implies that the process Ru(· ∧ �0), which is
right-continuous by virtue of Proposition 5.2, admits left-limits on (0, T ] almost
surely; cf. Proposition 1.3.14 in Karatzas and Shreve (1991). Thus, the process
Ru(· ∧ �0) is a P

u-submartingale with RCLL paths, and the process V (· ∧ �0) has
RCLL paths as well.

6. Some properties of the value process. We shall derive in this section some
further properties of V (·), the value process of the stochastic game. These will be
crucial in characterizing, then constructing, a saddle point for the game in Sec-
tions 7 and 9, respectively.

Our first such result provides inequalities in the reverse direction of those in (37)
and (38), but for more general stopping rules and with appropriate modifications.
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PROPOSITION 6.1. For any stopping rules t, θ with 0 ≤ t ≤ θ ≤ T , and any
admissible control process u(·) ∈ U, we have

E
u[Ru(θ)|Ft] ≤ esssup

τ∈St,T

E
u(Y u(τ )|Ft)(45)

and

E
u

[
V (θ) +

∫ θ

t
h(s,X,us) ds

∣∣∣Ft

]
≤ esssup

τ∈St,T

E
u(Y u(t, τ )|Ft) = Zu(t)(46)

almost surely. We also have

essinf
u∈U

E
u

[
V (θ) +

∫ θ

t
h(s,X,us) ds

∣∣∣Ft

]
≤ V (t) a.s.(47)

and

essinf
u∈V[0,t]

E
u

[
V (θ) +

∫ θ

t
h(s,X,us) ds

∣∣∣Ft

]
≤ V (t) a.s.(48)

for any given v(·) ∈ U in the notation used in (26).

PROOF. We recall from (26), (19) and Theorem 5.1 that V (θ) =
ess infu∈U Zu(θ); and from Proposition 4.1 that, for any given u(·) ∈ U, the process
Qu(·) = Zu(·) + ∫ ·

0 h(s,X,us) ds is a P
u-supermartingale. We have, therefore,

E
u[Ru(θ)|Ft] = E

u

[
V (θ) +

∫ θ

0
h(s,X,us) ds

∣∣∣Ft

]

≤ E
u

[
Zu(θ) +

∫ θ

0
h(s,X,us) ds

∣∣∣Ft

]
(49)

≤ Zu(t) +
∫ t

0
h(s,X,us) ds

= esssup
τ∈St,T

E
u(Y u(τ )|Ft),

which is (45). Now (46) is a direct consequence; and (47) and (48) follow by taking
essential infima over u(·) in U and in V[0,t], respectively. �

We have also the following result, which supplements the “value identity” of
equation (31). In this equation the common value is at most V (t), as we are taking
supremum over a class of stopping rules, Sθ,T , which is smaller than the class St,T

appearing in (11) and (12). The next result tells us exactly how smaller than V (t)

this common value is: it is given by the left-hand side of (47).



STOCHASTIC DIFF. GAMES OF CONTROL AND STOPPING 1511

PROPOSITION 6.2. For any stopping rules t, θ with 0 ≤ t ≤ θ ≤ T , we have
almost surely

essinf
u∈U

E
u

[
V (θ) +

∫ θ

t
h(s,X,us) ds

∣∣∣Ft

]

= essinf
u∈U

esssup
τ∈Sθ,T

E
u(Y u(t, τ )|Ft)(50)

= esssup
τ∈Sθ,T

essinf
u∈U

E
u(Y u(t, τ )|Ft).

PROOF. The second equality is, of course, that of (31). For the first, note that
Proposition 5.4 gives V (θ) ≤ E

u(g(X(�θ ))+ ∫ �θ

θ h(s,X,us) ds|Fθ ) a.s., for every
admissible control strategy u(·) ∈ U, thus, also

E
u

[
V (θ) +

∫ θ

t
h(s,X,us) ds

∣∣∣Ft

]

≤ E
u

(
g(X(�θ )) +

∫ �θ

t
h(s,X,us) ds

∣∣∣Ft

)
(51)

= E
u(Y u(t, �θ )|Ft)

≤ esssup
τ∈Sθ,T

E
u(Y u(t, τ )|Ft) a.s.

Taking essential infima on both sides over u(·) ∈ U, we arrive at the inequality (≤)
in (50).

For the reverse inequality, note from the definition of (19) that

Zu(θ) +
∫ θ

t
h(s,X,us) ds ≥ E

u(Y u(t, τ )|Fθ )

holds a.s. for every u(·) ∈ U and every τ ∈ Sθ,T [in fact, with equality for the
stopping rule, τ = τu

θ of (22)]. Taking conditional expectations with respect to Ft

on both sides, we obtain

E
u

(
Zu(θ) +

∫ θ

t
h(s,X,us) ds

∣∣∣Ft

)
≥ E

u(Y u(t, τ )|Ft) a.s.(52)

for all τ ∈ Sθ,T , again with equality for τ = τu
θ ; therefore,

E
u

(
Zu(θ) +

∫ θ

t
h(s,X,us) ds

∣∣∣Ft

)
= esssup

τ∈Sθ,T

E
u(Y u(t, τ )|Ft) a.s.(53)

Fix now an admissible control strategy v(·) ∈ U, and consider a sequence
{uk(·)}k∈N ⊂ V[t,θ ] such that V (θ) = limk→∞ ↓ Zuk

