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LIMITING VELOCITY OF HIGH-DIMENSIONAL RANDOM WALK
IN RANDOM ENVIRONMENT

BY NOAM BERGER

University of California, Los Angeles

We show that random walk in uniformly elliptic i.i.d. environment in di-
mension ≥ 5 has at most one non zero limiting velocity. In particular this
proves a law of large numbers in the distributionally symmetric case and es-
tablishes connections between different conjectures.

1. Introduction. Let d ≥ 1. A random walk in random environment (RWRE)
on Z

d is defined as follows: Let Md denote the space of all probability measures
on {±ei}di=1 and let � = (Md)Z

d
. An environment is a point ω ∈ �. Let P be a

probability measure on �. For the purposes of this paper, we assume that P is an
i.i.d. measure, that is,

P = QZ
d

for some distribution Q on Md and that P is uniformly elliptic, that is, there exists
ε > 0 such that (s.t.) for every e ∈ {±ei}di=1,

Q
({d :d(e) < ε}) = 0.

For an environment ω ∈ �, the random walk on ω is a time-homogenous Markov
chain with transition kernel

Pω(Xn+1 = z + e|Xn = z) = ω(z, e).

The quenched law P z
ω is defined to be the law on (Zd)N induced by the kernel Pω

and P z
ω(X0 = z) = 1. We let P = P ⊗ P 0

ω be the joint law of the environment and
the walk, and the annealed law is defined to be its marginal

P =
∫
�

P 0
ω dP (ω).

We consider the limiting velocity

v = lim
n→∞

Xn

n
.

Based on the work of Zerner [5] and Sznitman and Zerner [3], we know that v

exists P-a.s. Furthermore, there is a set A of size at most 2 such that almost surely
v ∈ A.
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Zerner and Merkl [6] proved that in dimension 2 a 0–1 law holds and therefore
the set A is of size 1, that is, a law of large numbers holds, in dimension 2 (see also
[2] for a continuous version).

The main result of this paper is the following:

THEOREM 1.1. For d ≥ 5, there is at most one nonzero limiting velocity; that
is, if A = {v1, v2} with v1 �= v2 and v1 �= 0, then v2 = 0.

Theorem 1.1 has the following immediate corollary:

COROLLARY 1.2. For d ≥ 5, if Q is distributionally symmetric, then the lim-
iting velocity is an almost sure constant.

REMARK ABOUT CONSTANTS. As is common in most of the RWRE litera-
ture, the value of the constant C may vary from line to line. In addition, C may
implicitly depend on variables that are kept constant throughout the entire calcula-
tion, in particular the dimension d or the distribution Q.

2. Backward path—Construction. In this section we describe the backward
path, the main object studied in this paper. The backward path is, roughly speaking,
a path of the RWRE from −∞ through the origin to +∞. Below we define it. In
Section 3 we prove some basic facts about it. Note that the backward path appears,
though implicitly, in [1] and [4].

Throughout the paper we are assuming, for contradiction, that two different
nonzero limiting velocities v1 and v2 exist. Assume without loss of generality that
〈�, v1〉 > 0 for � = e1. We let A� be the event that the walk is transient in the
direction �, that is,

A� =
{

lim
n→∞〈Xn, �〉 = ∞

}
.

By our assumptions, Q is a distribution on Md s.t. both P(A�) and P(A−�) are
positive.

We say that t is a regeneration time in the direction � if:

1. 〈Xs, �〉 < 〈Xt, �〉 for every s < t , and
2. 〈Xs, �〉 > 〈Xt, �〉 for every s > t .

REMARK. Note that in the special case of � being a coordinate vector this
simple definition coincides with the more complex definition of a regeneration
time from [3].

