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COUNTING PLANAR RANDOM WALK HOLES

BY CHRISTIAN BENEŠ

Tufts University

We study two variants of the notion of holes formed by planar simple ran-
dom walk of time duration 2n and the areas associated with them. We prove
in both cases that the number of holes of area greater than A(n), where {A(n)}
is an increasing sequence, is, up to a logarithmic correction term, asymptotic
to n · A(n)−1 for a range of large holes, thus confirming an observation by
Mandelbrot. A consequence is that the largest hole has an area which is log-
arithmically asymptotic to n. We also discuss the different exponent of 5/3
observed by Mandelbrot for small holes.

1. Introduction. The object of our study in this paper is planar simple ran-
dom walk S defined by S(0) = (0,0) and for n ∈ N = {1,2, . . .} by S(n) =∑n

j=1 Xj , where {Xj }j∈N are independent random vectors satisfying P(Xj =
±ei) = 1/4, i = 1,2, where e1 = (1,0) and e2 = (0,1). We will also think of
planar simple random walk S as being a continuous process, that is, for nonin-
teger times t , we let S(t) be the linear interpolation of the walk’s position at the
surrounding integer times: For all real t ≥ 0,

S(t) = S([t]) + (t − [t])(S([t] + 1) − S([t])),(1.1)

where [t] denotes the integer part of t . For any real numbers 0 ≤ a ≤ b, we will
write S[a, b] := {S(t)}a≤t≤b, and use the same notation for Brownian motion B .
Let the holes or components made by S[0,2n] be the connected components of
C \ S[0,2n], where C denotes the complex plane, and the lattice holes made by
S[0,2n] be the connected components of Z

2 \ {S(j)}j∈{0,...,2n}. Two points z and
w lie in a same component of Z

2 \ {S(j)}j∈{0,...,2n} if they can be joined by a
nearest-neighbor path in Z

2 that does not intersect S[0,2n]. The area of a hole
is defined to be its Lebesgue measure and the lattice area of a lattice hole is its
cardinality. See Figure 1.

We define for any r ∈ R+, n ∈ N,

Hn(r) = #{holes of area ≥ r made by S[0,2n]},
Ln(r) = #{lattice holes of lattice area ≥ r made by S[0,2n]},(1.2)

Ñn(δ) = Hn(n
1−δ), N̂n(δ) = Ln(n

1−δ).

Our main result is the following:
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FIG. 1. Two types of holes and area: here, area = 8, lattice area = 2.

THEOREM 1.1. There exists a δ0 > 0 such that for all 0 < δ ≤ δ0,

log2(nδ)

nδ
Ñn(δ)

P→ 2π as n → ∞,(1.3)

log2(nδ)

nδ
N̂n(δ)

P→ 2π as n → ∞,(1.4)

where
P→ denotes convergence in probability.

We first outline the key ideas of the argument for (1.3), which is the part of
Theorem 1.1 for which we give a full proof in this paper. The proof of (1.4) is
practically identical and we will just mention in Section 5 which small modifica-
tions are needed to obtain it.

1. Use Brownian scaling to extend the result in [10] (see the Appendix) for the
number of components of C\B[0,1] of area greater than ε > 0 to the number of
components of C \B[0, n] of area greater than n1−δ, δ > 0. Then couple planar
random walk S and planar Brownian motion B via Skorokhod embedding and
compare, for some δ0 > 0 and all 0 < δ ≤ δ0, the number of holes of area larger
than n1−δ for B[0, n] and S[0,2n] under the coupling, as described in the next
steps.

2. Let c = 1 + ε, where ε > 0, and for j ∈ {0,1,2, . . .}, n ∈ N, define

Ij,n = Ij,n(δ, ε) = [n1−δcj , n1−δcj+1).(1.5)

This gives a decomposition of [n1−δ,∞) = ⋃∞
j=0 Ij,n. Let

Nj,n = Nj,n(δ, ε) = #{components of C \ B[0, n] with area in Ij,n},
Ñj,n = Ñj,n(δ, ε) = #{components of C \ S[0,2n] with area in Ij,n},

and show that for every j ≥ 0, every ε > 0 small enough,

P(|Ñj,n − Nj,n| > εNj,n) → 0 fast enough, as n → ∞,(1.6)
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so that the sum over j of these probabilities goes to 0, which then implies

P
(|Ñn(δ) − Nn(δ)| > εNn(δ)

) n→∞→ 0,

where

Nn(δ) = #{connected components of C \ B[0, n] of area ≥ n1−δ}.
This is done by comparing the total area of all Brownian components with

area in Ij,n with the total area of all random walk components with area in Ij,n.
3. To show (1.6), analyze �(z) = �n(z) := ||Cn(z)| − |C̃n(z)|| for each z ∈ Z

2,
where |Cn(z)| is the area of the connected component of C \ B[0, n] contain-
ing z, |C̃n(z)| is the area of the connected component of C \ S[0,2n] contain-
ing z. More specifically, show that on “good configurations,” if max{|Cn(z)|,
|C̃n(z)|} is large, �(z) is of smaller order of magnitude than max{|Cn(z)|,
|C̃n(z)|}.

4. Show that “bad configurations” are unlikely. This involves:

• Handling the case where z is close to ∂Cn(z) or ∂C̃n(z), which is done with
the help of ideas relating the two-sided disconnection exponent for Brownian
motion and random walk to the fractal dimension of the Brownian frontier.

• Looking at other “bad cases” which can occur even if z is far from ∂Cn(z)

and ∂C̃n(z): z being disconnected from ∞ by B shortly before time n, not
leaving S enough time to disconnect z from ∞ as well (or the other way
around); Cn(z) being a very thin component, and the same for C̃n(z). The
tools used for these cases are the one-sided disconnection exponent and
Beurling estimates for Brownian motion and random walk.

In Section 2, we give a list of definitions of the objects most commonly used
throughout this paper and introduce Skorokhod embedding, the coupling which is
at the center of our proof. In Section 3, we look at how “thick” the boundary of
a Brownian motion or random walk component is. The ideas used are based on
the method of [4], which exhibits the relationship between the two-sided discon-
nection exponent of Brownian motion and the Hausdorff dimension of the Brown-
ian frontier. Section 4 contains a sequence of preparatory lemmas leading to a
comparison between the areas of the Brownian motion and random walk compo-
nent containing a given lattice point. In Section 5, we use the results of Sections
3 and 4 to prove Proposition 5.1 from which Theorem 1.1 follows immediately.
In Section 6, we discuss the initial motivation of our study, namely Mandelbrot’s
observation of a different exponent for small lattice holes, and give a precise con-
jecture for this observation. In particular, we show that if the picture suggested
by Mandelbrot is the right one, the regime in which the 5/3 exponent exists must
be very small. Finally, the Appendix provides the consequences of [10] needed to
make the link between small components of C \ B[0,1] and large components of
C \ S[0,2n]. Many basic estimates for planar Brownian motion and random walk
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are used throughout this paper, in particular large deviations and Beurling esti-
mates. We will only include their statements in this paper, but their derivations, as
well as a discussion on Skorokhod embedding, can be found in [1].

2. Definitions and tools. Throughout this paper, all multiplicative constants
will be denoted by K,K1 or K2. It will be understood that they may be dif-
ferent from one line to the next. The letters r, s, t will be used to denote real
numbers, while i, j, k, l,m,n will represent natural numbers. Points of the com-
plex plane C will be represented by the letters u, v,w, z. The symbols O, o and
∼ will have the usual meaning: for two functions f and g, f (x) = O(g(x)) if
there exists a constant K such that f (x) ≤ Kg(x) for all x, f (x) = o(g(x)) if
limx→∞ f (x)/g(x) = 0, and f (x) ∼ g(x) if limx→∞ f (x)/g(x) = 1. We say that
a function f (x) decays rapidly if for every r ∈ R, f (x) = o(x−r ).

For any z ∈ Z
2, we define Sq(z) to be the closed region bounded by the

square centered at z, whose sides are parallel to the axes and of length 1. For
each z ∈ Z

2,Sq(z) will be called a lattice square (or just square). The Euclid-
ean norm of a point x in R or C is |x| and the integer part of x ∈ R is [x].
The boundary of a set A ⊂ C will be denoted by ∂A, its area by |A| and its di-
ameter diam(A) = supw,z∈A |w − z|. The distance between two sets A,B ∈ C is
d(A,B) = infx∈A,y∈B |x − y|. For any sets A ⊂ F , Ac = F \ A will be the com-
plement of A in F . It will always be clear from context what F is meant to be.

Unless stated otherwise, B = (B(t))t≥0 will denote standard planar Brownian
motion and S = (S(n))n≥0 will stand for planar simple random walk. As a general
rule, in this paper, a tilde will refer to a quantity related to random walk. S will
also denote the continuous process (S(t))t≥0 obtained from planar simple random
walk as in (1.1). It will be clear from the choice of the letter for the argument if we
consider real or integer times.

At the center of the method used in this paper lies a coupling of planar ran-
dom walk S and planar Brownian motion B . It is a particular case of Skorokhod
embedding. We state it here and refer the reader to [1] for more details.

PROPOSITION 2.1. There exist a probability space (�,F ,P) containing a
standard Brownian motion B and simple random walk S in the plane, constants
b,K > 0, such that

P

(
sup

0≤t≤n

|B(t) − S(2t)| ≥ n1/4 log2 n

)
≤ Kn1−b logn.(2.1)

From here on, we will be working in this probability space. For any t ≥ 0, we
let

Ct(z) = the connected component of C \ B[0, t] containing z(2.2)

if z ∈ C \ B[0, t] and

C̃t (z) = the connected component of C \ S[0,2t] containing z
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if z ∈ C \ S[0,2t]. If z ∈ B[0, t], we let Ct(z) = ∅ and if z ∈ S[0,2t], C̃t (z) = ∅.
We will use the convention that |∅| = 0. For any z ∈ C and R ∈ R+,

D(z,R) = {w ∈ C : |w − z| ≤ R}(2.3)

will denote the closed disk of radius R, centered at z and D(R) will be short for
D(0,R).

Two estimates for Brownian motion and random walk will be useful in the
proofs of the next two propositions, as well as later in this paper. They are large de-
viations estimates giving an upper bound for the probability that in time n random
walk or Brownian motion travel much beyond distance

√
n or remain in a disk of

radius much smaller than
√

n. For the proofs, see [1].

