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HOW UNIVERSAL ARE ASYMPTOTICS OF DISCONNECTION
TIMES IN DISCRETE CYLINDERS?

BY ALAIN-SOL SZNITMAN

ETH Zurich

We investigate the disconnection time of a simple random walk in a dis-
crete cylinder with a large finite connected base. In a recent article of A.
Dembo and the author it was found that for large N the disconnection time of
GN × Z has rough order |GN |2, when GN = (Z/NZ)d . In agreement with
a conjecture by I. Benjamini, we show here that this behavior has broad gen-
erality when the bases of the discrete cylinders are large connected graphs of
uniformly bounded degree.

0. Introduction. We investigate here a simple random walk on an infinite dis-
crete cylinder having its base modeled on a large finite connected graph. We are
interested in the time the walk takes to disconnect the cylinder, or in a more pic-
turesque language, in the problem of a “termite in a wooden beam.” In a recent
work [8], the case when the base is a d-dimensional discrete torus of large size N ,
GN = (Z/NZ)d , was studied. Answering a question of H. J. Hilhorst, it was shown
that for large N the disconnection time typically has rough order |GN |2. Moreover,
it was also conjectured by I. Benjamini that the disconnection time of G × Z be-
haves as |G|2+o(1), for large connected G’s of uniformly bounded degree.

We show in this article that the above asymptotic behavior has broad gener-
ality and also derive a general asymptotic upper bound on these disconnection
times.

We now describe the set-up before discussing the results any further. We con-
sider a finite connected graph with vertex set G and edge set E made of unordered
pairs of G. We write deg(G) for the degree of G (i.e., the maximal number of
neighbors of any vertex in G). We consider the cylinder based on G:

E = G × Z,(0.1)

tacitly endowed with its natural product graph structure. We say that a finite set
S ⊆ E disconnects E, when for large M , G × [M,∞) and G × (−∞,−M] are
contained in two distinct connected components of E\S. We denote with Px ,
x ∈ E, the canonical law on EN of the simple random walk on E starting at x,
and with (Xn)n≥0 the canonical process. We are interested in the disconnection
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time of E:

TG = inf
{
n ≥ 0;X[0,n] disconnects E

}
.(0.2)

The walk on E is irreducible and recurrent, so that for any x ∈ E, TG is Px -a.s.
finite. Further, if C̃G stands for the cover time of G by the projection of X· on G,
that is, the first time the projection of X· has visited all points of G, and CG stands
for the cover time of G × {0} by X·, it is plain that

C̃G ≤ TG ≤ CG.(0.3)

There are examples of sequences of finite connected graphs GN of divergent de-
gree, giving rise to cover times C̃GN

much larger than |GN |2 (e.g., the “barbells,”
cf. Aldous and Fill [2], Chapter 5, Example 11). As a result of the left-hand side
inequality in (0.3), TGN

is much larger than |GN |2 for such sequences. With this
in mind, we restrict our attention here to cylinders with bases that are large graphs
of uniformly bounded degree. In this context we show in Theorem 1.2 a general
upper bound for the disconnection time. Namely, given an integer d0, and ε > 0,
one has

lim|G|→∞,deg(G)≤d0
sup
x∈E

Px[TG > |G|2(log |G|)4+ε] = 0.(0.4)

The above bound exploits the right-hand side inequality in (0.3) and holds as well
with CG in place of TG, when the supremum over E in (0.4) is replaced with a
supremum over G × {0}. We also derive upper bounds on the expectation of TG of
same order; compare (1.32).

The derivation of a lower bound on TG of rough order |G|2 is substantially more
delicate. We do not have a lower bound on TG of comparable generality to (0.4).
The left-hand inequality in (0.3) is now only helpful in a few cases. Indeed, C̃G is
often much smaller than |G|2 (e.g., log C̃GN

/ log |GN | is asymptotically close to 1,
when GN = (Z/NZ)d , with d ≥ 2, and close to 2 when d = 1. For this and much
more detailed results, see [1, 5, 7]). In the present work we derive lower bounds on
TG of “rough order |G|2,” when G is large and contains some suitable pocket of
possibly vanishing relative volume, inside which we impose additional control. In
the pocket we require a quantitative transient or recurrent behavior; see Theorems
4.1 and 5.2. Our methods leave open the case of a too massively recurrent behavior
in the pockets; see Theorem 5.2. Otherwise, we also obtain lower bounds on TG

of rough order |G|2 when the spectral gap λG [cf. (1.8), (1.9)] is “close” to the
extreme possible values compatible with the uniform bound on the degree, that is,
for λG of order |G|−2+o(1) or |G|o(1); see Theorem 4.3.

To give a more explicit flavor of our results, consider, for instance, an infinite
connected graph G∞ of bounded degree. Denoting with d(·, ·) the graph distance
on G∞ (i.e., the minimal number of steps of a nearest-neighbor path connecting
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two points), we assume that for some β ≥ 2, α ≥ (1 +β/2)∨ (β − 1), and positive
constants κi,1 ≤ i ≤ 4, one has the sub-Gaussian bounds for the walk Y on G∞:

(i) P G∞
g [Yk = g′] ≤ κ1

kα/β
exp

{
−κ2

(
d(g, g′)β

k

)1/(β−1)}
for g,g′ ∈ G∞ and k ≥ 1,

(0.5)

(ii) P G∞
g [Yk or Yk+1 = g′] ≥ κ3

kα/β
exp

{
−κ4

(
d(g, g′)β

k

)1/(β−1)}
for g,g′ ∈ G∞ and k ≥ 1 ∨ d(g, g′).

These bounds are easily seen to imply (cf. Grigoryan and Telcs [10], pages 503–
504) that G∞ is α-Ahlfors regular, that is, one has the volume controls

κ̃1r
α ≤ |B(g, r)| ≤ κ̃2r

α for all r ≥ 1 and g ∈ G∞,(0.6)

with |B(g, r)| the cardinality of the open ball in G∞ with center g and radius r ,
and where the positive numbers κ̃i , i = 1,2, can be chosen as function of deg(G∞)

and κi,1 ≤ i ≤ 4.
Over the recent years an extensive investigation of such heat-kernel bounds has

been made. Equivalent characterizations in terms of volume growth and parabolic
Harnack inequality, or mean exit time from balls and Harnack inequality, as well
as examples, can be found in Grigoryan and Telcs [10, 11], Barlow [3], Barlow,
Coulhon and Kumagai [4] and the references therein. Only values α + 1 ≥ β ≥ 2
in (0.5) may and do occur (cf. (2.5) of [10] and [3]) but we are only concerned here
with the case α + 1 ≥ (2 + β/2) ∨ β , β ≥ 2 (in particular, this contains the case
α ≥ β ≥ 2, but excludes certain instances of β > α ≥ 1 that yield so-called very
strongly recurrent graphs; cf. [3]). The case β = 2 was investigated first (cf. Del-
motte [6]) and includes usual examples such as Z

d , with d = α. The case β > 2
in (0.5) corresponds to so-called anomalous diffusion, where at time T the walk
has traveled at distances of order T 1/β 	 √

T ; see [3] for examples related to
skeletons of fractal sets. We also refer to [11] and [4] for bounds in the context of
the more general volume doubling assumption.

As an application of our results, we show in Corollaries 4.5 and 5.3 that when
GN is a sequence of finite connected graphs with cardinality tending to infinity and
uniformly bounded degree, such that GN contains an open ball AN (“the pocket”)
isomorphic to some ball in G∞ satisfying (0.5) (and even less in the transient
regime α > β ≥ 2), so that for some sub-polynomially growing sequence ϕ(n)

[i.e., ϕ(n) = o(nε), for each ε > 0],

|AN |ϕ(|GN |) ≥ |GN |,(0.7)

or more generally, such that for some η > 0 and ϕ(n) as above,

λ
1/2
GN

|AN |ϕ(|GN |) ≥ min(|GN |η, λ1/2
GN

|GN |) for large N,(0.8)
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then for any δ, ε > 0, writing EN = GN × Z, one has

lim
N→∞ inf

x∈EN

Px

[|GN |2(1−δ) ≤ TGN
≤ |GN |2(log |GN |)4+ε] = 1.(0.9)

This result alone covers many examples and vastly generalizes Theorems 1.1
and 2.1 of [8]. Our methods, however, leave open the case β ≥ 2, and 1 ≤ α <

1 + β/2, corresponding to some instances of so-called very strong recurrence
of G∞; see [3]. We otherwise have applications beyond the above set-up. For in-
stance, we show in Corollary 4.5 that (0.9) holds true when GN is the rooted r-tree
of depth N , or also when (cf. Remark 4.4),

λGN
= |GN |o(1) or λGN

= |GN |−2+o(1).(0.10)

We now give some indications on the techniques we employ in this work. As al-
ready mentioned, lower bounds on the disconnection time cause the main diffi-
culty. The strategy in this work differs in several respects from the line followed
in [8], when G is the d-dimensional torus of size N . In [8] a crucial role was played
by the geometric Lemmas 2.4 and 2.5, which show that when S disconnects E, one
can find on a whole range of scales cubes in E where S has a trace with cardinality,
which is at least that of a fraction of a face of the cube. The length scale is then
adjusted so that typically up to time |G|2(1−δ), for any cube of corresponding side-
length, few excursions of the walk enter the cube, and the walk can hardly leave
a trace comparable in cardinality to the face of the cube. Implicit to this approach
are certain isoperimetric controls that need not hold true in our context. To give a
feel for the issue, observe that in a rooted binary tree of finite depth, unlike what
happens for discrete tori of dimension d ≥ 2, one can find subsets of roughly half
volume with boundary consisting of a single point (the root). Thus, insisting on
isoperimetric controls of the type used in [8] rules out many interesting examples.

We follow here a different route. We construct with high probability connections
between top and bottom of the cylinder that avoid the trajectory X up to time
|G|2(1−δ). We use a localization technique that enables to focus on what happens
in a sub-cylinder A × Z of E, with A the “pocket,” a possibly very small subset
of G. We analyze excursions of the walk entering a suitably small box C, with base
sitting well inside the pocket A [cf. (3.11)], which then move at vertical distances
of order 2h′ from C; see (3.6). We show in Proposition 3.2 that typically only
finitely many such excursions occur up to time |G|2(1−δ). The height h′ is, on
the one hand, chosen big enough so that starting from a point with G-projection
inside A, at vertical distance of order h′ from C, the walk has a small enough
probability of entering C before moving at vertical distance 2h′ from C. On the
other hand, h′ is chosen sufficiently small so that what happens outside A × Z

has little influence on what happens inside C. As a by-product, the finitely many
excursions that typically enter C are also of truly shorter duration than the naive
excursions employed in Section 1, for which h′ is replaced with a height h slightly
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bigger than λ
−1/2
G ; compare (1.17) and (1.10). This makes it easier to control the

damage they may cause inside C.
Rarefaction of excursions to C is the first step in constructing many top-to-

bottom connections in a sub-box D of C, which avoid the walk up to time
|G|2(1−δ). The second step consists in containing the damage the finitely many
excursions reaching C may create. We rely here on ensuring sufficiently many
horizontal and vertical connections across certain boxes, and a renormalization
procedure, which is used when the walk has recurrent behavior in the pocket. In
this fashion we construct with high probability very connective boxes D that can
be piled up to produce top-to-bottom connections in the cylinder E; see Propo-
sition 2.6. As already hinted at, handling recurrent pockets in G is more delicate
than dealing with transient pockets, and leads us to require additional control; see
(5.2) and (5.3).

We now describe the organization of the article.
In Section 1 we introduce additional notation and mainly derive the general

upper bound (0.4) on TG in Theorem 1.2. The essential point is to bound the cover
time of G × {0} from above.

In Section 2 we develop auxiliary results that are preparatory for the lower
bound on TG. These results pertain to the localization technique (cf. Proposi-
tion 2.3) to the construction of connective blocks [cf. (2.43) and Proposition 2.6]
and to the treatment of graphs with low lying spectral gap, see Proposition 2.1.

In Section 3 we develop the localization technique and show in Proposition 3.2
that few excursions of the walk meet the box C by time |G|2(1−δ).

In Section 4 we derive a lower bound on TG in the case of a transient pocket
(cf. Theorem 4.1), or when the spectral gap is close to its extreme values; see The-
orem 4.3. Applications are given in Corollaries 4.5, 4.6 and Remark 4.7.

In Section 5 we obtain a lower bound on TG that applies to cases of recurrent be-
havior in the pocket; see Theorem 5.2. Applications are then given in Corollary 5.3
and Remark 5.5.

1. The upper bound. The main object of this section is to prove a general
asymptotic upper bound on the disconnection time of discrete cylinders based on
large finite connected graphs of uniformly bounded degree. The principal result
appears in Theorem 1.2, where, in particular, (0.4) is derived. The proof exploits
the right-hand side inequality of (0.3) and mainly focuses on bounding the cover
time CG of G × {0} from above. We first introduce additional notation, and recall
some classical facts.

