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AN EFFECTIVE CRITERION AND A NEW EXAMPLE FOR
BALLISTIC DIFFUSIONS IN RANDOM ENVIRONMENT

BY LAURENT GOERGEN

ETH Zurich

In the setting of multidimensional diffusions in random environment, we
carry on the investigation of condition (T ′), introduced by Sznitman [Ann.
Probab. 29 (2001) 723–764] and by Schmitz [Ann. Inst. H. Poincaré Probab.
Statist. 42 (2006) 683–714] respectively in the discrete and continuous set-
ting, and which implies a law of large numbers with nonvanishing limiting
velocity (ballistic behavior) as well as a central limit theorem. Specifically,
we show that when d ≥ 2, (T ′) is equivalent to an effective condition that can
be checked by local inspection of the environment. When d = 1, we prove
that condition (T ′) is merely equivalent to almost sure transience. As an ap-
plication of the effective criterion, we show that when d ≥ 4 a perturbation
of Brownian motion by a random drift of size at most ε > 0 whose projection
on some direction has expectation bigger than ε2−η, η > 0, satisfies condi-
tion (T ′) when ε is small and hence exhibits ballistic behavior. This class of
diffusions contains new examples of ballistic behavior which in particular do
not fulfill the condition in [Ann. Inst. H. Poincaré Probab. Statist. 42 (2006)
683–714], (5.4) therein, related to Kalikow’s condition.

1. Introduction. Diffusions in random environment emerged about 25 years
ago from homogenization theory in the study of disordered media; see, for in-
stance, [3]. Within the rich field of “random motions in random media,” they are
closely related to the discrete model of “random walks in random environment”;
see [9, 22].

In the one-dimensional discrete setting a complete characterization of ballistic
behavior, which refers to the situation where the motion tends to infinity in some
direction with nonvanishing velocity, was established already in 1975 by Solomon
[15]; see also [6, 10]. In the multidimensional setting, however, such a characteri-
zation has not been found yet, but a great deal of progress has been made over the
last seven years: the so-called conditions (T ) and (T ′) introduced by Sznitman (see
[18, 19]) for random walks in random environment seem to be promising candi-
dates for an equivalent description of ballistic behavior when the space dimension
d ≥ 2. In essence, one possible formulation of condition (T ) [see (1.12)] requires
exponential decay of the probability that the trajectory exits a slab of growing
width through one side rather than the other. These conditions have interesting
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consequences such as a ballistic law of large numbers and a central limit theorem.
Their analogues in the setting of diffusions have been developed by Schmitz (see
[11, 12]), and he used a previous result of Shen [13, 14] to show that they im-
ply the same asymptotic behavior as mentioned before in the discrete setup. The
drawback of the definitions of conditions (T ) or (T ′) as they were stated in [11]
[see (1.10)] is their asymptotic nature which makes them difficult to check by local
considerations. To remedy this problem, we provide in the first part of this article
an effective criterion, in the spirit of [19], which is equivalent to (T ′) (see Theo-
rem 2.6), and which can be checked by inspection of the environment in a finite
box.

In the second part of this work, which is related to [20] in the discrete setting,
we use the effective criterion to show that when d ≥ 4, Brownian motion perturbed
with a small random drift satisfying the assumption (1.16), fulfills condition (T ′);
see Theorem 3.1. As we will see below, this class of diffusions contains new ex-
amples for ballistic behavior beyond prior knowledge.

Before we discuss our results any further, we first describe the model. The ran-
dom environment is specified by a probability space (�,A,P) on which acts a
jointly measurable group {tx;x ∈ R

d} of P-preserving transformations, with d ≥ 1.
The diffusion matrix and the drift of the diffusion in random environment are sta-
tionary functions a(x,ω), b(x,ω), x ∈ R

d,ω ∈ �, with respective values in the
space of nonnegative d × d matrices and in R

d , that is,

a(x + y,ω) = a(x, tyω),
(1.1)

b(x + y,ω) = b(x, tyω) for x, y ∈ R
d,ω ∈ �.

We assume that these functions are bounded and uniformly Lipschitz, that is, there
is a K̄ > 1, such that for x, y ∈ R

d,ω ∈ �,

|b(x,ω)| + |a(x,ω)| ≤ K̄,
(1.2)

|b(x,ω) − b(y,ω)| + |a(x,ω) − a(y,ω)| ≤ K̄|x − y|,
where | · | denotes the Euclidean norm for vectors and matrices. Further, we assume
that the diffusion matrix is uniformly elliptic, that is, there is a ν > 1 such that for
all x, y ∈ R

d , ω ∈ �:

1

ν
|y|2 ≤ y · a(x,ω)y ≤ ν|y|2.(1.3)

The coefficients a, b satisfy a condition of finite range dependence: for A ⊂ R
d ,

we define

HA = σ
(
a(x, ·), b(x, ·);x ∈ A

)
,(1.4)

and assume that for some R > 0,

HA and HB are independent under P whenever d(A,B) ≥ R,(1.5)
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where d(A,B) is the mutual Euclidean distance between A and B . With the above
regularity assumptions on a and b, for any ω ∈ �, x ∈ R

d , the martingale problem
attached to x and the operator

Lω = 1
2

d∑
i,j=1

aij (·,ω)∂2
ij +

d∑
i=1

bi(·,ω)∂i(1.6)

is well posed; see [17] or [2], page 130. The corresponding law Px,ω on
C(R+,R

d), unique solution of the above martingale problem, describes the diffu-
sion in the environment ω and starting from x. We write Ex,ω for the expectation
under Px,ω and we denote the canonical process on C(R+,R

d) with (Xt)t≥0. Ob-
serve that Px,ω is the law of the solution of the stochastic differential equation

dXt = σ(Xt ,ω)dβt + b(Xt ,ω)dt,
(1.7)

X0 = x, Px,ω-a.s.,

where, for instance, σ(·,ω) is the square root of a(·,ω) and β is some d-dimensio-
nal Brownian motion under Px,ω. The laws Px,ω are usually called “quenched
laws” of the diffusion in random environment. To restore translation invariance,
we consider the so-called “annealed laws” Px , x ∈ R

d , which are defined as semi-
direct products:

Px
def= P × Px,ω.(1.8)

Of course the Markov property is typically lost under the annealed laws.
We now come back to the object of this work. We start by recalling the definition

of conditions (T ) and (T ′) as stated in [11]. These conditions are expressed in
terms of another condition (T )γ defined as follows. For a unit vector � of R

d ,
d ≥ 1, and any u ∈ R, consider the stopping times

T �
u = inf{t ≥ 0;Xt · � ≥ u}, T̃ �

u = inf{t ≥ 0;Xt · � ≤ u}.(1.9)

For γ ∈ (0,1], we say that condition (T )γ holds relative to �, in shorthand notation
(T )γ | �, if for all unit vectors �′ in some neighborhood of � and for all b > 0,

lim sup
L→∞

L−γ logP0[T̃ �′
−bL < T �′

L ] < 0.(1.10)

Condition (T ′) relative to � is then the requirement that

(1.10) holds for all γ ∈ (0,1),(1.11)

and condition (T ) relative to � refers to the case where

(1.10) holds for γ = 1.(1.12)

It is clear that (T ) implies (T ′) and we show in Theorem 2.6 that (T ′) is equivalent
to (T )γ when γ ∈ (1

2 ,1). Moreover, it is conjectured that the conditions (T )γ ,
γ ∈ (0,1] are all equivalent.
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Let us also mention that for γ ∈ (0,1], condition (T )γ relative to � is in essence
equivalent to almost sure transience in direction � together with finiteness of a
stretched exponential moment of the size of the trajectory up to a certain regener-
ation time; see [11], Theorem 3.1 therein or [19] for a similar result in the discrete
setting. The latter formulation of condition (T ′) is especially appropriate to study
the asymptotic properties of the diffusion. Indeed Schmitz showed in [11], Theo-
rem 4.5 (see also [18]) that when d ≥ 2, it enables us to verify the sufficient con-
ditions of [13, 14] for a ballistic law of large numbers and a central limit theorem.
However, the more geometrical expression (1.10) is better suited for our present
purpose.

Despite the interest of the two above mentioned formulations of condition (T ′),
they are not “effective conditions” that can be checked by local inspection of the
environment. Concrete examples where (T ′) holds, besides the easy case where the
projection of the drift on some unit vector is uniformly bounded away from 0 (see
[11], Proposition 5.1), originate from a stronger condition going back to Kalikow;
see [7, 21]. For instance, it is shown in [11], Theorem 5.2, and [12], Theorem 2.1
that there exists a constant ce > 0 depending only on K̄, ν,R,d [see (1.2)–(1.5)],
such that condition (T ) holds when

E[(b(0,ω) · �)+] ≥ ceE[(b(0,ω) · �)−].(1.13)

In the first part of this work we derive an effective criterion in the above sense.
We show (see Theorem 2.6) that when d ≥ 2 for any direction �, (T ′)|� is in
essence equivalent to

inf
B,a∈(0,1]

{
c(d)L̃d−1L3(d−1)+1

E[ρa
B]} < 1,(1.14)

with

ρB = P0,ω[XTB
/∈ ∂+B]

P0,ω[XTB
∈ ∂+B] ,(1.15)

provided in the above infimum, B runs over all large boxes transversal to � con-
sisting of the points x with x · � ∈ (−L + R + 2,L + 2) and other coordinates
in an orthonormal basis with first vector �, smaller in absolute value than L̃, for
L ≥ c′(d),R + 2 ≤ L̃ < L3. In the above formula for ρB , TB denotes the exit time
from B and ∂+B is the part of the boundary of B where x · � = L + 2. The proof
of Theorem 2.6 follows the strategy of Sznitman [19] and the sufficiency of the
effective criterion is obtained by an induction argument along a growing sequence
of boxes Bk that tend to look like infinite slabs and in which suitable moments of
ρBk

are used to control moments of ρBk+1 . This allows us to deduce the asymptotic
exit behavior (1.10) from slabs. As a first application of the effective criterion, we
show the equivalence between (T ′) and (T )γ when γ ∈ (1

2 ,1). Note also that ρB

in (1.15) reminds us of the decisive quantity appearing in the one-dimensional the-
orem of Solomon [15]. We will see in Section 2.1 that when d = 1, the box B is
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replaced with an interval (−L,L) and the existence of an a ∈ (0,1] and a L > R

such that E[ρa
(−L,L)] < 1 is equivalent to (T ′) and (T ) as well as to almost sure

convergence to +∞. Hence in opposition to the multidimensional case, condition
(T ) does not imply ballistic behavior when d = 1.

In the second part of this article we use the effective criterion to construct a new
class of ballistic diffusions. We show (see Theorem 3.1) that when d ≥ 4, for any
η > 0, Brownian motion perturbed with a random drift b(·,ω) such that

sup
x∈Rd ,ω∈�

|b(x,ω)| ≤ ε and E[b(0,ω) · e1] ≥ ε2−η for ε > 0,(1.16)

satisfies the effective criterion with � = e1 if ε is small enough. The conditions
(1.16) allow for laws P of the environment such that (1.13) does not apply. In-
deed, since the constant ce is larger than 1, as one can see from an inspection of
the proof of [11], Theorem 2.5, (1.13) requires that E[b(0,ω) · e1] is larger than
(ce − 1)E[(b(0,ω) · e1)−] which can be chosen to be of order ε under (1.16). Note
that in the discrete setting, Sznitman (see [20]) obtained similar results under con-
ditions significantly weaker than (1.16). Indeed, he showed that a discrete version
of the effective criterion is satisfied by randomly perturbed simple random walk

on Z
d with a drift d(0,ω)

def= E0,ω[X1 − X0] of size ε such that E[d(0,ω) · e1]
is larger than ε5/2−η when d = 3, respectively larger than ε3−η when d ≥ 4. The
strength of this result in contrast to ours is that it includes expected drifts of an
order not larger than ε2, which enabled him to construct examples for condition
(T ′) where Kalikow’s condition (see, e.g., [20], (5.3) therein) fails. Considering
condition (5.23) of [11] as a continuous analogue of Kalikow’s condition, we be-
lieve that such examples also exist in our setting. Since, however, the continuous
setup with the finite range dependence tends to complicate the arguments, we did
not attempt to retrieve the full strength of Sznitman’s result.

Let us now briefly describe the proof leading to the new example. In order to
verify the effective criterion (1.14) under (1.16), we slice a large box B [as defined
below (1.14)] into thinner slabs transversal to e1 and propagate good controls on
the exit behavior out of these slabs to the box B using a refinement of the esti-
mate (see Lemma 2.3 and Proposition 3.3) that was instrumental in the induction
argument leading to the effective criterion. The heart of the matter is then to prove
these good controls for the thinner slabs. To this end, we express the probability
that the trajectory exits through the right side of a slab with the help of the Green
operator of the diffusion killed when exiting the slab; see (3.23). This quantity is
linked to the Green operator of killed Brownian motion via a certain perturbation
equality; see (3.40). For Brownian motion, however, an explicit formula obtained
by the well-known “method of the images” from electrostatics [see (3.30)] allows
us to compute all necessary estimates.

