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LIMITING VELOCITY OF HIGH-DIMENSIONAL RANDOM WALK
IN RANDOM ENVIRONMENT

BY NOAM BERGER
University of California, Los Angeles

We show that random walk in uniformly elliptic i.i.d. environment in di-
mension > 5 has at most one non zero limiting velocity. In particular this
proves a law of large numbers in the distributionally symmetric case and es-
tablishes connections between different conjectures.

1. Introduction. Letd > 1. A random walk in random environment (RWRE)
on Z¢ is defined as follows: Let M? denote the space of all probability measures
on {£e;}%_, and let Q@ = (ML An environment is a point » € Q. Let P be a
probability measure on 2. For the purposes of this paper, we assume that P is an
1.1.d. measure, that is,

p = Q%

for some distribution Q on M¢ and that P is uniformly elliptic, that is, there exists
¢ > 0 such that (s.t.) for every e € {iei}flzl,

O({d:d(e) <e})=0.

For an environment w € €2, the random walk on w is a time-homogenous Markov
chain with transition kernel

Py(Xpr1=z+elXpn=2)=w(z,e).
The quenched law P} is defined to be the law on (ZHY induced by the kernel P,

and P:(Xo=2z)=1. Welet P= P ® P0 be the joint law of the environment and
the walk, and the annealed law is defined to be its marginal

_ 0
P= /Q PYdP(w).

We consider the limiting velocity

. Xn
v= lim —.
n—-o0 n
Based on the work of Zerner [5] and Sznitman and Zerner [3], we know that v
exists P-a.s. Furthermore, there is a set A of size at most 2 such that almost surely

veA.
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Zerner and Merkl [6] proved that in dimension 2 a 0-1 law holds and therefore
the set A is of size 1, that is, a law of large numbers holds, in dimension 2 (see also
[2] for a continuous version).

The main result of this paper is the following:

THEOREM 1.1. Ford =5, there is at most one nonzero limiting velocity; that
is, if A = {v1, va} with v #£ vy and v # 0, then vy =0.

Theorem 1.1 has the following immediate corollary:

COROLLARY 1.2. Ford =35, if Q is distributionally symmetric, then the lim-
iting velocity is an almost sure constant.

REMARK ABOUT CONSTANTS. As is common in most of the RWRE litera-
ture, the value of the constant C may vary from line to line. In addition, C may
implicitly depend on variables that are kept constant throughout the entire calcula-
tion, in particular the dimension d or the distribution Q.

2. Backward path—Construction. In this section we describe the backward
path, the main object studied in this paper. The backward path is, roughly speaking,
a path of the RWRE from —oo through the origin to +o00. Below we define it. In
Section 3 we prove some basic facts about it. Note that the backward path appears,
though implicitly, in [1] and [4].

Throughout the paper we are assuming, for contradiction, that two different
nonzero limiting velocities v; and v; exist. Assume without loss of generality that
(£,v1) > 0 for £ = e;. We let Ay be the event that the walk is transient in the
direction £, that is,

Ay = { lim (X, €) = oo}.
n—>oo

By our assumptions, Q is a distribution on M s.t. both P(Ay) and P(A_y) are
positive.
We say that ¢ is a regeneration time in the direction £ if:

1. (X;s,8) < (X;,£) forevery s < t, and
2. (Xs,8) > (X;, L) forevery s > t.

REMARK. Note that in the special case of £ being a coordinate vector this
simple definition coincides with the more complex definition of a regeneration
time from [3].

Forevery L > 0, let X1 ={z]0 < (z,¢) < L}.

Let 71 be the first regeneration time (if one exists), let #, be the second (if exists),
and so on. If 7,4 exists, let L, = (X;,,, £) — (X;,, £), let

Wn:JCLn—>=Md
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be
W) =w(z+ Xy,),

let up, =t,41 —t, and let K,,: [0, u,] — Z¢ be K, (t) = X;, 4+, — X,,. We let S,,
the nth regeneration slab, be the ensemble S, = {L,, W, u,, K,}.

In [3] Sznitman and Zerner proved that on the event A, almost surely there are
infinitely many regeneration times, and, furthermore, that the regeneration slabs
{S;}72, form an i.i.d. process. Let A = A; be the distribution of S| conditioned
on Ay.