(θ) a.s., in the manner of (29)
in Lemma 4.5. Write (53) with uk(·) in place of u(·) and recall property (24) of
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Lemma 4.3 to obtain

E
v

(
Zuk

(θ) +
∫ θ

t
h(s,X,vs) ds

∣∣∣Ft

)

= E
uk

(
Zuk

(θ) +
∫ θ

t
h(s,X,uk

s ) ds
∣∣∣Ft

)

= esssup
τ∈Sθ,T

E
uk

(Y uk

(t, τ )|Ft)

≥ essinf
u∈U

esssup
τ∈Sθ,T

E
u(Y u(t, τ )|Ft) a.s.

for every k ∈ N. Now let k → ∞ and use the bounded convergence theorem, to
obtain

E
v

(
V (θ) +

∫ θ

t
h(s,X,vs) ds

∣∣∣Ft

)
≥ essinf

u∈U
esssup
τ∈Sθ,T

E
u(Y u(t, τ )|Ft) a.s.

Since v(·) ∈ U is an arbitrary control strategy, all that remains at this point is to
take the essential infimum of the left-hand side with respect to v(·) ∈ U, and we
are done. �

We are ready for the main result of this section. It says that infu∈U E
u(Ru(·)),

the best that the controller can achieve in terms of minimizing expected “running
cost plus current value,” does not increase with time; at best, this quantity is “flat
up to �0,” the first time the game’s value equals the reward obtained by terminating
the game.

THEOREM 6.3. For any stopping rules t, θ with 0 ≤ t ≤ θ ≤ T , we have

essinf
u∈U

E
u(Ru(θ)|Ft) ≤ Rv(t) a.s.(54)

for any v(·) ∈ U, as well as

inf
u∈U

E
u(Ru(θ)) ≤ inf

u∈U
E

u(Ru(t)) ≤ V (0).(55)

The first (resp., the second) of the inequalities in (55) is valid as equality if θ ≤ �t

(resp., t ≤ �0) also holds.
A bit more generally, for any stopping rules s, t, θ with 0 ≤ s ≤ t ≤ θ ≤ T , we

have the a.s. comparisons

essinf
u∈U

E
u

[
V (θ) +

∫ θ

s
h(s,X,us) ds

∣∣∣Fs

]
(56)

≤ essinf
u∈U

E
u

[
V (t) +

∫ t

s
h(s,X,us) ds

∣∣∣Fs

]
≤ V (s).

The first (resp., the second) of the inequalities in (56) is valid as an equality on the
event {θ ≤ �t} (resp., {t ≤ �s}).
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PROOF. With v(·) ∈ U fixed, and with V[0,t] as in Lemma 4.5, we have

essinf
u∈U

E
u(Ru(θ)|Ft)

= essinf
u∈U

(
E

u

[
V (θ) +

∫ θ

t
h(s,X,us) ds

∣∣∣Ft

]
+

∫ t

0
h(s,X,us) ds

)

≤ essinf
u∈V[0,t]

E
u

[
V (θ) +

∫ θ

t
h(s,X,us) ds

∣∣∣Ft

]
+

∫ t

0
h(s,X,vs) ds

≤ V (t) +
∫ t

0
h(s,X,vs) ds = Rv(t) a.s.

where the penultimate comparison comes from (48). This proves (54).
To obtain the first inequality in (56), observe that (49) gives

E
u

[
V (θ) +

∫ θ

s
h(s,X,us) ds

∣∣∣Fs

]
≤ E

u

[
Zu(t) +

∫ t

s
h(s,X,us) ds

∣∣∣Fs

]
a.s.

for all u(·) ∈ U. Proceeding just as before, with v(·) ∈ U arbitrary but fixed, and
with a sequence {uk(·)}k∈N ⊂ V[0,t] such that V (t) = limk→∞ ↓ Zuk

(t) holds al-
most surely, as in Lemma 4.5, we have

essinf
u∈U

E
u

[
V (θ) +

∫ θ

s
h(s,X,us) ds

∣∣∣Fs

]

≤ E
uk

[
V (θ) +

∫ θ

s
h(s,X,uk

s ) ds
∣∣∣Fs

]

≤ E
uk

[
Zuk

(t) +
∫ t

s
h(s,X,uk

s ) ds
∣∣∣Fs

]

= E
v

[
Zuk

(t) +
∫ t

s
h(s,X,vs) ds

∣∣∣Fs

]

for every k ∈ N, thus, also

essinf
u∈U

E
u

[
V (θ) +

∫ θ

s
h(s,X,us) ds

∣∣∣Fs

]
≤ E

v

[
V (t) +

∫ t

s
h(s,X,vs) ds

∣∣∣Fs

]
in the limit as k → ∞. Take the essential infimum of the right-hand side over
v(·) ∈ U to obtain the desired a.s. inequality

essinf
u∈U

E
u

[
V (θ)+

∫ θ

s
h(s,X,us) ds

∣∣∣Fs

]
≤ essinf

v∈U
E

v

[
V (t)+

∫ t

s
h(s,X,vs) ds

∣∣∣Fs

]
,

the first in (56). [The reverse inequality holds on the event {θ ≤ �t}, as we know
from (39).] The second inequality of (56) follows from the first, upon replacing θ

by t, and t by s.
Now (55) follows directly from (56), just by taking s = 0 there. �
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7. A martingale characterization of saddle-points. We are now in a posi-
tion to provide necessary and sufficient conditions for the saddle-point property
(10), in terms of appropriate martingales. These conditions are of obvious inde-
pendent interest; they will also prove crucial when we try, in the next two sections,
to prove constructively the existence of a saddle point (u∗, τ∗) for the stochastic
game of control and stopping.