Let us finally explain how this article is organized. In Section 2, we first in-
troduce some notation and then we show the equivalence between the effective
criterion and condition (T ′) when d ≥ 2; see Theorem 2.6. The key estimate for
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the induction step is given by Proposition 2.2. In Section 2.1, we discuss the one-
dimensional case. In Section 3, we use the effective criterion to show that a certain
perturbed Brownian motion satisfies condition (T ′) when d ≥ 4. In Section 3.1, we
state the main Theorem 3.1 and a refinement of Lemma 2.3; see Proposition 3.3.
In Section 3.2, we define the Green operators and Green’s functions for which we
provide certain deterministic estimates in the case of Brownian motion; see Lem-
mas 3.7 and 3.9. We also prove a perturbation equality; see Proposition 3.8. In
Section 3.3, we use the results from the previous sections to prove the main Theo-
rem 3.1. In Appendix A.1, we give the proof of Lemma 2.3 which is similar to that
of [19], Proposition 1.2. In Appendix A.2, we prove Lemma 3.9 using a technique
similar to [20], Lemma 2.1.

Convention on constants. Unless otherwise stated, constants only depend on the
quantities d, K̄, ν,R. We denote with c positive constants with values changing
from place to place and with c0, c1, . . . positive constants with values fixed at their
first appearance. Dependence on additional parameters appears in the notation.

2. An effective criterion when d ≥ 2. In this section we show that condition
(T ′) [see (1.11)] is equivalent to the effective criterion [see (2.53)] which controls
the exit probability from some finite box. By an induction argument we propagate
this control to larger boxes that tend to look like infinite slabs. Then one can infer
the fast decay of exit probabilities from slabs through “the left” side as required by
condition (T ′).

We first need some notation. For A,B ⊂ R
d an open and a closed set, we denote

with TA = inf{t ≥ 0;Xt /∈ A} the exit time from A and with HB = inf{t ≥ 0;Xt ∈
B} the entrance time into B . For any stopping time S, we call S0 = 0, Sk+1 =
S ◦ θSk

+ Sk , k ≥ 0, the iterates of S. Here, θt denotes the canonical time shift. We
consider a direction � ∈ Sd−1 and a rotation R of R

d such that R(e1) = �. The
vectors ei , i = 1, . . . , d , constitute the canonical basis. As a shortcut notation for
the stopping times in (1.9), we write Tu = T �

u and T̃u = T̃ �
u , u ∈ R. Moreover, we

introduce

|z|⊥ = max
j≥2

|z · R(ej )| for x ∈ R
d .(2.1)

For positive numbers L,L′, L̃, we introduce the box

B = B(R,L,L′, L̃)
def= R

(
(−L,L′) × (−L̃, L̃)d−1)

,(2.2)

and the positive, respectively negative, part of its boundary

∂+B = ∂B ∩ {x ∈ R
d :� · x = L′}, ∂−B = ∂B \ ∂+B.(2.3)

We also define the following random variables: for ω ∈ �,

pB(ω) = P0,ω[XTB
∈ ∂+B] = 1 − qB(ω),(2.4)

ρB(ω) = qB(ω)

pB(ω)
∈ [0,∞].(2.5)
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In the sequel we will use different length scales Lk, L̃k ≥ 0, k = 0,1, . . . , and the
following shortcut notation [cf. (1.5) for the definition of R]:

Bk = B(R,Lk − R − 1,Lk + 1, L̃k) for k ≥ 0,
(2.6)

pk = pBk
, qk = qBk

, ρk = ρBk
.

Finally let us set for k ≥ 0,

Nk = Lk+1

Lk

, nk = �Nk
, Ñk = L̃k+1

L̃k

.(2.7)

We start with an easy lemma, introducing the counterpart of a discrete ellipticity
constant.

LEMMA 2.1. Let CL be the tube {z ∈ R
d :−1

4 < z ·e1 < L, sup2≤j≤d |z ·ej | <
L
4 }. There exists a constant 0 < κ ≤ 1

2 , such that for any L ≥ 1, ω ∈ �, and any
rotation R,

P0,ω

[
T

R(e1)
L < TR(CL)

] ≥ κL+1 and
(2.8)

P0,ω

[
T̃

R(e1)−L < TR(−CL)

] ≥ κL+1.

PROOF. We define the function ψ(s) = 5
4R(e1)s, for 0 ≤ s ≤ 1. With the sup-

port theorem (see [2], page 25), we obtain that there is a constant c > 0 such that for
all x ∈ R

d,ω ∈ �, Px,ω[sup0≤s≤1 |Xs −X0 −ψ(s)| < 1
4 ] and Px,ω[sup0≤s≤1 |Xs −

X0 + ψ(s)| < 1
4 ] are both larger than c. Then we set κ = min{c, 1

2}. The claim fol-
lows by applying the Markov property �L� times. �

We are now ready to prove the main induction step which in essence bounds
moments of ρ1 in terms of moments of ρ0.

PROPOSITION 2.2. (d ≥ 2) There exist c1 > R + 2, c2, c3 > 1, such that when
N0 ≥ 3, L0 ≥ c1, Ñ0 ≥ 150N0, L̃0 ≥ R + 2, for any a ∈ (0,1]:

E[ρa
1 ] ≤ c2

{
κ−10L1

(
c3L̃

(d−2)
1

L3
1

L2
0

L̃0E[q0]
)Ñ0/(12N0)

(2.9)

+ ∑
0≤m≤n0+1

(
c3L̃

(d−1)
1 E[ρ2a

0 ])(n0+m−1)/2
}
.

PROOF. For i ∈ Z and L0 > R + 2, we introduce the slabs of width R:

Si =
{
x ∈ R

d : iL0 − R

2
≤ x · � ≤ iL0 + R

2

}
(2.10)
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and denote by I (·) the function on R
d such that I (x) = i if x ·�− iL0 ∈ [−L0

2 ,
L0
2 ),

i ∈ Z. In particular, I takes the value i on Si , for all i ∈ Z. We define the successive
times of visit to the different slabs Si as the iterates Vk, k ≥ 0, of the stopping time

V = inf
{
t ≥ 0 :Xt ∈ SI (X0)−1 ∪ SI (X0)+1

}
.(2.11)

We also need the stopping time

T̃ = inf{t ≥ 0 : |Xt |⊥ ≥ L̃1}.(2.12)

In a first step we obtain a control on E[ρa
1 ] using the following quantities: for

ω ∈ �, i ∈ Z,

ρ̂(i,ω) = sup
{

q̂(x,ω)

p̂(x,ω)
:x ∈ Si , |x|⊥ < L̃1

}
,(2.13)

where

q̂(x,ω) = Px,ω

[
XV1 ∈ SI (x)−1

] = 1 − p̂(x,ω).(2.14)

The first step then comes with the following lemma.

LEMMA 2.3. Under the assumptions of Proposition 2.2,

E[ρa
1 ] ≤ κ−a(L1+1)

P[Gc] + 2
∑

0≤m≤n0+1

∏
−n0+1<i≤m

E[ρ̂(i,ω)2a]1/2,(2.15)

where

G = {ω ∈ � :P0,ω[T̃ ≤ T̃−L1+R+1 ∧ TL1+1] ≤ κ9L1}.(2.16)

The proof of this lemma is similar to the proof of [19], (2.39) in Proposition 2.1,
or [20], Lemma 1.2. For the reader’s convenience, we include the argument in
Appendix A.1.

We now complete the proof of Proposition 2.2. Except for a few modifications
due to the continuous setup, we follow the steps in the proof of [19], Proposi-
tion 2.1. We first bound P[Gc] in terms of E[q0]. In the next section, we infer a
different bound on this probability; see (3.13). By Chebyshev’s inequality, we find
that

P[Gc] ≤ κ−9L1P0[T̃ ≤ T̃−L1+R+1 ∧ TL1+1],(2.17)

and our task is to derive an upper bound on the right-hand side. We introduce for
u ∈ R, j ≥ 2, the stopping times

σ±,j
u = inf{t ≥ 0 :±Xt · R(ej ) ≥ u},(2.18)

L̄ = 2(n0 + 2)(L̃0 + 1) + R, J =
⌊
L̃1

L̄

⌋
.(2.19)
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Since L̃1 = Ñ0L̃0 ≥ 150n0L̃0, n0 ≥ 3 and L̃0 ≥ 2 + R, it follows that J ≥ 15.
On the event {T̃ ≤ T̃−L1+R+1 ∧ TL1+1}, P0-a.s., at least one of the projections
|Xt · R(ej )|, j ≥ 2, reaches the value J L̄ before Xt exits the box B1. Hence:

P0[T̃ ≤ T̃−L1+R+1 ∧ TL1+1] ≤ ∑
j≥2

P0[σ+,j

J L̄
≤ TB1] + P0[σ−,j

J L̄
≤ TB1].(2.20)

Let us write σu in place of σ+,2
u and bound the term P0[σJL̄ ≤ TB1], the other terms

being treated similarly. The strong Markov property yields that

P0[σJL̄ ≤ TB1] ≤ EE0,ω

[
σ(J−1)L̄ ≤ TB1,PXσ

(J−1)L̄
,ω[σJL̄ ≤ TB1]

]
.(2.21)

We define the auxiliary box

B ′ = B(R,L0 − R,L0, L̃0 + 1);(2.22)

see (2.2) for the notation and let Hi, i ≥ 0, denote the iterates of the stopping time
H 1 = TB1 ∧ TX0+B ′ . Then for any ω ∈ �, x ∈ B1 with x · R(e2) = (J − 1)L̄, we
have

Px,ω[σJL̄ > TB1] ≥ Px,ω

[2(n0+1)−1⋂
k=0

θ−1
Hk {H 1 < T∂−B ′+X0}

]
,(2.23)

because on the event in the right-hand side, the trajectory either exits B1 before σJL̄

right away on {H 1 < T∂−B ′+X0} or it exits the box B1 through “the right,” since
for every k ≥ 0, on θ−1

Hk {H 1 < T∂−B ′+X0} the trajectory Px,ω-a.s. moves between

time Hk and Hk+1 at most a distance L̃0 + 1 into direction R(e2) and at least a
distance L0 into direction � until it leaves B1, and since

2(n0 + 1)(L̃0 + 1) = L̄ − 2(L̃0 + 1) − R < L̄(2.24)

and 2(n0 + 1)L0 > 2L1 − R, the width of B1 in direction �. In order to obtain a
lower bound on the right-hand side of (2.23) with the help of the strong Markov

property, we cover the set G(J − 1)
def= {x ∈ B1 : |x · R(e2) − (J − 1)L̄| ≤ 2(n0 +

1)(L̃0 + 1)}, which contains the trajectories up to TB1 described by the event in the
right-hand side of (2.23), with a collection of disjoint and rotated unit cubes Cm

with centers xm. The cardinality of this collection is proportional to the volume of
G(J − 1).

For any k,m ≥ 0 and any ω ∈ �, we have that on {XHk ∈ Cm}, P0,ω-a.s.,

PX
Hk ,ω[XTB′+X0

∈ ∂+B ′ + X0] ≥ PX
Hk ,ω[XTB0+xm

∈ ∂+B0 + xm],(2.25)

as for any x ∈ Cm, it follows from the definitions of B ′ [see (2.22)] and B0
[see (2.6)] that ∂+B0 + xm ⊂ (B ′ + x)c, ∂−B ′ + x ⊂ B0

c + xm and x ∈ B0 + xm;
see Figure 1. Here U denotes the closure of U ⊂ R

d . Therefore any piece of tra-
jectory contained in B0 + xm, connecting x ∈ Cm to ∂+B0 + xm has to exit B ′ + x,
but cannot touch ∂−B ′ + x.
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FIG. 1. Graphical explanation of (2.25).

As a consequence, we deduce from (2.23) using the strong Markov property
that for any ω ∈ �,x ∈ B1 with x · R(e2) = (J − 1)L,

Px,ω[σJL̄ > TB1] ≥
(

inf
m

inf
x∈Cm

Px,ω[XTB0+xm
∈ ∂+B0 + xm]

)2(n0+1)

(2.26)
def= 1 − φ(J − 1,ω),

and thus, in view of (2.21), we find

P0[σJL̄ ≤ TB1] ≤ E
[
P0,ω

[
σ(J−2)L̄ ≤ TB1

]
φ(J − 1,ω)

]
.(2.27)

From (2.24), we see that G(J −1) ⊂ {x ∈ B1 :x ·R(e2) ≥ (J −2)L̄+2(L̃0 +1)+
R}, and therefore the random variable φ(J − 1, ·) is H{z·R(e2)≥(J−2)L̄+R}-measur-
able whereas P0,·[σ(J−2)L̄ ≤ TB1] is H{z·R(e2)≤(J−2)L̄}-measurable. Thus the finite
range dependence property implies that

P0[σJL̄ ≤ TB1] ≤ P0
[
σ(J−2)L̄ ≤ TB1

]
E[φ(J − 1,ω)].(2.28)

Using the notation (2.26) and observing that 1 − pk ≤ k(1 − p) for k ≥ 1, p ≥ 0,
we obtain

E[φ(J − 1,ω)] ≤ 2(n0 + 1)E

[
sup
m

sup
x∈Cm

Px,ω[XTB0+xm
∈ ∂−B0 + xm]

]
.(2.29)

We now observe that the cardinality of the collection of cubes Cm is proportional to

2L1 ·4(n0 +1)(L̃0 +1) · (2L̃1)
d−2 ≤ cL̃d−2

1
L2

1
L0

L̃0. Then translation invariance and
an application of Harnack’s inequality to the harmonic function x �→ Px,ω[XTB0

∈
∂−B0] yield that

E[φ(J − 1,ω)] ≤ c′L̃d−2
1

L3
1

L2
0

L̃0E[q0],(2.30)
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where we used the notation (2.4). Coming back to (2.28), we see that

P0[σJL̄ ≤ TB1] ≤ P0
[
σ(J−2)L̄ ≤ TB1

]

× cL̃d−2
1

L3
1

L2
0

L̃0E[q0], and by induction(2.31)

≤
{
cL̃d−2

1
L3

1

L2
0

L̃0E[q0]
}m

for all 0 ≤ m ≤
⌊
J

2

⌋
.