We now construct an environment and a doubly infinite path in that environ-
ment. Let {S,},ez be i.i.d. regeneration slabs sampled according to A.

We now want to glue the regeneration slabs to each other. Let Yy = 0, and de-
fine, inductively, Y41 =Y, + K,,(uy) forn >0 and ¥,,—1 =Y, — Kn—1(un—1)
for n < 0. Almost surely Z¢ is the disjoint union of the sets Y, + X L, For every
z € Z% let n(z) be the unique n such that z € ¥, + KX, . Let w be the environment

w(2) = Wi (Z - Yn(Z))-
Let T € 79 be

oo
T: U (Yn+Kn[Ovul’l])
n=—oo
Let w be the joint distribution of w and 7. T is called the backward path in direc-
tion £. We let i be the marginal distribution of w in .

3. Backward path—Basic properties. In this section we prove two simple
properties of the measure .

PROPOSITION 3.1. There exists a coupling Pon 2 xQx {0, I}Zd with the
distribution of w, @, T satisfying:

1. w is distributed according to P.

2. (@, T) is distributed according to .

3. P-almost surely, w(z) = &(z) for every z € Z4\ T .
4. wand T are independent.

PROPOSITION 3.2. Let & be an environment sampled according to [i, and let
{X,} be a random walk on that environment. Then almost surely {X,} is transient
in the direction (.

Both Proposition 3.1 and Proposition 3.2 follow from the fact that the fi-en-
vironment around zero is similar to the P-environment around the location of the
walker at a large regeneration time. More precisely, let w, {X,} be sampled ac-
cording to P conditioned on the event V,~o({X,, £) > 0) N Ay, which is an event



LIMITING VELOCITIES FOR RWRE 731

of positive probability. Let #1, t2, ... be the regeneration times. (Note that we con-
ditioned on transience in the £ direction, and therefore infinitely many regenera-
tion times exist.) Let w; be the environment defined by w; (z) = w(z + X;;) and let
7; C 74 be defined as T; = (X, — X,,|t > 0}.

For X € Z4 let #(X) be the half-space

H(X)={z](z, ) = (X, O)}.

LEMMA 3.3. For every i, the distribution of
6] {=Xus TiOH(—X1); oilge-x,)}
is the same as the distribution of
2 Yois TOHT-); dlsey -

PROOF. Let P be P conditioned on the event Vu=0({Xy, £) > 0)N Ag. By The-
orem 1.4 of [3], the distribution of

{ols0), {X:1t > 0}}
according to P is the same as the distribution of
{®1 360y, T N H(0)}
according to . The lemma now follows since the sequence {Sy },cz is i.i.d.
O

We can now prove Propositions 3.1 and 3.2.

PROOF OF PROPOSITION 3.2. Let B be the event that the walk is transient in
the direction of £ and never exits the half-space #£(0), that is,

B=A;N{¥:X, € #(0)}.
For a configuration  and z € Z¢, let
R, (z) = PS(B).
Note that R, (z) depends only on | s/0), so by the Markov property
PO(BIX1, X2, X)) = Ro(X0) - 1x,... X, e50)-

In addition, B € o(X1, X», ...) and therefore almost surely

lim R,(X,) > 15.
1—00

In particular, P-almost surely,

lim R,(X;) =1,
t—00
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and for the subsequence of regeneration times we get that P-almost surely
3) Tim Ry (X;,) =1,
and using the bounded convergence theorem, for
Ry, =Ep(Rw(X4,))
we get

“4) lim R, =1.

n—o0

Let {®, T, {Y,}} be sampled according to u and let X, be a random walk on
the environment &, which is independent of {7, {¥,}} conditioned on @. Let By
be the event

lim (X,, ) =co and VY, (X, €) > (Y_n, £).

n—-oo
Then by Lemma 3.3
5) (1t ® P3)(By) = Ra.

Remembering that

o0
AE = U By
n=1
we get from (5) that
0 .
(1 ® PO(A) = lim R, =1,

as desired. U

PROOF OF PROPOSITION 3.1.  We define the coupling on every regeneration
slab. Let A be the distribution on § = {L, W, W, u, K} so that {L, W,u, K} is
distributed according to A and W is defined as follows:

W(z), ifz¢ K0, u)),

W(z) ={ .
V(z), ifze K([0,u]),

where i : 74 > M is sampled according to P, independently of {L, W, u,K}.