For u a nonnegative real number, we let [u] stand for the integer part of u. For
v,w real numbers, we write v∧w and v∨w for the minimum and the maximum of
v and w. Given a finite set A, we denote with |A| its cardinality. When 	 is a graph
and x, x′, are distinct vertices of 	, we write x ∼ x′, if x and x′ are neighbors,
that is, {x, x′} is an edge of 	; we denote with deg(x) [or deg	(x) if there is a
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risk of confusion] the degree of x, that is, the number of neighbors of x, and deg
(	) = sup{deg(x); x vertex of 	}, the degree of 	. With an abuse of notation we
usually make no distinction between a graph and its set of vertices. We denote with
d(·, ·) [or sometimes with d	(·, ·)], the distance function on 	, that is, the minimal
number of steps for a nearest neighbor path on 	 joining two given points of 	. The
graphs we consider in the sequel are all connected so that d(·, ·) is automatically
finite. We denote with B(x, r) [or B	(x, r) when there is a risk of confusion] the
open ball with center x ∈ 	 and radius r > 0. When U is a subset of 	, we denote
with ∂U its boundary:

∂U = {x ∈ Uc; ∃x′ ∈ U with x ∼ x′}.(1.1)

Throughout the article the finite connected graphs G (with edge set E ) that show
up as the base of the cylinder E = G×Z have degree uniformly bounded by some
integer d0 ≥ 2,

deg(G) ≤ d0 and we tacitly assume |G| ≥ 2.(1.2)

Since G is connected, it follows that

|G| ≤ 2|E | ≤ d0|G|.(1.3)

We write πG and πZ for the respective canonical projections of E on G and Z.
We denote with X·, Y·,Z· the respective canonical walks in discrete time on

E,G,Z, which at each step jump with equal probability to one of the neighbors
of their current location. We write Px,P

G
g ,P Z

u for the respective canonical laws
starting at x ∈ E, g ∈ G, u ∈ Z. The canonical shifts and filtrations are denoted
with (θn)n≥0 and (Fn)n≥0, with a possible superscript E, G or Z, when confusion
may arise. For a subset U of E, G or Z, we denote with HU and TU the entrance
time in U and exit time from U of the respective walk, so, for instance, when
U ⊆ E,

HU = inf{n ≥ 0,Xn ∈ U}, TU = inf{n ≥ 0,Xn /∈ U},(1.4)

with X· replaced by Y· or Z·, when E is replaced by G or Z. Again, when confu-
sion may arise, we add a superscript G or Z to clarify the notation. When U is a
singleton {z}, we write Hz in place of H{z}.

It is convenient to consider the canonical continuous time random walks
�X·, �Y·, �Z·, which respectively jump with rates deg(g) + 2, deg(g) and 2, when re-
spectively located at x = (g,u), g and u. With an abuse of notation, we still denote
with Px , P G

g , P Z
u the corresponding canonical laws. Otherwise, we use notation

such as (�θt )t≥0, ( �Ft )t≥0 or �HU to refer to the natural continuous time objects.
Clearly, the respective discrete skeletons of the continuous time walks �X·, �Y·, �Z·
are distributed as the respective discrete time walks X·, Y·,Z·. Further, the contin-
uous time walks satisfy the following useful fact, that we recurrently use in the
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sequel:

for x = (g,u) ∈ E, under P G
g ⊗ P Z

u ,
(1.5)

(�Y·, �Z·) has the canonical law Px governing �X·.

The stationary distributions of the discrete and continuous time walks on G are the
reversible measures (for the respective walks) defined by

µ(g) = deg(g)

2|E | , �µ(g) = 1

|G| for g ∈ G.(1.6)

The generator and the Dirichlet form attached to the continuous time walk on G

are respectively

LGf (g) = ∑
g′∼g

(
f (g′) − f (g)

)
, g ∈ G,

(1.7)

DG(f,f ) = (−LGf,f )L2(�µ) = 1

2|G|
∑

g,g′∈G

g∼g′

(
f (g′) − f (g)

)2
,

with f an arbitrary function on G, and (·, ·)L2(�µ) the L2-scalar product on G. In
what follows an important role is played by the spectral gap of the continuous time
walk on G:

λG = inf
f nonconstant

DG(f,f )

var�µ(f )
with var�µ(f ) the variance of f under �µ.(1.8)

It follows from Cheeger’s inequality (cf. Aldous and Fill [2], Chapter 4, Sec-
tion 5.2, page 34, or Lubotzky [13], Propositions 4.2.4 and 4.2.5), for the lower
bound and the choice in (1.8) of a function f vanishing everywhere except at a
single point of G, that

2d0 ≥ λG ≥ 2

d0|G|2 .(1.9)

We introduce the time

tG = λ−1
G log(2|G|),(1.10)

which will play an important role in the sequel, due to the following (classical)
result:

LEMMA 1.1.

For t ≥ tG, g, g′ ∈ G,
(1.11) ∣∣(P G

g [�Yt = g′]/�µ(g′)
) − 1

∣∣ ≤ 1
2 exp{−(t − tG)λG}.
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PROOF. The argument is classical; see Saloff-Coste [14], page 328. Writing

pt(g, g′) = P G
g [�Yt = g′]�µ(g′)−1, g, g′ ∈ G, t ≥ 0,(1.12)

for the transition density of the continuous walk on G, it follows from the spectral
theorem that∑

g′∈G

(
pt(g, g′) − 1

)2�µ(g′) ≤ e−2λGt
∑
g′∈G

(
1{g′=g}�µ(g)−1 − 1

)2�µ(g′)

= e−2λGt (�µ(g)−1 − 1
)
.

The claim (1.11) then follows from the fact that exp{−2λGtG} = (4|G|2)−1,
and (1.6). �

We now introduce certain stopping times that will be used throughout the article.
Given an integer h ≥ 1 and u ∈ Z, we consider the boxes in E:

Bh(u) = G × I (u) ⊆ B̃h(u) = G × Ĩ (u)
(1.13)

with I (u) = u + [−h,h] and Ĩ (u) = u + [−2h + 1,2h − 1].
We write Bh, B̃h in place of Bh(0), B̃h(0), and when the value of h is clearly
specified, we simply drop the subscript h from the notation. The successive returns
to Bh(u) and departures of B̃h(u) are then defined by

R
h,u
1 = HBh(u),

D
h,u
1 = TB̃h(u) ◦ θ

R
h,u
1

+ R
h,u
1 , and for k ≥ 1,(1.14)

R
h,u
k+1 = R

h,u
1 ◦ θ

D
h,u
k

+ D
h,u
k , D

h,u
k+1 = D

h,u
1 ◦ θ

D
h,u
k

+ D
h,u
k ,

so that

0 ≤ R
h,u
1 ≤ D

h,u
1 ≤ · · · ≤ R

h,u
k ≤ D

h,u
k ≤ · · · ≤ ∞,

and for any x ∈ E, Px -a.s., these inequalities are strict except maybe the first one.
With a similar convention as above, we drop the superscript h when the value of h

is clearly specified and the superscript u when u = 0.
Let us explain our convention concerning constants for the remainder of this

section and Section 2 as well. We will denote with c a positive constant solely
depending on d0 [cf. (1.2)], with value changing from place to place. Additional
dependence will appear in the notation, for instance, c(ε) refers to a positive con-
stant depending on d0 and ε. Numbered constants like c0, c1, . . . will refer to the
value of the constant in the first display where they are determined. Finally, we will
use the expression for large G, in place of for |G| ≥ c, with G a finite connected
graph satisfying (1.2). The main result of this section is the following:
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THEOREM 1.2.

lim|G|→∞,deg(G)≤d0
inf

x∈G×{0}Px[TG ≤ CG ≤ |G|2(log |G|)4+ε] = 1(1.15)

for any ε > 0.

REMARK 1.3. It is plain that, for any g ∈ G,u ∈ Z, the disconnection time
TG has the same distribution under P(g,u) and P(g,0), so that (1.15) readily implies

lim|G|→∞,deg(G)≤d0
inf
x∈E

Px[TG ≤ |G|2(log |G|)4+ε] = 1 for any ε > 0.(1.16)

PROOF OF THEOREM 1.2. Throughout the remainder of this section the value
of h [cf. (1.13), (1.14)] is set equal to

h = [√
tG

] + 2.(1.17)

For any z = (g′,0) ∈ G×{0} and x = (g,u) ∈ B [cf. (1.13) below, for the notation]
the strong Markov property for the continuous time walk at time �Hz implies that

Px[Hz < TB̃] = Px[ �Hz < �TB̃] = a1

a2
,(1.18)

where

a1 = Ex

[∫ ∞
0

1{�Xt = z, t < �TB̃}dt

]
,

(1.19)

a2 = Ez

[∫ ∞
0

1{�Xt = z, t < �TB̃}dt

]
.

We now bound a1 from below and a2 from above, and thus obtain a lower bound
on the left-hand side member of (1.18). With the help of (1.5) and the notation
(1.13), we find that

a1 =
∫ ∞

0
P G

g [�Yt = g′]P Z

u [�Zt = 0, t < �TĨ ]dt

(1.11)≥
∫ ∞
tG

1

2|G|P
Z

u [�Zt = 0, t < �TĨ ]dt(1.20)

≥ 1

2|G|E
Z

u

[
tG < �TĨ ,P�ZtG

[ �H0 < �TĨ ]
]
EZ

0

[∫ �TĨ

0
1{�Zt = 0}dt

]
,

using the strong and the simple Markov property in the last step. It follows from
the invariance principle and (1.17) that the first expectation in the last line of (1.20)
is bounded below by a positive constant. Using standard calculations on the con-
tinuous and discrete simple random walk on Z, we also find that

EZ

0

[∫ �TĨ

0
1{�Zt = 0}dt

]
= 1

2EZ

0

[∑
k≥0

1{Zk = 0, k < TĨ }
]

≥ ch.
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Collecting the lower bounds we have derived, we find that

a1 ≥ ch

|G| [with h defined by (1.17)].(1.21)

We will now obtain an upper bound on a2 in (1.19). We first note that

|P G
g [�Yt = g′] − �µ(g′)| ≤ c√

t
for t > 0, g, g′ ∈ G(1.22)

(see the convention concerning constants stated above Theorem 1.2). Indeed,
(1.22) follows from Theorem 2.3.1, page 345 of Saloff-Coste [14], and the Nash-
type inequality

var�µ(f )3 ≤ c|G|2DG(f,f )‖f ‖4
L1(�µ)

(1.23)

for f an arbitrary function on G.

The above inequality (1.23) is proven in the same fashion as described in Example
2.3.1, pages 348–350, of [14]. For a related inequality to (1.22), we also refer to
Proposition 18 in Chapter 6, Section 4.2 of Aldous and Fill [2]. Therefore, in view
of (1.19) [recall z = (g′,0) ∈ G × {0})], we find

a2 =
∫ ∞

0
Pz[�Xt = z, t < �TB̃]dt

= ∑
k≥0

∫ (k+1)tG

ktG

Pz[�Xt = z, t < �TB̃]dt

(1.24)

≤ ∑
k≥0

Pz[ktG < �TB̃]
∫ tG

0
Pz[�Xt = z]dt

(1.5)= ∑
k≥0

P Z

0 [ktG < �TĨ ]
∫ tG

0
Pz[�Xt = z]dt,

where in the second line we have used the simple Markov property at time ktG
followed by the strong Markov property at time �Hz. From the invariance principle
and the Markov property at times 
tG, 0 ≤ 
 < k, we infer that

P Z

0 [ktG < �TĨ ] ≤ e−ck for any k ≥ 0.(1.25)

Coming back to (1.24), we thus find that

a2 ≤ c

∫ tG

0
Pz[�Xt = z]dt

(1.5)= c

∫ tG

0
P G

g′ [�Yt = g′]P Z

0 [�Zt = 0]dt

(1.22)≤ c

∫ tG

0

[(
c√
t

+ 1

|G|
)

∧ 1
]

1√
t
dt ≤ c

√
tG

|G| + c log tG(1.26)

(1.9),(1.10)= c log tG ≤ c log |G|.
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Coming back to (1.18), it thus follows from (1.21) and (1.26) that

Px[Hz < TB̃] ≥ ch

|G| log |G| for any z ∈ G × {0} and x ∈ B.(1.27)

If we now apply the strong Markov property at times Rm, m ≥ 1 [cf. (1.14) and
below (1.14) for the notation] we thus find that, for k ≥ 1, x ∈ B , z ∈ G × {0},

Px[Hz > Rk] ≤
(

1 − ch

|G| log |G|
)k−1

≤ exp
{
−c1

h(k − 1)

|G| log |G|
}
.(1.28)

We then set c2 = 2c−1
1 and define

k∗ =
[
c2

|G|
h

(log |G|)2
]

+ 2.(1.29)

Note that in view of (1.9), (1.10) and (1.17), lim|G|→∞,deg(G)≤d0 k∗ = ∞. We now
see that for x ∈ B ,

Px[CG > Rk∗] ≤ ∑
z∈G×{0}

Px[Hz > Rk∗]
(1.28)≤ |G| exp

{
−c1

h(k∗ − 1)

|G| log |G|
}

≤ |G| exp{−c1c2(log |G|)} = 1

|G| .