Similar bounds hold for each term in the right-hand side of (2.20) and since1 �J
2 
 ≥

Ñ0
12N0

from our assumptions on N0, Ñ0 and L̃0 we conclude from (2.17), (2.20)
and (2.31) that

P[Gc] ≤ κ−9L12(d − 1)

{
cL̃d−2

1
L3

1

L2
0

L̃0E[q0]
}Ñ0/(12N0)

.(2.32)

So far we found an upper bound for the first term of the right-hand side of (2.15).
To complete the proof of (2.9), we are now going to bound the second term.

For any i ∈ Z, we cover the set {x ∈ Si : |x|⊥ < L̃1} [appearing in the definition
of ρ̂(i,ω); see (2.13)] with a collection of disjoint and rotated unit cubes C̃k with
cardinality at most (R + 1)(2L̃1 + 1)d−1. As a result, for 0 < a < 1,

E[ρ̂(i,ω)2a] ≤ ∑
k

E

[sup
x∈C̃k

q̂(x,ω)2a

inf
x∈C̃k

p̂(x,ω)2a

]
.(2.33)

By Harnack’s inequality, there is a constant c ≥ 1 such that

sup
x∈C̃k

q̂(x,ω)

inf
x∈C̃k

p̂(x,ω)
≤ c2 q̂(xk,ω)

p̂(xk,ω)
for every 1 ≤ k,ω ∈ �.

Moreover, observe that q̂(xk,ω) ≤ q0 ◦ txk
ω; see (2.6) for the notation. Using trans-

lation invariance, we see that the second term on the right-hand side of (2.15) is
less than or equal to

2
∑

0≤m≤n0+1

(
(R + 1)(2L̃1 + 1)d−1c4a

E[ρ2a
0 ])(m+n0−1)/2

.(2.34)

Choosing c3 ≥ (R + 1)3d−1c4 sufficiently large completes the proof of Proposi-
tion 2.2. �

Similarly to [19], we are going to iterate (2.9) along an increasing sequence of
boxes Bk , which tend to look like infinite slabs transversal to the direction �. For

1� J
2 
 ≥ J

2 − 1
2 ≥ Ñ0L̃0

4(n0+2)(L̃0+1)+2R
− 1 ≥ Ñ0L̃0

4(5/3n0)(3/2)L̃0+n0L̃0
− 1 ≥ Ñ0

11N0
− 1 ≥ Ñ0

N0
( 1

11 −
1

150 ) ≥ Ñ0
12N0

.
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the definition of these boxes, we consider

u0 ∈ (0,1], v = 8, α = 240,(2.35)

and choose two sequences Lk, L̃k, k ≥ 0, such that

L0 ≥ c1, R + 2 ≤ L̃0 ≤ L3
0, and for k ≥ 0,

(2.36)
Lk+1 = NkLk, with Nk = α

u0
vk and L̃k+1 = N3

k L̃k.

As a consequence we see that for k ≥ 0:

Lk =
(

α

u0

)k

vk(k−1)/2L0,(2.37)

L̃k =
(

Lk

L0

)3

L̃0.(2.38)

LEMMA 2.4. There exists c4 ≥ c1, such that when for some L0 ≥ c4, R + 2 ≤
L̃0 ≤ L3

0, a0 ∈ (0,1], u0 ∈ [κL0/d,1],
ϕ0

def= c3L̃
(d−1)
1 L0E[ρa0

0 ] ≤ κu0L0,(2.39)

then for all k ≥ 0,

ϕk
def= c3L̃

(d−1)
k+1 LkE[ρak

k ] ≤ κukLk with ak = a02−k, uk = u0v
−k.(2.40)

As the proof is purely algebraic and hence identical to the proof of [19],
Lemma 2.2, we omit it here. We now use the induction result to control the exit
behavior from a slab.

PROPOSITION 2.5. There exists c5 ≥ c4, c6 > 1, such that when for some
L0 ≥ c5, R + 2 ≤ L̃0 ≤ L3

0,

c6

(
log

1

κ

)3(d−1)

L̃
(d−1)
0 L

3(d−1)+1
0 inf

a∈(0,1] E[ρa
0 ] < 1,(2.41)

with B0, ρ0 as in (2.6), then for some c > 0,

lim sup
L→∞

L−1 exp{c(logL)1/2} logP0[T̃−bL < TL] < 0 for all b > 0.(2.42)

PROOF. In view of (2.37), (2.38), we see that (2.39) is equivalent to

u
−3(d−1)
0 κ−u0L0c3α

3(d−1)L̃
(d−1)
0 L0E[ρa0] ≤ 1.(2.43)

The minimum of the function [κL0/d,1] � u0 �→ u
−3(d−1)
0 κ−u0L0 is c′(L0 ×

log 1
κ
)3(d−1), provided L0 ≥ c5. Hence choosing c6 = 2c′c3α

3(d−1), we can make
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sure that whenever (2.41) holds, for some L0 ≥ c5,R + 2 ≤ L̃0 ≤ L3
0, then (2.39)

holds for some a0 ∈ (0,1], u0 ∈ [κL0/d,1]. By Lemma 2.4, (2.40) holds for all
k ≥ 0. For any b > 0, we are now looking for a bound on P0[T̃−bL < TL] when L

is large. For every large enough L, we can find a unique k with

Lk < bL ≤ Lk+1.(2.44)

We then introduce the auxiliary box B ′
k = B(R,Lk − R,Lk, L̃k + 1), and use an

argument similar to (2.23)–(2.26) to find a lower bound for P0,ω[T̃−bL > TL]; that
is, we require in essence that the trajectory successively exits certain translates of
the box B ′

k through the “right” side, � L
Lk


 + 1 times. We therefore cover the set

G′ def= {x ∈ R
d, |x|⊥ ≤ ( L

Lk
+ 1)(L̃k + 1), x · � ∈ (−bL,L)}, playing the role of

former set G(J − 1), with disjoint and rotated unit cubes C ′
j with centers x′

j . The

cardinality of this collection is at most mk
def= ((b + 1)L+ 1)(2( L

Lk
+ 1)(L̃k + 1)+

1)(d−1). For L large, we introduce the event

�
def=

{
ω ∈ � : sup

j

sup
x∈C′

j

Px,ω[XTBk+x′
j

∈ ∂−Bk + x′
j ] ≥ κ(1/2)ukLk

}
.(2.45)

Then, for any ω ∈ �c, we obtain by arguments as before that

P0,ω[T̃−bL > TL] ≥ (
1 − κ(1/2)ukLk

)(L/Lk+1)
.(2.46)

On the other hand, using translation invariance, Harnack’s inequality and Cheby-
shev’s inequality, we find that there is a c > 0 such that

P[�] ≤ cmkκ
(−1/2)ukLkE[qk].(2.47)

Since qk ≤ ρ
ak

k and because of (2.40), we obtain that

P[�] ≤ c′ mk

c3L̃
(d−1)
k+1 Lk

κ(1/2)ukLk ,(2.48)

and a simple computation using (2.44) and (2.36) shows that for large L,

mk

L̃
(d−1)
k+1 Lk

≤ ((b + 1)L + 1)(2(L/Lk + 1)(L̃k + 1) + 1)d−1

N
3(d−1)
k L̃d−1

k Lk

≤ (1/b + 2)Lk+16(d−1)(Lk+1/(bLk) + 1)d−1L̃d−1
k

N
3(d−1)
k L̃d−1

k Lk

(2.49)

≤ c(b)

(
1

b
+ 1

Nk

)d−1

Nd
k N

−3(d−1)
k ≤ c′(b),

since d ≥ 2. As a consequence, we obtain from (2.48) that

P[�] ≤ c(b)κ(1/2)ukLk .(2.50)
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Assembling (2.46), (2.50) and using 1 −pm ≤ m(1 −p), p,m ≥ 0, we see that for
large L:

P0[T̃−bL < TL] ≤
(
c(b) + L

Lk

+ 1
)
κ1/2ukLk .(2.51)

From (2.40), (2.36), we obtain ukLk = u2
0

α
v−2kLk+1

(2.44)≥ u2
0

α
v−2kbL, and so the

right-hand side of (2.51) is less than c′(b)Nkκ
1/2(u2

0/α)v−2kbL. From the inequality
Lk ≤ bL and (2.37), we deduce that if L is large, then k ≤ c(logbL)1/2, and we
obtain

P0[T̃−bL < TL] ≤ c′(b) exp
{
−1

4

u2
0

α

(
log

1

k

)
bL exp(−c(log(bL))1/2)

}
,(2.52)

for large L. This implies the claim (2.42). �

We are now ready to prove the main result of this section.

THEOREM 2.6. There exists a constant c7(d) > 1, such that for � ∈ Sd−1 the
following conditions are equivalent:

(i) There exist a ∈ (0,1] and a box B = B(R,L − R − 2,L + 2, L̃) with
R(e1) = �,L ≥ c5,R + 2 ≤ L̃ < L3 with

c7

(
log

1

κ

)3(d−1)

L̃d−1L3(d−1)+1
E[ρa

B] < 1,(2.53)

(ii) (T ′) holds with respect to � [see (1.11)],
(iii) (T )γ holds with respect to � for some γ ∈ (1

2 ,1) [see (1.10)].

PROOF. The implication (i) implies (ii) is proved in the same way as the cor-
responding statement in [19], Theorem 2.4. Indeed, we define c7 = 2(d−1)c6 and
observe that as a result of (2.53),

c6

(
log

1

κ

)3(d−1)

L̃′(d−1)L3(d−1)+1
E[ρa

B] < 1,(2.54)

with L̃′ = (L̃ + 2) ∧ L3 ∈ (L̃,2L̃). If B ′ denotes the box B(R′,L − R − 1,L +
1, L̃′) and if the rotation R′ is close enough to R,

pB ≤ pB ′ and hence ρB ′ ≤ ρB.(2.55)

As a result, whenever R′ is sufficiently close to R, we can apply Proposition 2.5
to the box B ′, and find that

lim supL−γ logP0[T̃ �′
−bL < T �′

L ] < 0
(2.56)

for any γ ∈ (0,1), b > 0 with �′ = R(e1).
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FIG. 2.

This proves (ii). It is plain that (iii) follows from (ii).
We now show that (iii) implies (2.53). The neighborhood appearing in the de-

finition of (T )γ contains for some small α > 0 and all j = 2, . . . , d , the vec-
tors �′

j = cos(α)� + sin(α)R(ej ), �′′
j = cos(α)� − sin(α)R(ej ). For large L′ and

0 < b < 1, we choose L + 2 = L′ 1−b
2 cos(α)

and L̃ = L′ 1+b
2 sin(α)

. (In particular L̃ ≤ L3

if L′ is large enough depending on α and b.) As a consequence, if we set B =
B(R,L−2−R,L+2, L̃), then ∂−B is included in the region where x ·�′

j ≤ −bL′
or x · �′′

j ≤ −bL′ for some 2 ≤ j ≤ d (see also Figure 2). In other words,

E[qB] ≤ P0

[
there exists �′ ∈

d⋃
j=2

{�′
j , �

′′
j } : T̃ �′

−bL′ < T �′
L′

]
,(2.57)

and from (1.10), we see that for some c > 0:

E[qB] ≤ 2(d − 1)e−cLγ

if L is large enough.(2.58)

Hence for large L, for a ∈ (0,1) and c′ > 0:

E[ρa
B] ≤ E[ρa

B,pB ≥ e−c′Lγ ] + E[ρa
B,pB < e−c′Lγ ],(2.59)

so that using the definition (2.5) and Jensen’s inequality to bound the first term
and ρB ≤ κ−(L+3) because of Lemma 2.1 to control the second term, we find for
large L,a ∈ (0,1) and c′ > 0:

E[ρa
B] ≤ ec′aLγ

E[qB]a + κ−a(L+3)
P[qB ≥ 1 − e−c′Lγ ]

(2.60)
(2.58)≤ (

2(d − 1)
)a

e(c′−c)aLγ + 2κ−a(L+3)2(d − 1)e−cLγ

.
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If we choose a = L−1/2 and c′ > 0 sufficiently small, we obtain

lim sup
L→∞

L−(γ−1/2) log E[ρL−1/2

B ] < 0.(2.61)

This implies (2.53) and thus finishes the proof of Theorem 2.6. �

REMARK 2.1. As mentioned in the Introduction, it is conjectured that the
conditions (T ), (T ′) and (T )γ for a γ ∈ (0,1) are all equivalent and Theorem 2.6
proves part of it. An improvement of the rather crude bound on the second term on
the right-hand side of (2.59) is likely to yield the equivalence of (T ′) and (Tγ ) also
for γ smaller than 1/2. Moreover, the latter theorem together with Proposition 2.5
strengthen the belief that (T ) and (T ′) are equivalent. Indeed, we have in fact
obtained the equivalence of (T ′)|� and

lim sup
L→∞

L−1 exp{c(logL)1/2} logP0[T̃ �′
−bL < T �′

L ] < 0 for all b > 0(∗)

and �′ close to � [cf. (2.42)], which is just slightly weaker than (T )|�, since
exp{c(logL)1/2} grows more slowly than any polynomial. Also note that using
[11], (3.36) therein, (∗) actually holds for �′ ∈ Sd−1 satisfying �′ · v > 0, where
v = limt→∞ Xt

t
denotes the limiting velocity which has been shown to be deter-

ministic and nonzero (ballistic behavior) under (T ′)|� when d ≥ 2; see [11, 13]
and also [19] in the discrete setting.