LEMMA 2.1. If B is a planar Brownian motion, S a planar simple random
walk, there exists a constant K > 0 such that for every n ≥ 0, every r ≥ 1,

P

(
sup

0≤t≤n

|B(t)| ≥ r
√

n

)
≤ K exp{−r2/2},(2.4)

P

(
max

0≤k≤2n
|S(k)| ≥ r

√
n

)
≤ K exp{−r2/4}.(2.5)

LEMMA 2.2. If B is a planar Brownian motion, S a planar simple random
walk, there exists a constant K > 0 such that for every n ≥ 0, every r ≥ 1,

P

(
sup

0≤t≤n

|B(t)| ≤ r−1√n

)
≤ exp{−Kr2},

(2.6)

P

(
max

0≤k≤2n
|S(k)| ≤ r−1√n

)
≤ exp{−Kr2}.

We will also need on several occasions the following well known result which
we give here without a proof (see [1] for the continuous case and [2] for the more
difficult discrete case):

THEOREM 2.1 (Beurling estimate).

1. There exists a constant K > 0 such that for any R ≥ 1, any x ∈ C with |x| ≤ R,
any A ⊂ C with [0,R] ⊂ {|z| : z ∈ A},

P
x(ξR ≤ TA) ≤ K(|x|/R)1/2,(2.7)

where ξR = inf{t ≥ 0 : |B(t)| ≥ R} and TA = inf{t ≥ 0 :B(t) ∈ A}.
2. There exists a constant K > 0 such that for any n ≥ 1, any x ∈ Z

2 with
|x| ≤ n, any connected set A ⊂ Z

2 containing the origin and such that
sup{|z| : z ∈ A} ≥ n,

P
x(�n ≤ τA) ≤ K(|x|/n)1/2,

where �n = inf{k ≥ 0 : |S(k)| ≥ n} and τA = inf{k ≥ 0 :S(k) ∈ A}.
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3. Disconnection exponents and the holes’ boundaries. Understanding the
structure of the boundary of the components Cn(z) and C̃n(z) containing a point
z ∈ C is essential in our approach to the problem discussed in this paper. We first
derive in Proposition 3.1 an upper bound, uniform for all z ∈ Z

2, for the expected
number of lattice squares (see Section 2) intersected by the boundary of Cn(z)

or C̃n(z). Proposition 3.2 then gives an upper bound for the expected number of
lattice squares intersected by the union of the boundaries of all components of area
greater than n1−δ, δ > 0.

The main tool needed for our estimate is the two-sided disconnection exponent,
one of many intersection and disconnection exponents computed exactly in [7, 8]
and [9]. Since we will make use of the one-sided disconnection exponent in Sec-
tion 4, we mention it here as well. It was shown in [5] and [6] that each of these
exponents is the same for Brownian motion and random walk.

For any x1, x2 ∈ C, we let P
x1,x2

be the probability measure associated with
two independent planar Brownian motions B1 and B2 with B1(0) = x1 and
B2(0) = x2. P

x1
will denote the probability measure associated with the lone

Brownian path B1 started at x1. For i = 1,2 and n ∈ N, we define �i
n(x) = inf{t ≥

0 : |Bi(t) − x| ≥ n}; if x = 0, we just write �i
n.

Since we will always deal separately with Brownian motion or random walk in
this section, we can use the same notation for S without risking any confusion:
P

x1,x2
is the probability measure associated to two independent planar random

walks S1 and S2 with S1(0) = x1 and S2(0) = x2, where x1, x2 ∈ Z
2 and P

x1
is

the probability measure associated to S1 started at x1. It will be clear from context
whether P refers to Brownian motion or random walk. We also let ξ i

n(x) = inf{k >

0 : |Si(k) − x| ≥ n}, and write ξ i
n = ξ i

n(0), where i = 1,2 and n ∈ N. For any
compact A ⊂ C, we let

Q̄(A) = the closure of the unbounded component of C \ A.(3.1)

3.1. One-sided disconnection exponent. Let

An = {D(1) ∩ Q̄(B1[0,�1
n]) 
= ∅} and Ãn = {(0,0) ∩ Q̄(S1[0, ξ1

n ]) 
= ∅},
where D(1) is the closed unit disk centered at the origin, and write

P(An) = sup P
x(An), P(Ãn) = P

0(Ãn),

where the sup is over all x with |x| ≤ 1.
The following lemma is a consequence of [7, 8] and [9], where the value of the

Brownian disconnection exponent is computed and [5], where the equality between
the Brownian and the random walk exponents is shown.

LEMMA 3.1. There exists a constant K > 0 such that for all n ≥ 1:

(a) P(An) ≤ Kn−1/4,
(b) P(Ãn) ≤ Kn−1/4.
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3.2. Two-sided disconnection exponent. Let

Fn = {D(1) ∩ Q̄(B1[0, n] ∪ B2[0, n]) 
= ∅},
Dn = {D(1) ∩ Q̄(B1[0,�1

n] ∪ B2[0,�2
n]) 
= ∅},

F̃n = {(0,0) ∩ Q̄(S1[0, n] ∪ S2[0, n]) 
= ∅},
D̃n = {(0,0) ∩ Q̄(S1[0, ξ1

n ] ∪ S2[0, ξ2
n ]) 
= ∅}.

We will write

P(Fn) = sup P
x1,x2

(Fn) and P(Dn) = sup P
x1,x2

(Dn),

where the sup is over all |x1| ≤ 1, |x2| ≤ 1 and

P(F̃n) = P
0,0(F̃n) and P(D̃n) = P

0,0(D̃n).

Lemma 3.2 is based on the same papers as Lemma 3.1, except that the equality
between the Brownian and random walk exponents follows from [6].

LEMMA 3.2. There exists a constant K > 0 such that for all n ≥ 1:

(a) P(Fn) ≤ Kn−1/3,
(b) P(Dn) ≤ Kn−2/3,
(c) P(F̃n) ≤ Kn−1/3,
(d) P(D̃n) ≤ Kn−2/3.

3.3. Two estimates for the holes’ boundaries. It was shown in [4] that there
is a strong link between the two-sided disconnection exponent and the Hausdorff
dimension of the Brownian frontier, defined as the boundary of the unbounded
component of C \ B[0,1]. This can be seen by observing that if 0 ≤ t ≤ 1, B(t) is
in the frontier of B[0,1] if B[0, t] ∪B[t,1] does not disconnect B(t) from infinity
and that B[t,1] and the time-reversal of B[0, t], (B(t − s))0≤s≤t , are independent
Brownian motions. [For two bounded sets A,B ⊂ C, we will say that A does not
disconnect B from ∞ if B ∩ Q̄(A) 
= ∅.] The proofs of the next two propositions
are based on this idea.

In both propositions, the statements for random walk and Brownian motion are
the same, but the fact that Brownian motion has more freedom to wander than
random walk in a unit time interval makes the proofs slightly more technical in the
Brownian case. For the sake of variety, we prove the first for random walk and the
second for Brownian motion.

Proposition 3.1 gives an upper bound, uniform for all z ∈ Z
2, for the expected

number of lattice squares which are intersected by the boundary of Cn(z) or C̃n(z).
Recall that a function is rapidly decaying if it goes to 0 faster than any power
function.



98 C. BENEŠ

PROPOSITION 3.1. There exists a constant K > 0 such that for every z ∈ Z
2,

every n ≥ 1,

E

[ ∑
y∈Z2

1{Sq(y) ∩ ∂Cn(z) 
= ∅}
]

≤ Kn2/3(logn)11/3

and

E

[ ∑
y∈Z2

1{Sq(y) ∩ ∂C̃n(z) 
= ∅}
]

≤ Kn2/3(logn)11/3(3.2)

PROOF. We prove (3.2). By Lemma 2.1, there is a rapidly decaying function
φ1 such that

E

[ ∑
y∈Z2

1{Sq(y) ∩ ∂C̃n(z) 
= ∅}
]

≤
2n∑

j=0

P
(
S(j) ∈ ∂C̃n(z)

)
(3.3)

= ∑
w∈Z2

2n∑
j=0

P
(
S(j) ∈ ∂C̃n(z);S(j) = w

)

≤ ∑
w∈D̃(

√
n logn)

2n∑
j=0

P
(
S(j) ∈ ∂C̃n(z);S(j) = w

) + φ1(n),

where for r ∈ R+, D̃(r) = D(r) ∩ Z
2 = {z ∈ Z

2 : |z| ≤ r}. For all 0 ≤ j ≤ 2n, we
let

S
(1)
j (i) = S(j − i) − S(j), 0 ≤ i ≤ j,

S
(2)
j (i) = S(j + i) − S(j), 0 ≤ i ≤ 2n − j,

be the translates starting at the origin of the time-reversal of the part of S up to
time j and the portion of the walk from time j to 2n, respectively. Then S

(1)
j and

S
(2)
j are independent simple random walks, started at 0.

By (3.3), we just need to find a bound for every z ∈ Z
2, w ∈ D̃(

√
n logn), and

every 0 ≤ j ≤ 2n, for

P
(
S(j) ∈ ∂C̃n(z);S(j) = w

)
.(3.4)

To ease the reader’s work, we quickly outline the ideas involved in the simplest
case, where |z| ≥ √

n logn and z is therefore very likely to be in Q̄(S[0,2n]),
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where Q̄ is as in (3.1). In this case, for a typical w and a typical walk S, the
probability in (3.4) is bounded above by

P
(
S(j) ∈ Q̄(S[0, j ] ∪ S[j,2n]);S(j) = w

)
,

which is equal to

P
(
0 ∈ Q̄

(
S

(1)
j [0, j ] ∪ S

(2)
j [0,2n − j ]);S(j) = w

)
.

Unfortunately, the events {0 ∈ Q̄(S
(1)
j [0, j ] ∪ S

(2)
j [0,2n − j ])} and {S(j) = w}

are not independent, since the first event influences the shape of S
(1)
j [0, j ] which

has an influence on the second event. If they were, the local central limit theorem
(see [1]) and Lemma 2.1 would imply that for j ≥ 1,P(S(j) ∈ ∂C̃n(z);S(j) =
w) ≤ K(min{j, n − j})−1/3 · j−1 and summing this over 1 ≤ j ≤ n − 1 and w ∈
D̃(

√
n logn) would give a bound of Kn2/3 log2 n. It turns out that this heuristic

argument works if we consider the slightly different events{
0 ∈ Q̄

(
S

(1)
j

[
0, [j/ log2 n]] ∪ S

(2)
j

[
0, [(2n − j)/ log2 n]])}

and {S(j) = w}, which are “almost” independent. Indeed, S
(1)
j [0, [j/ log2 n]] is

a much shorter path than S
(1)
j [[j/ log2 n], j ] and its shape has little influence on

the position of S(j), which is mostly determined by S
(1)
j [[j/ log2 n], j ]. The intro-

duced logarithmic term causes almost no loss in the bound derived in the heuristic
argument. For general z and w, more work is required, especially since only the
parts of S

(1)
j and S

(2)
j that lie in D(w, |z − w|) determine whether w ∈ ∂C̃n(z) or

not.
We need to estimate the probability in (3.4) in a different way in each of the

following four exhaustive cases:

(i) |z − w|2 ≤ j ≤ n − j ,
(ii) |z − w|2 ≤ n − j ≤ j ,

(iii) j ≤ min{n − j, |z − w|2},
(iv) n − j ≤ min{j, |z − w|2}.