CLAIM 3.4. Conditioned on L, the environment W is i.i.d. with marginal dis-
tribution Q, and independent of u and K .

We now sample the environments and the path as we did in Section 2: Let
{5’”};’,‘;_00 be i.i.d. regeneration slabs sampled according to A. Let Yy = 0 and
define, inductively, Y,+1 =Y, + K,,(u,) forn >0and ¥,,_1 =Y, — Kn—1(un—1)
for n < 0. Almost surely Z¢ is the disjoint union of the sets ¥, + X L, For every
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z€Z4 let n(z) be the unique n such that z € ¥,, + K,. We let o be the environ-
ment

w(2) = Wa) (2 = Yar),

we let @ be the environment

@(2) = W(r) (Z - Yn(z))’
and take 7 C Z< to be

o0

T = U (Yn + K,[0, Mn])

n=—0oo

Clearly, {&, 7} is distributed according to y and w and & agree on Z% — 7.
Therefore all we need to show is that w is distributed according to P and is inde-
pendent of the path 7. This follows from Claim 3.4: conditioned on {u,}7> _ .,
W is P-distributed and independent of the path 7. Therefore it is P-distributed

and independent of the path 7 as we integrate over {u,},>_ .. U

PROOF OF CLAIM 3.4. It is sufficient to show that conditioned on L, for every
finite set J = {x; :i = 1,...,k} with J C K, the distribution of {W(x;)}y;es is
i.i.d. with marginal Q and independent of u# and K. This will follow if we prove
that for every finite set J = {x;|i =1, ..., k} with J/ C K, conditioned on L, on
K and u and on the event J N K [0, u] = &, the distribution of {W(.Xi)}xiej is i.i.d.
with marginal Q.

To this end, fix J and note that for every finite set U that is disjoint of J,
the event {K [0, u] = U} is independent of {W(Xi)}x,»e 7. Therefore, conditioned
on the event {K[0,u] = U} (and thus implicitly conditioning on K and u), the
distribution of {W(x,-)} x;es 18 1.i.d. with marginal Q. By integrating with respect
to U we get that {W(x;)}y,es is Q-distributed, and by the fact that it was Q-dis-
tributed conditioned on K and u we get the independence. [l

4. Intersection of paths. In this section we will see some interaction between
the backward path and the path of an independent random walk.

Let O be a uniformly elliptic distribution so that 0 < P(A;) < 1 and let
(w,w, T) be as in Proposition 3.1. Let zg be an arbitrary point in 74, and let
{X;}72, be arandom walk on the configuration w starting at z¢, such that:

1. {X;} is conditioned on the (positive probability) event that lim;_, oo (X;, £) =
—00.
2. Conditioned on w, {X;}?2, is independent of @ and T .

The purpose of this section is the following easy lemma:

LEMMA 4.1. Under the conditions stated above, almost surely there exist in-
finitely many values of i such that X; € T .
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We will prove that almost surely there exists one such value of i. The proof
that infinitely many exist is very similar but requires a little more care, and for the
purpose of proving the main theorem of this paper one such i is sufficient.

PROOF. We need to show that
(6) (P® P;,O)<_1im (X;, £) = —0co and V; (X; ¢ T)) =0.
1—> 00

In order to establish (6), let {¥;}7°, be a random walk on the environment o,
coupled to the rest of the probability space as follows:
Let

ip=1inf{i 0w (X;) #o0(X;)} > inf{i : X; € T}.

Now, for i < ig, we define Y; = X;. For i > ig, Y; is determined based on Y;_;
according to w(Y;_1) independently of X;, w and 7. Now, note that

VilXi¢T) — ip=00 — Vi(Xi=Y)).

Therefore,

(lim (Xi,£) = —o0 and V; (X; ¢T)) = lim (¥;,£) = —o0.
i—00

i—00

The proof is concluded if we remember that by Proposition 3.2,
p 20y( 14 Py — _
(P® P )<i1_1>n;o(Yl,£)_—oo)_0. 0
5. Proof of main theorem.