We have thus obtained that

lim|G|→∞,deg(G)≤d0
sup
x∈B

Px[CG > Rk∗] = 0.(1.30)

With similar bounds as (1.21) and (1.22) in [8] [see also (1.18) of the same refer-
ence] we can bound Rk∗ , and find that, for any ε > 0,

lim|G|→∞,degG≤d0
sup
x∈B

Px[Rk∗ > (k∗h)2(log |G|)ε] = 0.(1.31)

With (1.29), (1.30) and (0.3), this is more than enough to prove (1.15). Incidentally,
let us mention that there is some flexibility with the choice of h in (1.17), and the
above proof works with minor changes in (1.24)–(1.26), if for large G we choose
h as a positive integer lying between

√
tG and |G| log |G|. �

REMARK 1.4. Theorem 1.2 also leads to our upper bound on supx∈E Ex[TG].
Indeed, it follows from Theorem 1.2 that, for any ε > 0, when |G| ≥ c(ε),

inf
x∈E

Px[TG < |G|2(log |G|)4+ε/2] ≥ 1
2 ,

so that with simple Markov property and WG = TG/(|G|2(log |G|)4+ε/2),

sup
x∈E

Px[WG ≥ k] ≤ (1
2

)k for k ≥ 0, whence sup
x∈E

Ex[WG] ≤ 2.



12 A.-S. SZNITMAN

We thus find that, for any ε > 0,

lim|G|→∞,degG≤d0
sup
x∈E

Ex[TG]
|G|2(log |G|)4+ε

= 0.(1.32)

Incidentally, note that in contrast to (1.32), due to the nonintegrability of the hitting
time (i.e., first entrance time after time 1) of 0, for the simple random walk on Z,
Ex[CG] = ∞ for all x ∈ E.

2. Some auxiliary results. In this section we discuss four auxiliary results
that will be helpful in the derivation of lower bounds on the disconnection times
of discrete cylinders in the next two sections. The first result (see Proposition 2.1)
shows in a quantitative way that the disconnection of E typically cannot take place
up to times almost of order λ−1

G . The next result (cf. Proposition 2.3) is part of the
localization technique that enables to focus on what happens in the sub-cylinder
A × Z of E, when A ⊆ G is suitably chosen. The third result (cf. Lemma 2.5)
provides upper bounds on the probability that the walk hits a point before exiting B̃

[cf. (1.14) and (2.12)] and yields exponential controls on the G- and Z-projections
of the trace in a sub-cylinder of E of the trajectory of the walk up to the time it
exits B̃ . These controls will especially be helpful in Section 3 to handle the case
of “high values” of λG. The fourth result (cf. Proposition 2.6) describes the basic
strategy we employ, when proving that disconnection of the cylinder does not take
place up to a certain time. In some sense it replaces and by-passes the arguments
based on isoperimetric controls that were used in [8] (cf. Lemmas 2.4 and 2.5)
in the case of G = (Z/NZ)d , with d ≥ 2. Throughout this section we keep the
same convention concerning constant and the use of the expression “for large G”
as explained above Theorem 1.2.

We first introduce some additional notation. The kernel of the simple random
walk on G is

RGf (g) = deg(g)−1
∑
g′∼g

f (g′)

(2.1)
for g ∈ G and f an arbitrary function on G.

We consider ϕ a normalized eigenfunction of LG [cf. (1.7)], attached to −λG

[cf. (1.8)]

−LGϕ = λGϕ with
∑
g∈G

ϕ2(g)�µ(g) = 1,which then automatically

(2.2)
satisfies the orthogonality condition

∑
g∈G

ϕ(g)�µ(g) = 0.

We also denote with W the subset of G:

W = {g ∈ G;ϕ(g) > 0} ⊆ G.(2.3)

The first result of this section is the following:
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PROPOSITION 2.1.

For n ≥ 0, g ∈ W, P G
g [TW > n] ≥ ϕ(g)

maxϕ
(1 − λG)n+,(2.4)

lim|G|→∞,degG≤d0
sup
x∈E

Px

[
TG ≤ λ−1

G ε|G|
] = 0

(2.5)
for any positive sequence εn with lim

n
εn = 0.

PROOF. We begin with the proof of (2.4). We need only consider the case
λG < 1. From (1.7), (2.1) and (2.2), we find that

(RGϕ)(g) =
(

1 − λG

deg(g)

)
ϕ(g) for g ∈ G.(2.6)

As a result, we see that

ϕ and RGϕ are positive on W, and
(2.7)

0 <
ϕ

RGϕ
≤ (1 − λG)−1 on W.

Writing ϕ+ for max(ϕ,0) and applying the stopping theorem to the
(F Y

n )-martingale

ψε(Yn)

n−1∏
k=0

(
ψε

RGψε

)
(Yk), n ≥ 0, where ψε = ϕ+ + ε,with ε > 0,

we see, using dominated convergence, (2.7), and letting ε tend to 0, that for n ≥ 0,
g ∈ W ,

ϕ(g) = EG
g

[
ϕ+(Yn∧TW

)

n∧TW −1∏
k=0

ϕ

RGϕ+
(Yk)

]

= EG

[
ϕ(Yn)

n−1∏
k=0

ϕ

RGϕ+
(Yk), n < TW

]

+ EG
g

[
ϕ+(YTW

)

TW −1∏
k=0

ϕ

RGϕ+
(Yk), n ≥ TW

]
(2.8)

≤ EG

[
ϕ(Yn)

n−1∏
k=0

ϕ

RGϕ
(Yk), n < TW

]
(2.7)≤ maxϕ(1 − λG)−nP G

g [n < TW ],
since the first term in the second line vanishes and RGϕ+ ≥ RGϕ > 0, on W . The
claim (2.4) follows.
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We then turn to the proof of (2.5). Without loss of generality, we assume that
λG < 1

2 [indeed, in the case of graphs with λ ≥ 1
2 , (2.5) becomes obvious]. With

ϕ as above, we pick g+ ∈ G such that ϕ(g+) = maxϕ. It then follows from (2.4)
that, for n ≥ 0,

P G
g+[TW ≤ n] ≤ 1 − (1 − λG)n ≤ n log

(
1

1 − λG

)
.(2.9)

A similar inequality holds for the set V = {ϕ < 0} and g− ∈ V such that
ϕ(g−) = minϕ, in place of W and g+, respectively. We then introduce the
(F Y

n )-stopping times:

τ = inf{n ≥ 1;ϕ(Yn)ϕ(Yn−1) ≤ 0} and
(2.10)

ρ = τ ◦ θH{g+,g−} + H{g+,g−},

in other words, ρ is the first time ϕ(Yn) changes sign after reaching either g− or g+.
Given any sequence εn as in (2.5), one has for any x = (g,u) ∈ E,

Px

[
TG ≤ λ−1

G ε|G|
] ≤ P G

g

[
ρ ≤ λ−1

G ε|G|
]

≤ EG
g

[
P G

YH{g+,g−}
[
τ ≤ λ−1

G ε|G|
]]

(2.11)

(2.9)≤ λ−1
G ε|G| log

(
1

1 − λG

)
.

Observing that the function s ∈ (0, 1
2 ] → s−1 log( 1

1−s
) is bounded, (2.5) follows.

�

REMARK 2.2. One can derive similar inequalities as (2.4) when λG is re-
placed with a higher eigenvalue λ of −LG [cf. (1.7)] and W in (2.3) with some
connected component U of the set {ψ > 0} ⊆ G, for some normalized eigenfunc-
tion ψ of −LG attached to λ. Together with the invariance principle for the simple
random walk on Z, this yields quantitative lower bounds on the probability that the
walk X· travels in a cylinder U × Z within time of order λ−1 to a distance of order
λ−1/2 in the vertical direction, when starting at x such that g = πG(x) corresponds
to a value ψ(g) “comparable” to maxU ψ . In this fashion one obtains certain “es-
cape routes” for the walk in the discrete cylinder E. In a way, the localization
procedure we employ in the derivation of lower bounds on the disconnection time
enables us to construct “easy escape routes” for the walk that only needs to travel
in the vertical direction at distances of order h′ instead of distances of order h; see
(2.12) and (3.4) below. It also avoids the use of detailed knowledge of the structure
of higher eigenfunctions of −LG.

We turn to the second result of this section that will be instrumental for the
localization procedure. We now wish to consider stopping times defined by (1.14)
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corresponding to two distinct values of the parameter h and the choice u = 0 (for
simplicity). We thus consider [compare with (1.17)]

1 ≤ h′ ≤ h = 2
([√

tG(log |G|)2] + 1
)
,(2.12)

denote by B ′, B̃ ′ and B, B̃ the corresponding boxes when u = 0 [cf. (1.13)] as
well as by R′

k,D
′
k, k ≥ 1, and Rk,Dk, k ≥ 1, the corresponding stopping times;

see (1.14). We also consider a subset of G, where the localization will take place:

A ⊆ G.(2.13)

We introduce the variables counting the visits of XR′
k
, k ≥ 1, to A × Z during the

various intervals [R
,D
 − 1], 
 ≥ 1. We recall that in view of (2.12) all R′
k occur

during some [R
,D
 − 1], 
 ≥ 1. We thus define

UA
1 = ∑

k≥1

1{XR′
k
∈ A × Z,R′

k < D1} ◦ θR1, and for 
 ≥ 1,

(2.14)
UA


 = UA
1 ◦ θR


.

Clearly, the expectation under Px of UG
1 only depends on |πZ(x)|, and we intro-

duce

η = Ex[UG
1 ] for x ∈ G × {−h′, h′} arbitrary.(2.15)

Considering successive displacements at distance h′ of the simple random walk
on Z, that is, the iterates γk , k ≥ 0, of the stopping time γ = inf{n ≥ 0, |Zn −Z0| =
h′},

γ0 = 0, γk+1 = γ ◦ θγk
+ γk for k ≥ 0,

one knows that Ẑk = 1
h′ Zγk

, k ≥ 0, under P Z

h′ has the distribution of a simple
random walk on Z starting at 1, that is, P Z

1 . Using this identity, we see that η is
bounded from below by the expected number of successive returns to the interval
[−1,1] of the one-dimensional simple random walk starting at 1, up to the exit time
from [−[ h

h′ ], [ h
h′ ]]. Similarly, it is bounded from above by the expected number of

returns to [−1,1] of a simple random walk starting at 1 up to the exit time from
[−[2h

h′ ] − 1, [2h
h′ ] + 1]. With standard estimates on a simple random walk, it is

straightforward to infer that, for some c > 1,

1

c

h

h′ ≤ η ≤ c
h

h′ .(2.16)

Finally, for u ∈ Z, we denote with νu the equidistribution at level u in E:

νu = 1

|G|
∑

x∈E,πZ(x)=u

δx.(2.17)

The second result of this section is (see above Theorem 1.2 for the terminology)
the following:
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PROPOSITION 2.3. For large G, when 2 ≤ 
 ≤ |G|2, v > 0, A ⊆ G, and
x /∈ B̃ , one has the following:

Px

[
UA

1 + · · · + UA

 > 
η

|A|
|G|(1 + v)

]
≤ c exp

{
−c

|A|
|G|v(v ∧ 1)


}
,(2.18)

Px

[
UG

1 >
h

h′ v
]

≤ 2 exp
{
−v

2

}
(2.19)

for any x ∈ E, v > 0.

PROOF. We begin with the proof of (2.18). We consider the variables �UA

 ,


 ≥ 1, attached to continuous time random walk �X·, obtained by replacing
Rk,Dk,R

′
k,D

′
k with �Rk, �Dk, �R′

1,
�D′

1 in (2.14). The discrete skeleton of �X· has the
same law as X· and therefore, under Px , for arbitrary x in E, �UA


 , 
 ≥ 1, has the
same law as UA


 , 
 ≥ 1. As a result, for x /∈ B̃ , 1 ≤ 
 ≤ |G|2,A ⊆ G, and λ > 0,
the strong Markov property together with the above remark yields

Ex[exp{λ(UA
1 + · · · + UA


 )}]
= Ex[exp{λ(�UA

1 + · · · + �UA

 )}](2.20)

= Ex

[
exp{λ(�UA

1 + · · · + �UA

−1)}E�X�D
−1

[
E�X�R1

[exp{λ�UA
1 }]]],

where in the case 
 = 1, we use the convention �D0 = 0, and the term before the
inner expectation is omitted. We will use the following:

LEMMA 2.4. For large G, where x /∈ B̃ and z ∈ G × {−h,h},
Px[�X�R1

= z] ≤ |G|−1(1 + |G|−2)(2.21)

[of course the left-hand side vanishes unless πZ(x)πZ(z) > 0].

PROOF. Without loss of generality, we assume that x = (g,u), z = (f,h),
with u ≥ 2h, and g,f ∈ G. Using the exponential martingales exp{ν�Zt −
2t coshν −1)}, t ≥ 0 (see, e.g., Lemma 3.2, page 175 of [9]), and applying Doob’s
inequality (see (2.46), page 63 of [9]), after optimization over ν ≥ 0, one obtains
the (classical) bound

P Z

0 [ �Hv ≤ t] ≤ exp
{
−cv log

(
1 + c

v

t

)}
for v ∈ Z+, t > 0.(2.22)

With (1.5) and (1.11), we see that, for t ≥ tG

Px[�X�R1
= z] = P G

g ⊗ P Z

u [�Y �HZ

h
= z]

≤ P Z

u [ �Hh ≤ t] + P G
g ⊗ P Z

u [�Y �HZ

h
= z, �HZ

h ≥ t](2.23)
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(2.22)≤ exp
{
−ch log

(
1 + c

h

t

)}
+

∫ ∞
t

1

|G|
(

1 + 1

2
exp{−λG(s − tG)}

)
P Z

u [Hh ∈ ds].