We will consider cases (i) and (iii). Case (ii) [resp. (iv)] is handled exactly like that
of (i) [resp. (iii)]. Note that j ≤ n − j ⇔ j ≤ n/2.

Case (i): For w,z ∈ Z
2, we let T = T (n,w, z) = [2(|z − w|/ log2 n)2] and de-

fine the event

T = T (j, n,w, z) =
{

sup
0≤i≤T

∣∣S(1)
j (i)

∣∣ ≤ |z − w|; sup
0≤i≤T

∣∣S(2)
j (i)

∣∣ ≤ |z − w|
}
.

Note that by (2.5), φ2(n) = P(T c) decays rapidly and observe that if S(j) = w,
S(j) ∈ ∂C̃n(z), and T occurs, then S

(1)
j [0, T ] ∪ S

(2)
j [0, T ] cannot disconnect 0

from infinity. We define

D(A,B) = {A does not disconnect B from ∞},(3.5)
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and will write D = D(S
(1)
j [0, T ] ∪ S

(2)
j [0, T ],0). If |z − w|2 ≤ j ≤ n/2, then

P
(
S(j) ∈ ∂C̃n(z);S(j) = w

)
≤ P(T c) + P

({S(j) = w};D;T )
≤ φ2(n) + ∑

P
({S(j − T ) = u;S(j) = w};D)

,

where the sum is over all u ∈ D̃(w, |z − w|) = D(w, |z − w|) ∩ Z
2 and φ2(n)

decays rapidly.
The Markov property applied at time j −T and translation invariance of simple

random walk can be used to see that this last expression is bounded above by∑
P

(
S(j − T ) = u

)
P

(
D; {S(T ) = w − u})

≤ sup P
(
S(j − T ) = u

)∑
P

(
D; {S(T ) = w − u})

≤ sup P
(
S(j − T ) = u

)
P(D),

where the sup and the sum are over the same set as above. Since T ≤ j/ log4 n, the
local central limit theorem implies that the sup is bounded above by K/j for some
constant K > 0, independent of j and n. Using Lemma 3.2(c) to bound P(D),
we find that if |z − w|2 ≤ j ≤ n/2, there exist a constant K > 0, independent of
z,w, j and n, and a rapidly decaying function φ2 such that

P
(
S(j) ∈ ∂C̃n(z);S(j) = w

) ≤ K

j

( |z − w|
log2 n

)−2/3

+ φ2(n).(3.6)

Case (iii): If j ≤ min{n/2, |z − w|2},U = U(j,n) = [ j

log4 n
], and

U = U(j, n,w, z) =
{

sup
0≤i≤U

∣∣S(1)
j (i)

∣∣ ≤ |z − w|; sup
0≤i≤U

∣∣S(2)
j (i)

∣∣ ≤ |z − w|
}
,

then φ3(n) = P(Uc) decays rapidly. Using the notation defined in (3.5), we write

D ′ = D
(
S

(1)
j [0,U ] ∪ S

(2)
j [0,U ],0

)
.

Under Uc, {S(j) ∈ ∂C̃n(z)} implies D ′. Therefore, using again the Markov prop-
erty and the local central limit theorem,

P
(
S(j) ∈ ∂C̃n(z);S(j) = w

)
≤ ∑

P
({S(j) = w;S(j − U) = u};D ′) + φ3(n)

(3.7)
≤ sup

u∈Z2
P

(
S(j − U) = u

) · P(D ′) + φ3(n)

≤ K

j
(j/ log4 n)−1/3 + φ3(n) = K

(
j2

log2 n

)−2/3

.
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Here, the sum is over all u ∈ D̃(w,
|z−w|
logn

) and K is again independent of z,w, j,

and n.
We find in the same way as in case (i) that if |z − w|2 ≤ n − j ≤ n/2,

P
(
S(j) ∈ ∂C̃n(z);S(j) = w

) ≤ K

j

( |z − w|
log2 n

)−2/3

+ φ4(n)(3.8)

and in the same way as in case (iii) that if n − j ≤ min{j, |z − w|2},

P
(
S(j) ∈ ∂C̃n(z);S(j) = w

) ≤ K

(
(n − j)2

log2 n

)−2/3

+ φ5(n).(3.9)

We can now wrap up the proof by adding all our bounds: For a given z with
|z − w|2 ≤ n/2, we now obtain from (3.3), (3.6)–(3.9) that there exist a rapidly
decaying function φ(n) and a constant K such that for all z ∈ Z

2 and n ∈ N, with
the notation c = |z − w|2 and D̃ = D̃(

√
n logn),

E[#{y ∈ Z
2 : Sq(y) ∩ ∂C̃n(z) 
= ∅}]

≤ φ(n) + K
∑
w∈D̃

[
2 +

[c]∑
j=1

(
j2

log2 n

)−2/3

+
n−[c∧n/2]∑
j=[c∧n/2]

1

j

( |z − w|
log2 n

)−2/3

+
n−1∑

j=n−[c]

(
(n − j)2

log2 n

)−2/3
]

≤ φ(n) + K log4/3 n
∑

w∈D̃(
√

n logn)

(
2 + 2

[c]∑
j=1

j−4/3 +
[n/2]∑

j=[c∧n/2]

|z − w|−2/3

j

)

≤ φ(n) + K log4/3 n
∑

w∈D̃(
√

n logn)

|z − w|−2/3(1 + logn)

≤ Kn2/3(logn)11/3. �

For 0 ≤ δ ≤ 1, we define

Cn = Cn(δ) = {z ∈ C : |Cn(z)| ≥ n1−δ},
C̃n = C̃n(δ) = {z ∈ C : |C̃n(z)| ≥ n1−δ}.

In the proof of Proposition 5.1, we will need an estimate for the expected number
of lattice squares (for the definition, see Section 2) which are intersected by the
boundary of Cn(δ) and C̃n(δ). The ideas of the proof below are similar to those
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of Proposition 3.1, but the fact that we do not have to worry about the location of
S(j) relatively to a point z makes this next proof considerably simpler.

PROPOSITION 3.2. There exists a constant K > 0 such that for every δ > 0,
every n ≥ 1,

E[#{y ∈ Z
2 : Sq(y) ∩ ∂Cn(δ) 
= ∅}] ≤ Kn(2+δ)/3(logn)8/3(3.10)

and

E[#{y ∈ Z
2 : Sq(y) ∩ ∂C̃n(δ) 
= ∅}] ≤ Kn(2+δ)/3(logn)8/3.(3.11)

PROOF. We prove (3.10) which presents a minor additional difficulty, since
we have less control over the diameter of a path of time length one for Brown-
ian motion than for random walk. The other ideas for the proof of (3.11) are the
same as for (3.10). The general strategy of the proof is to find bounds for the
expected number of time segments [j − 1, j ] over which the Brownian path in-
tersects ∂Cn(δ). This will suffice since the expected number of lattice squares
intersected by B[j − 1, j ] is finite. For 1 ≤ j ≤ n, let dj = diam(B[j − 1, j ])
and Bj = D(B(j), dj ) be the closed disk of radius dj , centered at B(j), so that
B[j − 1, j ] ⊂ Bj . We let n̄ = [n1−δ log−4 n] and define

AL
j = B[max{0, j − 1 − n̄}, j − 1] and AR

j = B[j,min{2j − 1, j + n̄}].
AL

j and AR
j span time intervals of same length and that length is j −1 if j ≤ n̄+1

and n̄ if j ≥ n̄ + 1.
Our choice of n̄ is motivated by the following: By Lemma 2.1, it is very likely

that for every 1 ≤ j ≤ n, AL
j ∪ AR

j is completely contained in a disk of ra-

dius n(1−δ)/2/2. More precisely, if V = {AL
j ∪ AR

j ⊂ D(B(j), n(1−δ)/2/2)}, then
P(Vc) = φ(n), where φ is a rapidly decaying function. On the event V , then, if
B[j − 1, j ] intersects ∂Cn(δ), AL

j ∪ AR
j cannot disconnect Bj from infinity. In-

deed, if it did, Bj would be disconnected from infinity by a portion of the Brown-
ian path entirely contained in a disk of radius n(1−δ)/2/2 and could intersect the
boundary of components of area no more than n1−δ .

The rest of the argument just involves taking care of the case where dj is un-
usually large and applying Lemma 3.2(a). Let m = [n/2] + 1. By symmetry, we
have

E[#{y ∈ Z
2 : Sq(y) ∩ ∂Cn 
= ∅}]

(3.12)

= 2
m∑

j=1

E
[
#{y ∈ Z

2 : Sq(y) ∩ ∂Cn ∩ B[j − 1, j ] 
= ∅}].
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We first look at the terms for 1 ≤ j ≤ n̄ (in which case AL
j and AR

j each span a
time interval of length j ). There is a K > 0 such that

E
[
#{y ∈ Z

2 : Sq(y) ∩ ∂Cn ∩ B[j − 1, j ] 
= ∅}]
= ∑

l≥1

E
[
#{y ∈ Z

2 : Sq(y) ∩ ∂Cn ∩ B[j − 1, j ] 
= ∅};dj ∈ [l − 1, l]]

≤ K
∑
l≥1

l2
P(∂Cn ∩ Bj 
= ∅;dj ∈ [l − 1, l])

≤ K

(
log2 n

(
P

({Bj ∈ Q̄(AL
j ∪ AR

j );dj ≤ logn};V) + φ(n)
)

(3.13)

+ ∑
l>logn

l2
P(dj ∈ [l − 1, l])

)

≤ K

(
log2 n

(
j

log2 n

)−1/3

+ φ(n) + ∑
l>logn

l2 exp
{
−(l − 1)2

2

})

≤ Kj−1/3 log8/3 n,

where φ decays rapidly and the last inequality follows from Brownian scaling and
Lemma 2.1. Therefore,

n̄∑
j=1

E
[
#{y ∈ Z

2 : Sq(y) ∩ ∂Cn ∩ B[j − 1, j ] 
= ∅}]

≤ K(logn)8/3
n̄∑

j=1

j−1/3

≤ Kn(2−2δ)/3.