THEOREM 7.1. A pair (u∗, τ∗) ∈ U×S is a saddle point as in (10) for the sto-
chastic game of control and stopping, if and only if the following three conditions
hold:

(i) g(X(τ∗)) = V (τ∗), a.s.
(ii) Ru∗

(· ∧ τ∗) is a P
u∗

-martingale; and
(iii) Ru(· ∧ τ∗) is a P

u-submartingale, for every u(·) ∈ U.

The present section is devoted to the proof of this result. We shall derive first
the conditions (i)–(iii) from the properties (10) of the saddle; then the reverse.

PROOF OF NECESSITY. Let us assume that the pair (u∗, τ∗) ∈ U×S is a saddle
point for the game, that is, that the properties of (10) are satisfied.
• Using the definition of �t, the submartingale property E

u∗[Ru∗
(�t)|Ft] ≥ Ru∗

(t)

from Proposition 5.3, the a.s. comparisons Yu∗
(τ∗) ≤ Ru∗

(τ∗) and Yu∗
(�τ∗) =

Ru∗
(�τ∗), and the first property of the saddle in (10), we obtain

E
u∗

(Y u∗
(τ∗)) ≤ E

u∗
(Ru∗

(τ∗)) ≤ E
u∗

(Ru∗
(�τ∗))

= E
u∗

(Y u∗
(�τ∗)) ≤ E

u∗
(Y u∗

(τ∗)).

But this gives, in particular, E
u∗

(Y u∗
(τ∗)) = E

u∗
(Ru∗

(τ∗)), which, coupled with
the earlier a.s. comparison, gives the stronger one Yu∗

(τ∗) = Ru∗
(τ∗), thus, also

g(X(τ∗)) = V (τ∗).
• Next, consider an arbitrary stopping rule τ ∈ S with 0 ≤ τ ≤ τ∗ and observe the
string of inequalities

E
u∗

(Ru∗
(τ )) ≤ E

u∗
(Ru∗

(�τ )) = E
u∗

(Y u∗
(�τ ))

≤ E
u∗

(Y u∗
(τ∗)) = E

u∗
(Ru∗

(τ∗))
from Proposition 5.3, the definition of �τ , the first property of the saddle, and
property (i) just proved. On the other hand, from the second property of a saddle,
from property (i) just proved and from the inequality (55), we get the second string
of inequalities

E
u∗

(Y u∗
(τ∗)) = inf

u∈U
E

u(Y u(τ∗)) = inf
u∈U

E
u(Ru(τ∗))

≤ inf
u∈U

E
u(Ru(τ )) ≤ E

u∗
(Ru∗

(τ )).
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Combining the two strings, we deduce

E
u∗

(Ru∗
(τ )) = inf

u∈U
E

u(Ru(τ )) = inf
u∈U

E
u(Ru(τ∗)) = E

u∗
(Ru∗

(τ∗))(57)

for every stopping rule τ ∈ S with 0 ≤ τ ≤ τ∗. This shows that Ru∗
(· ∧ τ∗) is a

P
u∗

-martingale [cf. Exercise 1.3.26 in Karatzas and Shreve (1991)], and condition
(ii) is established.
• It remains to show that, for any given v(·) ∈ U, the process Rv(· ∧ τ∗) is a P

v-
submartingale; equivalently, that for any stopping rules t, τ with 0 ≤ t ≤ τ ≤ τ∗,
the inequality

E
v

[
V (τ) +

∫ τ

t
h(s,X,vs) ds

∣∣∣Ft

]
≥ V (t) holds a.s.(58)

Let us start by fixing a stopping rule τ as above, and recalling from (47) of Propo-
sition 6.1 that

V̂ (t; τ) := essinf
u∈U

E
u

[
V (τ) +

∫ τ

t
h(s,X,us) ds

∣∣∣Ft

]
≤ V (t)(59)

holds a.s. We’ll be done, that is, we shall have proved (58), as soon as we have
established that the reverse inequality

V̂ (t; τ) ≥ V (t) holds a.s.(60)

as well, for any given τ ∈ S with t ≤ τ ≤ τ∗.
To this effect, let us consider for any ε > 0 the event Aε and the stopping rule

θε given as

Aε := {V (t) ≥ V̂ (t; τ) + ε} ∈ Ft and θε := t · 1Aε + τ · 1Ac
ε
,

respectively, and note 0 ≤ t ≤ θε ≤ τ ≤ τ∗ ≤ T . From (57), we get

E
u∗

(Ru∗
(t)) = E

u∗
(Ru∗

(θε)) = E
u∗[Ru∗

(t) · 1Aε + Ru∗
(τ ) · 1Ac

ε
]

= E
u∗[Ru∗

(t) · 1Aε + E
u∗

(Ru∗
(τ )|Ft) · 1Ac

ε
]

= E
u∗

[
V (t) · 1Aε + E

u∗
(
V (τ) +

∫ τ

t
h(s,X,u∗

s ) ds
∣∣∣Ft

)
· 1Ac

ε

+
∫ t

0
h(s,X,u∗

s ) ds

]

≥ E
u∗

[
V (t) · 1Aε + V̂ (t; τ) · 1Ac

ε
+

∫ t

0
h(s,X,u∗

s ) ds

]

≥ ε · P
u∗

(Aε) + E
u∗

[
V̂ (t; τ) +

∫ t

0
h(s,X,u∗

s ) ds

]
.