2.1. The one-dimensional case. We introduce here the one-dimensional coun-
terpart of the effective criterion and show that condition (T ) is equivalent to (T ′)
and to P0-a.s. transience; see Proposition 2.7. Unlike the multidimensional case,
condition (T ′) does not imply ballistic behavior when d = 1, since one can con-
struct one-dimensional diffusions in random environments that tend to infinity,
hence satisfy (T ′), and have zero limiting velocity. A natural question to ask is
then whether directional transience, that is, convergence to ∞ into some direction,
or at least ballistic behavior implies (T ′) also in higher dimensions.

We first adapt the definitions (2.4), (2.5), (2.10), (2.13) to the one-dimensional
setting. Instead of boxes or slabs, we now consider intervals. For any L > 0, ρB

[see (2.5)] is replaced by

ρL = P0,ω[T̃−L < TL]
P0,ω[T̃−L > TL] .(2.62)

For L0 ≥ 1, i ∈ Z, we redefine Si [see (2.10)] as Si = iL0. The definition of the
stopping times Vk, k ≥ 0 [see (2.11)], remains unchanged. Then we set for ω ∈ �,
i ∈ Z:

ρ̂(i,ω) = q̂(iL0,ω)

p̂(iL0,ω)
,
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where

q̂(x,ω) = Px,ω

[
XV1 ∈ SI (x)−1

] = Px,ω[T̃−L0+x < TL0+x] = 1 − p̂(x,ω).

PROPOSITION 2.7. (d = 1) The following conditions are equivalent:

(i) There exists a ∈ (0,1], L > R, such that E[ρa
L] < 1.

(ii) There exists L > R, such that E[logρL] < 0.
(iii) Condition (T ) holds relative to e1.
(iv) Condition (T ′) holds relative to e1.
(v) limt→∞ Xt · e1 = ∞, P0-a.s.

PROOF. The fact that (i) implies (ii) follows from Jensen’s inequality since
by Lemma 2.1 E[ρa

L] ≤ κ−a(L+1) < ∞. We now show that (ii) implies (iii). We

have from (ii) that −μ
def= E[logρL0] < 0 for some L0 > R. We are going to use

a similar argument as in Appendix A.1 or as in [18], Proposition 2.6 therein. For
any b > 0 and any real L > 4L0/b, we define

n′ =
⌊
bL

L0

⌋
and set n0 =

⌊
L

L0

⌋
.(2.63)

[In the spirit of Appendix A.1, −n′ plays the role of −n0 + 1; see, e.g., (A.2)
or (A.3).] We define the function f on {−n′,−n′ + 1, . . . , n0 + 2} by (A.1) and
modify the definition of τ [see (A.3)] as follows:

τ = inf{k ≥ 0;XVk
∈ Sn0+2 ∪ S−n′ }.(2.64)

Since −p̂(XVm)+ q̂(XVm)ρ(I (XVm))−1 vanishes P0,ω-a.s. for all m ≥ 0, we obtain
by an argument similar to (A.4)–(A.7), that for all ω ∈ � and L >

4L0
b

:

P0,ω[T̃−bL < TL]
(2.65)

≤ f (0)

f (−n′)

∏−1
−n′,n0+1∏−1
−n′,n0+1

=
∏−1

−n′,0 +∏−1
−n′,1 +· · · + ∏−1

−n′,n0+1

1 + ∏−1
−n′,−n′+1 +· · · + ∏−1

−n′,n0+1

≤ 1.

We then take the expectation with respect to P of the left-hand side and split it
according to the sets where sup0≤k≤n0+1

∏−1
−n′,k is smaller, respectively larger, than

1
n0+2e−cμL with cμ

def= μb
8L0

. As a consequence:

P0[T̃−bL < TL]
≤ e−cμL +

(
L

L0
+ 2

)
(2.66)

× sup
0≤k≤n0+1

P

[
k∑

j=−n′+1

log ρ̂(j) ≥ −cμL − log(n0 + 2)

]
.
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Then we decompose the sum appearing in the second term into three sums of
independent random variables ρ̂(j), j = i mod 3 where i = 0,1 or 2. Moreover,
since n0 ≤ n′+1

b
and by the choice of cμ, we observe for all n′ large enough that for

any 0 ≤ k ≤ n0+1, we have 1
n′+k

(cμL+ log(n0 +2)) ≤ μ/4. Hence the probability
on the right-hand side of (2.66) is less than

3∑
i=0

P

[
3

n′ + k

∑
−n′+1≤j≤k

j=i mod 3

(− log ρ̂(j) − μ
) ≤ −μ/4

]
.(2.67)

As for any j ∈ Z,ω ∈ �, | log ρ̂(j)| ≤ (L0 + 1) log( 1
κ
), by (2.8), it follows from

an Azuma-type inequality (see, e.g., [1]) that for any 0 ≤ k ≤ n0 + 1, (2.67) is less
than

≤
3∑

i=0

exp
{
−1

2

(
μ

4

n′ + k

3

)2∣∣{j ∈ [−n′ + 1, k] | j = i mod 3}∣∣−1

× (
(L0 + 1) logκ−1 + μ

)−2
}

(2.68)

≤ 3 exp
{
−c(μ,L0)

(
bL

L0
− 1

)}
.

In view of (2.66), this implies condition (T ); see (1.12).
The implication (iii) ⇒ (iv) is clear. To show (iv) ⇒ (i), we follow the argument

of the corresponding multidimensional statement [see Theorem 2.6, (iii) ⇒ (i)],
that is, in place of (2.58) and (2.60), we have P0[T̃−L < TL] ≤ e−cLγ

and E[ρa
L] ≤

e(c′−c)aLγ + 2κ−a(L+3)e−cLγ
, for L large.

We now come to the implication (v) ⇒ (ii). We follow the arguments in [4],
Theorem 2, point (b) in the case of a line. This theorem applied to the dis-
crete Markov chain XVk

, k ≥ 0, under P0,ω for an L0 > R in fact shows the
equivalence of (ii) and (v). For the reader’s convenience, we extract and present
here the ideas which are relevant for the implication (v) ⇒ (ii). For ω ∈ �,
L0 > R, n ∈ Z, we introduce the shortcut notation pn = p̂(nL0,ω) = 1 − qn and

δn
def= PnL0,ω[T̃(n−1)L0 = ∞] def= 1 − ηn. We claim that

P[δ0 > 0] = 1.(2.69)

Indeed, let us assume by contradiction that there exists some ω′ in the set of full
measure {ω ∈ � :P−L0,ω[Xt → ∞] = 1} such that δ0(ω

′) = 0. Then repeated use
of the strong Markov property shows that P0,ω′ [lim inft Xt ≤ −L0] = 1, a contra-
diction.

Next, we see that for n ∈ Z,

ηn = PnL0,ω

[
T̃(n−1)L0 < ∞]

(2.70)
= qn + pnηn+1ηn and thus ηn = qn

1 − pnηn+1
.
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As a consequence, for all ω ∈ �,n ≤ −1,

δn = 1 − ηn
(2.70)= 1 − 1 − pn

1 − pnηn+1
= ρ̂(n)−1ηnδn+1, and by induction

(2.71)
= (

ρ̂(n)ρ̂(n + 1) · · · ρ̂(−1)
)−1

ηnηn+1 · · ·η−1δ0.

Taking the logarithm of the latter expression and splitting the resulting sum into
sums of i.i.d. random variables [similarly as below (2.66)], we obtain from the law
of large numbers:

lim
n→∞

1

n
log δn = E[− log ρ̂(0)] + E[logη0], P-a.s.,(2.72)

since limn
1
n

log δ0 = 0,P-a.s. by (2.69).
On the other hand, by translation invariance of P, we see that for any ε > 0,

P[| log δn| > εn] = P[| log δ0| > εn] n→∞−→ P[δ0 = 0] (2.69)= 0.(2.73)

In other words, 1
n

log δn converges to 0 in probability, so the right-hand side
of (2.72) vanishes and E[log ρ̂(0)] = E[logη0] which is strictly negative because
of (2.69). This proves the implication (v) ⇒ (ii).

To show the converse implication, we use the fact that (ii) implies condi-
tion (T ). Following [11] [see the proof of (3.1) ⇒ (3.2) therein], we observe that
P0[TL = ∞] ≤ P0[T̃−L < TL], since P0[T̃−L = TL = ∞] = 0 as in every time unit,
the trajectory can escape from the interval [−L,L] with a probability bounded
away from 0. Observe that the left-hand side increases with L while the right-hand
side tends to 0 by condition (T )|e1. Hence P0-a.s., lim supt→∞ Xt = ∞. From the
strong Markov property and translation invariance of P, we obtain for any L > 0:

P0[T̃L/2 ◦ θTL
< T4L/3 ◦ θTL

] = P0[T̃−L/2 < T5L/6].(2.74)

Under condition (T )|e1, the right-hand side decreases exponentially and hence
an application of Borel–Cantelli’s lemma yields that P0-a.s. for large integer L,
T4L/3 < T̃L/2 ◦ θTL

+ TL. As a result, we can P0-a.s. construct an integer-valued
sequence Lk ↑ ∞, with Lk+1 = �4

3Lk
 and TLk+1 < T̃Lk/2 ◦θTLk
+TLk

, k ≥ 0. This
shows (v). �

REMARK 2.2. Let us mention that for any L > 0,

E[logρL] = −2LE[b(0)/a(0)],(2.75)

and as a consequence, if conditions (i) or (ii) above are satisfied for some
L ≥ R, they are in fact satisfied for all L > 0. Indeed, using the scale function
s(x,ω) = ∫ x

0 exp{− ∫ y
0 2b(u,ω)/a(u,ω)du}dy, for x ∈ R, ω ∈ � (see, e.g., [2],
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pages 78 and 88), we can write ρL = s(L)
−s(−L)

. It follows that for L > 0, E[logρL]
equals

E

[
log

∫ L

0
e− ∫ y

0 2b(u,ω)/a(u,ω)du dy

]
(2.76)

− E

[
log

∫ 0

−L
e− ∫ y

−L 2b(u,ω)/a(u,ω)due
∫ 0
−L 2b(u,ω)/a(u,ω)du dy

]
.

Because of translation invariance of P, the second term becomes

E

[
log

∫ L

0
e− ∫ y

0 2b(u,ω)/a(u,ω)du dy

]
+ E

[∫ 0

−L

2b(u,ω)

a(u,ω)
du

]
,

so that the first term of (2.76) is canceled out. Fubini’s theorem then yields
E[logρL] = − ∫ 0

−L E[2b(u,ω)
a(u,ω)

]du, and the claim follows from translation invari-
ance of P.

3. An example of a ballistic diffusion.

3.1. Main result and preliminaries. In this section, we use the effective crite-
rion to show that a Brownian motion perturbed by a small random drift which is
bounded by ε > 0 and whose expectation in direction � = e1 is of order ε2−η with
η > 0 satisfies condition (T ′)|e1. The interest of this class of diffusions stems from
the fact that it contains new examples of ballistic diffusions which in particular do
not fulfill the criterion of [11], Theorem 5.2 therein, which states that there exists
a constant ce > 1 such that if

E[(b(0,ω) · e1)+] > ceE[(b(0,ω) · e1)−],(3.1)

then (T )|e1 holds. Before we give further explanations on this matter (see Re-
mark 3.1 below), we introduce the family of perturbed Brownian motions studied
in this section. For any ε ∈ (0, K̄], η > 0 and ω ∈ �, we consider the class of
diffusions attached to an operator of the form

L = 1
2� + b(x,ω) · ∇,(3.2)

where we require that for all x ∈ R, ω ∈ �,

|b(x,ω)| ≤ ε, λ
def= E[b(0,ω) · e1] ≥ ε2−η.(3.3)

Note that the constant K̄ , the ellipticity constant ν and the dependence range R

[see (1.2)–(1.5)] do not depend on ε. We keep the convention concerning constants
stated at the end of the Introduction. Moreover, when we write that an expression
holds “for large enough L” we mean that the expression holds for all L larger than
some c(η).