We choose t = 3tG. Observe that when h/t ≤ 1, exp{−ch log(1 + ch/t)} ≤
exp{−ch2/t} ≤ exp{−c(log |G|)2}, with (2.12), and otherwise if h/t ≥ 1,
exp{−ch log(1 + ch

t
)} ≤ exp{−ch} ≤ exp{−c(log |G|)2}. In addition, exp{−2 ×

λGtG} = 4|G|−2, due to (1.10). Coming back to (2.23), the claim (2.21) follows.
�

As a result of Lemma 2.4 and the symmetry between positive and negative
heights, for large G, the inner expectation in the last line of (2.20) is smaller than
[in the notation of (2.17)]

(1 + |G|−2)Eνh
[exp{λ�UA

1 }] ≤ (1 + |G|−2)Eνh′ [exp{λ�UA
1 }],(2.24)

using the strong Markov property at time �R′
1 in the last step, and the fact

that �X�R′
1

is distributed as νh′ under Pνh
. Iterating we see that for large G, for

x /∈ B̃ , 1 ≤ 
 ≤ |G|2, A ⊆ G and λ > 0,

Ex[exp{λ(UA
1 + · · · + UA


 )}] ≤ (1 + |G|−2)
Eνh′ [exp{λ�UA
1 }]


(2.25)
≤ eEνh′ [exp{λ�UA

1 }]
.
Observe also that using Taylor’s formula with integral remainder to give a devel-
opment to first order of the function u → eλu, we find

Eνh′ [exp{λ�UA
1 }] = 1 + λEνh′ [�UA

1 ]

+ λ2Eνh′

[∫ 1

0
ds

∫ s

0
dt (�UA

1 )2 exp{λt �UA
1 }

]
(2.26)

≤ 1 + λEνh′ [�UA
1 ] + λ2

2
Eνh′ [(�UA

1 )2 exp{λ�UA
1 }].

Since �µ is the stationary distribution of �Y , in view of (1.5) and (2.17) we find

Eνh′ [�UA
1 ] = EG�µ ⊗ EZ

h′

[∑
k≥1

1{�Y�R′
k
∈ A, �R′

k < �D1}
]

(2.27)

= EZ

h′

[∑
k≥1

1{�R′
k < �D1}

]
�µ(A)

(2.14),(2.15)= η�µ(A),

with an abuse of notation when viewing the �R′
k , k ≥ 1 and �D1 as defined in terms
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of �Z· alone. With analogous arguments, we also have

Eνh′ [(�UA
1 )2 exp{λ�UA

1 }]
≤ Eνh′ [(�UA

1
�UG

1 exp{λ�UG
1 }]

= EG�µ ⊗ EZ

h′

[∑
k≥1

1{�Y�R′
k
∈ A, �R′

k < �D1}, �UG
1 exp{λ�UG

1 }
]

(2.28)

= �µ(A)EZ

h′

[∑
k≥1

1{�R′
k < �D1}�UG

1 exp{λ�UG
1 }

]

= �µ(A)EZ

h′ [(�UG
1 )2 exp{λ�UG

1 }].
Further, note that the simple random walk on Z starting at 2h′ reaches 2h before h′
with probability h′/(2h − h′) ≥ h′/(2h). With a repeated application of the strong
Markov property, we find that

Px[UG
1 ≥ m] ≤ Px[R′

m < D1] ≤
(

1 − 1

2

h′

h

)m−1

for x ∈ E,m ≥ 1.(2.29)

Hence, for a suitable small enough positive constant c3, and any x ∈ E,

Ex

[
exp

{
c3

h′

h
UG

1

}]
= Ex

[
exp

{
c3

h′

h
�UG

1

}]
≤ 2.(2.30)

Combining (2.26), (2.27), (2.28) and (2.30), we see that for λ ≤ c3
2

h′
h

one has

Eνh′ [exp{λ�UA
1 }] ≤ 1 + η�µ(A)λ + c

(
h

h′
)2

�µ(A)λ2.(2.31)

Returning to (2.25), we obtain for v > 0, and λ ≤ c3
2

h′
h

,

Px[UA
1 + · · · + UA


 > η�µ(A)(1 + v)
]

≤ exp
{
−λη�µ(A)(1 + v)
 + 1 + 


(
λη�µ(A) + c

(
h

h′
)2

�µ(A)λ2
)}

(2.16)≤ exp
{

1 − 
�µ(A)

[
c
λh

h′ v − c′
(

λh

h′
)2]}

.

Optimizing over λ with the definition (1.6), we obtain (2.18). We now turn to the
proof of (2.19). With (2.29), we find that for any x ∈ E, v > 0,

Px

[
UG

1 >
h

h′ v
]
≤

(
1 − 1

2

h′

h

)[(h/h′)v]
≤ 2 exp

{
−1

2

h′

h

h

h′ v
}

= 2 exp
{
−v

2

}
,

whence (2.19). �
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We then continue with the third result of this section. It provides bounds that will
be especially helpful when h in (2.12) is not too large [i.e., λG large enough;
see (3.34) and (4.10)]. We use the terminology introduced above Theorem 1.2 for
the next lemma.

LEMMA 2.5. For large G,

Px[Hx′ < TB̃] ≤ c
h

|G| for x ∈ G × {−h,h} and |πZ(x′)| ≤ h

2
.(2.32)

Moreover, for any V ⊆ G with |V |h ≤ |G|(log |G|)−2 and x ∈ E, one has the
following:

(i) Ex

[
exp

{
c√
tG

∣∣πZ

(
X[0,TB̃−1] ∩ (V × Z)

)∣∣}]
≤ 2,

(2.33)

(ii) Ex

[
exp

{
c

tG

∣∣πG

(
X[0,TB̃−1] ∩ (V × Z)

)∣∣}]
≤ 2.

PROOF. We begin with the proof of (2.32). The argument resembles the proof
of (2.21). Without loss of generality, we assume that x = (g,h), x′ = (g′, u′), with
|u′| ≤ h

2 , and write, using similar bounds as in (2.22) and below (2.23),

Px[Hx′ < TB̃] = Px[ �Hx′ < �TB̃]

≤ Px[ �Hx′ ≤ tG] + Px[tG < �Hx′ < �TB̃]

≤ exp{−c(log |G|)2} + Px[tG < �Hx′ < �TB̃]
(1.5)≤ exp{−c(log |G|)2}

(2.34)
+

∫ ∞
tG

cP G
g [�Yt = g′]P Z

h [�Zt = u′, �TĨ > t]dt

(1.11)≤ exp{−c(log |G|)2} + c

|G|
∫ ∞
tG

P Z

h [�Zt = u′, �TĨ > t]dt

≤ exp{−c(log |G|)2} + c

|G|E
Z

0

[∫ �T[−4h,4h]

0
1{�Zt=0} dt

]

≤ c
h

|G| ,

whence (2.32). As for (2.33)(i), we first note that∣∣πZ

(
X[0,TB̃−1] ∩ (V × Z)

)∣∣ = ∑
|ũ|<2h

1
{
HV ×{ũ} < TB̃

}
.(2.35)
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With an argument similar to Khasminskii’s lemma [12] (see also, e.g., (2.46) of [8])
the claim (2.33) (i) follows once we show that

sup
x∈E

Ex

[ ∑
|ũ|<2h

1
{
HV ×{ũ} < TB̃

}] ≤ c
√

tG.(2.36)

To prove (2.36), note that the above expectation is equal to∑
|ũ|<2h

Px

[ �HV ×{ũ} < �TB̃

] ≤ ∑
|ũ|<2h

Px

[ �HV ×{ũ} < tG
]

+ ∑
|ũ|<2h

Px

[
tG < �HV ×{ũ} < �TB̃

]
≤ 2EZ

u

[
sup

0≤s≤tG

|�Zs − �Z0| + 1
]

+ cEx

[∫ ∞
tG

1{�Xt ∈ V × Z, t < TB̃}dt

]
(2.37)

(1.5)≤ c
√

tG + c

∫ ∞
tG

P G
g [�Yt ∈ V ]P Z

u [t < �TĨ ]dt

(1.11)≤ c
√

tG + c
|V |
|G|E

Z

u [�TĨ ]

≤ c
√

tG + c|V | h2

|G| .
However, with (2.12) and our assumption on V ,

|V |h2

|G| ≤ c(log |G|)2 |V |h
|G|

√
tG ≤ c

√
tG,

and (2.36) follows.
The proof of (2.33)(ii) is similar. In place of (2.36), we have to check that

sup
x∈E

Ex

[∑
g̃∈V

1
{
H{g̃}×Ĩ < TB̃

}] ≤ ctG.(2.38)

Moreover, since∑
g̃∈V

Ex

[
tG < �H{g̃}×Ĩ < �TB̃

] ≤ cEx

[∫ ∞
tG

1{�Xt ∈ V × Z, t < �TB̃}dt

]
,

the claim (2.38) follows from a straightforward modification of (2.37). This con-
cludes the proof of (2.33). �

We now turn to the fourth and last result of this section, which highlights the
strategy we will employ when bounding the disconnection time from below. We
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depart from the line of attack in [8], which was based on the fact that a finite
subset S disconnecting (Z/NZ)d × Z must somewhere be “locally big,” thanks
to isoperimetric controls; compare Lemmas 2.4 and 2.5 of [8]. Here instead we
construct paths that prevent disconnection.

To this end, we consider integers M,M ′,L′ ≥ 1, as well as

Vi,1 ≤ i ≤ M nonempty connected subsets of G,
(2.39)

with
M⋃
i=1

Vi connected.

We define for 1 ≤ j ≤ M ′ the intervals of Z:

Jj = [(j − 1)L′, jL′], 1 ≤ j ≤ M ′ (so |Jj | = L′ + 1),(2.40)

as well as the subsets of E:

Di,j (u) = Vi × (Jj + u),
(2.41)

D(u) = ⋃
1≤i≤M,1≤j≤M ′

Di,j (u) for u ∈ Z.

We simply write Di,j and D when u = 0.
Given a finite subset S ⊂ E, we say that S is thin in Di,j (u), when∣∣πG

(
Di,j (u) ∩ S

)∣∣ <
|Vi |

2
and

∣∣πZ

(
Di,j (u) ∩ S

)∣∣ <
|Jj |

2

(
= L′ + 1

2

)
.(2.42)

Using a type of renormalized version of (2.42), we say that S is good for D(u),
when

(i) |{i ∈ [1,M];S is not thin in Di,j (u) for some j ∈ [1,M ′]}| < M

2
,

(2.43)
(ii) |{j ∈ [1,M ′];S is not thin in Di,j (u) for some i ∈ [1,M]}| < M ′.

We formulated (2.43) in a way which highlights the analogy with (2.42); in particu-
lar, “S not thin in Di,j (u)” for (i, j) ∈ [1,M] × [1,M ′] is the counterpart of “x in
S” for x ∈ Di,j (u) in (2.42). Note that when S ∩ D(u) = ∅, S is automatically
good for D(u) (see Figure 1). Our last result in this section is the following:

PROPOSITION 2.6. (n ≥ 0)

{TG ≤ n} ⊆ {
for some u ∈ Z;X[0,n] is not good in D(u)

}
.(2.44)

PROOF. We prove (2.44) by contradiction. We denote with Gn the complement
of the event in the right-hand side of (2.44). We fix a trajectory in Gn, and set
S = X[0,n]. We choose k− ≤ k+ in Z, so that(

M⋃
i=1

Vi

)
× [minπZ(S),maxπZ(S)] ⊆ ⋃

k−≤k≤k+
D(kM ′L′).(2.45)
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FIG. 1. A schematic illustration of “S is good for D” and “S is thin in Dij .”The sets corresponding
to the thin lines in the box on the left are in the complement of S. Also S is thin in the shaded boxes
on the right-hand side of the figure.

We say that Di,j (kM ′L′) belongs to a thin column, respectively to a thin row, of
D(kM ′L′) when S is thin in each Di,j ′(kM ′L′), 1 ≤ j ′ ≤ M ′, respectively each
Di′,j (kM ′L′), 1 ≤ i ′ ≤ M . The first observation is the following:

Any two boxes Di−,1(k−M ′L′) and Di+,M ′(k+M ′L′) in a thin
column of D(k−M ′L′) and D(k+M ′L′) respectively can be
linked by a path of boxes D
 = Di
,j


(k
M
′L′), 0 ≤ 
 ≤ m,

(2.46)

such that:

(i) the path starts in Di−,1(k−M ′L′) and ends in Di+,M ′(k+M ′L′),
(ii) for each 0 ≤ 
 ≤ m, S is thin in D
,

(iii) for each 0 ≤ 
 < m, either the boxes D
 and D
+1 are vertically abutting,
that is, i
 = i
+1 and |j
L

′ + k
M
′L′ − j
+1L

′ − k
+1M
′L′| = L′, or side-wise

abutting, that is, j
 = j
+1, k
 = k
+1, and Vi
 ∩ Vi
+1 �= ∅.

Indeed, since the trajectory of the walk belongs to Gn, any two boxes in thin
columns of D(kM ′L′) can be linked by such a nearest neighbor path of boxes in
a thin row or thin column of D(kM ′L′); see (2.43)(ii). In addition, with (2.43)(i),
for any k, at least one 1 ≤ i ≤ M is such that Di,L′(kM ′L′) and Di,1((k + 1)M ′L′)
are both in thin columns of D(kM ′L′) and D((k + 1)M ′L′), respectively. The
claim (2.46) follows.

The next observation is that for 0 ≤ 
 < m:

any z, z′ respectively in D
 and D
+1, such that πZ(z) /∈ πZ(S ∩D
)

or πG(z) /∈ πG(S ∩D
) and a similar condition for z′ with 
 replaced
by 
+1, can be joined by a nearest neighbor path in (D
 ∪D
+1)\S.