That is,

E
u∗

(Ru∗
(t)) − ε · P

u∗
(Aε) ≥ E

u∗
[
V̂ (t; τ) +

∫ t

0
h(s,X,u∗

s ) ds

]
.(61)
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As in (48), we write now the random variable V̂ (t; τ) of (59) in the form

V̂ (t; τ) = essinf
u∈U∗[0,t]

E
u

[
V (τ) +

∫ τ

t
h(s,X,us) ds

∣∣∣Ft

]

= lim
k→∞E

uk
[
V (τ) +

∫ τ

t
h(s,X,uk

s ) ds
∣∣∣Ft

]

for some sequence {uk(·)}k∈N in U∗[0,t], the set of admissible control strategies
u(·) ∈ U that agree with u∗(·) a.e. on the stochastic interval [[0, t]]. Back into (61),
this gives

E
u∗

(Ru∗
(t)) − ε · P

u∗
(Aε)

≥ E
u∗

[
lim
k

E
uk

(
V (τ) +

∫ τ

t
h(s,X,uk

s ) ds
∣∣∣Ft

)
+

∫ t

0
h(s,X,u∗

s ) ds

]

= E
u∗

[
lim
k

E
uk

(
V (τ) +

∫ τ

0
h(s,X,uk

s ) ds
∣∣∣Ft

)]

= E
u∗

[
lim
k

E
uk

(Ruk

(τ )|Ft)

]

= lim
k

E
u∗[Euk

(Ruk

(τ )|Ft)] (bounded convergence)

= lim
k

E
uk [Euk

(Ruk

(τ )|Ft)] [equation (24), Lemma 4.3]

= lim
k

E
uk

(Ruk

(τ )) ≥ inf
u∈U

E
u(Ru(τ )) = E

u∗
(Ru∗

(τ )) = E
u∗

(Ru∗
(t)).

The last claim follows from (57), the martingale property of (ii) that this implies,
and 0 ≤ t ≤ τ ≤ τ∗. This shows P(Aε) = 0, and we get V (t) < V̂ (t; τ)+ ε a.s., for
every ε > 0; letting ε ↓ 0, we arrive at (60), and we are done. �

PROOF OF SUFFICIENCY. Let us suppose now that the pair (u∗, τ∗) ∈ U × S
satisfies the properties (i)–(iii) of Theorem 7.1; we shall deduce from them the
properties of (10) for a saddle-point.

The P
u-submartingale property of Ru(·∧τ∗) in property (iii) gives E

u(Ru(τ )) ≤
E

u(Ru(τ∗)) for all u(·) ∈ U, thus, also

inf
u∈U

E
u(Ru(τ )) ≤ inf

u∈U
E

u(Ru(τ∗)).

Taking here τ = 0 and using the property (i) for τ∗, as well as the P
u∗

-martingale
property of Ru∗

(· ∧ τ∗) from (ii), we get

inf
u∈U

E
u(Y u(τ∗)) = inf

u∈U
E

u(Ru(τ∗)) ≥ Ru(0) = V = Ru∗
(0)

= E
u∗

(Ru∗
(τ∗)) = E

u∗
(Y u∗

(τ∗)).
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Comparing the two extreme terms in this string, we obtain the second property of
the saddle.
• We continue by considering stopping rules τ ∈ S with 0 ≤ τ ≤ τ∗.
For such stopping rules, the fact that Ru∗

(· ∧ τ∗) is a P
u∗

-martingale [property (ii)]
leads to

Yu∗
(τ ) ≤ Ru∗

(τ ) = E
u∗

(Ru∗
(τ∗)|Fτ ) = E

u∗
(Y u∗

(τ∗)|Fτ ) a.s.(62)

and this gives the first property of the saddle for such stopping rules, upon taking
expectations.
• Let us consider now stopping rules τ ∈ S with τ∗ ≤ τ ≤ T .
We shall establish for them the first property of the saddle, actually in the stronger
form

E
u∗

(Y u∗
(τ )|Fτ∗) ≤ Yu∗

(τ∗) a.s.(63)

Now (63) is equivalent to

g(X(τ∗)) ≥ E
u∗

(
g(X(τ)) +

∫ τ

τ∗
h(t,X,u∗

t ) dt
∣∣∣Fτ∗

)

= E
u∗[Yu∗

(τ∗, τ )|Fτ∗],
a.s., for every τ ∈ Sτ∗,T , thus to g(X(τ∗)) ≥ Zu∗

(τ∗), a.s. But from (19) and (21)
the reverse of this inequality always holds, so (63) amounts to the requirement

g(X(τ∗)) = Zu∗
(τ∗) a.s.(64)