In the same way, we find

m∑
j=n̄+1

E
[
#{y ∈ Z

2 : Sq(y) ∩ ∂Cn ∩ B[j − 1, j ] 
= ∅}]

≤ Kn log2 n

(
log2 n

n̄

)1/3

≤ Kn(2+δ)/3 log8/3 n,

which, combined with (3.12) and (3.13), gives the proposition. �
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4. Comparing Brownian and random walk areas. A key step in the proof
of Theorem 1.1 is to show that if B and S are coupled as in Proposition 2.1,
then under certain favorable conditions, the difference between the areas of the
Brownian and the random walk components containing a given point z ∈ Z

2,
�n(z) = ||Cn(z)| − |C̃n(z)||, has an expected value of smaller order of magni-
tude than the areas themselves. The conditions are that at least one of |Cn(z)| and
|C̃n(z)| is ≥ n1−b for some specific b ∈ (0,1), and that z is not too close to ∂Cn(z).
This estimate is given in Proposition 4.1 and requires finding an upper bound, for
fixed z, for the number of points y ∈ Z

2 with y ∈ (Cn(z)\C̃n(z))∪(C̃n(z)\Cn(z)).
Of course this number is only meaningful if |Cn(z)| < ∞ and |C̃n(z)| < ∞ and
we will estimate E[�n(z)] with the assumption that this is the case. The points
for which |Cn(z)| = ∞ or |C̃n(z)| = ∞ will be dealt with in the proof of Proposi-
tion 5.1. A useful estimate for that purpose is derived in Lemma 4.3.

If both components are finite, a point y is in Cn(z) \ C̃n(z) if it has been discon-
nected from z by S but not by B . Informally, this can happen if:

1. Either y or z is closer to ∂Cn(z) than the distance prescribed by the coupling
in (2.1).

2. y is disconnected from z by S very late, that is, at a time close to 2n, in which
case, B gets “very close” to disconnecting y from z, but may not have time to
do so.

3. B gets very close to disconnecting y from z, but does not, despite having plenty
of time to do so.

The main results needed to handle Case 1. were derived in the previous section.
We provide the estimates needed for Cases 2 and 3 in Lemmas 4.5 and 4.4, respec-
tively. These two lemmas are then used to prove Lemma 4.6, which gives a bound
for the probability that y ∈ (Cn(z) \ C̃n(z)) ∪ (C̃n(z) \ Cn(z)) if both components
are bounded, one of them is large enough, and y, z are not too close to ∂Cn(z)

or ∂C̃n(z).
Lemmas 4.1 and 4.2 give estimates similar to those in Lemmas 4.4 and 4.5, but

are concerned with the first time a point z is disconnected from ∞ rather than from
another point y. They are used to prove Lemma 4.3, which, as mentioned above,
is used to deal with the case where |Cn(z)| = ∞ or |C̃n(z)| = ∞.

Note that Lemmas 4.1 and 4.4 are results about Brownian motion or random
walk only, while the other lemmas of this section address questions about the joint
behavior of the coupled random walk and Brownian motion. All the lemmas in this
section have statements that come in pairs, where one version is obtained from the
other by interchanging the roles of B and S.

We will be interested in the first time at which an arbitrary point lies in a finite
component and in studying how long it takes from a time at which it “almost” lies
in a finite component until it actually does. This motivates the definition of the
closing times for z by Brownian motion and random walk:

Tz = inf{t ≥ 0 : 0 < |Ct(z)| < ∞}, T̃z = inf{t ≥ 0 : 0 < |C̃t (z)| < ∞},
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where Ct(z) [resp. C̃t (z)] is the connected component of C \ B[0, t] [resp. C \
S[0,2t]] containing z and |Ct(z)| [resp. |C̃t (z)|] was defined to be 0 if z ∈ B[0, t]
(resp. z ∈ S[0,2t]). We use here the convention that inf ∅ = ∞. The closing points
for z are

xz = B(Tz) and x̃z = S(T̃z).

For a curve γ : [a, b] → C and a point z /∈ {γ (t)}a≤t≤b, we let argz(γ (t)) denote
the continuous argument of γ about z, with the convention that argz(γ (0)) = 0.
This is well defined (see [13]). Note that argz(·) is defined on the parametric inter-
val [a, b], not on the image of γ . The curves γ with which we will be working are
of course B and S and as the points z we are interested in will always lie off the
paths of B and S, the argument will always be well defined. We assume henceforth
that this is the case. We will use the abbreviation

argz(γ (t), γ (s)) = argz(γ (t)) − argz(γ (s)).

This definition allows us to give another characterization of Tz:

Tz = inf{t ≥ 0 :∃0 ≤ s < t with B(s) = B(t), | argz(B(s),B(t))| 
= 0},
and similarly for T̃z. Note that Tz and T̃z are stopping times. The last call for z by
B and the last call for z by S are, respectively,

T l
z = T l

z (n) = inf
{
t ≥ 0 :∃s ∈ [0, t] : | argz(B(s),B(t))| ≥ 3π

2
;

|B(s) − B(t)| ≤ 3n1/4 log2 n

}
,

T̃ l
z = T̃ l

z (n) = inf
{
t ≥ 0 :∃r ∈ [0, t] : | argz(S(2r), S(2t))| ≥ 3π

2
;

|S(2r) − S(2t)| ≤ 3n1/4 log2 n

}
.

Observe the factors of 2 in the definition of T̃ l
z , which are due to the fact that in

the Skorokhod embedding of Proposition 2.1, B and S run on different clocks.
The last call points are xl

z = B(T l
z ) and x̃l

z = S(2T̃ l
z ). Note that by continuity of

B and S, T l
z < Tz and T̃ l

z < T̃z.

The first lemma of this section shows that typically the closing time by B for
any point comes “soon” after the last call. For such a point z, and any a > 1/2, this
lemma will imply that if T l

z ≤ n − na , it is unlikely that z will not be disconnected
from infinity by B[0, n]. Since if z is not too close to ∂Cn(z) and B and S are
close to each other, we have T l

z ≤ T̃z, this means that {C̃n(z) < ∞;Cn(z) = ∞} is
an unlikely event unless T̃z ≥ n− na , that is, z is disconnected from ∞ by S “very
late.” This in turn will be shown to be unlikely in Lemma 4.2.
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LEMMA 4.1. There exists a constant K > 0 such that for any z ∈ Z
2, any

n ∈ N and any a > 1/2:

(a) P(Tz − T l
z > na) ≤ Kn(1−2a)/24 logn.

(b) P(T̃z − T̃ l
z > na) ≤ Kn(1−2a)/24 logn.

PROOF. (a) To find a bound for P(Tz − T l
z > na) we will need to consider all

the relative positions of z and xl
z = B(T l

z ). This will yield two different bounds.
The first will be better for larger |z−xl

z|, while the second will be better for smaller
|z − xl

z|.
First suppose that m(z, a) := min{|z − xl

z|, na/2/ logn} ≥ 300n1/4 log2 n. Note
that if u ∈ D(z,m(z, a)/2)c [recall the definition of D in (2.3)] and 0 ≤ s ≤ t are
such that B[s, t] ⊂ D(u,m(z, a)/100), then, for all n ≥ 2, we have the obvious
rough bound

| argz(B(s),B(t))| ≤ π

8
.(4.1)

We define T
f
z = inf{t ≥ 0 : | argz(B(t),B(T l

z ))| ≥ 3π/2, |B(t) − xl
z| ≤ 3n1/4 ×

log2 n}, x
f
z = B(T

f
z ), and �

f
z = inf{t ≥ T

f
z :B(t) ∈ ∂D

f
z }, where D

f
z = D(x

f
z ,

m(z, a)/100). The point x
f
z can be thought of as lying “across from” xl

z on
B[0, T l

z ] (see Figure 2). We first note that the definition of xl
z implies that the

connected random set Az = B[T f
z ,�

f
z ] contains x

f
z , intersects ∂D

f
z , and satis-

fies:

1. d(xl
z,Az) ≤ 3n1/4 log2(n).

2. For any t ∈ [T f
z ,�

f
z ], | argz(B(t),B(T l

z ))| > π .

FIG. 2. Lemma 4.1: T l
z is the first time at which z is “almost” disconnected from ∞.
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The second point is true because | argz(B(T
f
z ),B(T l

z ))| ≥ 3π/2 and in-

side D
f
z , argz(B(t)) does not vary by more than π

8 , by (4.1), since x
f
z ∈

D(z,m(z, a)/2)c.

If we let �l
z = inf{t ≥ T l

z :B(t) ∈ ∂D
f
z }, then

P(Tz − T l
z > na) ≤ P(B[T l

z , T l
z + na] ∩ Az = ∅)

≤ P(B[T l
z , T l

z + na] ∩ ∂Df
z = ∅)

+ P(B[T l
z ,�l

z] ∩ Az = ∅).

Therefore, using the fact that T l
z is a stopping time, we can combine the fact that

φ(n) = P(B[T l
z , T l

z + na] ∩ ∂Df
z = ∅) ≤ P

(
sup

0≤t≤na

|B(t) − B(0)| ≤ m(z, a)

)

decays rapidly (2.6) and the Beurling estimate (2.7) to obtain

P(Tz − T l
z > na) ≤ φ(n) + K

(
n1/4 log2 n

m(z, a)

)1/2

(4.2)
≤ Kn1/8m(z, a)−1/2 logn.

We now derive a second bound in the case where m(z, a) = |z − xl
z|. If we let

D̂ = D(xl
z, n

a/2/ logn), define �̂ = inf{t ≥ T l
z : B(t) ∈ D̂}, and use the definition

of Q̄ in (3.1), we find that since z ∈ D(xl
z, |z − xl

z|), there is a rapidly decaying
function φ such that

P(Tz − T l
z > na) ≤ P

(
z ∈ Q̄(B[T l

z , T l
z + na]))

≤ P
(
D(xl

z, |z − xl
z|) ∩ Q̄(B[T l

z , T l
z + na]) 
= ∅

)
≤ P

(
D(xl

z, |z − xl
z|) ∩ Q̄(B[T l

z , �̂]) 
= ∅
) + P(�̂ − T l

z > na)
(4.3)

≤ K

( |z − xl
z|

na/2/ logn

)1/4

+ φ(n)

≤ Kn−a/8|z − xl
z|1/4 log1/4 n,

by (2.6) and a scaled version of Lemma 3.1(a).
We can now conclude by noting that if m(z, a) = |z − xl

z| ≥ 300n1/4 log2 n, we
have two bounds to choose from and find from (4.2) and (4.3) that

P
(
Tz − T l

z > na;m(z, a) = |z − xl
z|

) ≤ Kn(1−2a)/24 logn.(4.4)

Also, if m(z, a) = na/2/ logn, (4.2) yields

P
(
Tz − T l

z > na;m(z, a) = na/2/ logn
) ≤ Kn(1−2a)/8 log3/2 n.(4.5)

Combining (4.4) and (4.5) gives the lemma. �
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There are obviously many times in the interval [0, n] at which new points be-
come disconnected from infinity by B . However, for any given point z ∈ Z

2, the
probability that z becomes disconnected from ∞ “late” in the interval [0, n] is
small.