(2.47)

[Such points exist in view of (2.46)(ii) and (2.42).]



HOW UNIVERSAL ARE ASYMPTOTICS OF DISCONNECTION TIMES IN 23

Indeed, one can construct a path within D
\S or D
+1\S between two points
in the same box D
 or D
+1 that satisfies the above mentioned property thanks
to (2.42) and the fact that each Vi,1 ≤ i ≤ M , is connected. Then using the fact that
D
 and D
+1 are either vertically abutting with Vi
 = Vi
+1 , or sidewise abutting
with Vi
 ∩Vi
+1 �= ∅, in view of (2.42), we can either find g ∈ Vi
 = Vi
+1 such that
g ∈ πG((D
 ∪ D
+1)\S), or u ∈ πZ((D
 ∪ D
+1)\S). The claim (2.47) readily
follows in view of the previous remark.

With (2.46) and (2.47), we can then find a nearest neighbor path in E\S which
starts at a point having Z-projection equal to minπZ(S) and ends at a point having
Z-projection equal to maxπZ(S). Hence, S does not disconnect E. In other words,
we have shown that Gn ⊆ {TG > n}, and (2.44) follows. �

In Section 4, when working in the presence of a transient pocket (cf. Theo-
rem 4.1), we use the simple case M = M ′ = 1, so that “S good for D(u)” means
that S is thin in D1,1(u). On the other hand, in order to handle the possible pres-
ence of recurrent pockets in Section 5, we use the above Proposition 2.6 with M

and M ′ > 1; see Theorem 5.2.

3. Localization technique and rarefied excursions. We develop the local-
ization technique in this section. We focus on what happens in a certain “pocket”
A of G (see Figure 2), where we have control over the decay of the killed heat ker-
nel; see (3.4). We are interested in the excursions performed before time |G|2(1−δ),
corresponding to successive entrances of the walk in a not too big box C with G

projection denoted by V , “well inside A,” and departures of the walk at distances
of order h′ ≤ h in the Z-direction. We pick h′ [cf (3.6)] so that, on the one hand, it
is large enough and thereby makes it rare to hit C when starting at vertical distance
of order h′ from C, and on the other hand, small enough so that in the later contexts
of Sections 4 and 5, we are able to check (3.5), and thereby discard what happens
outside A × Z, when analyzing these excursions. Our key result (cf. Proposition
3.2) shows that for our purpose we can assume that only a finite number of ex-
cursions take place. This is instrumental when later constructing connections with
Proposition 2.6. Our convention on constants for this section appears above Re-
mark 3.1. We first introduce some definitions.

Recalling d0 from (1.2), we denote with G0(d0, δ, δ
′, γ, a), where 0 < δ < 1

2 ,
0 < δ′ < δ

8 , γ > 1
2 , a > 0, the class of finite connected graphs G satisfying (1.2),

such that either

λG ≤ |G|−2(1−δ)(log |G|)−1,(3.1)

or (3.1) does not hold and there exist

G ⊇ A ⊇ V with V connected, so that(3.2)

|A| ≥ λ
−1/2
G |G|15δ/16, |G|δ/8 ≥ |V | ≥ 1

d0
|G|δ′

(3.3)
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FIG. 2. A drawing of some of the sets that appear in (3.2)–(3.7).

and

P G
g [Yn = g,n < TA] ≤ a

nγ
, for g ∈ A,n ≥ 1.(3.4)

In addition, we assume that

|G|1−δ/8

h′ sup
x∈Ac×Z

Px[HC < TB̃ ′ ] ≤ 1,(3.5)

where we have set, with h as in (2.12),

h′ = [(√|A||G|−δ/8)1/γ ] ∧ h(3.6)

and

C(u) = V × (u + [−v, v]) with v = |V | ∧
[
h′

2

]
and u ∈ Z,(3.7)



HOW UNIVERSAL ARE ASYMPTOTICS OF DISCONNECTION TIMES IN 25

[and we write C in place of C(0)]. We also consider the classes

G1(d0, δ, δ
′, γ, a) = {G ∈ G0; (3.1) does not hold},(3.8)

G ext(d0, δ) = {G satisfying (1.2) such that either (3.1)
(3.9)

holds or λG ≥ |G|−δ/10}.
This latter definition corresponds to “extreme values of λG” [cf. (1.9)] and this
class will be considered in Theorem 4.3. Throughout the section we use similar
conventions concerning positive constants or the expression “for large G,” as men-
tioned below (1.14), except that constants may now depend on d0, δ, δ

′, γ, a (and
not just d0). Let us give some comments about these parameters. The parameter δ

ultimately measures the quality of the lower bound we derive on the disconnection
time, with a similar interpretation as in (0.9). The numbers γ and a control the
on-diagonal decay of the transition kernel of the walk on G killed when exiting
the “pocket” A, whereas δ′ ensures the nondegeneracy of V the G-projection of
the box C sitting inside A × [−h′, h′]. The choice of h′ in (3.6), as well as (3.5),
addresses the two conflicting constraints expressed at the beginning of this section.
With the first and second inequality of (3.3), A is not too small in G, V is small
in A, and due to (3.5), sits “well inside” A. The last inequality of (3.3) enforces
a lower bound on |V | which will ensure that we are not looking at too small a
scale in G, and the multiplicity of boxes C(u), |u| ≤ |G|2, we later need to con-
sider does not beat the probabilistic estimates we derive; see, for instance, (4.9),
above and below (4.10)(ii), as well as the last line of (5.25). Let us mention that in
some applications the values of γ and a will be fixed (see, e.g., Corollary 4.6 and
Corollary 5.3) but in Corollary 4.5 we let γ and a depend on δ [and tend to infinity
as δ tends to 0; cf. (4.20)].

REMARK 3.1. As a routine consequence of (1.2) and (3.4), one has

for all g,g′ ∈ A,n ≥ 1, P G
g [Yn = g′, n < TA] ≤ c

nγ
.(3.10)

Indeed, rn(g, g′) = P G
g [Yn = g′, n < TA]µ(g′)−1 is a symmetric function of g,g′,

thanks to reversibility. Further, with the Chapman–Kolmogorov equations and
Cauchy–Schwarz’s inequality, one finds for k ≥ 1, g,g′ ∈ A,

r2k(g, g′) ≤ r2k(g, g)1/2r2k(g
′, g′)1/2 (3.4)≤ a

(2k)γ
(µ(g)µ(g′))−1/2,

r2k+1(g, g′) ≤ r2k(g, g)1/2r2k+2(g
′, g′)1/2 (3.4)≤ a

(2k)γ
(µ(g)µ(g′))−1/2,

whence (3.10).
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We wish to control excursions consisting of successive returns to C(u) and de-
partures from B̃ ′(u)(= G× Ĩ ′(u), with Ĩ ′(u) = u+[−(2h′ − 1),2h′ − 1]). To this
end, we introduce for u ∈ Z the sequence of stopping times

R̃u
1 = HC(u), D̃u

1 = TB̃ ′(u) ◦ θR̃u
1
+ R̃u

1 , and for k ≥ 1,

(3.11)
R̃u

k+1 = R̃u
1 ◦ θD̃u

k
+ D̃u

k , D̃u
k+1 = D̃u

1 ◦ θD̃u
k
+ D̃u

k ,

and with a similar convention as below (1.14), we drop the superscript u when
u = 0, and simply write R̃k, D̃k . The next proposition shows the rarefaction of
excursions between C(u) and E\B̃ ′(u), up to time |G|2(1−δ), when G is large
in G1. It plays an important role in the present and next section.

PROPOSITION 3.2. There is a positive constant K0 (cf. above Remark 3.1),
such that

lim|G|→∞,G∈G1
sup
x∈E

Px

[
sup
u∈Z

∑
k≥1

1
{
R̃u

k < |G|2(1−δ)} > K0

]
= 0.(3.12)

PROOF. We define [compare with (1.29); note that the value of h in (1.29) is
set by (1.17), whereas in the present section it is defined by (2.12)]

m∗ =
[ |G|1−δ

h
(log |G|)5

]
+ 1.(3.13)

With (1.10), (2.12) and (3.8), we see that

for large G in G1, m∗ ≥ c(log |G|)2 and
(3.14)

m∗
|A|
|G| |G|δ/16 ≥ c(log |G|)5/2.

Recall the notation Ru
k ,Du

k from below (1.14), with a choice for h made in (2.12).
With similar arguments as below (2.11) of [8], for large G in G1 and arbitrary
z ∈ E, u ∈ Z, we find,

Pz

[
Ru

m∗ ≤ |G|2(1−δ)]
≤ P Z

0
[
H(m∗−1)h ≤ |G|2(1−δ)] ≤

(
1 − c

|G|1−δ

)(m∗−1)h

(3.15)

≤ exp{−c(log |G|)5}.
We now turn to the control of the sum in the probability in (3.12) for u = 0, un-
der Px , with x arbitrary in E. The case u �= 0 will then follow using translation
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invariance in the Z-direction. We first note that

m∗
h

h′
|A|
|G| |G|δ/16 ≤ c

|A|
h′ |G|−15δ/16(log |G|)5 def= k∗(A),(3.16)

and also introduce the notation k∗(G), when G replaces A in (3.16). With the
help of Proposition 2.3, we can control the number of returns R′

k with XR′
k

in A

(or in G) that occur before Dm∗ . Indeed, when G is large in G1 and any x ∈ E, one
has

Px[UA
1 + · · · + UA

m∗ > k∗(A)]

≤ Px

[
UG

1 >
1

2
k∗(A)

]
+ Px

[
UA

2 + · · · + UA
m∗ >

1

2
k∗(A)

]
(3.17)

(2.18),(2.19)≤
(2.16),(3.16)

2 exp
{
−cm∗

|A|
|G| |G|δ/16

}
+ c exp

{
−cm∗

|A|
|G| |G|δ/16

}
(3.14)≤ c exp{−c(log |G|)5/2}.

The same argument shows that

Px[UG
1 + · · · + UG

m∗ > k∗(G)] ≤ c exp{−cm∗|G|δ/16}
(3.18)

(3.14)≤ exp{−c|G|δ/16}.
With (3.15), (3.17) and (3.18), we have a bound on the number of returns R′

k with
XR′

k
in A (or in G) that occur before time |G|2(1−δ). We then need to bound the

probability of entering C before exiting B̃ ′. When h′ = h [cf. (3.6)], we will rely
on (2.32) of Lemma 2.5. On the other hand when h′ < h, we will use the following:

LEMMA 3.3 [γ > 1
2 , ε ∈ (0,2γ − 1)]. For G in G1 with |G| ≥ c(ε), one has

Px

[
Hx′ < T(A×Z)∩B̃ ′

] ≤ h′−(2γ−1−ε) for x ∈ A × {−h′, h′}, x′ ∈ C.(3.19)

PROOF. Pick δ1 < 1
2 . With no loss of generality, we assume that x = (g,h′),

with g ∈ A and x′ = (g′, u′) ∈ C, so that g′ ∈ V and |u′| ≤ h′
2 ; cf. (3.7). When G

is in G1, we thus find

Px

[
Hx′ < T(A×Z)∩B̃ ′

]
= Px

[ �Hx′ < �T(A×Z)∩B̃ ′
]

(3.20)
(1.5)≤ P Z

h′
[ �Hu′ < h′2(1−δ1)

]
+ cEG

g ⊗ EZ

h′
[∫ ∞

h′2(1−δ1)
1{�Yt = g′, �TA > t}1{�Zt = u′}dt

]
.
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Note that from (3.3), (3.6), (1.9) and (2.12), lim|G|→∞,G∈G1 h′ = ∞. With (2.22),
for large G in G1, the first term in the right-hand side of (3.20) is smaller than
exp{−ch′ log(1 + ch′(1−2(1−δ1)))} ≤ exp{−ch′2δ1}. We now turn to the last term
of (3.20). We introduce the continuous piecewise linear increasing processes

At =
∫ t

0
deg(�Yr)dr, t ≥ 0, and

τs = inf{t > 0;At > s} = (A−1)s, s ≥ 0,

as well as the time changed process

Ỹs = �Yτs , s ≥ 0.

Under P G
g , Ỹ· is the continuous walk on G with the same discrete skeleton as �Y·,

but with constant jump rate one. Note also that

τs =
∫ s

0
deg(Ỹr )

−1 dr.

Performing the change of variable t = τs , the last term of (3.20) equals

cEG
g ⊗ EZ

u

[∫ ∞
A

h′2(1−δ1)

1{Ỹs = g′, T Ỹ
A > s}1{�Zτs = u′}deg(Ỹs)

−1 ds

]

≤ c

∫ ∞
h′2(1−δ1)

EG
g [Ỹs = g′, T Ỹ

A > s, q(τs, u,u′)]ds,

with q(t, u,u′) = P Z
u [�Zt = u′], and otherwise hopefully obvious notation. Note

that when Nt, t ≥ 0, is a Poisson counting process with rate 1,

P

[
Nt <

t

2
or Nt > 2t

]
≤ 2e−ct , t > 0,(3.21)

as follows from Cramér-type bounds. With (3.10) and a similar bound for
q(t, u,u′), the last term of (3.20) is thus smaller than

c

∫ ∞
h′2(1−δ1)

(
t−(γ+1/2) + e−ct )dt ≤ c

(
h′(1−2γ )(1−δ1) + e−ch′2(1−δ1))

.