To prove (64), recall from condition (ii) that Ru∗
(· ∧ τ∗) is a P

u∗
-martingale,

and from (36) that it dominates Yu∗
(· ∧ τ∗). But from Proposition 4.1, the process

Qu∗
(·∧τ∗) is the smallest P

u∗
-supermartingale that dominates Yu∗

(·∧τ∗). Conse-
quently, Ru∗

(· ∧ τ∗) ≥ Qu∗
(· ∧ τ∗) and, equivalently, V (· ∧ τ∗) ≥ Zu∗

(· ∧ τ∗), hold
a.s. But the reverse inequality also holds, thanks to the expression (26) for V (·),
thus, in fact, V (· ∧ τ∗) = Zu∗

(· ∧ τ∗), a.s. In particular, we get V (τ∗) = Zu∗
(τ∗)

a.s. Now (64) follows, in conjunction with condition (i).
• Finally, let us prove the first property of the saddle for an arbitrary stopping rule
τ ∈ S. We start with the decomposition

E
u∗

(Y u∗
(τ )) = E

u∗(
Yu∗

(τ )1{τ≤τ∗} + Yu∗
(τ )1{τ>τ∗}

)
= E

u∗(
Yu∗

(ρ)1{τ≤τ∗} + Yu∗
(ν)1{τ>τ∗}

)
,

where ρ := τ ∧ τ∗ belongs to S0,τ∗ and ν := τ ∨ τ∗ is in Sτ∗,T . Thus, we have
almost surely

Yu∗
(ρ) ≤ E

u∗
(Y u∗

(τ∗)|Fρ) and E
u∗

(Y u∗
(ν)|Fτ∗) ≤ Yu∗

(τ∗),
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from (62) and (63). Both events {τ ≤ τ∗}, {τ > τ∗} belong to Fρ = Fτ ∩ Fτ∗ ,
therefore,

E
u∗

(Y u∗
(τ )) = E

u∗(
Yu∗

(ρ) · 1{τ≤τ∗} + Yu∗
(ν) · 1{τ>τ∗}

)
≤ E

u∗(
E

u∗
(Y u∗

(τ∗)|Fρ) · 1{τ≤τ∗} + E
u∗

(Y u∗
(ν)|Fρ) · 1{τ>τ∗}

)
= E

u∗(
E

u∗(
Yu∗

(τ∗) · 1{τ≤τ∗}|Fρ

) + E
u∗

(Y u∗
(ν)|Fτ∗) · 1{τ>τ∗}

)
≤ E

u∗(
Yu∗

(τ∗) · 1{τ≤τ∗}
) + E

u∗(
Yu∗

(τ∗) · 1{τ>τ∗}
) = E

u∗
(Y u∗

(τ∗)).
This is the first property of the saddle in (10), established now for arbitrary τ ∈ S.

�

8. Optimality conditions for control. We shall say that a given admissible
control strategy ũ(·) ∈ U is optimal, if it attains the infimum

V = inf
v∈U

Zv(0), with Zv(0) = sup
τ∈S

E
v[Y(τ)].(65)

Here and in what follows, we are using the notation of (19), (22) and (33). Clearly,
if (ũ, τ̃ ) is a saddle pair for the stochastic game, then ũ(·) is an optimal control
strategy.

THEOREM 8.1 (Necessary and sufficient condition for optimality of control).
A given admissible control strategy u(·) ∈ U is optimal, that is, attains the supre-
mum in (65), if and only if it is thrifty, that is, satisfies

Ru(· ∧ τu
0 ) is a P

u-martingale.(66)

And in this case, for every 0 ≤ ε < 1, we have in the notation of (33)

τu
0 (ε) = �0(ε) a.s.(67)

PROOF OF SUFFICIENCY. Let us recall from (35) that τu
0 (ε) ≤ τu

0 holds a.s.
for every 0 < ε < 1, and from Proposition 4.2 that the process Qu(· ∧ τu

0 ) is a
P

u-martingale. Therefore, if u(·) is thrifty, we have

V ≤ Zu(0) = E
u

[
Zu(τu

0 (ε)) +
∫ τu

0 (ε)

0
h(s,X,us) ds

]

≤ E
u

[
ε + g(X(τu

0 (ε))) +
∫ τu

0 (ε)

0
h(s,X,us) ds

]

≤ ε + E
u

[
V (τu

0 (ε)) +
∫ τu

0 (ε)

0
h(s,X,us) ds

]

= ε + E
u[Ru(τu

0 (ε))] = ε + V.

In this string the second inequality comes from the definition of τu
0 (ε) in (22);

whereas the last equality is a consequence of thriftiness and of the inequality
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τu
0 (ε) ≤ τu

0 . This gives the comparison V ≤ Zu(0) ≤ ε + V for every 0 < ε < 1,
therefore, Zu(0) = V , the optimality of u(·). �

PROOF OF NECESSITY. Let us suppose now that u(·) ∈ U is optimal; we shall
show that it is thrifty, and that (67) holds for every 0 ≤ ε < 1.
• We shall show first that, for this optimal u(·), we have τu

0 = �0 a.s., that is, (67)
with ε = 0.