For every L > 0, let KL = {z|0 ≤ 〈z, �〉 < L}.
Let t1 be the first regeneration time (if one exists), let t2 be the second (if exists),

and so on. If tn+1 exists, let Ln = 〈Xtn+1, �〉 − 〈Xtn, �〉, let

Wn :KLn → Md
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be

Wn(z) = ω(z + Xtn),

let un = tn+1 − tn and let Kn : [0, un] → Z
d be Kn(t) = Xtn+t − Xtn . We let Sn,

the nth regeneration slab, be the ensemble Sn = {Ln,Wn,un,Kn}.
In [3] Sznitman and Zerner proved that on the event A�, almost surely there are

infinitely many regeneration times, and, furthermore, that the regeneration slabs
{Si}∞i=1 form an i.i.d. process. Let λ = λ� be the distribution of S1 conditioned
on A�.

We now construct an environment and a doubly infinite path in that environ-
ment. Let {Sn}n∈Z be i.i.d. regeneration slabs sampled according to λ.

We now want to glue the regeneration slabs to each other. Let Y0 = 0, and de-
fine, inductively, Yn+1 = Yn + Kn(un) for n ≥ 0 and Yn−1 = Yn − Kn−1(un−1)

for n ≤ 0. Almost surely Z
d is the disjoint union of the sets Yn + KLn . For every

z ∈ Z
d let n(z) be the unique n such that z ∈ Yn + KLn . Let ω be the environment

ω(z) = Wn(z)

(
z − Yn(z)

)
.

Let T ⊆ Z
d be

T =
∞⋃

n=−∞
(Yn + Kn[0, un]).

Let μ be the joint distribution of ω and T . T is called the backward path in direc-
tion �. We let μ̃ be the marginal distribution of ω in μ.

3. Backward path—Basic properties. In this section we prove two simple
properties of the measure μ.

PROPOSITION 3.1. There exists a coupling P̃ on � × � × {0,1}Z
d

with the
distribution of ω, ω̃,T satisfying:

1. ω is distributed according to P .
2. (ω̃,T ) is distributed according to μ.
3. P̃ -almost surely, ω(z) = ω̃(z) for every z ∈ Z

d \ T .
4. ω and T are independent.

PROPOSITION 3.2. Let ω̃ be an environment sampled according to μ̃, and let
{Xn} be a random walk on that environment. Then almost surely {Xn} is transient
in the direction �.

Both Proposition 3.1 and Proposition 3.2 follow from the fact that the μ̃-en-
vironment around zero is similar to the P -environment around the location of the
walker at a large regeneration time. More precisely, let ω, {Xn} be sampled ac-
cording to P conditioned on the event ∀n>0(〈Xn, �〉 > 0) ∩ A�, which is an event
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of positive probability. Let t1, t2, . . . be the regeneration times. (Note that we con-
ditioned on transience in the � direction, and therefore infinitely many regenera-
tion times exist.) Let ωi be the environment defined by ωi(z) = ω(z + Xti ) and let
Ti ⊆ Z

d be defined as Ti = {Xt − Xti |t ≥ 0}.
For X ∈ Z

d let H(X) be the half-space

H(X) = {z | 〈z, �〉 ≥ 〈X,�〉}.

LEMMA 3.3. For every i, the distribution of{−Xti ; Ti ∩ H(−Xti ); ωi |H(−Xti
)

}
(1)

is the same as the distribution of{
Y−i; T ∩ H(Y−i); ω̃|H(Y−i )

}
.(2)

PROOF. Let P̃ be P conditioned on the event ∀n>0(〈Xn, �〉 > 0)∩A�. By The-
orem 1.4 of [3], the distribution of{

ω|H(0), {Xt |t ≥ 0}}
according to P̃ is the same as the distribution of{

ω̃|H(0),T ∩ H(0)
}

according to μ. The lemma now follows since the sequence {Sn}n∈Z is i.i.d.
�

We can now prove Propositions 3.1 and 3.2.

PROOF OF PROPOSITION 3.2. Let B be the event that the walk is transient in
the direction of � and never exits the half-space H(0), that is,

B = A� ∩ {∀tXt ∈ H(0)}.
For a configuration ω and z ∈ Z

d , let

Rω(z) = P z
ω(B).

Note that Rω(z) depends only on ω|H(0), so by the Markov property

PX0
ω (B|X1,X2, . . . ,Xt) = Rω(Xt) · 1X1,...,Xt∈H(0).

In addition, B ∈ σ(X1,X2, . . .) and therefore almost surely

lim
t→∞Rω(Xt) ≥ 1B.