The main result of the section is
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THEOREM 3.1. When d ≥ 4, for any η ∈ (0,1) there is ε0(η, d) > 0 such that
whenever (3.3) holds for 0 < ε ≤ ε0, then condition (T ′)|e1 is satisfied.

REMARK 3.1. Clearly, (3.1) is equivalent to

E[b(0,ω) · e1] > (ce − 1)E[(b(0,ω) · e1)−].(3.4)

An inspection of the proof of Theorem 5.2 in [11], reveals that ce > 1, and
hence (3.4) fails when ε > 0 is small, if E[b(0,ω) · e1] is of order ε2−η with
0 < η < 1 and supω∈�(b(0,ω) · e1)− is of order ε under an adequate choice of P.
With this observation one can rather straightforwardly produce examples where
(3.3) holds with ε < ε0(η, d), but (3.1) or (3.4) fails.

The rest of the section is devoted to the proof of Theorem 3.1. We will verify
the effective criterion (2.53) when ε is smaller than some ε0(η, d) for a = 1/2 and
a box B = B(Id,NL′ − R − 2,NL′ + 2, 1

4(NL′)3) [see (2.2)], where

N = L3 and L = L′ − R

2
is an integer such that L =

⌊
1

4ε

⌋
.(3.5)

The starting point to estimate E[ρ1/2
B ] is (2.15). Here we set [cf. (2.6)] L1 =

NL′, L̃1 = 1
4(NL′)3, L0 = L′, n0 = N and a = 1/2. With these choices, the box

B defined above, on which we want to check (2.53), equals B1 + e1. In order to
apply (2.15) we use the following.

LEMMA 3.2. For a ∈ (0,1] and B1 a box as in (2.6) with � = e1,L1 ≥ R + 3
and R = Id,

E[ρa
B1+e1

] ≤ ca
E[ρa

B1
].(3.6)

PROOF. Since for every ω ∈ �,Px,ω[XTB1
∈ ∂±B1] is harmonic on (−2,2)d ,

Harnack’s inequality implies that

P−e1,ω[XTB1
∈ ∂−B1]

P−e1,ω[XTB1
∈ ∂+B1] ≤ cρB1(ω).

The claim then follows from translation invariance of P. �

For the purpose of this section, we need a bound on P[Gc] appearing in (2.15)
which differs from (2.32) and which is essentially the same as the estimate in [20],
Theorem 1.1. We now follow [20] to introduce the notation used for this bound.
Let h,H,M be positive integers with

2h ≤ H ≤ (NL′)3

32
and M =

⌊
(NL′)3

32H

⌋
.(3.7)
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Later on [see (3.51)], we will choose H and h to be of order (NL′)2 and L2,
respectively. We introduce the exit time S from a tube:

S = inf
{
t > 0; |(Xt − X0) · e1| ≥ L or sup

j≥2
|(Xn − X0) · ej | ≥ h

}
(3.8)

and the expected displacement

�(x,ω) = Ex,ω[XS] − x, x ∈ R
d,ω ∈ �.(3.9)

Moreover, for 0 < γ ≤ 1, later chosen to be of order ε1−η [see (3.51)], we define

pL = inf
j≥2

P[for all z ∈ B̃j ,�(z,ω) · e1 ≥ γL],(3.10)

where for 2 ≤ j ≤ d ,

B̃j = {y ∈ B, |y · ej | < H }.(3.11)

Let us now state the analogue of Theorem 1.1 in [20].

PROPOSITION 3.3. There exists a constant c8 > R + 3 such that when L ≥ c8
and

δ−1 def= exp
{
−γN

128

}
+ 10N

γ
exp

{
−γN

32

(
H

2hN
− 4

γ

)2

+

}
< 1,(3.12)

then for any 0 < a ≤ 1

E[ρa
B] ≤ caκ−aNL′

2d exp
{
−M

2

(
pL − 10NL

M

logκ−1

log δ

)2

+

}
(3.13)

+ ca 2E[ρ̂(0,ω)2a]N/2

(1 − E[ρ̂(0,ω)2a]1/2)+
.

Since the proof is very similar to the one of Theorem 1.1 in [20], we only
make a few comments here. Because of (3.6), we can estimate E[ρa

B] with the help
of (2.15). We bound the second term on the right-hand side in the latter expression
using translation invariance of P and obtain the second term on the right-hand side
of (3.13). The intuitive idea behind the estimate on P[Gc] in the first term on the
right-hand side of (2.15), leading to the first term on the right-hand side of (3.13),
is to consider nested boxes B̂k = (−NL′ + R + 2,NL′ + 2) × (−k4H,k4H)d−1

for 0 ≤ k ≤ M contained in the big box B . Then in order not to exit through “the
left or right” of B , the trajectory has to reach the boundary of box B̂k before exit-
ing B and then move from box B̂k to box B̂k+1 without exiting B . The probability
of this last step is related to the quantity 1 − pL.

Note that the coefficient in the first term of δ−1 differs from the result in [20]
as the width of B is a multiple of L′ while the definition of the time S uses the
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quantity L = L′ − R
2 . This affects the right-hand side of the expression below

(1.24) in [20].
Despite the finite range dependence, the remark in [20] below (1.29) still holds

since (in the notation of [20]) the random variables Zk(e) and Zk−1(e) are measur-
able respectively in H{z∈Rd : z·e≥4kH−H−h} and in H{z∈Rd : z·e≤4(k−1)H+H+h}. The
involved half-spaces are separated by a distance 2(H − h) which is larger than H

by (3.7). Hence (Zk)0≤k≤M are independent if H and thus L are large enough.

3.2. Bounds on the Green operator. The main Theorem 3.1 will follow after
choosing h and H as in (3.51) once we show exponential decay in L ∝ ε−1 of
both terms on the right-hand side of (3.13) for a = 1/2. Therefore the goals of
this section are to find a tractable expression for ρ̂(0,ω) (see Lemma 3.5) that
involves the Green operator of the diffusion killed when exiting the open slab

S
def= {x ∈ R

d : |x ·e1| < L}, and then investigate its relation with the Green operator
of killed Brownian motion; see Proposition 3.8. Certain deterministic estimates on
the latter operator and its kernel (see Lemmas 3.7 and 3.9) will then be instrumental
in the proof of the desired exponential decay of E[ρ1/2

B ]; see Proposition 3.10.

Throughout this section, we use the shortcut notation b1
def= b · e1 and we set

‖f ‖∞ = supx∈S |f (x)|, for any function f on S. For any bounded measurable
function f on S and any x ∈ S, ω ∈ �, let us denote with

Gω
Sf (x)

def= Ex,ω

[∫ TS

0
f (Xs) ds

]
, respectively

(3.14)

GSf (x)
def= E

[∫ TS

0
f (x + Ws)ds

]
,

the Green operator of the diffusion, respectively Brownian motion, killed when
exiting the slab S. (Here E denotes the expectation with respect to some measure
under which Ws is a Brownian motion.) Note that by (3.16) below, these operators
acting on L∞ have norm bounded by 2L2. Moreover, the semi-group P ω

t of the
diffusion in environment ω killed when exiting S is defined as

P ω
t f (x) = Ex,ω[f (Xt), t < TS] for x ∈ S, t ≥ 0.(3.15)

In a similar fashion, we denote with Pt the semi-group of a Brownian motion killed
when exiting S.

The following lemma states basic bounds on the expected exit time from the
slab S and on the supremum-norm of the operator P ω

t .

LEMMA 3.4. For ω ∈ �,ε ∈ (0,1/4), x ∈ S, under the assumption (3.3) and
with the definition (3.5),

2
3

(
L2 − (x · e1)

2) ≤ Ex,ω[TS] ≤ 2
(
L2 − (x · e1)

2)
.(3.16)

For any bounded measurable function f and any ω ∈ �,

‖P ω
t f ‖∞ ≤ c10‖f ‖∞ exp(−c11t/L

2) for t > 0.(3.17)
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PROOF. To show (3.16), we consider for x ∈ S,ω ∈ � the Px,ω-martingale

(Xt∧TS · e1)
2 − (X0 · e1)

2 −
∫ t∧TS

0
2b1(Xs,ω)(Xs · e1) ds − t ∧ TS .(3.18)

After taking expectations and using the monotone convergence theorem, we ob-
tain (3.16) from our assumption |b(·, ·)| ≤ ε [see (3.3)] and the choice L ≤ 1

4ε
[see (3.5)].

We now turn to (3.17). By the support theorem (see [2]) applied to the rescaled
diffusion 1

L
XL2t and the fact that |Lb1| ≤ 1

4 , the probability under Px,ω that the
trajectories leave the slab within time L2 when starting in x ∈ S is bounded away
from 0 by some constant c11. Hence the strong Markov property yields for any
t > 0, x ∈ S,ω ∈ �, that Px,ω[t ≤ TS] ≤ c10 exp(−c11t/L

2), and (3.17) follows
from the definition (3.15). �

REMARK 3.2.

1. For Brownian motion starting at x ∈ S, the expected exit time from the slab S
equals L2 − (x · e1)

2. The analogue of (3.17) for Brownian motion is also valid.
2. We point out that since TS has a finite moment under Px,ω by (3.16), Fubini’s

theorem applied to (3.14) yields for any bounded measurable function f and
any ω ∈ �,x ∈ S that

Gω
Sf (x) =

∫ ∞
0

P ω
t f (x) dt.(3.19)

Of course, the same relation holds for the killed Brownian motion.

Let us now introduce the following shortcut notation for the set appearing in the
definition of ρ̂(0,ω) [see (2.13)]:

V
def=

{
x ∈ R

d; |x · e1| ≤ R

2
, |x|⊥ ≤ 1

4
(NL′)3

}
.(3.20)

For later purposes, we observe that (3.16) and our assumption (3.3) on λ imply
that there are constants c12 > 0 and L1(c12, η) such that when L ≥ L1, then for
any x ∈ V,ω ∈ �,

Gω
Sλ(x) = λEx,ω[TS] ≥ c12L

η.(3.21)

The next lemma provides a tractable expression of ρ(0,ω) in terms of the Green
operator Gω

S .

LEMMA 3.5. For L ≥ 3R,ω ∈ �, with (3.3) and (3.5),

ρ̂(0,ω) = sup
x∈V

L − x · e1 − Gω
S (b1(·,ω))(x)

L + x · e1 + Gω
S (b1(·,ω))(x)

≤ 5.(3.22)

[See (2.13), (3.20) for the notation.]
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PROOF. For any x ∈ S, ω ∈ �, Xt∧TS · e1 − X0 · e1 − ∫ t∧TS
0 b1(Xs,ω)ds is a

Px,ω-martingale. Hence, after taking expectations, we obtain from the dominated
convergence theorem that [see (2.14) for the notation]

p̂(x,ω) = x · e1 + L + Gω
S (b1(·,ω))(x)

2L
.(3.23)

Inserting this expression into the definition (2.13) of ρ̂(0,ω) yields the claimed
equality. Using (3.16), (3.5), we see that for all L > 0,

|Gω
S (b1(·,ω))(x)| ≤ L

2
,(3.24)

and thus the inequality in (3.22) follows when L ≥ 3R. �

In order to explore the relationship between the Green operators of the diffusion
and Brownian motion [see (3.40)], we need to collect a few facts about the semi-
group of Brownian motion. From [16], Theorem 8.1.18, we have that whenever
f is a continuous and bounded function, then (t, x) �→ Ptf (x) is bounded and in
C1,2([0,∞) × S,R). Moreover,

∂

∂t
Ptf = 1

2
�Ptf in (0,∞) × S,(3.25)

lim
t→0

Ptf (x) = f (x), x ∈ S.(3.26)

Since every point on the boundary of S is regular according to [16], (8.1.16)
therein, we have the following continuity property at the boundary (see [16], The-
orem 8.1.18):

lim
(t,x)→(s,a)

(t,x)∈(0,∞)×S

Ptf (x) = 0 for (s, a) ∈ (0,∞) × ∂S.(3.27)

Our next step is to express Pt and GS in terms of kernels using “the method of
images” from electrostatics.