Let us observe that the P
u-martingale property of Qu(· ∧ τu

0 ), coupled with
the P

u-submartingale property of Ru(· ∧ �0) from Proposition 5.3, and the a.s.
inequality �0 ≤ τu

0 from (35) give

Zu(0) − E
u

∫ �0

0
h(s,X,us) ds

= E
u(Zu(�0))

= E
u[

Zu(�0) · 1{τu
0 =�0} + Zu(�0) · 1{τu

0 >�0}
]

≥ E
u[

Zu(�0)1{τu
0 =�0} + g(X(�0))1{τu

0 >�0}
]

(68)

= E
u[

Zu(�0)1{τu
0 =�0} + V (�0)1{τu

0 >�0}
]

≥ E
u[

V (�0) · 1{τu
0 =�0} + V (�0) · 1{τu

0 >�0}
]

= E
u[V (�0)],

as well as

Zu(0) ≥ E
u

[
V (�0) +

∫ �0

0
h(s,X,us) ds

]
(69)

= E
u[Ru(�0)] ≥ Ru(0) = V.

We shall argue the validity of τu
0 = �0 by contradiction: we know from (35) that

�0 ≤ τu
0 holds a.s., so let us assume

P
u(τu

0 > �0) > 0.(70)

Under the assumption (70), the first inequality in (68)—thus also in (69)—is strict;
but this contradicts the optimality of u(·) ∈ U. Thus, as claimed, we have τu

0 = �0
a.s. A similar argument leads to τu

0 (ε) = �0(ε) a.s., for every 0 < ε < 1, and (67)
is proved.
• To see that this optimal u(·) ∈ U must also be thrifty, just observe that, as we
have seen, equality prevails in (69); and that this, coupled with (67), gives Ru(0) =
E

u[Ru(τu
0 )]. It follows that the P

u-submartingale Ru(·∧�0) ≡ Ru(·∧τu
0 ) is in fact

a P
u-martingale. �

The characterization of optimality presented in Theorem 8.1 is in the spirit of a
similar characterization for optimal control with discretionary stopping in Dubins
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and Savage (1965) and in Maitra and Sudderth [(1996a), page 75]. In the context
of these two sources, optimality amounts to the simultaneous validity of two con-
ditions, “thriftiness” [i.e., condition (67)] and “equalization.” In our context every
control strategy is equalizing, so this latter condition becomes moot.

PROPOSITION 8.2. If the admissible control strategy u(·) ∈ U is thrifty, then
it is optimal; and the pair (u, τu

0 ) = (u,�0) ∈ U × S is then a saddle point for the
stochastic game of control and stopping.

PROOF. The first claim follows directly from Theorem 8.1. Now let us make
a few observations:

(i) By the definition of �0 in (33) and the right-continuity of the process V (·),
we have the a.s. equality V (�0) = g(X(�0)).

(ii) The process Ru(· ∧ �0) is a P
u-martingale; this is because u(·), being op-

timal, must also be thrifty, as we saw in Theorem 8.1, and because �0 = τu
0 holds

a.s.
(iii) From Proposition 5.3, the process Rv(· ∧ �0) is a P

v-submartingale, for
every v(·) ∈ U.

From these observations and Theorem 7.1, it is now clear that the pair (u,�0) is
a saddle point of the stochastic game. �

9. Constructing a thrifty control strategy and a saddle. The theory of the
previous section, culminating with Proposition 8.2, shows that in order to construct
a saddle point for our stochastic game of control and stopping, all we need to do
is find an admissible control strategy u∗(·) ∈ U which is thrifty; to wit, for which
the condition (66) holds. Then the pair (u∗, τ u∗

0 ) will be a saddle point for our
stochastic game.

To accomplish this, we shall start by assuming that, for each (t,ω), the map-
pings

a 
→ f (t,ω, a) and a 
→ h(t,ω, a) are continuous,(71)

and that for the so-called Hamiltonian function

H(t,ω, a,p) := 〈p,σ−1(t,ω)f (t,ω, a)〉 + h(t,ω, a),(72)

t ∈ [0, T ],ω ∈ �,a ∈ A,p ∈ R
n, the mapping a 
→ H(t,ω, a,p) attains its in-

fimum over the set A at some a∗ ≡ a∗(t,ω,p) ∈ A, for any given (t,ω,p) ∈
[0, T ] × � × R

n, namely,

inf
a∈A

H(t,ω, a,p) = H(t,ω,a∗(t,ω,p),p).(73)

[This is the case, for instance, if the set A is compact and the mapping a 
→
H(t,ω, a,p) continuous.] Then it can be shown [see Lemma 1 in Beneš (1970),
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or Lemma 16.34 in Elliott (1982)] that the mapping a∗ : ([0, T ] × �) × R
n → A

can be selected to be (P ⊗ B(Rn)/A)-measurable.
We shall deploy the martingale methodologies introduced in stochastic control

in the seminal papers of Rishel (1970), Duncan and Varaiya (1971), Davis and
Varaiya (1973) and Davis (1973), and presented in book form in Chapter 16 of
Elliott (1982). The starting point of this approach is the observation that, for every
admissible control strategy u(·) ∈ U, the process

Ru(· ∧ �0) = V (· ∧ �0) +
∫ ·∧�0

0
h(t,X,ut ) dt(74)

is a P
u-submartingale with RCLL paths, and bounded uniformly on [0, T ] × �;

recall Propositions 5.3, 5.2 and Remark 5.5. This implies that the process Ru(· ∧
�0) admits a Doob–Meyer decomposition