In particular, P̃-almost surely,

lim
t→∞Rω(Xt) = 1,
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and for the subsequence of regeneration times we get that P̃-almost surely

lim
n→∞Rω(Xtn) = 1,(3)

and using the bounded convergence theorem, for

Rn = EP̃(Rω(Xtn))

we get

lim
n→∞Rn = 1.(4)

Let {ω̃,T , {Yn}} be sampled according to μ and let Xn be a random walk on
the environment ω̃, which is independent of {T , {Yn}} conditioned on ω̃. Let BN

be the event

lim
n→∞〈Xn, �〉 = ∞ and ∀n〈Xn, �〉 ≥ 〈Y−N, �〉.

Then by Lemma 3.3

(μ ⊗ P 0
ω̃)(Bn) = Rn.(5)

Remembering that

A� =
∞⋃

n=1

Bn

we get from (5) that

(μ ⊗ P 0
ω̃)(A�) = lim

n→∞Rn = 1,

as desired. �

PROOF OF PROPOSITION 3.1. We define the coupling on every regeneration
slab. Let λ̃ be the distribution on S̃ = {L,W,W̃ ,u,K} so that {L,W̃ ,u,K} is
distributed according to λ and W is defined as follows:

W(z) =
{

W̃ (z), if z /∈ K([0, u]),
ψ(z), if z ∈ K([0, u]),

where ψ : Zd → M is sampled according to P , independently of {L,W̃ ,u,K}.

CLAIM 3.4. Conditioned on L, the environment W is i.i.d. with marginal dis-
tribution Q, and independent of u and K .

We now sample the environments and the path as we did in Section 2: Let
{S̃n}∞n=−∞ be i.i.d. regeneration slabs sampled according to λ̃. Let Y0 = 0 and
define, inductively, Yn+1 = Yn + Kn(un) for n ≥ 0 and Yn−1 = Yn − Kn−1(un−1)

for n ≤ 0. Almost surely Z
d is the disjoint union of the sets Yn + KLn . For every
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z ∈ Z
d let n(z) be the unique n such that z ∈ Yn + KLn . We let ω be the environ-

ment

ω(z) = Wn(z)

(
z − Yn(z)

)
,

we let ω̃ be the environment

ω̃(z) = W̃n(z)

(
z − Yn(z)

)
,

and take T ⊆ Z
d to be

T =
∞⋃

n=−∞
(Yn + Kn[0, un]).

Clearly, {ω̃,T } is distributed according to μ and ω and ω̃ agree on Z
d − T .

Therefore all we need to show is that ω is distributed according to P and is inde-
pendent of the path T . This follows from Claim 3.4: conditioned on {un}∞n=−∞,
W is P -distributed and independent of the path T . Therefore it is P -distributed
and independent of the path T as we integrate over {un}∞n=−∞. �

PROOF OF CLAIM 3.4. It is sufficient to show that conditioned on L, for every
finite set J = {xi : i = 1, . . . , k} with J ⊆ KL, the distribution of {W(xi)}xi∈J is
i.i.d. with marginal Q and independent of u and K . This will follow if we prove
that for every finite set J = {xi |i = 1, . . . , k} with J ⊆ KL, conditioned on L, on
K and u and on the event J ∩K[0, u] = ∅, the distribution of {W̃ (xi)}xi∈J is i.i.d.
with marginal Q.

To this end, fix J and note that for every finite set U that is disjoint of J ,
the event {K[0, u] = U} is independent of {W̃ (xi)}xi∈J . Therefore, conditioned
on the event {K[0, u] = U} (and thus implicitly conditioning on K and u), the
distribution of {W̃ (xi)}xi∈J is i.i.d. with marginal Q. By integrating with respect
to U we get that {W(xi)}xi∈J is Q-distributed, and by the fact that it was Q-dis-
tributed conditioned on K and u we get the independence. �

4. Intersection of paths. In this section we will see some interaction between
the backward path and the path of an independent random walk.