PROPOSITION 3.6. Let f be a bounded measurable function on R
d . If we

define for t > 0;x, y ∈ S

p(t, x, y) =
∞∑

k=−∞
pd(t, x, y + 2k2Le1) − pd

(
t, x, y∗ + (2k + 1)2Le1

)
,(3.28)

where pd(t, x, y)
def= (2πt)−d/2 exp{|x − y|2/2t} is the d-dimensional heat kernel

and y∗ is the image of y under reflection with respect to {z ∈ R
d : z · e1 = 0}, then

Ptf (x) =
∫
S
p(t, x, y)f (y) dy.(3.29)
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Moreover, when d ≥ 4, if we define Green’s function for distinct x, y ∈ S by

g(x, y)
def=

∞∑
k=−∞

gd(x, y + 2k2Le1) − gd

(
x, y∗ + (2k + 1)2Le1

)
,(3.30)

where gd(x, y)
def= ∫ ∞

0 pd(t, x, y) dt = γd |x − y|2−d for x �= y and an appropriate
constant γd , then

GSf (x) =
∫
S
g(x, y)f (y) dy.(3.31)

PROOF. The fact that p(t, x, y) in (3.28) satisfies the equality in (3.29) follows
from [8], Proposition 8.10, after mapping the interval [0, a] to [−L,L] and after
multiplying with pd−1. It is well known that gd(x, y) equals γd |x − y|2−d for an
appropriate constant γd when d ≥ 3 and x �= y (see, e.g., [16], (8.4.10)). To see that
the expression in (3.30) is indeed the kernel of GS , we observe that p(t, x, y) is
integrable over t for x �= y, since by the monotone convergence theorem, we have∫ ∞

0 p(t, x, y) dt ≤ ∑∞
k=−∞ gd(x, y + 2k2Le1) + gd(x, y∗ + (2k + 1)2Le1), and

since the latter series converges absolutely when d ≥ 4. Moreover, with dominated
convergence,

g(x, y) =
∫ ∞

0
p(t, x, y) dt for x �= y.(3.32)

Then we insert (3.29) into (3.19) and since (t, y) �→ p(t, x, y)f (y) is product in-
tegrable by Tonelli’s theorem and (3.17), we obtain (3.31) from Fubini’s theorem
and (3.32). �

The next lemma provides gradient estimates on the semi-group and the Green
operator of killed Brownian motion which play an important role in the derivation
of the perturbation equality (3.40) and in the proof of Proposition 3.10.

LEMMA 3.7. (d ≥ 4) For any bounded, continuous function f , there exist
c13, c14 > 0 such that for all x ∈ S, t > 0 and L > 0,

|∇Ptf (x)| ≤
(

c13

L
+ c14√

t

)
exp

(
−c11

2
t/L2

)
‖f ‖∞,(3.33)

|∇GSf (x)| ≤ c15‖f ‖∞L.(3.34)

PROOF. We first show (3.33). Let (x(1), . . . , x(d)) denote the coordinates of
a point x in R

d . We estimate the partial derivatives ∂i , i = 1, . . . , d , of Ptf (x)

separately. As a consequence of the semi-group property, we have that for t > 0,
x ∈ S,

Ptf (x) =
∫
S
p(t/2, x, z)Pt/2f (z) dz.(3.35)



AN EFFECTIVE CRITERION AND A NEW EXAMPLE 1119

We let U ⊂ S be a neighborhood of x. To compute ∂iPt (x) by interchang-
ing derivation and integration, we need to show that |∂ip(t/2, x, z)Pt/2f (z)| is
dx × dz integrable over U × S. After an application of (3.17), we see that

sup
x∈U

∫
S
|∂ip(t/2, x, z)Pt/2f (z)|dz

(3.36)
≤ exp(−c11t/L

2)‖f ‖∞ sup
x∈U

∫
S
|∂ip(t/2, x, z)|dz.

For i = 1, according to (3.28), |∂1p(t/2, x, z)| is smaller than

d∏
j=2

p1
(
t/2, x(j), z(j)) ∞∑

k=−∞

∣∣∂1p1
(
t/2, x(1), z(1) + 4kL

)∣∣
(3.37)

+ ∣∣∂1p1
(
t/2, x(1),−z(1) + (2k + 1)2L

)∣∣.
The integral over R

d of the first d − 1 factors in the latter expression equals 1 and
using monotone convergence, we find that for any x ∈ U , t > 0, the integral on the
right-hand side of (3.36) is smaller than∑

k �=0

p1
(
t/2, x(1),L + 4kL

) + p1
(
t/2, x(1),−L + 4kL

)

+ ∑
k �=−1

p1
(
t/2, x(1),L + (2k + 1)2L

)

+ ∑
k �=0

p1
(
t/2, x(1),−L + (2k + 1)2L

)
(3.38)

+
∫ L

−L

1√
πt

e(−1/t)(x(1)−z)2
∣∣∣∣x

(1) − z

t

∣∣∣∣dz

+ p1
(
t/2, x(1),−L

) + p1
(
t/2, x(1),L

)
.

For any x ∈ U , the function z �→ p1(t/2, x(1), z) is monotone on (−∞,−2L]
and on [2L,∞). Therefore the first sum in (3.38) is less than 4

L

∫ ∞
−∞ p1(t/2, x(1),

z) dz = 4
L

. A similar argument yields that the second and third sums in (3.38) are

less than c
L

. The integral in (3.38) is less than 2
∫ ∞

0
1√
πt

e−u2
udu = 1√

πt
and the

last two terms can also be bounded by c√
t
. Collecting our estimates, we obtain for

i = 1 that the left-hand side of (3.36) is less than

exp(−c11t/L
2)‖f ‖∞

(
c

L
+ c′

√
t

)
.(3.39)

Hence we can interchange the derivative ∂1 with the integral in (3.35), and for any
x ∈ S, |∂1Pt(x)| is bounded by (3.39). Similar bounds on |∂iPt (x)|, for 2 ≤ i ≤ d ,
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follow from an easier version of the above arguments. Indeed, in an expression cor-
responding to (3.37), the last factor containing the sum, which was more delicate
to treat, will not be affected by the derivative ∂i and thus its integral over [−L,L]
equals 1. This proves (3.33). Since the latter estimate shows that ∇Ptf (x) is inte-
grable with respect to t > 0, (3.34) is an immediate consequence of (3.19). �

The link between the Green operators of the killed diffusion and the killed
Brownian motion is expressed by the following perturbation equality:

PROPOSITION 3.8. Let f be a bounded, continuous function on R
d . Then we

have for all x ∈ S,ω ∈ � that

Gω
Sf (x) = GSf (x) − Gω

S (b(·,ω) · ∇)GSf (x).(3.40)

PROOF. The classical idea of the proof is to take the derivative of P ω
t Pu−t f (x)

with respect to t , which yields P ω
t ((L − �)Pu−t f )(x). Then one integrates both

sides with respect to t from 0 to u and with respect to u from 0 to infinity. The
result then follows from Fubini’s theorem. Let us now present the details of the
proof. For ω ∈ �,u > 0, x ∈ S, we claim that

P ω
u f (x) − Puf (x) =

∫ u

0
P ω

t (b(·,ω) · ∇Pu−t f )(x) dt.(3.41)

To prove the claim, we define for h > 0 the function

e(t, x)
def= Pu+h−t f (x) with 0 ≤ t ≤ u,x ∈ S.(3.42)

According to [16], Theorem 8.1.18, e is in C1,2((0, u) × S). Hence we can apply
Itô’s formula to a function en ∈ C1,2((0, u) × R

d) such that en(t, ·) = e(t, ·) on

Dn
def= {x ∈ S,dist(x, ∂S) ≥ 1/n} and en(t, ·) = 0 on Sc. Because of (3.25), we

obtain for all ω ∈ �, x ∈ Dn after taking expectations:

Ex,ω

[
e(u ∧ TDn,Xu∧TDn

) − e(h ∧ TDn,Xh∧TDn
)

(3.43)

−
∫ u∧TDn

h∧TDn

b(Xs,ω) · ∇e(s,Xs) ds

]
= 0.

When n tends to ∞, t ∧TDn increases to t ∧TS , and it follows from the dominated
convergence theorem and (3.27) that for any ω ∈ �,x ∈ S,

Ex,ω[e(u ∧ TDn,Xu∧TDn
), u ≥ TS] n→∞−→ 0.(3.44)

The same result holds for h in place of u. From (3.33), we have that
sup0≤t≤u,x∈S |∇e(v, x)| is finite. Thus coming back to (3.43) and letting n → ∞,
we obtain with dominated convergence that for any x ∈ S,

Ex,ω[e(u,Xu), u < TS] − Ex,ω[e(h,Xh),h < TS]
(3.45)

= Ex,ω

[∫ u∧TS

h
b(Xs,ω) · ∇e(s,Xs) ds, h < TS

]
.
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We now insert the definition (3.42) into the above expression and let h tend to 0
using dominated convergence. This concludes the proof of (3.41).

The integral with respect to u > 0 of the left-hand side of (3.41) equals
Gω

Sf (x) − GSf (x); see (3.19). On the right-hand side, (3.33) and (3.17) imply
that the iterated integral∫ ∞

0

∫ ∞
0

|P ω
t (b(·,ω) · ∇Pu−t f )|(x)1{t<u} dudt

(3.46)

≤
∫ ∞

0

∫ ∞
t

cε‖f ‖∞
(

c13

L
+ c14√

u − t

)
e−c11/(2L2)(t+u) dudt

is finite. Hence we can integrate the right-hand side of (3.41) with respect to u, use
Fubini’s theorem and then substitute u − t with u. It follows for ω ∈ �,x ∈ S,

Gω
Sf (x) − GSf (x) =

∫ ∞
0

∫ ∞
0

P ω
u (b(·,ω) · ∇Ptf )(x) dudt.(3.47)

The same argument as before allows us to interchange the integrals once more.
Finally with (3.33) and a further application of Fubini’s theorem we can move the
dt-integral inside P ω

u ( · ) and interchange it with the gradient. This finishes the
proof of Proposition 3.8. �

We close this section with estimates on the Green’s function (3.30) of killed
Brownian motion and on its gradient. They are at the heart of the proof of Propo-
sition 3.10.

LEMMA 3.9. (d ≥ 4) For all x, y ∈ S and L > 0 we have

g(x, y) ≤ c16|x − y|2−d exp(−c17|x − y|⊥/L),(3.48)

|∇g(x, y)| ≤ (c18|x − y|1−d + c19L
1−d) exp(−c17|x − y|⊥/L).(3.49)

Moreover, for any bounded Hölder continuous function f , GSf is twice continu-
ously differentiable on S and

1
2�GSf (x) = −f (x) for x ∈ S.(3.50)

The proof is included in Appendix A.2 and the arguments showing (3.48)
and (3.49) are similar to the proof of [20], (2.11), (2.13) therein.

3.3. Proof of Theorem 3.1. The starting point for the proof is (3.13) with
a = 1

2 . We first specify the quantities h,H,γ involved in the first term on the
right-hand side of (3.13) [see (3.7), (3.10)]:

h
def= L′2, H

def= �(NL′)2
,
(3.51)

γ
def= 1

4c12L
η−1.
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It is clear that the main Theorem 3.1 follows from the effective criterion once we
show exponential decay in L ∝ ε−1 of both terms on the right-hand side of (3.13).
We first examine the second term. It suffices to show that for large enough L

E[ρ̂(0,ω)] ≤ exp
(
−c12

2
L−1

)
,(3.52)

where c12 is defined in (3.21). Indeed, since we assumed N = L3 [see (3.5)], the
second term of (3.13) then becomes smaller than cL exp(− c12

4 L2), which will be
more than sufficient for the application of the effective criterion (2.53).

To prove (3.52), we use (3.22) and write E[ρ̂(0,ω)] as

E

[
sup
x∈V

L − x · e1 − Gω
S (b1(·,ω))(x)

L + x · e1 + Gω
S (b1(·,ω))(x)

, inf
x∈V

Gω
S (b1(·,ω))(x) ≥ c12

2
Lη

]
(3.53)

+ 5P

[
inf
x∈V

Gω
S (b1(·,ω))(x) <

c12

2
Lη

]
.

When L is larger than some c(η), the first term becomes smaller than 1 −
c12
2 Lη−1 ≤ exp(− c12

2 Lη−1). Hence (3.52) follows from the next proposition which
estimates the second term of (3.53).

PROPOSITION 3.10. (d ≥ 4) For any η ∈ (0,1), under the assumption (3.3)
and with (3.5), we have that

lim sup
L→∞

L−2/3η log P

[
inf
x∈V

Gω
S (b1(·,ω))(x) <

c12

2
Lη

]
< 0,(3.54)

where V and c12 are defined in (3.20) and (3.21).

Before proving the proposition, we show that (3.54) together with our choices
in (3.51) also yield exponential decay of the first term on the right-hand side
of (3.13), which then finishes the proof of the main theorem. Using (3.5), we find
that

δ−1 ≤ exp(−cL2+η) + c′L4−η exp{−c′′L2+η(L3 − c′′′L1−η)2},(3.55)

which tends to 0 as L goes to ∞, so that (3.12) holds when L is large. If in addition,
we know that [see (3.10) for the notation]

lim inf
L→∞ pL = 1,(3.56)

an easy calculation using (3.51) and M ≥ c13NL [see (3.7) for the definition]
shows that for L large enough, the first term on the right-hand side of (3.13) is less
than c exp(−cNL), and the effective criterion (2.53) is satisfied for large L.

We now prove that Proposition 3.10 implies (3.56). First we cover the sets
B̃j ,2 ≤ j ≤ d [see (3.11)] with a collection of disjoint cubes of side length R

2 .
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The cardinality of this collection is for large L at most Lν where ν only depends
on d . Translation invariance then yields

pL ≥ 1 − sup
2≤j≤d

c′Lν
P

[
inf

x∈[−R/2,R/2]d
�(x,ω) · e1 < γL

]
.(3.57)

In this expression we will in essence replace �(x,ω) · e1 with Gω
S (b1(·,ω))(x).