Ru(· ∧ �0) = V + Mu(·) + �u(·).(75)

Here Mu(·) is a uniformly integrable P
u-martingale with RCLL paths and

Mu(0) = 0, Mu(·) ≡ Mu(�0) on [[�0, T ]]; the process �u(·) is predictable, with
nondecreasing paths, �u(T ) ≡ �u(�0) integrable, and �u(0) = 0.
• A key observation now is that the P

u-martingale Mu(·) can be represented as a
stochastic integral, in the form

Mu(·) =
∫ ·

0
〈γ (t), dWu(t)〉.(76)

Here Wu(·) is the P
u-Brownian motion of (4), and γ (·) a predictable (P -

measurable) process that satisfies
∫ T

0 ‖γ (t)‖2 dt < ∞ and γ (·) ≡ 0 on [[�0, T ]],
a.s.

This is, of course, the predictable representation property of the filtration F =
{Ft }0≤t≤T [the augmentation of the filtration F W

t = σ(W(s);0 ≤ s ≤ t),0 ≤ t ≤
T , generated by the P-Brownian motion W(·)] under the equivalent change (5) of
probability measure. For this result of Fujisaki et al. (1972), which is very useful
in filtering theory, see Rogers and Williams (1987), pages 323 or Karatzas and
Shreve (1998), Lemma 1.6.7. An important aspect of this representation is that the
same process γ (·) works for every u(·) ∈ U in (76).

Next, let us take any two admissible control strategies u(·) and v(·) in U, and
compare the resulting decompositions (75) on the stochastic interval [[0, �0]]. In
conjunction with (74)–(76), (72) and (4), this gives

�v(·) − �u(·) =
∫ ·

0
[H(t,X, vt , γ (t)) − H(t,X,ut , γ (t))]dt(77)

on the interval [[0, �0]]. A brief, self-contained argument for the claims (76) and
(77) is presented in the Appendix.
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ANALYSIS. If we know that ǔ(·) ∈ U is a thrifty control strategy, that is, the
process Rǔ(·∧τ ǔ

0 ) is a P
ǔ-martingale, then Rǔ(·∧�0) is also a P

ǔ-martingale [just
recall that we have 0 ≤ �0 ≤ τ ǔ

0 from (35)], thus �ǔ(·) ≡ 0 a.s. But then (77) gives

�v(·) =
∫ ·

0
[H(t,X, vt , γ (t)) − H(t,X, ǔt , γ (t))]dt on [[0, �0]];

and because this process has to be nondecreasing for every admissible control
strategy v(·) ∈ U, we deduce the following necessary condition for thriftiness:

H(t,X, ǔt , γ (t)) = inf
a∈A

H(t,X,a, γ (t)) a.e. on [[0, �0]].(78)

This is also known as the stochastic version of Pontryagin’s Maximum Principle;
cf. Kushner (1965), Haussmann (1986) and Peng (1990, 1993).

SYNTHESIS. The stochastic maximum principle of (78) suggests considering
the admissible control strategy u∗(·) ∈ U defined by

u∗
t =

{
a∗(t,X,γ (t)), 0 ≤ t ≤ �0

a�, �0 < t ≤ T

}
(79)

for an arbitrary but fixed element a� of the control set A. We are using here the
“measurable selector” mapping a∗ : [0, T ] × � × R

n → A of (73).
With this choice, (77) leads to the comparison

�v(·) = �u∗
(·) +

∫ ·

0
[H(t,X, vt , γ (t)) − H(t,X,u∗

t , γ (t))]dt ≥ �u∗
(·)

on the interval [[0, �0]], therefore, also Rv(· ∧ �0) ≥ V + Mv(·) + �u∗
(·) from

(75), for every v(·) ∈ U. Taking expectations under P
v , we obtain

0 ≤ E
v[�u∗

(�0)] ≤ E
v[Rv(�0)] − V ∀v(·) ∈ U.

But now we can take the infimum over v(·) ∈ U in the above string, and obtain

0 ≤ inf
v∈U

E
v[�u∗

(�0)] ≤ inf
v∈U

E
v[Rv(�0)] − V = 0,

where the last equality comes from (55) and the sentence directly below it. We
deduce

inf
v∈U

E
v[�u∗

(�0)] = 0, thus also �u∗
(�0) = 0 a.s.(80)

from fairly standard weak compactness arguments, as in Davis (1973) page 592,
Davis (1979) or Elliott (1982) pages 238–240.
• We follow now a reasoning similar to that used to prove (64) in Theorem 7.1:
first, we note from (80) that

Ru∗
(· ∧ �0) = V +

∫ ·

0
〈γ (t), dWu∗

(t)〉 is a P
u∗

-martingale,(81)
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and from (36) that it dominates Yu∗
(· ∧ �0). But from Proposition 4.1, the process

Qu∗
(· ∧ �0) is the smallest P

u∗
-supermartingale that dominates Yu∗

(· ∧ �0). We
deduce that Ru∗

(· ∧ �0) ≥ Qu∗
(· ∧ �0) and, equivalently, V (· ∧ �0) ≥ Zu∗

(· ∧ �0),
hold a.s. The reverse of this inequality also holds, thanks to the expression (26) for
V (·), thus, in fact, V (· ∧ �0) = Zu∗