Choosing δ1 < c(ε), so that (2γ − 1)(1 − δ1) > 2γ − 1 − ε, our claim (3.19)
follows. �

We now return to the task of bounding the sum in (3.12) for u = 0. We first
analyze the case when [cf. (3.6)]

h′ < h.(3.22)
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For large G in G1, under (3.22), for any K ≥ 2 and x ∈ E,

Px

[∑
k≥1

1{R̃k ≤ |G|2(1−δ)} > K

]

≤ Px

[∑

≥1

1{HC < TB̃ ′ } ◦ θR′


1{R′


 ≤ |G|2(1−δ)} > K

]
(3.15)≤ exp{−c(log |G|)5}

+ Px

[ ∑
1≤m≤m∗

1≤k

1{HC < TB̃ ′ } ◦ θR′
k
1{Rm ≤ R′

k < Dm} > K

]

≤ exp{−c(log |G|)5}
(3.23)

+ Px

[ ∑
1≤m≤m∗

1≤k

1{HC < TB̃ ′, πG(X0) ∈ A} ◦ θR′
k

×1{Rm ≤ R′
k < Dm} >

K

2

]

+ Px

[ ∑
1≤m≤m∗

1≤k

1{HC < TB̃ ′, πG(X0) /∈ A} ◦ θR′
k

×1{Rm ≤ R′
k < Dm} >

K

2

]
(3.17),(3.18)≤ c exp{−c(log |G|)5/2} + a1 + a2,

where we have set [see (3.16) and below (3.16) for the notation]

a1 = Px

[ ∑
1≤k≤k∗(A)

1
{
HC < TB̃ ′

} ◦ θR′
k,A

>
K

2

]
,

(3.24)

a2 = Px

[ ∑
1≤k≤k∗(G)

1
{
HC < TB̃ ′ ;πG(X0) /∈ A

} ◦ θR′
k
>

K

2

]
,

and R′
1,A = inf{R′


;XR′


∈ A×Z}, and for k ≥ 1, R′

k+1,A = inf{R′

; R′


 > R′
k,A and

XR′


∈ A×Z}, that is, R′

k,A, k ≥ 1, stand for the successive times within R′

, 
 ≥ 1,
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when πG(XR′


) ∈ A. There remains to bound a1 and a2. We first write

a1 ≤ Px

[ ∑
2≤k≤k∗(A)

1
{
HC < TB̃ ′∩(A×Z)

} ◦ θR′
k,A

>
1

2

(
K

2
− 1

)]

+ Px

[ ∑
2≤k≤k∗(A)

1
{
TA×Z < HC < TB̃ ′

} ◦ θR′
k,A

>
1

2

(
K

2
− 1

)]
(3.25)

def= b1 + b2.

With the strong Markov property at times R′
k,A, recalling that when k ≥ 2, XR′

k,A
∈

A × {−h′, h′}, Px-a.s., we find that for λ > 0,

b1 ≤ exp
{
−λ

2

(
K

2
− 1

)}
(3.26)

×
(

sup
z∈A×{−h′,h′}

Ez

[
exp

{
λ1{

HC<TB̃′∩(A×Z)

}}])k∗(A)

.

Choosing ε = 2γ−1
2 ∧ δ

8 in Lemma 3.3, we see that for large G in G1,

sup
z∈A×{−h′,h′}

Pz

[
HC < TB̃ ′∩(A×Z)

] ≤ |C|h′−(2γ−1−ε).(3.27)

Note also that for large G in G1, with (3.22),

k∗(A)|C|h′−(2γ−1−ε)

(3.16)≤
(3.6)

c|C| |A|
h′ |G|−15δ/16(log |G|)5h′(1+ε)|A|−1|G|δ/4

(3.28)
(3.3)≤ c|G|δ/4+δ/4−15δ/16h′ε(log |G|)5

(3.6),(3.8)≤ |G|−7δ/16+ε ≤ |G|−δ/4,

and as a result,

b1 ≤ exp
{
−λ

2

(
K

2
− 1

)
+ k∗(A)|C|h′−(2γ−1−ε)(eλ − 1)

}
(3.29)

≤ exp
{
−λ

2

(
K

2
− 1

)
+ |G|−δ/4(eλ − 1)

}
.

In an analogous fashion using in place of (3.27) the estimate

sup
z∈E

Pz[TA×Z < HC < TB̃ ′ ]
(3.30)

(3.5)≤ h′|G|δ/8−1 (3.6),(3.22)≤ h′(1−2γ ) ≤ |C|h′−(2γ−1−ε),
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we find in the case of b2,

b2 ≤ exp
{
−λ

2

(
K

2
− 1

)
+ |G|−δ/4(eλ − 1)

}
.(3.31)

With similar arguments, we see that for large G in G1, for λ > 0,

a2 ≤ exp
{
−λ

(
K

2
− 1

)
+ k∗(G)h′|G|δ/8−1(eλ − 1)

}
(3.32)

≤ exp
{
−λ

(
K

2
− 1

)
+ |G|−δ/4(eλ − 1)

}
,

where we used k∗(G)h′|G|δ/8−1
(3.16)≤ c|G|δ/8−15δ/16(log |G|)5 ≤ |G|−δ/4.

Picking λ = δ
4 log |G| in (3.29), (3.31) and (3.32), we can choose a constant K1

such that, for large G in G1, when (3.22) holds,

sup
x∈E

Px

[∑
k≥1

1
{
R̃k < |G|2(1−δ)} > K1

]
≤ |G|−3.(3.33)

We then analyze the case where (3.22) is replaced with [cf. (3.6)]

h′ = h.(3.34)

For large G in G1, under (3.34), for K ≥ 2, x ∈ E,λ > 0, using analogous argu-
ments as in (3.23) and the strong Markov property at time Rm, we obtain

Px

[∑
k≥1

1
{
R̃k < |G|2(1−δ)} > K

]

≤ exp{−c(log |G|)5} + Px

[ ∑
1≤m≤m∗

1{HC < TB̃} ◦ θRm > K

]
(3.35)

≤ exp{−λ(K − 1)}
(

sup
z∈G×{−h,h}

Ez

[
exp

{
λ1{HC < TB̃}}])(m∗−1)

.

From (2.32) in Lemma 2.5, we know that, for large G,

sup
G×{−h,h}

Pz[HC < TB̃] ≤ c|C| h

|G| .(3.36)

Coming back to (3.35), we then find

Px

[∑
k≥1

1
{
R̃k < |G|2(1−δ)} > K

]

≤ exp{−c(log |G|)5} + exp
{
−λ(K − 1) + cm∗|C| h

|G|(e
λ − 1)

}
≤ exp{−λ(K − 1) + |G|−δ/2(eλ − 1)},
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where we used that, for large G in G1, m∗|C| h
|G|

(3.13)≤ 2|G|−δ(log |G|)5|C|(3.3),(3.7)≤
|G|−δ/2. Picking λ = δ

2 log |G|, we can choose a constant K2 such that, for large G

in G1, when (3.34) holds,

sup
x∈E

Px

[∑
k≥1

1
{
R̃k < |G|2(1−δ)} > K2

]
≤ |G|−3.(3.37)

Combining (3.33) and (3.37), it now follows from translation invariance in the
Z-direction that with K0 = K1 ∨ K2, for large G in G1,

sup
x∈E

Px

[
sup
u∈Z

∑
k≥1

1
{
R̃u

k < |G|2(1−δ)} > K0

]

= sup
x∈G×{0}

Px

[
sup
u∈Z

∑
k≥1

1
{
R̃u

k < |G|2(1−δ)} > K0

]

≤ |G|2 sup
x∈E

Px

[∑
k≥1

1
{
R̃k < |G|2(1−δ)} > K0

]
≤ |G|−1,

and this proves (3.12). �

REMARK 3.4. The proof of Proposition 3.2 when (3.34) holds shows that for
the class �G(d0, δ) of finite connected graphs satisfying (1.2) but not (3.1), if one
defines, for u in Z [see also (2.12)],

�C(u) = �V × (u + [−w,w])
(3.38)

where w ≤ |�V | ∧
[
h

2

]
and |G|δ/8 ≥ |�V |,

and introduces in analogy to (3.11), with B̃ ′(u) replaced by B̃(u), the successive
returns to �C(u) and departures from B̃(u), �Ru

k,
�Du

k, k ≥ 1, one can find a positive �K
solely depending on d0 and δ such that

lim
|G|→∞,G∈�G

sup
x∈E

Px

[
sup
u∈Z

∑
k≥1

1
{�Ruk < |G|2(1−δ)} > �K

]
= 0.(3.39)

This remark will be helpful in the next section when we derive a lower bound on
the disconnection time for a large G in Gext; see (3.10).

4. Lower bound in presence of a transient pocket. In this section we derive
a lower bound on the disconnection time of a discrete cylinder when its base G

is large and contains a transient pocket [i.e., γ > 1, in the notation of (3.4)]. The
basic result is Theorem 4.1; applications are given in Corollary 4.5, when G is a
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truncated r-tree of depth N , or in Corollary 4.6 [see also (0.8)], when G contains a
ball of not too small radius modeled on an infinite graph where the heat kernel and
volume growth conditions (0.5)(i) and (0.6) are fulfilled. Our methods also enable
to derive a general lower bound on the disconnection time for large G in Gext
(cf. Theorem 4.3), that is, when λG is “close” to the extreme values in (1.9). Our
key tools are Propositions 3.2 and 2.6. Our convention on constants in this section
unless otherwise stated is the same as in Section 3; see above Remark 3.1. The
definition of G0 appears at the beginning of Section 3 and corresponds to graphs G

where either λG is “small” or a suitable “pocket” is present. Our main result in this
section is the following:

THEOREM 4.1 (Transient pocket, γ > 1).

lim|G|→∞,G∈G0
sup
x∈E

Px

[
TG ≤ |G|2(1−δ)] = 0.(4.1)

PROOF. Choosing εn = (logn)−1 in (2.5), we see with (3.1) and (3.8) that

lim|G|→∞,G∈G0\G1
sup
x∈E

Px

[
TG ≤ |G|2(1−δ)] = 0.(4.2)

We thus only need consider the case of a large G in G1. We use the strategy outlined
in Proposition 2.6. In the presence of a “transient pocket,” that is, with γ > 1, we
simply choose M = M ′ = 1, and D1,1(u) = D(u) = V × (u + [0, v]) ⊆ C(u), for
u ∈ Z, in the notation of (2.41) and (3.7). So for a finite subset S of E, “S good
for D(u)” is just the same as “S thin in D1,1(u)(= D(u)).” The full strength of
Proposition 2.6 will not be needed until Section 5. We also denote the image set
of X· up to time |G|2(1−δ) with

S = X[0,[|G|2(1−δ)]].(4.3)

Using Propositions 2.6 and 3.2, our claim (4.1) will follow once we show that

lim|G|→∞,

G∈G1

sup
x∈E

Px

[
for some u ∈ Z, S is not thin in D(u), and for all

u ∈ Z,
∑
k≥1

1
{
R̃u

k ≤ |G|2(1−δ)} ≤ K0

]
(4.4)

= 0.

In order to contain the possible damage created by the few excursions reaching C,
the next lemma will be useful.

LEMMA 4.2 (γ > 1). For large G in G1 [cf. (3.2) and (3.7) for the notation],

sup
x∈E

Ex

[
exp

{
c

|V |1/γ

∣∣X[0,TB̃′−1] ∩ C
∣∣}]

≤ 2.(4.5)



34 A.-S. SZNITMAN

PROOF. Using a variation on Khashminskii’s lemma [see also the proof
of (2.33)], it suffices to show that

sup
x∈C

Ex

[∣∣X[0,TB̃′−1] ∩ C
∣∣] ≤ c|V |1/γ .(4.6)

To this end note that for large G in G1, when x = (g,w), one has

Ex

[∣∣X[0,TB̃′−1] ∩ C
∣∣]

= ∑
z∈C

Px[Hz < TB̃ ′ ]

≤ |C|Px[HC ◦ θTA×Z
+ TA×Z < TB̃ ′ ]

+ Ex

[∑
n≥0

1
{
Xn ∈ C,n < TB̃ ′∩(A×Z)

}]
(4.7)

(3.5),(3.7)≤ |C|h′|G|δ/8−1 + cEG
g

[∑
n≥0

1{Yn ∈ V,n < TA}
]

(3.3),(3.7)≤
(3.8),(3.10)

c|G|δ/4|G|1−δ(log |G|)3|G|δ/8−1 + c
∑
k≥0

(( |V |
kγ

)
∧ 1

)

≤ 1 + c|V |1/γ + c|V | ∑
k>|V |1/γ

k−γ

≤ 1 + c|V |1/γ
(3.3)≤ c|V |1/γ ,

which proves (4.6). Our claim (4.5) follows. �

We now prove (4.4). Considering u0 ∈ Z with |u0| ≤ |G|2, and x ∈ E, we find

Px

[
S is not thin in D(u0) and

∑
k≥1

1
{
R̃

u0
k ≤ |G|2(1−δ)} ≤ K0

]
(2.42)≤ Px

[
for some k ≤ K0,

∣∣πG

(
X[0,TB̃′(u0)−1] ∩ C(u0)

)∣∣ ◦ θ
R̃

u0
k

≥ |V |
2K0

or(4.8)

∣∣πZ

(
X[0,TB̃′(u0)−1] ∩ C(u0)

)∣∣ ◦ θ
R̃

u0
k

≥ v

2K0

]

. with v = |V | ∧
[
h′

2

]
; see (3.7)
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When v = |V | < [h′
2 ], using Lemma 4.2 and the strong Markov at times R̃

u0
k , we

find that the above probability is smaller than

Px

[
for some k ≤ K0,

∣∣X[0,TB̃′(u0)−1] ∩ C(u0)
∣∣ ◦ θ

R̃
u0
k

≥ |V |
2K0

]
(4.9)

≤ 2K0e
−c/(|V |1/γ )|V |/(2K0)

(3.3)≤ c exp
{−c|G|δ′(1−1/γ )}.