More precisely, we claim that for large L and for all ω ∈ �, x ∈ [−R
2 , R

2 ]d ,

|�(x,ω) · e1 − Gω
S (b1(·,ω))(x)| ≤ c20.(3.58)

Then with our choice of γ [see (3.51)] and with (3.57), Proposition 3.10 implies
(3.56) since [−R

2 , R
2 ]d ⊂ V . We now prove (3.58). The martingale argument lead-

ing to (3.23) also shows that for any x ∈ S, ω ∈ �

Gω
S (b1(·,ω))(x) = Ex,ω[XTS · e1] − x · e1.(3.59)

The support theorem (see [2]) applied to the rescaled diffusion 1
L
XL2t yields a

lower bound c > 0 (uniform in x ∈ R
d , ω ∈ �) for the probability under Px,ω that

X exits a cube of side length L centered at x through the “left or right.” Hence
with the strong Markov property, for all ω ∈ �, x ∈ R

d ,

Px,ω[S < T̃−L+x·e1 ∧ TL+x·e1] ≤ 2(d − 1)(1 − c)L,(3.60)

which becomes smaller than L−1 for large enough L. Since |XS · e1| ≤ L + |x ·
e1|, Px,ω-a.s. we obtain from (3.59) and (3.60) that for large enough L and for all
ω ∈ �,x ∈ [−R

2 , R
2 ]d , the left-hand side of (3.58) is less than

|Ex,ω[(XS − XTS ) · e1, S = T̃−L+x·e1 ∧ TL+x·e1]| + c.(3.61)

On the event {S = T̃−L+x·e1 ∧ TL+x·e1} ∩ {(XS · e1)(XTS · e1) > 0}, the trajectory
Px,ω-a.s. leaves the slab S and the box [−L,L] × [−h,h]d−1 + x “through the
same side.” Hence on this event, |(XS −XTS ) ·e1| ≤ R

2 ,Px,ω-a.s. for x ∈ [−R
2 , R

2 ]d .
It remains to show that for all ω ∈ �, x ∈ [−R

2 , R
2 ]d ,

|Ex,ω[(XS − XTS ) · e1,
(3.62)

S = T̃−L+x·e1 ∧ TL+x·e1, (XS · e1)(XTS · e1) < 0]| ≤ c.

When x · e1 = 0 the above quantity vanishes. We now consider the case where
0 < x · e1 ≤ R

2 . The remaining case is treated analogously. We find that for
0 < x · e1 ≤ R

2 ,

Px,ω[S = T̃−L+x·e1 ∧ TL+x·e1, (XS · e1)(XTS · e1) < 0]
(3.63)

≤ Px,ω[TL < T̃−L+x·e1 < TL+x·e1] + Px,ω[T̃−L+x·e1 < TL < T̃−L].
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We estimate the first term on the right-hand side. The strong Markov property
implies that for all ω ∈ �,0 < x · e1 ≤ R

2 ,

Px,ω[TL < T̃−L+x·e1 < TL+x·e1]
(3.64)

≤ Ex,ω

[
TL < T̃−L+x·e1,PXTL

,ω[T̃−L+R/2 < TL+R/2]].
The function e(x)

def= −e4εx·e1 + e4ε(L+R/2) satisfies Le(x) < 0 since |b(·, ·)| ≤ ε.
Hence e(Xt) is a supermartingale under Px,ω for any x ∈ R

d,ω ∈ �. Since e(x) is
nonnegative when x ·e1 ≤ L+ R

2 , Chebyshev’s inequality and the stopping theorem
yield for any y ∈ R

d with y · e1 = L,

Py,ω[T̃−L+R/2 < TL+R/2] ≤
Ey,ω[e(X

T̃−L+R/2∧TL+R/2
)]

e4ε(L+R/2) − e4ε(−L+R/2)

(3.65)

≤ 1 − e−4εR/2

1 − e−8εL
≤ cε ≤ c′L−1,

for large enough L. Inserting this bound into (3.64) and repeating the same type
of argument for the second term on the right-hand side of (3.63), we obtain that its
left-hand side is of order L−1. This finishes the proof of (3.62) since (XS −XTS ) ·e1

is of order L, Px,ω-a.s. for x ∈ [−R
2 , R

2 ]d . Thus (3.58) follows in view of (3.61).
As a consequence, Proposition 3.10 implies (3.56) and the main theorem follows
as we explained below (3.56).

PROOF OF PROPOSITION 3.10. The idea of the proof is to decompose the e1
projection of the drift b1(x,ω) into its expectation E[b1 · e1] = λ and a mean-zero
term b̃(x,ω). As a consequence, the Green operator applied to b1 splits into two
terms: a leading term Gω

Sλ which is larger than twice the bound imposed on the
Green operator in the event of interest in (3.54) by our choice of constants and
by (3.21); an error term Gω

S b̃ that we decompose using the perturbation equal-
ity (3.40) and which turns out to make no substantial contribution to the leading
term with high probability. Hence the event of interest in (3.54) is very unlikely.
We now give the details of the proof. Let us introduce the box

U
def= {

x ∈ R
d; |x · e1| ≤ L − 1, |x|⊥ ≤ 1

4(NL′)3 + L2}
(3.66)

which will be useful later in a discretization step where we need to restrict our-
selves to points located at a constant distance of ∂S. As mentioned above we define
[see (3.3)]

b̃
def= b1 − λ.(3.67)

[For the sake of simplicity we drop the ω dependence of b1, b̃ from the notation.]
Then the perturbation equality (3.40) applied to Gω

S b̃ together with (3.21) yields
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that for large enough L,

P

[
inf
x∈V

Gω
Sb1(x) <

c12

2
Lη

]

≤ P

[
inf
x∈V

GS b̃(x) − Gω
S (b · ∇)GS b̃(x) ≤ −c12

2
Lη,

(3.68)

sup
y∈U

|∇GS b̃(y)| ≤ L−1+η/3
]

+ P

[
sup
y∈U

|∇GS b̃(y)| > L−1+η/3
]
.

The proposition obviously follows once we prove the following three claims:
there exist ν′, ν′′ ≥ 1 depending only on d such that for large enough L,

on the set
{
ω ∈ �; sup

y∈U
|∇GS b̃(y)| ≤ L−1+η/3

}
,

(3.69)
sup
x∈V

|Gω
S (b · ∇)GS b̃(x)| ≤ cLη/3,

P

[
sup
y∈U

|∇GS b̃(y)| > L−1+η/3
]

≤ Lν′
exp(−c′L2/3η),(3.70)

P

[
inf
x∈V

GS b̃(x) ≤ −c12

4
Lη

]
≤ Lν′′

exp(−c′Lc21+2η)

(3.71)
where c21 = 1 when d = 4 and c21 = 2 when d ≥ 5.

We now show (3.69). In view of (3.34) and (3.5), we have that supx∈S |∇GS b̃(x)| ≤
c152εL ≤ c15/2. Therefore for any ω ∈ � satisfying supy∈U |∇GS b̃(y)| ≤
L−1+η/3 and any x ∈ V we find that

|Gω
S (b · ∇)GS b̃(x)| ≤ εL−1+η/3Gω

S1U(x)

+ ε
c15

2
Gω

S1{z∈S;dist(z,∂S)≤1}(x)(3.72)

+ ε
c15

2
Gω

S1{z∈S;|z|⊥≥1/4(NL′)3+L2}(x).

The first term on the right-hand side is smaller than 1
4L−2+η/3Ex,ω[TS] ≤ 1

2Lη/3

by (3.16).
To bound the second term on the right-hand side of (3.72), we define for

L ≥ 4(1 + R) the auxiliary set Ŝ = {x ∈ S;dist(x, ∂S) < 2}. With a martingale
argument similar to (3.18), (3.16), we obtain that for any ω ∈ � and x ∈ S,
Ex,ω[TŜ] ≤ (1 − 2ε)−1 ≤ 2. Then we introduce the successive times of entrance in
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{x ∈ R
d; |x · e1| ≥ L − 1} and departure from {x ∈ R

d; |x · e1| > L − 2}:
R1 = TL−1 ∧ T̃−L+1, D1 = T{x∈Rd ;|x·e1|>L−2} ◦ θR1 + R1,

and by induction for k ≥ 2,(3.73)

Rk = R1 ◦ θDk−1 + Dk−1, Dk = T{x∈Rd ;|x·e1|>L−2} ◦ θRk
+ Rk.

With the help of these definitions we now express the Green operator appearing in
the second term on the right-hand side of (3.72): for any ω ∈ �,x ∈ V , we have

Gω
S (x)1{z∈S;dist(z,∂S)≤1}

= ∑
k≥1

Ex,ω

[∫ Dk∧TS

Rk

1{z∈S;dist(z,∂S)≤1}(Xs) ds,Rk < TS

]
(3.74)

≤ ∑
k≥1

Ex,ω

[
EXRk

,ω[TŜ],Rk < TS
]

≤ 2
∑
k≥1

Px,ω[Rk < TS].

The sum is bounded by a constant since the strong Markov property and the sup-
port theorem imply that for k ≥ 1, x ∈ V , Px,ω[Rk < TS] ≤ (1 − c)k−1. Hence the
second term on the right-hand side of (3.72) is less than c′L−1.

We now examine the last term on the right-hand side of (3.72). We call Ũ the
set {z ∈ S; |z|⊥ ≥ 1/4(NL′)3 + L2} appearing in that term. For any ω ∈ �,x ∈ V ,
the Markov property yields

Gω
S1

Ũ
(x) = Ex,ω

[
EXH

Ũ
,ω

[∫ TS

0
1
Ũ

(Xs) ds

]
,H

Ũ
< TS

]
(3.75)

≤ sup
z∈S

Ez,ω[TS]Px,ω[H
Ũ

< TS].

Using (3.16) and a scaling argument similar to the one leading to (3.60), we find
that the latter expression is smaller than cL2e−c′L. As a consequence, the last term
on the right-hand side of (3.72) is smaller than L−1 for large enough L. This
proves (3.69).

Next we turn to the proof of (3.70). In order to deal with the supremum
over the set U, we cover U with disjoint cubes of side-length ε3 and centers
yi, i ∈ I, where |I| ≤ cL12d−8. If Q is such a cube with center yi , then ac-

cording to Lemma 3.9, −1
2GS b̃(y) is twice continuously differentiable on Q′ def=

yi + (−1
2 , 1

2)d ⊂ S and satisfies the equation �u = b̃ on Q′. Therefore [5], (3.20),
page 41, applies and we find that for any y ∈ Q

|∇GS b̃(y) − ∇GS b̃(yi)|
(3.76)

≤ c|y − yi |
(

sup
z∈Q′

|GS b̃(z)| + sup
z∈Q′

|b̃(z)|
)(∣∣∣∣log

(
c′

|y − yi |
)∣∣∣∣ + 1

)
.
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Since the bounds in (3.16) also hold for Brownian motion, we have that
supz∈Q′ |GS b̃(z)| ≤ 2L22ε ≤ L. Thus the right-hand side of (3.76) is less than
cL−2+η for large enough L. With this discretization step we obtain for large
enough L:

P

[
sup
y∈U

|∇GS b̃(y)| > L−1+η/3
]

(3.77)
≤ ∑

i∈I

P
[|∇GS b̃(yi)| > 1

2L−1+η/3]
.

To bound the terms of the sum on the right-hand side of (3.77), we separately
estimate P[∂jGS b̃(yi) > 1

2d
L−1+η/3] and P[∂jGS b̃(yi) < − 1

2d
L−1+η/3] for j =

1, . . . , d with the help of an Azuma-type inequality. Therefore we cover the slab S
with disjoint cubes of side-length R and assign these cubes to 2d disjoint families
of cubes that are spaced by a distance R. We denote with Qm

k = xm,k + [−R
2 , R

2 )d ,
1 ≤ m ≤ 2d , k ≥ 1, the cubes associated to the mth family and define for i ∈ I,
1 ≤ j ≤ d , ω ∈ �,

Ym
i,k(ω) =

∫
Qm

k ∩S
∂jg(yi, z)b̃(z,ω)dz, k ≥ 1.(3.78)

For fixed m ∈ {1, . . . ,2d} and i ∈ I,1 ≤ j ≤ d , these random variables are
P-independent (as k varies) and have mean 0 by Fubini’s theorem. Moreover, it
follows from (3.49) that for all ω ∈ �; m, i, j, k ≥ 1,

|Ym
i,k(ω)| ≤ cL−1(|xm,k − yi |1−d ∧ 1 + L1−d) exp(−c17|xm,k − yi |⊥/L)

(3.79)
def= γm,k.