LEMMA 4.2. There exists a constant K > 0 such that for any z ∈ Z
2, n ∈ N

and a > 1/2:

(a) P(Tz ∈ [n − na,n]) ≤ Kn(a−1)/3 log10/3 n,
(b) P(T l

z ∈ [n − na,n]) ≤ Kn(a−1)/3 log10/3 n,
(c) P(T̃z ∈ [n − na,n]) ≤ Kn(a−1)/3 log10/3 n,
(d) P(T̃ l

z ∈ [n − na,n]) ≤ Kn(a−1)/3 log10/3 n.

PROOF. We prove (b). The other cases use exactly the same ideas. For
w ∈ C, let D̂w = D̂w(a,n) := D(w,4na/2 log2 n) and recall the definitions made
in the proof of the previous lemma: T

f
z = inf{t ≥ 0 : | argz(B(t),B(T l

z ))| ≥
3π/2, |B(t)−xl

z| ≤ 3n1/4 log2 n}, xf
z = B(T

f
z ). Since a > 1/2, if xl

z ∈ D(w,na/2),

then x
f
z ∈ D̂w . Therefore, using Lemma 2.1,

P(T l
z ∈ [n − na,n])
≤ ∑

P
(
T l

z ∈ [n − na,n];xl
z ∈ D(w,na/2)

) + φ(n)(4.6)

= ∑
P

(
T l

z ∈ [n − na,n];xl
z ∈ D(w,na/2);xf

z ∈ D̂w

) + φ(n),

where the sum is over w ∈ (na/2 · Z
2) ∩ D(

√
n logn), φ decays rapidly and

na/2 · Z
2 = {(x, y) ∈ R

2 :x = kna/2, y = lna/2, k, l ∈ Z}.
The definition of T l

z implies that if a > 1/2, then

{T l
z ∈ [n − na,n];xl

z ∈ D(w,na/2);xf
z ∈ D̂w} ⊂ {z /∈ Q̄(B[0, T l

z ] ∪ D̂w)},(4.7)

where Q̄ is defined as in (3.1). (See Figure 3.) Define � = �w = inf{t ≥ 0 :B(t) ∈
D̂w}, 
 = 
z,w = inf{t ≥ � : |B(t) − w| = |z − w|}, and 
l = 
l

z,w = sup{t ≤
T l

z : |B(t) − w| = |z − w|}. The event

{z /∈ Q̄(B[0, T l
z ] ∪ D̂w)} ∩ {Q̄(B[�,
] ∪ B[
l, T l

z ]) ∩ D̂w = ∅}
is contained in

{z /∈ Q̄(B[0, T l
z ] ∪ D̂w)} ∩ {Q̄(B[0, T l

z ]) ∩ D̂w = ∅} ⊂ {z /∈ Q̄(B[0, T l
z ])}.

But the continuity of the Brownian path implies that T l
z < Tz, so this last event

is the empty set. It follows from (4.7) that with the definition Az,w = Az,w(n) =
{xl

z ∈ D(w,na/2);xf
z ∈ D̂w},

{T l
z ∈ [n − na,n];Az,w} ⊂ {Q̄(B[�,
] ∪ B[
l, T l

z ]) ∩ D̂w 
= ∅;Az,w}.
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FIG. 3. Lemma 4.2: B[0, T l
z ] ∪ D̂ disconnects z from infinity. The portion of the Brownian path

inside D(w, |z − w|) cannot disconnect D̂ from infinity.

Therefore, (4.6) becomes

P(T l
z ∈ [n − na,n])
≤ ∑

P
({Q̄(B[�,
] ∪ B[
l, T l

z ]) ∩ D̂w 
= ∅};Az,w

) + φ(n).

The two events in this last probability are not independent, but, exactly as in Propo-
sition 3.1, we can write the probability of their intersection as the product of their
probabilities, up to a logarithmic correction term. Noting that B[�,
] and the
time-reversal of B[
l, T l

z ] are two independent Brownian paths from the inside
of D̂w to D(w, |z − w|) and that by the local central limit theorem (see [3]),
P(xl

z ∈ D(w,na/2);T l
z ≥ n − na) ≤ Kna−1, where K is uniform for all a > 1/2,

we can use Lemma 3.2 to find that

P(T l
z ∈ [n − na,n]) ≤ K

∑( |z − w|
na/2 log3 n

)−2/3

na−1,

where the sum is over w ∈ (na/2 ·Z2)∩D(
√

n logn). This can easily be seen to be
bounded above by Kn(a−1)/3 log10/3 n. �

Lemma 4.3 shows that if B and S are coupled as in Proposition 2.1 the chance
that Cn(z) is finite while C̃n(z) is infinite is small when z is not too close to the
boundary of Cn(z). The condition for z to be away from the boundary of Cn(z) is
essential, since otherwise, we have no control over the probability that the Brown-
ian path passes on one “side” of z and the random walk on the other. To avoid
this, we will choose z to be at a distance from ∂Cn(z) which is greater than the
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maximal distance between the coupled random walk and Brownian motion, that
is, n1/4 log2 n. We define for z ∈ C the events

B(z) = {d(z, ∂Cn(z)) ≥ 100n1/4 log2 n},
(4.8)

B̃(z) = {d(z, ∂C̃n(z)) ≥ 100n1/4 log2 n},
for which the dependence on n should be noted but will not be written explicitly
in order to keep the notation simple. As always d(·, ·) denotes Euclidean distance.
We also define

P = Pn =
{

sup
0≤t≤n

|B(t) − S(2t)| ≤ n1/4 log2 n

}
,

the condition that B and S are close to each other as in the Skorokhod embedding.
By (2.1) P(P c

n ) decays rapidly.

LEMMA 4.3. There exists a constant K > 0 such that for every z ∈ Z
2 and

n ∈ N:

(a) P({|Cn(z)| < ∞;|C̃n(z)| = ∞};B(z);P ) ≤ Kn−1/30 log10/3 n.
(b) P({|C̃n(z)| < ∞;|Cn(z)| = ∞}; B̃(z);P ) ≤ Kn−1/30 log10/3 n.

PROOF (See Figure 4). (a) The idea of the proof is that on the event B(z),
at the instant z is disconnected from infinity by B , T̃ l

z , the last call for z by S

has already occurred. At that instant, either the time is very close to n, which is
unlikely by Lemma 4.2(a), or the random walk has plenty of time to disconnect z

from infinity and will do it with high probability by Lemma 4.1(b).
We use the fact that for n large enough, B(z) ∩ P ⊂ {T̃ l

z ≤ Tz}, which follows
from an argument similar to the one we used at the beginning of the proof of
Lemma 4.1: By definition of Tz, there is a time T ≤ Tz such that B(T ) = B(Tz) and

FIG. 4. Proof of Lemma 4.3: when Brownian motion disconnects z from ∞, random walk is close
to doing so as well.
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| argz(B(T ),B(Tz))| ≥ 2π . The conditions B(z) and P ensure that | argz(B(T ))−
argz(S(2T ))| ≤ π

8 and | argz(B(Tz)) − argz(S(2Tz))| ≤ π
8 , so that

| argz(S(2T ), S(2Tz))| ≥ 3π

2
.(4.9)

Also, the condition P guarantees that |S(2T )−B(T )| ≤ n1/4 log2 n and |S(2Tz)−
B(Tz)| ≤ n1/4 log2 n, which implies

|S(2T ) − S(2Tz)| ≤ 2n1/4 log2 n.(4.10)

From the definition of T̃ l
z , (4.9) and (4.10), it is now clear that T̃ l

z ≤ Tz. Therefore,
we have, for any z ∈ C and n large enough,

P
({|Cn(z)| < ∞;|C̃n(z)| = ∞};B(z);P )

≤ P
(|C̃n(z)| = ∞; T̃ l

z < n − n9/10) + P(Tz ∈ [n − n9/10, n])
≤ P(T̃z − T̃ l

z > n9/10) + P(Tz ∈ [n − n9/10, n])
≤ Kn−1/30 logn + Kn−1/30 log10/3 n ≤ Kn−1/30 log10/3 n

by Lemmas 4.1(b) and 4.2(a). Part (b) is done in the same way, but we use Lemmas
4.1(a) and 4.2(c). �

The next two preparatory lemmas give estimates similar to those in Lemmas
4.1 and 4.2, and will be used to prove Lemma 4.6, where we show that for points
y and z that are neither too close to the boundary of Cn(z) nor to each other, it is
unlikely that y /∈ C̃n(z) if y ∈ Cn(z).

We introduce stopping times reminiscent of those defined at the beginning of
this section but which are concerned with the time at which points y and z first lie
(or “almost” lie) in different components of the complement of the Brownian or
random walk path. If y, z ∈ C,

Ty,z = inf{t ≥ 0 :∃0 ≤ s ≤ t with B(s) = B(t),

| argy(B(s),B(t))| 
= | argz(B(s),B(t))|},
T̃y,z = inf{t ≥ 0 :∃0 ≤ r ≤ t with S(r) = S(t),

| argy(S(r), S(t))| 
= | argz(S(r), S(t))|},
T l

y,z = T l
y,z(n) = inf{t ≥ 0 :∃0 ≤ s ≤ t with d(B(s),B(t)) ≤ 3n1/4 log2(n),

| argy(B(s),B(t)) − argz(B(s),B(t))| ≥ 3π/2},
T̃ l

y,z = T̃ l
y,z(n) = inf{t ≥ 0 :∃0 ≤ r ≤ t with d(S(r), S(t)) ≤ 3n1/4 log2(n),

| argy(B(s),B(t)) − argz(B(s),B(t))| ≥ 3π/2}.
We now give the analogues of Lemmas 4.1 and 4.2 for the quantities we just

defined. As the arguments are the same, we only indicate which modifications
from the proofs of Lemmas 4.1 and 4.2 are needed.
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LEMMA 4.4. There exists a constant K > 0 such that for any y, z ∈ Z
2, any

n ≥ 1 and any a > 1/2:

(a) P(Ty,z − T l
y,z > na) ≤ K(n(1−2a)/24 logn + |y − z|−1/6n1/24 logn).

(b) P(T̃y,z − T̃ l
y,z > na) ≤ K(n(1−2a)/24 logn + |y − z|−1/6n1/24 logn).