Let Q be a uniformly elliptic distribution so that 0 < P(A�) < 1 and let
(ω, ω̃,T ) be as in Proposition 3.1. Let z0 be an arbitrary point in Z

d , and let
{Xi}∞i=1 be a random walk on the configuration ω starting at z0, such that:

1. {Xi} is conditioned on the (positive probability) event that limi→∞〈Xi, �〉 =
−∞.

2. Conditioned on ω, {Xi}∞i=1 is independent of ω̃ and T .

The purpose of this section is the following easy lemma:

LEMMA 4.1. Under the conditions stated above, almost surely there exist in-
finitely many values of i such that Xi ∈ T .
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We will prove that almost surely there exists one such value of i. The proof
that infinitely many exist is very similar but requires a little more care, and for the
purpose of proving the main theorem of this paper one such i is sufficient.

PROOF. We need to show that

(P̃ ⊗ P z0
ω )

(
lim

i→∞〈Xi, �〉 = −∞ and ∀i(Xi /∈ T )

)
= 0.(6)

In order to establish (6), let {Yi}∞i=1 be a random walk on the environment ω̃,
coupled to the rest of the probability space as follows:

Let

i0 = inf{i :ω(Xi) �= ω̃(Xi)} ≥ inf{i :Xi ∈ T }.
Now, for i < i0, we define Yi = Xi . For i ≥ i0, Yi is determined based on Yi−1
according to ω̃(Yi−1) independently of Xi , ω and T . Now, note that

∀i (Xi /∈ T ) �⇒ i0 = ∞ �⇒ ∀i(Xi = Yi).

Therefore,(
lim

i→∞〈Xi, �〉 = −∞ and ∀i(Xi /∈ T )

)
�⇒ lim

i→∞〈Yi, �〉 = −∞.

The proof is concluded if we remember that by Proposition 3.2,

(P̃ ⊗ P
z0
ω̃

)

(
lim

i→∞〈Yi, �〉 = −∞
)

= 0. �

5. Proof of main theorem.

LEMMA 5.1. Let d ≥ 5, and assume that the set A of speeds contains two
nonzero elements. Then there exists z0 such that

(P̃ ⊗ P z0
ω )

(
lim

i→∞〈Xi, �〉 = −∞ and ∀i(Xi /∈ T )

)
> 0.

PROOF. Let

T̃ = {Xi : i = 1,2, . . .}.
We use the following claim whose proof is deferred:

CLAIM 5.2. Let B̃ be the event that 〈Xi, �〉 < 〈X0, �〉 for all i > 0. Note that
B̃ has positive probability. Also, let T ′ = T ∩ {z : 〈z, �〉 ≤ 0}. Then, if A contains
two distinct nonzero elements then∑

z∈Zd

P̃ (z ∈ T ′)2 < ∞(7)
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and ∑
z∈Zd

P
0(z ∈ T̃ |B̃)2 < ∞.(8)

By Proposition 3.1, T ′ and T̃ are independent random sets and therefore so are
T ′ and T̃ |B̃ . Therefore,

(Ẽ ⊗ Ez0
ω )(|T ′ ∩ T̃ ||B̃) = ∑

z∈Zd

P̃ (z ∈ T ′)Pz0(z ∈ T̃ |B̃)

= ∑
z∈Zd

P̃ (z ∈ T ′)P0(z − z0 ∈ T̃ |B̃),

with the last equality following from translation invariance of the annealed mea-
sure. Let

M = ∑
z∈Zd

P̃ (z ∈ T ′)2

and

M̃ = ∑
z∈Zd

P
0(z ∈ T̃ |B̃)2,

let λ be so small that λM + λM̃ + λ2 < 1, and let R be so large that∑
‖z‖>R

P̃ (z ∈ T ′)2 < λ and
∑

‖z‖>R

P
0(z ∈ T̃ |B̃)2 < λ.