Indeed, either |yi − xm,k| ≤ √
dR and using polar coordinates we obtain that

|Ym
i,k| ≤ cε

∫
B2

√
dR

(yi)
(r1−d + L1−d)rd−1 dr ≤ c′L−1(1 + L1−d), or |yi − xm,k| ≥√

dR and we can bound the integral by the supremum of the integrand times the
constant volume of Qm

k . Using a slight variation of the proof of Azuma’s inequal-
ity, we find for 1 ≤ j ≤ d , i ∈ I,

P

[
∂jGS b̃(yi) >

1

2d
L−1+η/3

]
≤

2d∑
m=1

P

[∑
k≥1

Ym
k (ω) >

1

d2d+1 L−1+η/3

]

≤
2d∑

m=1

exp
(
−d−22−2(d+1)L−2+2/3η∑

k≥1(γm,k)2

)
(3.80)

≤ 2d exp(−cL2/3η),
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since the following easy computation and (3.79) show that
∑

k≥1(γm,k)
2 is of order

L−2 for all m ≥ 1:

L2
∑
k≥1

(γm,k)
2 ≤ c

∑
|xm,k−yi |≤4L

(|xm,k − yi |−d+1 ∧ 1 + L−d+1)2

+ ∑
|xm,k−yi |⊥≥2L

L−2d+2 exp(−c′|xm,k − yi |⊥/L)

≤ c

∫ 4L

1
(r−2d+2 + L−2d+2)rd−1 dr(3.81)

+ L−2d+3
∫ ∞
L

e−c′r/Lrd−2 dr

≤ c + L−d+2
∫ ∞

1
e−c′uudu ≤ c′′.

The same bound as in (3.80) holds for the terms P[∂jGS b̃(yi) < − 1
2d

L−1+η/3],
1 ≤ j ≤ d . Collecting the estimates (3.77), (3.80) and recalling that the cardinality
of I is polynomial in L, we have proved the claim (3.70).

Finally we come to (3.71). The argument is similar to the previous one. First
we handle the infimum over V by covering V with disjoint cubes of the form
xi + [−R

2 , R
2 ]d , for some adequate points xi, i ∈ I′ where xi · e1 = 0 and |I′| ≤

cL12(d−1). Then it follows from (3.34) that for all ω ∈ � and |x − xi | ≤ R
2 ,

|GS b̃(x) − GS b̃(xi)| ≤ c152εL
R

2

√
d ≤ c.(3.82)

Hence the discretization step implies that the left-hand side of (3.71) is less than
∑
xi

P

[
GS b̃(xi) ≤ −c12

8
Lη

]
.(3.83)

Then we use the same 2d R-disjoint families of boxes Qm
k as before to cover the

slab S and we define for i ∈ I′,m ≥ 1 and all ω ∈ �,

Ỹ m
i,k(ω) =

∫
Qm

k ∩S
g(xi, z)b̃(z,ω)dz, k ≥ 1.(3.84)

Again we observe that for fixed m ∈ {1, . . . ,2d} and i ∈ I′, these random variables
are P-independent and have mean 0. Moreover, it follows from (3.48) that for all
ω ∈ �;m, i, k ≥ 1

|Ỹ m
i,k(ω)| ≤ cL−1(|xm,k − xi |2−d ∧ 1) exp(−c17|xm,k − xi |⊥/L)

def= γ̃m,k.(3.85)

A computation as in (3.81) shows that for large enough L and for all 1 ≤ m ≤ 2d :∑
k≥1

(γ̃m,k)
2 ≤ L−2

{
c logL, d = 4,
c, d ≥ 5.

(3.86)
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Then the same Azuma-type argument as before yields for large enough L that each
term in (3.83) is less than

exp(−cL2+2η/ log(L)) when d = 4, respectively
(3.87)

exp(−cL2+2η) when d ≥ 5.

This completes the proof of (3.71) and thus of Proposition 3.10. �

APPENDIX

A.1. Proof of Lemma 2.3. We now give the proof of Lemma 2.3. In order
to bound ρ1(ω) on G [see (2.16)], we first construct a function which—after ap-
propriate normalization—dominates Px,ω[T̃−L1+R+1 < T̃ ∧ TL1+1]. For the con-
struction, we divide the box B1 into slabs of width L0 and consider an expression
inspired from the solution of a discrete one-dimensional Dirichlet problem for the
exit probability of a Markov chain whose states correspond in essence to the slabs
Si, i ∈ Z.

Indeed, we recall (2.13) and for integers a < b, we consider the products
∏

a,b =∏b
j=a+1 ρ̂(j,ω)−1 and set

∏
a,a = 1. Then we define the function f on {−n0 +

1,−n0 + 2, . . . , n0 + 2} × � via

f (n0 + 2,ω) = 0, f (n0 + 1,ω) = 1,
(A.1)

f (i,ω) = ∑
i≤m≤n0+1

∏
m,n0+1

for i ≤ n0.

For simplicity we drop the ω-dependence from the notation. We now show that for
ω ∈ �,

P0,ω[T̃−L1+R+1 < T̃ ∧ TL1+1] ≤ f (0)

f (1 − n0)
.(A.2)

Let us introduce the (FVm)m≥0 -stopping time

τ = inf{m ≥ 0 :XVm ∈ Sn0+2 ∪ S1−n0}.(A.3)

Observe that P0,ω-a.s. on the event which appears in (A.2), XVτ ∈ S1−n0 and
Vτ < T̃ , and thus for ω ∈ �,

P0,ω[T̃−L1+R+1 < T̃ ∧ TL1+1] ≤ E0,ω[f (I (XVτ )),Vτ < T̃ ]
f (1 − n0)

.(A.4)

As we will see now, the numerator on the right-hand side is less than f (0): for
ω ∈ �, m ≥ 0,

E0,ω

[
f

(
I
(
XV(m+1)∧τ

))
,V(m+1)∧τ ≤ T̃

]
≤ E0,ω[f (I (XVm∧τ )),Vm∧τ ≤ T̃ , τ ≤ m](A.5)

+ E0,ω[f (I (XVm+1)),Vm ≤ T̃ , τ > m]
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and by the strong Markov property, the second term on the right-hand side equals

E0,ω

[
Vm ≤ T̃ , τ > m,EXVm,ω[f (I (XV1))]

]
.(A.6)

However on {Vm ≤ T̃ , τ > m}, P0,ω-a.s.:

EXVm,ω[f (I (XV1))]
= f (I (XVm)) + p̂(XVm)

[
f

(
I (XVm) + 1

) − f (I (XVm))
]

+ q̂(XVm)
[
f

(
I (XVm) − 1

) − f (I (XVm))
]

(A.7)

(A.1)= f (I (XVm)) + ∏
I (XVm),n0+1

[−p̂(XVm) + q̂(XVm)ρ(I (XVm))−1]
.

Note that P0,ω-a.s., XVm ∈ SI (XVm), for m ≥ 0. Hence the expression inside the
square brackets is nonpositive; see (2.13). As a result, we obtain that the left-hand
side of (A.5) is smaller than or equal to E0,ω[f (I (XVm∧τ )),Vm∧τ ≤ T̃ ]. The latter
expression is hence nonincreasing with m. Since τ is P0,ω-a.s. finite, it follows
from Fatou’s inequality that for ω ∈ �,

E0,ω[f (I (XVτ )),Vτ ≤ T̃ ] ≤ f (0).(A.8)

Together with (A.4), this implies (A.2).
We now derive a bound on ρ1. Let us define for ω ∈ �,

A = P0,ω[T̃−L1+R+1 < T̃ ∧ TL1+1] + P0,ω[T̃ < T̃−L1+R+1 ∧ TL1+1].(A.9)

Observe that q(0,ω) ≤ A and since q
1−q

is nondecreasing in q , we obtain for ω ∈ �

that ρ1(ω) ≤ A
(1−A)+ . Using (A.2) and (2.16), it follows for ω ∈ G that

ρ1(ω) ≤ f (0) + f (1 − n0)κ
9L1

(f (1 − n0) − f (0) − f (1 − n0)κ9L1)+
.(A.10)

Let us for the time being assume that there is a c1 > R + 2 such that for L0 ≥ c1
and ω ∈ �,

f (0) + f (1 − n0)κ
9L1 ≤ 2f (0),(A.11)

f (1 − n0) − f (0) − f (1 − n0)κ
9L1 ≥ ∏

−n0+1,n0+1

.(A.12)

Then in view of (A.10) and the definition of f (0), for L0 ≥ c1, ω ∈ G,

ρ1(ω) ≤ 2
∑

0≤m≤n0+1

∏
−n0+1<j≤m

ρ̂(j,ω).(A.13)

Observe that by the definition (2.13), {ρ̂(j,ω), j even} and {ρ̂(j,ω), j odd} are
two collections of independent random variables, as ρ(j,ω) and ρ(j + 2,ω) de-
pend on regions separated by a distance R. With the help of Cauchy–Schwarz’s
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inequality and (u + v)a ≤ ua + va , for u, v ≥ 0 and a ∈ (0,1], we find that for
L0 ≥ c1,

E[ρa
1 ,G] ≤ 2

∑
0≤m≤n0+1

∏
−n0+1<j≤m

E[ρ̂(j,ω)2a]1/2.(A.14)

From Lemma 2.1, we have that for all ω ∈ �, ρ1(ω) ≤ κ−L1−1. This inequality
and (A.14) immediately imply the claim (2.15).

Let us now show (A.11). Using again Lemma 2.1, we have for all ω ∈ �, −n0 +
1 ≤ j ≤ n0 + 1:

κL0+1 ≤ ρ̂(j,ω) ≤ κ−(L0+1).(A.15)

In view of (A.1) and since L0 + 1 ≤ 2L0, we find that

f (1 − n0)κ
9L1 ≤ (2n0 + 1)κ−(L0+1)2n0κ9L1 ≤ (2n0 + 1)κ5n0L0 .

If L0 ≥ c1 ≥ R + 2 large enough, it follows that for all ω ∈ � and all n0 ≥ 3,

f (1 − n0)κ
9L1 ≤ κ4n0L0 < 1.(A.16)

Clearly f (0) ≥ 1 and we obtain (A.11). To see (A.12), we note that

f (1 − n0) − f (0) ≥ ∏
−n0+1,n0+1

+ ∏
−1,n0+1

(A.17)
(A.15)≥ ∏

−n0+1,n0+1

+κ(L0+1)(n0+2).

Since (L0 + 1)(n0 + 2) ≤ 4L0n0 and because of (A.16), the claim (A.12) follows,
provided that L0 ≥ c1. This finishes the proof of Lemma 2.3.

A.2. Proof of Lemma 3.9. We now prove Lemma 3.9. We start with the proof
of (3.49). A similar and easier argument also shows (3.48). Since for d ≥ 4, we
have

|∂igd(x, y)| ≤ c|x − y|1−d and |∂i ∂jgd(x, y)| ≤ c′|x − y|−d,(A.18)

the sum of the first and second derivatives of the terms with k ≥ 2 appearing
in (3.30) converges uniformly for all x, y ∈ S. Hence g(x, y) is twice continuously
differentiable for x, y ∈ S, x �= y, and interchanging differentiation and summation
yields for all x, y ∈ S

|∇g(x, y)| ≤ 3|∇gd(x, y)| + c(2L)−d+1 and(A.19)

|∂i ∂jg(x, y)| ≤ 3|∂i ∂jgd(x, y)| + c′(2L)−d, as well as(A.20)

�g(x, y) = 0 for x �= y.(A.21)

For any x ∈ S, we consider a small vector h with x +h ∈ S and an point y ∈ S with
|x − y|⊥ ≥ L. Moreover, we denote with W a d-dimensional Brownian motion
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starting at y under some measure P and with T the stopping time inf{t ≥ 0; |Wt −
y|⊥ ≥ 1

2 |x − y|}. Since g(x, y) is symmetric in x and y, it is also harmonic in y

and thus g(x,Wt∧T ∧TS ) is a bounded martingale under P . The stopping theorem
thus implies that

1

|h| |g(x + h,y) − g(x, y)|
(A.22)

= 1

|h| |EP [g(x + h,WT ∧TS ) − g(x,WT ∧TS )]|.
Direct inspection of g(x, y) shows that it vanishes on the boundary of S. Hence
using the mean value theorem, the latter expression is smaller than

sup{|∇g(x′, y′)|;x′ ∈ B(x,h), |y′ − y|⊥ = 1
2 |x − y|}P [T < TS].(A.23)

Because of (A.19) the first factor above is less than c|x − y|1−d + c′L1−d and
a scaling argument similar to the one leading to (3.60) yields that P [T < TS] ≤
exp(−c

|x−y|⊥
L

). Letting h tend to 0 in (A.22), (A.23) and treating the cases |x −
y| < L and |x − y| > L separately, we obtain the claimed result (3.49). The same
martingale argument also leads to (3.48).

We now prove (3.50). For any x0 ∈ S, we define the auxiliary set U = {x ∈ S;
|x −x0|⊥ < 1}. From (3.31) we can write the Green operator for a bounded Hölder
continuous function f as follows: we define g̃ = g−gd and for any x ∈ U , we find

GSf (x) =
∫
U

gd(x, y)f (y) dy +
∫
U

g̃(x, y)f (y) dy

(A.24)
+

∫
S\U

g(x, y)f (y) dy.

According to [5], Lemma 4.2, the first term on the right-hand side is twice con-
tinuously differentiable on U , and its Laplacian equals −2f (x). With the same
argument as below (A.18), we see that g̃(·, y) is harmonic on U for any y ∈ S.
Hence Fubini’s theorem together with the mean value theorem (see [5], Theo-
rem 2.7) yield that the second term on the right-hand side of (A.24) is harmonic
on U . The same is valid for the last term, since from (A.21), g(·, y) is harmonic
on U for any y ∈ S \ U . As x0 ∈ S is arbitrary, we obtain (3.50). This finishes the
proof of Lemma 3.9.
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