PROOF. The proof is essentially the same as that of Lemma 4.1. The only
difference is that we need to take into account the relative positions of y

and xl
y,z, as well as those of z and xl

y,z. We define m(y, z, a) = min{|z −
xl
y,z|, |y − xl

y,z|, na/2/ logn}. By symmetry, we can assume |z − xl
y,z| ≤ |y − xl

y,z|.
We then find that if m(y, z, a) ≥ 100n1/4 log2 n, then P(Ty,z − T l

y,z > na) ≤
Kn1/8(m(y, z, a))−1/2 logn and if m(y, z, a) = |z − xl

y,z|, then

P(Ty,z − T l
y,z > na) ≤ K

( |z − xl
y,z|

min{|y − xl
y,z|, na/2/ logn}

)1/4

.

Looking separately at the cases |y − xl
y,z| ≤ na/2/ logn and na/2/ logn ≤ |y −

xl
y,z|, we find that

P(Ty,z − T l
y,z > na) ≤ K

(
n(1−2a)/24 logn + |y − xl

y,z|−1/6n1/24 logn
)
.

Since we assumed that |z − xl
y,z| ≤ |y − xl

y,z|, we have |y − xl
y,z| ≥ |y − z|/2,

which concludes the proof. �

LEMMA 4.5. There exists a constant K > 0 such that for any y, z ∈ Z
2, n ∈ N

and a > 1/2:

(a) P(Ty,z ∈ [n − na,n]) ≤ Kn(a−1)/3 log11/3 n,
(b) P(T l

y,z ∈ [n − na,n]) ≤ Kn(a−1)/3 log11/3 n,

(c) P(T̃y,z ∈ [n − na,n]) ≤ Kn(a−1)/3 log11/3 n,
(d) P(T̃ l

y,z ∈ [n − na,n]) ≤ Kn(a−1)/3 log11/3 n.

PROOF. The proof is virtually the same as that of Lemma 4.2 except the defi-
nitions of 
 and 
l must now be 
 = 
y,z,w = inf{t ≥ �w : |B(t)−w| = min{|z−
w|, |y −w|}}, and 
l = 
l

y,z,w = sup{t ≤ T l
z : |B(t)−w| = min{|z−w|, |y −w|}}.

�

Recall the definitions made in (4.8).

LEMMA 4.6. For any given y, z ∈ Z
2:

(a) P
({y ∈ Cn(z) \ C̃n(z)};B(z);B(y);P )

≤ K max{n−1/30 log2 n, |y − z|−1/6n1/24 logn}.
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(b) P
({y ∈ C̃n(z) \ Cn(z)}; B̃(z); B̃(y);P )

≤ K max{n−1/30 log2 n, |y − z|−1/6n1/24 logn}.
PROOF. (a) Note that y and z lie in different components of C \ B[0, t] if and

only if t ≥ Ty,z. Exactly as in Lemma 4.3, {B(z);B(y);P } ⊂ {T l
y,z ≤ T̃y,z}, and

so, for a > 1/2,

P
({y ∈ Cn(z) \ C̃n(z)};B(z);B(y);P )

≤ P
(
y ∈ Cn(z);T l

y,z < n − na) + P(T̃y,z ∈ [n − na,n]).
The result now follows from Lemmas 4.4(a) and 4.5(c).

The proof of (b) is the same but uses Lemmas 4.4(b) and 4.5(a). �

We are now ready to attack the core of the argument. The following proposition
shows that under the coupling, if Cn(z) and C̃n(z) are both finite, one of them
is “large enough,” and z is not too close to their boundaries, then the difference
between the areas of Cn(z) and C̃n(z) is usually small, relatively to these areas.
We define

�(z) = ∣∣|Cn(z)| − |C̃n(z)|
∣∣,

the difference in area between the Brownian motion and random walk hole con-
taining a given point z ∈ Z

2 and

E(z) = {|Cn(z)| < ∞;|C̃n(z)| < ∞},
the condition that both the Brownian and random walk components containing z

are finite. Recall that P = {sup0≤t≤n |B(t) − S(2t)| ≤ n1/4 log2 n} and B(z) =
{d(z, ∂Cn(z)) ≥ 100n1/4 log2 n}.

PROPOSITION 4.1. For every K1 > 0, there exists a constant K2 > 0 such
that for any z ∈ C, n ∈ N and 0 < b < 1/30,

P
({�(z) ≥ K1n

1−b};B(z);E(z);P ) ≤ K2n
b−1/30 log4 n.

PROOF. We will prove the proposition under the additional assumption that

N =
{

sup
0≤t≤n

|B(t)| ≤ √
n logn

}

is satisfied, which will suffice since P(N c) decays rapidly by Lemma 2.1. We will
use the abbreviation

G = G(z, n) := B(z) ∩ E(z) ∩ P ∩ N

and show that

E[�(z);G] ≤ Kn1−1/30 log4 n.



114 C. BENEŠ

Once we have this, the proposition follows from Chebyshev’s inequality. Note that

�(z) ≤ #{y ∈ Z
2 : Sq(y) ∩ ∂Cn(z) 
= ∅}

+ #{y ∈ Z
2 : Sq(y) ∩ ∂C̃n(z) 
= ∅}

(4.11)
+ #{y ∈ Z

2 :y ∈ Cn(z) \ C̃n(z)}
+ #{y ∈ Z

2 :y ∈ C̃n(z) \ Cn(z)}.
The first two terms on the right-hand side are related to the Hausdorff dimension
of the Brownian frontier and were dealt with in Section 3. If we modify (4.11)
slightly and “thicken” the boundary, it follows from Proposition 3.1 that

E[�(z);G] ≤ E[#{y ∈ Z
2 :d(y, ∂Cn(z)) ≤ 100n1/4 log2 n}]

+ E[#{y ∈ Z
2 :d(y, ∂C̃n(z)) ≤ 100n1/4 log2 n}]

+ E

[ ∑
y∈Z2

1{y ∈ Cn(z) \ C̃n(z);G;B(y)}
(4.12)

+ 1{y ∈ C̃n(z) \ Cn(z);G; B̃(y)}
]

≤ Kn11/12(logn)17/3 + ∑
y∈Z2

P
({y ∈ Cn(z) \ C̃n(z)};G;B(y)

)

+ ∑
y∈Z2

P
({y ∈ C̃n(z) \ Cn(z)};G; B̃(y)

)
.

By Lemma 4.6(a) and the definition of G,∑
y∈Z2

P{y ∈ Cn(z) \ C̃n(z);G;B(y)}

≤ ∑
y∈D(

√
n logn)∩Z2

P
({y ∈ Cn(z) \ C̃n(z)};B(z);B(y);P )

≤ K
∑

|y|≤n1/4

1 + ∑
n1/4≤|y|≤n9/20

n1/24|y|−1/6 logn

+ ∑
n9/20≤|y|≤n1/2 logn

n−1/30 log2 n

≤ Kn1−1/30 log4 n,

and the same bound holds for the second sum in (4.12). Thus,

E[�(z);G] ≤ Kn11/12(logn)17/3 + Kn1−1/30 log4 n ≤ Kn1−1/30 log4 n. �
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5. Main results.

PROPOSITION 5.1. There exists a probability space (�,F ,P) containing a
planar simple random walk S and a planar standard Brownian motion B such that,
if for δ ∈ R,

Nn(δ) = #{connected components of C \ B[0, n] of area ≥ n1−δ},
Ñn(δ) = #{connected components of C \ S[0,2n] of area ≥ n1−δ},
N̂n(δ) = #{connected components of Z

2 \ S[0,2n] of cardinality ≥ n1−δ},
then for every ε > 0, every 0 < δ < 1/60,

P
(|Ñn(δ) − Nn(δ)| > εNn(δ)

) → 0 as n → ∞(5.1)

and

P
(|N̂n(δ) − Nn(δ)| > εNn(δ)

) → 0 as n → ∞.(5.2)

REMARK. We will only prove (5.1), as the proof of (5.2) is virtually the same.
The reason why the same proof works is that what would cause the random walk
hole containing a point z to have an area that is substantially different from the
lattice area of the random walk lattice hole containing that point is their boundary
behavior and that boundary effect is eliminated in Proposition 4.1 using the work
done in Section 3.

Before proving (5.1), we introduce the notation used in this section, as well
as the extensions of [10] which are essential to our proof. Although most of the
quantities we are about to define depend on δ, we will usually let this dependence
be implicit to keep the notation as light as possible:

N[a,b) = N[a,b)(n) = #{conn. components of C \ B[0, n] with area in [a, b)},
Ñ[a,b) = #{conn. components of C \ S[0,2n] with area in [a, b)},

In = In(δ) = [n1−δ,∞), Nn(δ) = NIn, Ñn(δ) = ÑIn .

We let

c = c(ε) = 1 + ε

and define for all j ≥ −1,

IR
j,n = [

n1−δcj+1(1 + ε2)−1, n1−δcj+1)
,

for all j ≥ 0,

Ij,n = [n1−δcj , n1−δcj+1), IL
j,n = [

n1−δcj , n1−δcj (1 + ε2)
)
,

I−
j,n = Ij,n \ (IL

j,n ∪ IR
j,n), I+

j,n = Ij,n ∪ IR
j−1 ∪ IL

j+1.
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FIG. 5. The intervals needed in the proof of Proposition 5.1.

See Figures 5 and 6. The number of components in the corresponding intervals
will be

Nj,n = NIj,n
, Ñj,n = ÑIj,n

,
(5.3)

NL
j,n = NIL

j,n
, NR

j,n = NIR
j,n

, N±
j,n = NI±

j,n
.

We let

Z±
j,n = the set of all components of C \ B[0, n] with area in I±

j,n,

Z̃j,n = the set of all components of C \ S[0,2n] with area in Ij,n,

Zj,n = the set of all components of C \ B[0, n]with area in Ij,n.