Taking z0 such that ‖z0‖ > 2R and 〈z0, �〉 < 0 we get, using Cauchy–Schwarz,
that

(Ẽ ⊗ Ez0
ω )(|T ′ ∩ T̃ ||B̃)

= ∑
z∈Zd

P̃ (z ∈ T ′)P0(z − z0 ∈ T̃ |B̃)

= ∑
z∈B(0,R)

P̃ (z ∈ T ′)P0(z − z0 ∈ T̃ |B̃)

+ ∑
z∈B(z0,R)

P̃ (z ∈ T ′)P0(z − z0 ∈ T̃ |B̃)

+ ∑
z∈Zd−B(0,R)−B(z0,R)

P̃ (z ∈ T ′)P0(z − z0 ∈ T̃ |B̃)

≤ λM + λM̃ + λ2 < 1.
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Therefore P̃ ⊗ P
z0
ω (T ′ ∩ T̃ = ∅|B̃) > 0. P

z0
ω (B̃) > 0 and by the choice of z0,

conditioned on B̃ , T ′ ∩ T̃ = ∅ if and only if T ∩ T̃ = ∅. Therefore T ∩ T̃ is
empty with positive probability. �

PROOF OF CLAIM 5.2. We will prove (7). Equation (8) follows from the exact
same reasoning. First we get an upper bound on μ(Y−n = z). The sequence {On =
Y−n − Y−n−1} is an i.i.d. sequence. Furthermore, due to ellipticity there exist d

linearly independent vectors v1, . . . , vd and ε > 0 such that for every k = 1, . . . , d ,
and every δ ∈ {+1,−1},

μ(O1 = 2v1 + δvk) > ε.

(v1 is, approximately, in the direction of �, while the others are, approximately,
orthogonal to �.)

Let

A = {
2v1 + δvk | k = 1, . . . , d; δ ∈ {+1,−1}}

and let p = μ(O1 ∈ A). Fix n, and let E(n) be the event that at least πn = �1
2pn�

of the Oi ’s, i = 1, . . . , n, are in A. For every subset H of {1, . . . , n} of size πn, let
E

(n)
H be the event that the elements of H are the smallest πn numbers i such that

Oi ∈ A. Then from heat kernel estimates for bounded i.i.d. random walks in Zd

we get that for every z ∈ Z
d ,

μ

(∑
i∈H

Oi = z

∣∣∣∣E(n)
H

)
< Cn−d/2.

Conditioned on E
(n)
H , ∑

i∈H

Oi and
∑
i /∈H

Oi

are independent, so remembering that Y−n = ∑n
i=1 Oi, we get that

μ
(
Y−n = z|E(n)

H

)
< Cn−d/2.

The events {
E

(n)
H |H ⊆ [1, n]}

are mutually exclusive and

μ

(⋃
H

E
(n)
H

)
> 1 − e−Cn.

Therefore, for every n and z ∈ Z
d ,

μ(Y−n = z) < Cn−d/2.(9)
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Now, for every n and z ∈ Z
d , let Q(z,n) be the probability that z is visited

during the nth regeneration, that is, between Y1−n and Y−n. The nth regeneration
is independent of Y1−n, so

Q(z,n|Y1−n) = Q(z − Y1−n,0).

The fact that the speed of the walk in direction � is positive yields∑
z∈Zd

Q(z,0) ≤ E(τ2 − τ1) < ∞.(10)

From (9) we get that ∑
z∈Zd

[μ(Y−n = z)]2 ≤ Cn−d/2.

Combined with (10) and remembering that Young’s inequality for convolution says
that ‖f � g‖2 ≤ ‖f ‖2‖g‖1 for all f and g (and noting that the next regeneration
slab is independent of Y1−n, and thus the result is a convolution), we get∑

z∈Zd

[Q(z,n)]2 ≤ Cn−d/2

or √ ∑
z∈Zd

[Q(z,n)]2 ≤ Cn−d/4.(11)

Noting that

μ(z ∈ T ′) =
∞∑

n=1

Q(z,n),

(11) and the triangle inequality tell us that√ ∑
z∈Zd

[μ(z ∈ T ′)]2 ≤ C

∞∑
n=1

n−d/4.

So for d ≥ 5 ∑
z∈Zd

[μ(z ∈ T ′)]2 < ∞

as desired. �

PROOF OF THEOREM 1.1. The theorem follows immediately from Lem-
ma 4.1 and Lemma 5.1. �
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