(· ∧ �0).
In particular, we have almost surely, Zu∗

(�0) = V (�0) = g(X(�0)) (recall the
definition of �0), thus, also τu∗

0 ≤ �0 from (22). Again, the reverse inequality holds,
thanks now to (35), so, in fact, τu∗

0 = �0 holds a.s.
We conclude that the property (81) leads to the thriftiness condition (66) for the

admissible control strategy u∗(·) ∈ U defined in (79). In conjunction with Proposi-
tion 8.2, this establishes the following existence and characterization result:

THEOREM 9.1. Under the assumptions (71)–(73) of this section, the pair
(u∗, �0) ∈ U × S of (79) and (33) is a saddle point for the stochastic game, and
we have �0 = τu∗

0 a.s., in the notation of (22). Furthermore, the process V (· ∧ �0)

is a continuous P-semimartingale.

Only the last claim needs discussion; from (74), (81) and (72), we get the rep-
resentation

V (t) = V −
∫ t

0
H(s,X,u∗

s , γ (s)) ds +
∫ t

0
〈γ (s), dW(s)〉(82)

for 0 ≤ t ≤ �0, and the claim follows.
This equation (82) can be written equivalently “backward,” as

V (t) = g(X(�0)) +
∫ �0

t
H(s,X,u∗

s , γ (s)) ds −
∫ �0

t
〈γ (s), dW(s)〉(83)

for 0 ≤ t ≤ �0. Suitably modified to account for the constraint V (·) ≥ g(X(·)), and
with an appropriate definition for the “adjoint process” γ (·) on [[�0, T ]], the equa-
tion (83) can be extended to hold on [[0, T ]]; this brings us into contact with the
backward stochastic differential equation approach to stochastic games [Cvitanić
and Karatzas (1996), Hamadène and Lepeltier (1995, 2000), Hamadène (2006)].

APPENDIX

In order to make this paper as self-contained as possible, we shall present here
a brief argument for the representation (76) of the P

u-martingale Mu(·) in the
Doob–Meyer decomposition (75), and for the associated identity (77).

We start with the “Bayes rule” computation

Mu(t) = E
u[Mu(T )|Ft ] = E

u[Mu(�0)|Ft ]
(84)

= E
u[�u(�0)M

u(�0)|Ft ]
�u(t ∧ �0)
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for 0 ≤ t ≤ T [e.g. Karatzas and Shreve (1991), page 193]; then the martingale
representation property of the Brownian filtration (ibid., page 182) shows that the
numerator of (84) can be expressed as the stochastic integral

Nu(t) := E
u[�u(�0)M

u(�0)|Ft ] =
∫ t

0
〈ξu(s), dW(s)〉, 0 ≤ t ≤ T ,(85)

with respect to W(·), of some predictable process ξu : [0, T ] × � → R
n that satis-

fies ξu(·) ≡ 0 a.e. on [[�0, T ]], and
∫ T

0 ‖ξu(t)‖2 dt < ∞ a.s. We have recalled in
(84) and (85) that Mu(·) ≡ Mu(�0) a.e. on [[�0, T ]], and Nu(0) = Mu(0)�u(0) =
0.

On the other hand, for the exponential martingale of (3), we have the stochastic
integral equation

�u(t ∧ �0) = 1 +
∫ t

0
�u(s)〈ϕu(s), dW(s)〉, 0 ≤ t ≤ T ,(86)

where we have set ϕu(t) := σ−1(t,X)f (t,X,ut ) for 0 ≤ t ≤ �0, and ϕu(t) := 0
for �0 < t ≤ T . Applying Itô’s rule to the ratio Mu(·) = Nu(·)/�u(· ∧ �0) of (84),
in conjunction with (85), (86) and (4), we obtain then, for 0 ≤ t ≤ T ,

Mu(t) =
∫ t

0
〈γ u(s), dWu(s)〉 where γ u(t) := ξu(t) − Nu(t)ϕu(t)

�u(t)
(87)

is clearly predictable; it satisfies γ u(·) ≡ 0 a.e. on [[�0, T ]], as well as∫ T
0 ‖γ u(t)‖2 dt < ∞ a.s.

• It remains to argue that the stochastic integrand of (87) does not depend on
the admissible control process u(·) ∈ U, as claimed in (76). Indeed, for arbitrary
u(·) ∈ U and u(·) ∈ U, we have

Rv(t ∧ �0) −
∫ t∧�0

0
[h(s,X,vs) − h(s,X,us)]ds

= Ru(t ∧ �0) = V + �u(t) +
∫ t

0
〈γ u(s), dWu(s)〉

= V + �u(t) +
∫ t

0
〈γ u(s), dWv(s)〉

+
∫ t

0
〈γ v(s), ϕv(s)〉ds −

∫ t

0
〈γ u(s), ϕu(s)〉ds, 0 ≤ t ≤ T .

Let us compare now this decomposition with the consequence

Rv(t ∧ �0) = V + �v(t) +
∫ t

0
〈γ v(s), dWv(s)〉, 0 ≤ t ≤ T ,

of (75) and (87). Identifying martingale terms, we see that γ u(·) = γ v(·) holds a.e.
on [0, T ] × �, thus, (76) holds; identifying terms of bounded variation, we arrive
at (77).
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