The details on the results which we state now and which follow from [10], can
be found in the Appendix. If we let

γn = γn(δ) = 2πnδ

log2(nδ)
,

then for every K > 0,

P
(|Nn(δ) − γn| ≥ Kγn

) → 0 as n → ∞.(5.4)

In particular, for every δ > 0,K1 < 1 < K2,

lim
n→∞ P

(
Nn(δ) < K1γn

) = 0 and lim
n→∞ P

(
Nn(δ) > K2γn

) = 0.(5.5)

We define

γj,n = 2πnδ log c

cj log2 cj /(πnδ)
, γ LR

j,n = 2πnδ log(1 + ε2)

cj log2 cj /(πnδ)
,

(5.6)

γ −
j,n = 2πnδ log c/(1 + ε2)2

cj log2 cj /(πnδ)
,

and point out that for every δ > 0, there exists a K = K(δ) > 0 such that for all

FIG. 6. Splitting [n1−δ,∞) into small finite intervals.
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n ≥ 1, ε > 0 and 0 ≤ j ≤ [ δ logn
2 log c

],
|γ LR

j,n − εγ −
j,n| ≤ Kε2γ −

j,n.(5.7)

Then (A.5) and (A.6) imply that for every K1 > 0 and δ > 0, there is a constant
K2 = K2(K1, δ) > 0 such that for all n large enough, ε > 0 small enough, and all
0 ≤ j ≤ [ δ logn

2 log c
],

P(|Nj,n − γj,n| ≥ K1γj,n) ≤ K2 log−3/2 n,(5.8)

and the same inequality holds if we replace the pair (Nj,n, γj,n) by (NL
j,n, γ

LR
j,n ),

(NR
j,n, γ

LR
j,n ), or (N−

j,n, γ
−
j,n). We are now ready to prove the proposition:

PROOF OF PROPOSITION 5.1. We will show that for all 0 < δ < 1/60 and
ε > 0,

P
(|Ñn(δ) − Nn(δ)| > 11εNn(δ)

) → 0 as n → ∞.

We first note that “most” of the Brownian holes of area greater than n1−δ have an
area which is “close to” n1−δ . For instance, as can be seen from (5.4), the num-
ber of holes for B with area in the interval [n1−δ, n1−δ/2] is typically of greater
order of magnitude than the number of Brownian holes with area in the inter-
val [n1−δ/2,∞). Recall that c = 1 + ε. If we let m = m(n, ε, δ) = [ δ logn

2 log c
], then

n1−δcm ≤ n1−δ/2 ≤ n1−δcm+1 and so

P
(|Ñn(δ) − Nn(δ)| > 11εNn(δ)

)
≤ P

(∣∣Ñ[n1−δ,n1−δcm) − N[n1−δ,n1−δcm)

∣∣ > 10εNn(δ)
)

(5.9)

+ P
(∣∣Ñ[n1−δcm,∞) − N[n1−δcm,∞)

∣∣ > εNn(δ)
)
.

The last term of (5.9) goes to 0 as n goes to ∞. Indeed, if |Ñ[n1−δcm,∞) −
N[n1−δcm,∞)| > εNn(δ), then either Ñ[n1−δcm,∞) > εNn(δ) or N[n1−δcm,∞) >

εNn(δ). We also know from (5.5) that P(Nn(δ) ≤ 2nδ

log2 nδ
) = o(1). By observing

that if N[n1−δcm,∞) > ε 2nδ

log2 nδ
, the total area enclosed by B is greater than ε 2n1+δ/2

log2 nδ
,

and that the same holds for S, we can conclude that

P
(∣∣Ñ[n1−δcm,∞) − N[n1−δcm,∞)

∣∣ > εNn(δ)
)

≤ P

(
sup

0≤t≤n

|B(t)| ≥ ε
2n(1+δ/2)/2
√

π lognδ

)

+ P

(
sup

0≤t≤n

|S(2t)| ≥ ε
2n(1+δ/2)/2
√

π lognδ

)
+ o(1) → 0 as n → ∞,
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by (2.4) and (2.5). It now suffices to show that

lim
n→∞P

(∣∣Ñ[n1−δ,n1−δcm) − N[n1−δ,n1−δcm)

∣∣ > 10εNn(δ)
) = 0.

Observe that

P
(∣∣Ñ[n1−δ,n1−δcm) − N[n1−δ,n1−δcm)

∣∣ > 10εNn(δ)
)

≤ P

(
m−1∑
j=0

|Ñj,n − Nj,n| > 10ε

m−1∑
j=0

Nj,n

)

≤
m−1∑
j=0

P(|Ñj,n − Nj,n| > 10εNj,n).

Because of the definition of m, it now suffices to prove that for every ε > 0,0 <

δ < 1
60 , there is a K > 0 such that for all 0 ≤ j ≤ m − 1,

P(|Ñj,n − Nj,n| > 10εNj,n) ≤ Kψ(n),(5.10)

where ψ(n) = o(log−1 n). Recall that we defined

Z̃j,n = {connected components of C \ S[0,2n] with area in Ij,n},
Zj,n = {connected components of C \ B[0, n] with area in Ij,n}.

Unfortunately, we cannot use Proposition 4.1 to show (5.10) quite yet. The prob-
lem is that the fact that |Ñj,n − Nj,n| > 10εNj,n does not imply anything about
||Zj,n| − |Z̃j,n|| and so estimates about the latter cannot be used to show (5.10).
To make things work, we need the interval containing the areas of random walk
holes to be strictly included in the interval containing the areas of Brownian motion
holes (or vice versa). The key in creating such a situation is to observe that

P(|Ñj,n − Nj,n| > 10εNj,n)

≤ P
(
Ñj,n ≤ (1 − 2ε)N−

j,n

) + P
(
Ñj,n ≥ (1 + 2ε)N+

j,n

)
(5.11)

+ P(NL
j,n ≥ 4εN−

j,n) + P(NR
j,n ≥ 4εN−

j,n)

+ P(NL
j+1 ≥ 7/2εNj,n) + P(NR

j−1 ≥ 7/2εNj,n).

In words, if Ñj,n is much greater than Nj,n, then either it is somewhat greater than
N+

j,n, or there are many Brownian holes with area in I+
j,n \ Ij,n. This scheme will

work because we have defined I+
j,n in such a way that the Lebesgue measure of

I+
j,n \ Ij,n is of a smaller order of magnitude than the Lebesgue measure of Ij,n.

P{NL
j,n ≥ 4εN−

j,n}
≤ P

(
NL

j,n ≥ 4εN−
j,n;NL

j,n ≤ 3
2γ LR

j,n ;N−
j,n ≥ 1

2γ −
j,n

)
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+ P
(
NL

j,n ≥ 3
2γ LR

j,n

) + P
(
N−

j,n ≤ 1
2γ −

j,n

)
≤ 1

{3
2γ LR

j,n ≥ 2εγ −
j,n

} + P
(
NL

j,n ≥ 3
2γ LR

j,n

) + P
(
N−

j,n ≤ 1
2γ −

j,n

)
.

We know from (5.7) that if ε is small enough, 3
2γ LR

j,n ≤ 2εγ −
j,n, so the first term

is 0. The second and the third are O((logn)−3/2), uniformly for 0 ≤ j ≤ m− 1, by
(5.8), and the last three terms of (5.11) can be bounded in the same way. Therefore,

P(|Ñj,n − Nj,n| > 10εNj,n)

≤ P
(
Ñj,n ≤ (1 − 2ε)N−

j,n

)
(5.12)

+ P
(
Ñj,n ≥ (1 + 2ε)N+

j,n

) + O((logn)−3/2).

We define

�+
j = |Z̃j,n| − |Z+

j,n|, �−
j = |Z−

j,n| − |Z̃j,n|.
To bound the first term on the right-hand side of (5.12), note that

|Z−
j,n| ≥ N−

j,nc
jn1−δ(1 + ε2) and |Z̃j,n| ≤ Ñj,nc

j+1n1−δ,

so that if Ñj,n ≤ (1 − 2ε)N−
j,n, then

�−
j ≥ N−

j,nn
1−δcj [1 + ε2 − (1 − 2ε)c] = N−

j,nn
1−δcj (ε + 3ε2).

Since N−
j,n ∈ N and we know from (5.8) that P(N−

j,n = 0) ≤ K(logn)−3/2, we
see that

P
(
Ñj,n ≤ (1 − 2ε)N−

j,n;�−
j ≤ εn1−δ) ≤ K(logn)−3/2.(5.13)

The obvious inequality |A|− |B| ≤ |A\B| for sets A,B ∈ C and (5.13) imply that

P
(
Ñj,n ≤ (1 − 2ε)N−

j,n

) ≤ P(|Z−
j,n \ Z̃j,n| ≥ εn1−δ) + O((logn)−3/2).

But

Z−
j,n \ Z̃j,n ⊂ ⋃

Sq(z),

where the union is over the union of {z ∈ Z
2 :d(z, ∂Z−

j,n) ≤ 100n1/4 log2 n} and

{z ∈ Z
2 : |Cn(z)| ∈ I−

j,n; |C̃n(z)| /∈ Ij,n;d(z, ∂Z−
j,n) ≥ 100n1/4 log2 n}. We can now

combine the different pieces of our work and write

E[|Z−
j,n \ Z̃j,n|;P ;N ]

≤ E

[ ∑
|z|≤√

n logn

1{d(z, ∂Z−
j,n) ≤ 100n1/4 log2 n}

]

+ ∑
|z|≤√

n logn

P
({|Cn(z)| ∈ I−

j,n; |C̃n(z)| /∈ Ij,n};B(z);P )
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≤ Kn(33+δ)/36 log14/3 n + ∑
|z|≤√

n logn

P
({�(z) ≥ ε2n1−δ};B(z);E(z);P )

+ ∑
|z|≤√

n logn

P
({|Cn(z)| ∈ I−

j,n; |C̃n(z)| = ∞};B(z);P )

≤ K(n11/12+δ/36 log14/3 n + n1+δ−1/30 log6 n + n1−1/30 log16/3 n)

≤ Kn1+δ−1/30 log6 n,

by Propositions 3.2 and 4.1 and Lemma 4.3. The sums are over elements of Z
2 and

the constant K may depend on ε. Therefore,

P(|Z−
j,n \ Z̃j,n| ≥ εn1−δ)

≤ P({|Z−
j,n \ Z̃j,n| ≥ εn1−δ};P ;N ) + P(P c) + P(N c)

≤ Kn1+δ−1/30 log6 n/εn1−δ + Kn1−b logn + Kn− logn/2

≤ (K/ε)n2δ−1/30 log6 n.

For every ε > 0 and 0 < δ < 1/60, this decays faster than (logn)−3/2. The second
term of (5.12) is bounded in the same way. It now suffices to look back at (5.10) to
see that the proof is complete. �

Given this proposition, the proof of Theorem 1.1 is straightforward:

P
(|Ñn(δ) − 2πγn| > εγn

)
≤ P

(
|Ñn(δ) − Nn(δ)| > ε

2
γn

)
+ P

(
|Nn(δ) − 2πγn| > ε

2
γn

)

≤ P

(
|Ñn(δ) − Nn(δ)| > ε

4
Nn(δ)

)
+ P

(
γn < Nn(δ)/2

)

+ P

(
|Nn(δ) − 2πγn| > ε

2
γn

)
.

From Proposition 5.1, (5.5) and (5.4), we know that for every ε > 0, every 0 <

δ < 1/60, each of the 3 terms goes to 0 as n goes to infinity. The same holds if we
replace Ñn(δ) by N̂ , which concludes the proof of the theorem.