LEMMA 5.1. Let d > 5, and assume that the set A of speeds contains two
nonzero elements. Then there exists zq such that

(P® Pé")(hm (X;, 0) =—o00 and ¥;(X; ¢ 7)) > 0.
1—> 00

PROOF. Let
T={X;:i=1,2,...}.
We use the following claim whose proof is deferred:
CLAIM 5.2. Let B be the event that (X;, £) < (X0, L) for all i > 0. Note that

B has positive probability. Also, let T' = T N {z: (z, £) <0}. Then, if A contains
two distinct nonzero elements then

(N Z P(zeT? <

ze74
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and

() Z POz € T|B)?* < oo.

ze74

By Proposition 3.1, 7 and 7 are independent random sets and therefore so are
7 and T | B. Therefore,

(EQEN(T'NTIB)= Y P(zeTP(zeT|B)
ze74
=Y PzeT)Pz—2€TIB),
ze74

with the last equality following from translation invariance of the annealed mea-
sure. Let

M=) PizeT"?
zezZ4
and
M= P(zeT|B)
zez74

let A be so small that AM + AM + A2 < 1, and let R be so large that

> PzeT)<r and Y PzeTIB)?<i.

lzlI>R llzll>R

Taking zo such that ||zg|| > 2R and (zg, £) < 0 we get, using Cauchy—Schwarz,
that

(E® Eé)‘))(|‘T’ NT||B)
=) P(ze TP (z — 20 € T|B)
ze74
= Z P(ze TPz — 20 € T|B)
2€B(0,R)
+ Z P(ze TP’z —z20€ T|B)
z€B(z0,R)
+ Z P(ze TP’z —z20€ T|B)
z€Z4—B(0,R)—B(z0,R)

<AM +AM + 2% < 1.
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Therefore P ® P(T’ ﬂj‘ = @|B) > 0. P2°(B) > 0 and by the choice of zp,
conditioned on B, 7' N T = & if and only if T N T = &. Therefore T N T is
empty with positive probability. [J

PROOF OF CLAIM 5.2.  We will prove (7). Equation (8) follows from the exact
same reasoning. First we get an upper bound on u(Y_, = z). The sequence {O,, =
Y_, —Y_,_1} is an i.i.d. sequence. Furthermore, due to ellipticity there exist d
linearly independent vectors vy, ..., vz and € > O such that forevery k=1, ...,d,
and every § € {+1, —1},

u(0O1 =2v1 +8v) > e.

(v is, approximately, in the direction of £, while the others are, approximately,
orthogonal to £.)
Let

A={2vi +d8w |k=1,...,d; s e{+1,—1}}
and let p = (01 € A). Fix n, and let E™ be the event that at least 7, = [%pn'l

of the O;’s,i =1,...,n, are in A. For every subset H of {1, ..., n} of size w,, let

E gl) be the event that the elements of H are the smallest 7r,, numbers i such that
O; € A. Then from heat kernel estimates for bounded i.i.d. random walks in Z¢
we get that for every z € Z¢,

M(Z 0;=7

ieH

Conditioned on E 1(511)’

Z 0,‘ and Z 0,‘

ieH i¢H
are independent, so remembering that Y_, = Z:’: 1 Oi, we get that
w(Y—p = z|E1(L'I1)) <Cn™2,
The events
(E|H C[1,n])

are mutually exclusive and

,u(U Eg,”) >1—e ",
H

Therefore, for every n and z € 74,

) n(Y_p=z2) <Cn92,
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Now, for every n and z € Z%, let Q(z,n) be the probability that z is visited
during the nth regeneration, that is, between Y;_, and Y_,,. The nth regeneration
is independent of Y|_,, so

Q(z,n|Y1—p) = Q(z — Y1-n, 0).
The fact that the speed of the walk in direction ¢ is positive yields
(10) Y 0(z.0) <E(n—11) < 0.
z€74
From (9) we get that
Do luYo =) <cn 2,
ze74

Combined with (10) and remembering that Young’s inequality for convolution says
that | f x gll2 < || fll2llgll1 for all f and g (and noting that the next regeneration
slab is independent of Y1_,, and thus the result is a convolution), we get

Y QG mP <cn™?
ze74
or

(1D > 110G mR<cn,
zezd

Noting that

wizeTh=>Y 0. n),

n=1

(11) and the triangle inequality tell us that

Y lueTHP=Cd n 44

ze74 n=1

Soford >5
Y luzeTHP <o
ze74

as desired. O

PROOF OF THEOREM 1.1. The theorem follows immediately from Lem-
ma4.1 and Lemma 5.1. 0
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