On the other hand, when v = [h′
2 ] ≤ |V |, one either has [cf. (3.6)]

(i) |V | ≥
[
h′

2

]
= v and h′ = [(√|A||G|−δ/8)1/γ ]

< h,(4.10)

in which case, with a similar argument as above, the right-hand side of (4.8) is
smaller than

2K0

(
exp

{
− c

2K0
|V |1−1/γ

}
+ exp

{
−c

(√|A||G|−δ/8

|V |
)1/γ })

(3.3),(1.9)≤ c exp
{−c|G|δ′(1−1/γ )} + c exp

{−c|G|7δ/(32γ )},
otherwise, one has

(ii) |V | ≥
[
h′

2

]
= v and h′ = h,(4.10)

in which case we instead use (2.33)(i) of Lemma 2.5 to bound the Z-projection that
appears in the last line of (4.8); we see that the right-hand side of (4.8) is smaller
than

2K0

(
exp

{
− c

2K0
|V |1−1/γ

}
+ exp

{
− c√

tG

h

5K0

})
(2.12)≤ c exp{−c(log |G|)2}.

Combining the above estimates, we see that for large G in G1,

sup
x∈G×{0}

Px

[
for some |u| ≤ |G|2, S is not thin in D(u) and for all

u ∈ Z,
∑
k≥1

1
{
R̃u

k ≤ |G|2(1−δ)} ≤ K0

]

≤ c|G|2 exp{−c(log |G|)2}.
Using the fact that for |u| > |G|2, S is thin in D(u) and translation invariance in
the Z-direction, we obtain (4.4). This concludes the proof of Theorem 4.1. �

The methods employed in the proof of Theorem 4.1 apply as well to the case of
a large G in Gext; see (3.10).
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THEOREM 4.3.

lim|G|→∞,G∈Gext
sup
x∈E

Px

[
TG ≤ |G|2(1−δ)] = 0.(4.11)

PROOF. Using (4.2), we see that we can replace Gext in (4.11) with

G̃ext = {G ∈ Gext;λG ≥ |G|−δ/10}.
We now employ an analogous strategy as explained below (4.2). We choose again
M = M ′ = 1, D1,1(u) = D(u), where, for u ∈ Z,

D(u) = V ×
(
u +

[
0, |V | ∧

[
h

2

]])
,(4.12)

where V is a connected subset of G with |V | = [|G|δ/8], and h as in (2.12). Note
that for large G in G̃ext, h

2 ≤ |V |. Using (3.39), we only need to show, with S as
in (4.3),

lim
|G|→∞,G∈G̃ext

sup
x∈E

Px

[
for some u ∈ Z, S is not thin in D(u) and

(4.13)

for all u ∈ Z,
∑
k≥1

1
{�Ru

k ≤ |G|2(1−δ)} ≤ �K
]

= 0.

Note that for large G in G̃ext, |u0| ≤ |G|2, and x ∈ E, one has

Px

[
S is not thin in D(u0) and

∑
k≥1

1
{�Ru0

k ≤ |G|2(1−δ)} ≤ �K
]

(2.33)≤ 2 �K
(

exp
{
− c

tG

|V |
2 �K

}
+ exp

{
c√
tG

1

2 �K
[
h

2

]})
≤ c exp{−c(log |G|)2},

where the constants matter-of-factly only depend on d0 and δ (as in Section 2). We
can then conclude the proof of Theorem 4.3 as we did below (4.10)(ii). �

REMARK 4.4. (i) Gext(d0, δ) contains, on the one hand, large, “one-dimensio-
nal” finite graphs such as Z/NZ or [0,N] (d0 ≥ 2 and 0 < δ < 1

2 , arbitrary), for
which λG is of order |G|−2 and on the other hand, for d0 ≥ 3, 0 < δ < 1

2 , large
expanders (cf. [13]) for which λG is order a positive constant.

(ii) As an immediate consequence of Theorems 1.2 and 4.3, we thus see that,
for d0 ≥ 2, 0 < δ < 1

2 , ε > 0,

lim|G|→∞,G∈Gext(d0,δ)
inf
x∈E

Px

[|G|2(1−δ) ≤ TG ≤ |G|2(log |G|)4+ε] = 1.(4.14)

This, of course, immediately implies that (0.9) holds for sequences satisfying
(1.2) and (0.10).
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We will now describe two applications of Theorem 4.1. The first application
concerns the case where, for N ≥ 1,

GN is a rooted r-tree of depth N , with root denoted by g∗;(4.15)

here r ≥ 2 is an integer (and the case r = 2 corresponds to the rooted binary tree
of depth N ). Clearly, one has |GN | = 1 + r . . . rN = rN+1 − 1. We set d0 = r + 1,
and write EN = GN × Z.

COROLLARY 4.5 [Under (4.15)].

lim
N→∞ inf

x∈EN

Px

[|GN |2(1−δ) ≤ TGN
≤ |GN |2(log |GN |)4+ε] = 1

(4.16)
for ε, δ > 0.

PROOF. The upper bound follows from Theorem 1.2. For the lower bound
without loss of generality, we choose δ ∈ (0, 1

2). We view GN as a subset, namely,
the open ball with center g∗ and radius N + 1, of G∞ the infinite r-tree with
root g∗. In the notation of (3.2) we pick AN and VN as open balls with center g∗:

AN = B(g∗,N) ⊇ VN = B(g∗, ρN)(4.17)

where ρN is an integer such that |GN |δ/16 ≥ |VN | ≥ 1

r + 1
|GN |δ/16.(4.18)

Note that the random walks on GN or on G∞ killed when exiting AN do agree.
Moreover, with hopefully obvious notation (see also the beginning of Section 1),
d(Yk, g∗) under P G∞

g is distributed as a simple random walk on the nonnegative

integers reflected at 0, with jump probability “to the right” equal to r
r+1 > 1

2 . It
thus follows that, for N ≥ 1, g ∈ AN , k ≥ 0,

P GN
g [Xk = g, k < TAN

] ≤ P G∞
g [Xk = g] ≤ e−µ(r)k with µ(r) > 0,(4.19)

using a comparison with the simple random walk on Z, jumping to the right with
probability r

r+1 , for the last inequality. In view of Theorem 4.1, the claim (4.16)
will follow once we show that

for large N, GN ∈ G0

(
d0 = r + 1, δ, δ′ = δ

16
, γ = 100

δ
,

(4.20)

a = sup
k≥1

k100/δe−µ(r)k

)
.

Since |AN |/|GN | remains bounded away from 0, it follows that for large N either
(3.1) or (3.3) holds; see also (1.9). Although we do not explicitly need the follow-
ing fact, it is of interest to remark that with (59) and (60) in Chapter 5 of [2], λGN
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is of order |GN |−1 for large N ([2] discusses the spectral gap attached to the dis-
crete time walk, which can be compared to λGN

by a bounded multiplicative factor
depending on d0 = r + 1). Since δ < 1

2 , in fact, (3.1) does not hold for large N .
Clearly, in view of (4.19) and the choice of a in (4.20), (3.4) holds as well. As a
result, (4.20) and, hence, our claim (4.16) will follow once we show that

for large N , (3.5) holds.(4.21)

To this end, note first that, for g ∈ GN\AN , that is, when d(g, g∗) = N ,

P GN
g [HVN

◦ θ1 < TAN
◦ θ1] ≤ r−(N−ρN).

Indeed, the walk on GN and G∞ coincide up to the exit time from AN , and the
distance to g∗ of the walk on G∞ has the law described below (4.19). The above
bound now follows from the application of the simple Markov property and stan-
dard estimates for the biased simple random walk on Z [note that the ball defining
VN in (4.17) is open]. It thus follows that, for T > 0, N ≥ 1,

sup
g∈Ac

N

P GN
g [HVN

< T ] ≤ T r−(N−ρN).(4.22)

Then observe that in the notation of (3.6), with (4.17),

sup
N≥1

h′
Nr−(N/γ )(1/2−δ/8) ≤ ν(r, δ) < ∞,

and hence, there is for large N , for any x ∈ B̃ ′
N , a probability at least p(r, δ) > 0 to

exit B̃ ′
N before time r(N/γ )(1−δ/4) under Px . It now follows that, for large N , and

x ∈ Ac
N × Z,

Px[HCN
< TB̃ ′

N
] ≤ Px[HCN

< T ] + Px[T < TB̃ ′
n
]

(4.23)
≤ T r−(N−ρN) + (1 − p)[T/rN/γ (1−δ/4)],

for T a positive integer, using (4.22) for the first term in the last line and the remark
above (4.23). Choosing T = [rN/γ (1−δ/4)+Nδ/100], and noting in view of (4.18)
that ρN ∼ Nδ/16, and 1/γ (1 − δ/4) + δ/100 + δ/16 < δ/8 (recall γ = 100/δ),
it follows that for large N the expression in the second line of (4.23) is smaller
than |GN |δ/8−1. This is more than enough to prove (4.21). This concludes the
proof of (4.16). �

We now turn to the second application of Theorem 4.1. We consider an infinite
connected graph G∞ with degree bounded by d0 ≥ 2, with polynomial volume
growth (0.6) and such that the random walk satisfies the upper bound (0.5)(i) [we
do not require (0.5)(ii)]. We assume in this section that

α > β ≥ 2,(4.24)
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and in view of (0.5)(i), the walk is transient on G∞. When β > 2, the walk is
sub-diffusive [for instance, with (0.5)(i) and (0.6), the expected distance from the
starting point at time k is uniformly bounded by const k1/β ], a feature often re-
ferred to as anomalous diffusion. For a thorough investigation of such walks and
examples, we refer to [3], [10] and [11].

We now consider a sequence of connected finite graphs GN,N ≥ 1, with degree
bounded by d0 ≥ 2, such that limN |GN | = ∞, and for large N , there is rN > 1,
and gN ∈ GN , such that

B(gN, rN) ⊆ GN is isomorphic to some open ball of radius rN in G∞(4.25)

[i.e., there is a bijection between B(gN, rN) and an open ball of radius rN in G∞,
which preserves the degree, and such that pairs of points in B(gN, rN) are neigh-
bors if and only if their images in G∞ are neighbors], and for a suitable η ∈ (0,1),
and sequence ϕn such that ϕn = o(nε), for each ε > 0,

|B(gN, rN)| ≥ min
(|GN |ϕ−1

|GN |, λ
−1/2
GN

|GN |η)
for large N.(4.26)

COROLLARY 4.6. Under the above assumptions, for all δ > 0, ε > 0,

lim
N→∞ inf

x∈EN

Px

[|GN |2(1−δ) ≤ TGN
≤ |GN |2(log |GN |)4+ε] = 1.(4.27)

PROOF. As for Corollary 4.5, only the lower bound on TGN
is of concern. We

choose 0 < δ < 1
2 ∧ η, see (4.26). For the remainder of the proof, all constants c

may depend on d0, δ, α,β, κi, κ̃i , i = 1,2 [cf. (0.5), (0.6)], η.
We will apply Theorem 4.1, and to this end, choose for large N

AN = B(gN, rN), VN = B(gN,ρN)
(4.28)

with |GN |δ/8 ≥ |VN | ≥ 1

d0
|GN |δ/8.

The claim (4.26) will follow once we show that

for large N, GN ∈ G0

(
d0, δ, δ

′ = δ

16
, γ = α

β
,a = κ1

)
.(4.29)

Given that δ < η, in view of (4.26), (4.25) and (0.5)(i), we only need to prove that

for large N , (3.5) holds.(4.30)

With (4.26), (0.5)(i) and (0.6), we observe that for g ∈ GN with d(g, gN) = [ rN
4 ]

and T ≥ 1,

P GN
g

[
sup

1≤k≤T

d(g,Yk) ≥ rN

4

]
≤ ∑

1≤k≤T

c

kα/β
rα
N exp

{
−c

(
r
β
N

k

)1/(β−1)}
(4.31)

≤ crα
N exp

{
−c

(
r
β
N

T

)1/(β−1)}
,
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using (4.24) in the last step. With (4.26), (4.28) and (0.6), we see that, for large N

(recall η > δ),
rN

8
≥ c|GN |η/α ≥ c′|GN |δ/(8α) ≥ ρN,(4.32)

and with (3.6),

h′
N ≤ (|B(gN, rN)|1/2|GN |−δ/8)1/γ ≤ cr

β/2
N |GN |−δ/(8γ )

(4.33)
where lim

N
h′

N = ∞.

The same argument as for (4.23) shows that, for large N , and x ∈ Ac
N × Z,

Px[HCN
< TB̃ ′

N
]

≤ Px[HCN
< T ] + Px[T < TB̃ ′

N
]

(4.34)
(4.31)≤ crα

N exp
{
−c

(
r
β
N

T

)1/(β−1)}
+ (1 − c)[T/(cr

β
N |GN |−δ/(4γ ))]

for T a positive integer.