REMARK. The statement of Theorem 1.1 can be written in the following
equivalent form: If A(n) = n1−δ,0 < δ ≤ δ0, then with the notation defined
in (1.2),

log2(n/A(n))

n/A(n)
Hn(A(n))

P→ 2π as n → ∞,(5.14)

log2(n/A(n))

n/A(n)
Ln(A(n))

P→ 2π as n → ∞.(5.15)
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A closer look at the proof shows that in fact, (5.14) and (5.15) hold for arbitrary
A(n), as long as n1−δ0 ≤ A(n) and A(n) = o(n). A straightforward consequence
of this and Lemma 2.1 is that if n1−δ0 ≤ A(n) and A(n) = o(n), then

log E[Hn(A(n))] ∼ log
(
n/A(n)

)
and

log E[Ln(A(n))] ∼ log
(
n/A(n)

)
.

6. Small holes. Our interest in this problem was spurred by the observation
by Mandelbrot (see [11]), based on computer simulations, that while the number of
random walk holes and the number of large lattice holes are governed by a power
function with exponent 2, the exponent for small lattice holes is 5/3.

The remark at the end of Section 5 shows that if A(n) ≥ n1−δ and A(n) =
o(n), then log E[Ln(A(n))] ∼ log(nA(n)−ξ/2), with ξ = 2. The number ξ is what
Mandelbrot calls the exponent.

A formal definition can be made as follows: Given a sequence of intervals
{In}n∈N, a sequence of functions {fn} : In → R has exponent ξ over the intervals
Jn ⊂ In if for any two sequences {A(n)}n∈N, {A′(n)}n∈N with A(n),A′(n) ∈ Jn,

log
(
fn(A(n))/fn(A

′(n))
) ∼ −ξ

2
log

(
A(n)/A′(n)

)
.(6.1)

With the notation above, Mandelbrot’s observation can be described as follows:
There exist sequences A0,A1, and A2 with logA2(n) ∼ logn, such that:

• E[Ln(·)] has exponent 5/3 over [1,A0(n)].
• E[Ln(·)] has exponent strictly between 5/3 and 2 over [A0(n),A1(n)].
• E[Ln(·)] has exponent 2 over [A1(n),A2(n)].
As mentioned above, Theorem 1.1 implies that there is a δ0 > 0 such that the
third point is true with A1(n) = n1−δ0 and any A2(n) satisfying A2(n) = o(n),
logA2(n) ∼ logn, and the same holds if E[Ln(·)] is replaced by E[Hn(·)].

It turns out we can say much more about A1 if the situation is exactly as de-
scribed above in the three points. Assuming that situation, it is easy to see that if
A1(n) = nε for some ε > 0, then limn→∞ log E[Ln(1)]/ logn < 1 [see Figure 7
and recall that Ln(1) is the number of lattice holes of lattice area ≥ 1]. We will
see in the lemma below that in fact, log E[Ln(1)] ∼ logn, thus showing that in the
situation described above, A1(n) would necessarily grow more slowly than any
power function. This would imply that logA1(n) = o(logn), so that the region in
Figure 7 over which the exponent 5/3 may be observed would become a smaller
and smaller fraction of the domain of logE[Ln(·)], as n → ∞. The same is true if
we replace E[Ln(·)] by E[Hn(·)].

We devote the remainder of this section to proving that log E[Ln(1)] ∼ logn

and log E[Hn(1)] ∼ logn, and conclude by stating a conjecture based on Mandel-
brot’s picture and the results derived in this paper.
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FIG. 7. Two regimes. The log–log plot yields a slope of −1 for large holes and −5/6 for small
holes, corresponding to exponents of 2 and 5/3, respectively.

We say that two (lattice) holes made by S[0,2n], H and H ′, are equivalent if
there exists a z ∈ Z

2 such that H ′ = H + z. We choose a representative H for
each equivalence class by requesting that the first point of ∂H in the lexicographic
order be the origin and call the set of these representatives R1 for holes and R2 for
lattice holes. Given a representative H and a point z ∈ Z

2, we define Hz := H + z.
We will write H̄z = Hz ∪ ∂Hz and τz(H) = inf{k ≥ 0 :S(k) ∈ H̄z}. For each H in
R1 or R2, we define NH = #{z ∈ Z

2 : Hz is a (lattice) hole made by S[0,2n]}.

LEMMA 6.1. For any given hole H ∈ R1 or lattice hole H ∈ R2, there exists
a K > 0 such that for all n ≥ 1,

E[NH ] ≥ K
n

log2 n
.

PROOF. We give the proof for H ∈ R1. The case where H ∈ R2 is done in the
same way. Suppose the boundary of H is composed of 2k line segments of length
1 and that n ≥ 8k. Then E[NH ] is equal to

∑
z∈Z2

P(Hz is a hole for S[0,2n])

= ∑
z∈Z2

2n−2k∑
l=0

P
(
Hz is a hole for S[0,2n]; τz(H) = l

)

≥ ∑
z∈Z2

[3n/2]∑
l=[n/2]

P
(
S[0, l − 1] ∩ H̄z = ∅;

S[l, l + 2k] = ∂Hz;S[l + 2k,2n] ∩ Hz = ∅
)
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≥ K min
w∈∂H∩Z2

P
w(

S
[
1, [3n/2]] ∩ H̄ = ∅

)
n

× min
w∈∂H∩Z2

P
w(

S
[
0, [3n/2]] ∩ H = ∅

)
,

where the last inequality is obtained from the Markov property, by considering the
time reversal of S[0, l − 1], and by translation invariance of simple random walk.
The fact that for any hole H and w /∈ H , there is a K > 0 such that P

w(S[0, n] ∩
H = ∅) ∼ K/ logn, which follows from Lemma 2.3.1 in [3], concludes the proof.

�

COROLLARY 6.1.

log E[Hn(1)] ∼ logn and log E[Ln(1)] ∼ logn.

PROOF. This follows immediately from Lemma 6.1 and the fact that there ex-
ists a constant K > 0 such that E[Hn(1)] ≤ Kn log4 n and E[Ln(1)] ≤ Kn log4 n,
which is a direct consequence of Lemma 2.1. �

We now summarize what we believe should be the global picture, based on the
work presented in this paper and our understanding of Mandelbrot’s observation:
The exponent for the expected number of (lattice) holes is 2, except for the case
of small lattice holes, for which the exponent is 5/3. The exponent 5/3, however,
only holds for lattice holes whose lattice areas grow more slowly than any power
function.

CONJECTURE. There exist nondecreasing sequences A0,A1 and A2, with 1 <

A0(n) < A1(n) < A2(n), where A1(n) = o(logn) and logA2(n) ∼ logn, such that

log
(

E[Hn(A(n))]
E[Hn(A′(n))]

)
∼ −ξ

2
log

(
A(n)

A′(n)

)

and

log
(

E[Ln(A(n))]
E[Ln(A′(n))]

)
∼ −η

2

(
A(n)

A′(n)

)
,

with:

• ξ = 2 if 1 ≤ A(n),A′(n) ≤ A2(n),
• η = 2 if A1(n) ≤ A(n),A′(n) ≤ A2(n),
• η = 5

3 if 1 ≤ A(n),A′(n) ≤ A0(n).
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APPENDIX: FROM SMALL TO LARGE BROWNIAN HOLES

In [10], estimates for the expectation and the variance of |Uη|, the area of Uη,
are derived, where

Uη = {y ∈ C :π(λη)2 ≤ |C1(y)| ≤ πη2},
λ < 1, and C1(y) is defined as in (2.2). In particular, it is shown that the variance is
of smaller order of magnitude than the second moment. The two estimates which
are relevant to us are the following:

1.

E[|Uη|] = π | logλ|
| logη|2

(
1 + O

(
log | logη|
| logη|1/2

))
,(A.2)

where O(·) is for η → 0, but the implied constant may depend on λ.
2. There exists a constant K > 0 such that for every η ∈ (0,1/4),

Var(|Uη|) ≤ K| logη|−11/2.(A.3)

If we let Aζ = {y ∈ C : ζn ≤ |Cn(y)| ≤ cζn}, where c = 1 + ε > 1, then the
scaling property of Brownian motion allow us to deduce the following from (A.2)
and (A.3):

E[|Aζ |] = 2πn log c

log2(cζ/π)

(
1 + O

(
log | log(cζ )|
| log(cζ )|1/2

))
,

where O(·) is for ζ → 0, but the implied constant may depend on c,

Var(|Aζ |) ≤ Kn2| log(cζ )|−11/2,(A.4)

for all ζ with cζ ∈ (0, π/16).
We can now easily translate these facts into results about the number of com-

ponents of area lying in a certain interval, rather than the total area covered by
these components. This just requires dividing the total area by the area of a single
component. Since for y ∈ Aζ , |Cn(y)| can take any value in [ζn, cζn], we have an
additional error term.

If δ > 0 and m = [ δ logn
2 log c

], then for every j ≤ m − 1, components of area in

Ij,n [see (1.5)] have area less than n1−δ/2 ≤ π
16n, so we can use (A.4). With the

definitions of (5.3) and (5.6), we have for 0 ≤ j ≤ m − 1,

E[Nj,n] = γj,n

(
1 − rε + O

(
log | log(cjn−δ)|
| log(cjn−δ)|1/2

))
,(A.5)

Var(Nj,n) ≤ Kγ 2
j,n| log(cjn−δ)|−3/2,(A.6)

E[N−
j,n] = γ −

j,n

(
1 + rε + O

(
log | log(cjn−δ)|
| log(cjn−δ)|1/2

))
,
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Var(N−
j,n) ≤ K(γ −

j,n)
2| log(cjn−δ)|−3/2,

E[NL
j,n] = γ LR

j,n

(
1 + rε2 + O

(
log | log(cjn−δ)|
| log(cjn−δ)|1/2

))
,

Var(NL
j,n) ≤ K(γ LR

j,n )2| log(cjn−δ)|−3/2,

and for −1 ≤ j ≤ m − 1,

E[NR
j,n] = γ LR

j,n

(
1 + rε2 + O

(
log | log(cjn−δ)|
| log(cjn−δ)|1/2

))
,

Var(NR
j,n) ≤ K(γ LR

j,n )2| log(cjn−δ)|−3/2,

where |r| < 2 and K and the constants of O may depend on ε. O(·) is for n → ∞.
(5.8) and its analogues follow directly from the set of equations above and (5.4) is
a consequence of a scaled version of the main result in [10]: If N(u) is the number
of connected components of C \ B[0,1] of area greater than u, then

lim
u→0

u(logu)2N(u) = 2π a.s.
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