Choosing T = [rβ
N |GN |−δ/(8γ )] and observing that rα

N ≤ c|GN |, it follows that for
large N the last line of (4.34) is smaller than |GN |−1. This is more than enough to
show (4.30), and concludes the proof of Corollary 4.6. �

REMARK 4.7. (i) Corollary 4.6 applies, in particular, when GN is some ball
of radius N in G∞ (with possibly variable center), with G∞ as specified above
Corollary 4.6.

(ii) One may also obtain (4.27) in situations where Corollary 4.6 does not di-
rectly apply. For instance, assume that GN satisfies the assumptions of Corol-
lary 4.6 and G̃N is a sequence of connected graphs with degree bounded by d̃0,
such that, for some η̃ > 0, and large N ,

|G̃N | ≤ |GN |η̃(4.35)

and

λG̃N
≥ λGN

,(4.36)

then

(4.27) holds true with �GN = GN × G̃N in place of GN.(4.37)

Indeed, we simply choose �AN = AN × G̃N , �VN = VN ×{x̃N }, with x̃N some point
in G̃N . Using the fact that λ�GN

= min(λGN
,λG̃N

), a product formula in the spirit

of (1.5) to gain control over the random walk on �GN , and (4.34), one sees that
for δ as in the proof of Corollary 4.6 with a suitably large enough a,

for large N, GN ∈ G0

(
d0 + d̃0, δ, δ

′ = δ

16(1 + η̃)
, γ = α

β
,a

)
.(4.38)
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(iii) We can choose G∞ to be Z
d d,≥ 3, with its usual graph structure, so

that α = d > β = 2; see Remark 1.2 of [10]. We can then apply Corollary 4.6,
when GN = (Z/NZ)d , N ≥ 1, and recover Theorems 1.1 and 2.1 of [8], when
d ≥ 3. The case d = 1 is covered by Remark 4.4(2). The case d = 2 will follow
from the results in the next section. Periodic boundary conditions play no role
here, and Corollary 4.6 applies just as well to the case GN = [0,N]d , N ≥ 1;
see (4.25) and (4.26).

(iv) When GN = [0, [Nλ]]d−1 × [0,N], N ≥ 1, with λ ∈ (0,∞), d ≥ 3, then
for large N , λGN

N2(λ∨1) remains bounded and bounded away from zero. Choos-
ing AN to be a ball in GN with radius small multiple of Nλ∧1, and suitable center,
Corollary 4.6 applies [cf. (4.26)] if d(λ∧ 1) > λ∨ 1, that is, when λ ∈ ( 1

d
, d). Fur-

ther, when d ≥ 4, λ > 1, Remark 4.7(2) applies (with G̃N = [0,N]), and we see
that (4.27) holds true when λ > 1

d
.

5. Lower bound in the presence of recurrent pockets. We now derive a
lower bound on the disconnection time of a discrete cylinder that applies to cases
where G is large and contains a recurrent pocket. This is substantially more del-
icate to handle than the case of transient pockets treated in Section 4. In partic-
ular, we make full use of Proposition 2.6 when the notion “S is good in D(u)”
[cf. (2.43)] involves a kind of renormalization step. We have shown in Proposi-
tion 3.2 the rarefaction of excursions between C and the complement of B̃ ′, taking
place before time |G|2(1−δ), when G is large in G0 for arbitrary γ > 1

2 . However,
we are unable to extend Theorem 4.1 to the case 1

2 < γ ≤ 1. We need additional
assumptions to tame the possible recurrence properties of the walk on G. The
main result is Theorem 5.2; applications are then discussed in Corollary 5.3 and
Remark 5.5.

Assuming 1
2 < γ ≤ 1, we now describe the sub-class of G0 (cf. beginning of

Section 3) consisting of G in G0 such that, when (3.1) does not hold,

V in (3.1) is a geodesic segment [i.e., V = {g
;0 ≤ 
 < |V |}, with
d(g
, g
′) = |
 − 
′|, for 0 ≤ 
, 
′ < |V |],(5.1)

for W ⊆ V , a geodesic segment of length m ≥ 2, and J ⊆ Z an
interval of length [mβ/2(logm)−β/2],
Px[HW×J < TA×Z] ≤ a′ max

(
1,

d(g,W)

m
,
dZ(u, J )2/β

m

)−ν

,

for x = (g,u) ∈ E, with d(g,W) = inf{d(g, g′);g′ ∈ W }, and
dZ(u, J ) analogously defined,

(5.2)

for W,J,m, as above, and g̃ ∈ W ,
Ex

[∣∣πG

(
X[0,T(A∩B(g̃,m logm))×Z] ∩ (W × J )

)∣∣] ≤ aGm(logm)−µ,
for x ∈ E and when πZ replaces πG, the right-hand side is re-
placed with aZmβ/2(logm)−µ−β/2.

(5.3)
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Our assumptions on the parameters that appear above are

β ≥ 2, µ > 0, µ + ν > 1, a′, aG, aZ ≥ 1.(5.4)

We denote with G̃0(d0, δ, δ
′, γ,µ, ν,β, a, a′, aG, aZ) the above defined class (we

recall that here 1
2 < γ ≤ 1). Unless otherwise stated, for the remainder of this

section c denotes a positive constant possibly depending on the above parameters,
with a corresponding meaning for the expression “for large G in . . . .”

REMARK 5.1. Let us give a word of comment on the above class G̃0. The
parameter β ≥ 2 has a similar interpretation as in (0.5), with β > 2, enabling
“anomalous diffusion” in the pocket A (and hence, much faster displacements of
the Z-component than the G-component). The most restrictive assumption is (5.3),
with µ > 0. It rules out applications to pockets modeled on a suitable ball in an infi-
nite graph of bounded degree satisfying (0.5), when 1+ β

2 > α, which are instances
of so-called “very strong recurrence” since β > α; see Proposition 3 of Barlow [3].
In Corollary 5.3 we consider the recurrent situation β ≥ α ≥ (1 + β

2 ) ∨ (β − 1),

with β ≥ 2, and can choose ν = α − β
2 in (5.2), and µ arbitrarily close to 1 in (5.3).

The most delicate situation arises when α = 1 + β
2 .

THEOREM 5.2.

lim
|G|→∞,G∈G̃0

sup
x∈E

Px

[
TG ≤ |G|2(1−δ)] = 0.(5.5)

PROOF. We begin with some preparatory remarks. With Theorem 4.3 [see
also (3.10)] our claim follows once we prove (5.5) with G̃0 replaced by

G̃ = {
G ∈ G̃0; |G|−δ/10 > λG > |G|−2(1−δ)(log |G|)−1}

.(5.6)

Further, reducing ν and V if necessary [cf. (5.2) and (3.3)], we can assume that

δ′ < δ

10
, |G|δ′ ≥ |V | ≥ 1

d0
|G|δ′

and 0 < ν < 1

(5.7)
with µ + ν > 1.

We then choose ρ(µ, ν) ∈ (0,1) so that

µ + ρν > 1.(5.8)

For large G in G̃, we introduce the integers M,M ′,L such that

M = [(log |G|)ρ], 1
2 |V | ≤ Mβ/2Lβ/2 < |V | and

(5.9)
M ′ = [Mβ/2(logL)β/2].
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FIG. 3. An illustration of the sets Di,j , D and C, when (5.12) holds.

Recall that V is a geodesic segment [cf. (5.1)] and in the notation of (2.39)–(2.41),
we define

Vi = {
g(i−1)L, . . . , giL

}
, Jj = [(j − 1)L′, jL′]

(5.10)
with L′ = [Lβ/2(logL)−β/2].

Let us mention that when β > 2, the sets Di,j = Vi × Jj are thin vertically elon-
gated “rectangles” and their union D [see notation below (2.41)] is also a thin
vertically elongated rectangle contained in the rectangle C, with height M ′L′ com-
parable to the height of C; see (3.7) and (5.12) below. Using similar arguments as
for Theorem 4.1 (see, in particular, the end of the proof) our claim will follow once
we show that

lim
|G|→∞,G∈G̃

|G|2 sup
x∈E

Px

[
S is not good in D and

(5.11) ∑
k≥1

1
{
R̃k ≤ |G|2(1−δ)} ≤ K0

]
= 0,

with the notation of (4.3), (2.41), (2.43) and (3.11).
As a last reduction note that in view of (5.6), (5.7), (3.3), (3.6), here (1

2 < γ ≤
1), for large G in G̃, one has

|V | < h′

2
.(5.12)
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We will now bound the probability that appears in (5.11). On the event inside
the probability in this display, we can find a subset of {1, . . . ,M} × {1, . . . ,M ′},
consisting of ordered pairs (i, j) such that S is not thin in Di,j , and either this
subset consists of [M

2 ] elements having different first coordinates, or this subset
consists of M ′ elements having different second coordinates; see (2.43). In the
first case, we denote with H0 this subset and observe that for each (i, j) in H0,
one has [with the notation below (2.12)]∑

1≤k≤K0

∣∣πG

(
X[0,TB̃′ ] ∩ Di,j

)∣∣ ◦ θR̃k
≥ L/2, or

(5.13) ∑
1≤k≤K0

∣∣πZ

(
X[0,TB̃′ ] ∩ Di,j

)∣∣ ◦ θR̃k
≥ [Lβ/2(logL)−β/2]/2.

In the second case, we denote with H1 the set of the M elements in the above
subset having second coordinate of the form [
β/2(logL)β/2], for 1 ≤ 
 ≤ M , so
that now (5.13) holds for all (i, j) ∈ H1.

With a rough counting argument, there are at most 2M(M ′)M/2 possible choices
for H0 and MM possible choices for H1. Thus, for large G in G̃, with (5.9),

there are at most exp{c(log |G|)ρ log log |G|} possible
choices for H0 or H1.

(5.14)

We will now bound the probability that, for each (i, j) in H0 or H1, (5.13) hap-
pens. To this end, we consider for large G in G̃ some H0 as above, and the “verti-
cal” or “horizontal” segments of the form

U = {g} × Jk ⊆ ⋃
H0

Di,j , W = V
 × {u} ⊆ ⋃
H0

Di,j .(5.15)

One then has for z ∈ E, with hopefully obvious notation,

Ez

[∑
H0

∣∣πG

(
X[0,TB̃′ ] ∩ Di,j

)∣∣]

= Ez

[∑
U

1{HU < TB̃ ′ }
]

≤ ∑
U

Pz[TA×Z < HU < TB̃ ′ ] + ∑
(i,j)∈H0

∑
U⊆Di,j

Pz

[
HU < TB̃ ′∩(A×Z)

]
(5.16)

≤ |C|Pz[TA×Z < HC < TB̃ ′ ]

+ ∑
(i,j)∈H0

Ez

[
HDi,j

< TB̃ ′∩(A×Z),
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∑
U⊆Di,j

PXHDi,j

[
HU < TB̃ ′∩(A×Z)

]]

(3.5)≤ |C|h′|G|δ/8−1 + Q
(5.6),(5.7)≤ 1 + Q,

where Q stands for the expression in the fourth line of (5.16). We now bound Q.
First note that for (i, j) ∈ H0 and for x ∈ Di,j (playing the role of XHDi,j

in the
expectation entering Q), one has∑

U⊆Di,j

Px

[
HU < TB̃ ′∩(A×Z)

]
(5.17)

≤ Ex

[∑
k≥1

∣∣πG

(
X[0,T(B(giL,L logL)∩A)×Z] ∩ Di,j

)∣∣ ◦ ρk, ρk < TB̃ ′∩(A×Z)

]
,

where analogously to (1.12), ρk, k ≥ 1, are the successive return times to Di,j after
leaving (B(giL,L logL) ∩ A) × Z. Using (5.2) with m = L, we find that

Px′ [HDi,j
< TA×Z] ≤ c(logL)−ν ≤ 1

2
(5.18)

for x′ ∈ (
B(giL,L logL)c ∩ A

) × Z.

Then using the strong Markov property at times ρk , we see that∑
U⊆Di,j

Px

[
HU < TB̃ ′∩(A×Z)

]

≤
(∑

k≥1

1

2k−1

)
sup

x̃∈Di,j

Ex̃

[∣∣πG

(
X[0,T(B(giL,L logL)∩A)×Z] ∩ Di,j

)∣∣]
(5.3)≤ 2aGL(logL)−µ.

Coming back to the fourth line of (5.16), we obtain for large G in G̃, z ∈ E, H0 as
above (5.13),

Q ≤ cL(logL)−µ
∑

(i,j)∈H0

Pz

[
HDi,j

< TB̃ ′∩(A×Z)

]
≤ cL(logL)−µ sup

z̃∈D

∑
(i,j)∈H0

Pz̃

[
HDi,j

< TB̃ ′∩(A×Z)

]
(5.19)

(5.2)≤ cL(logL)−µ

(
1 + ∑

1≤k≤M

c

kν

)
≤ cL(logL)−µM1−ν,

where we used the strong Markov property at time HD [cf. (2.41)] for the first
inequality, and the structure of H0 [see above (5.13)] together with the fact that V
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is a geodesic segment, for the second inequality. Coming back to (5.16), we see
that for large G in G̃ and any H0 as above (5.13),

sup
z∈E

Ez

[ ∑
(i,j)∈H0

∣∣πG

(
X[0,TB̃′ ] ∩ Di,j

)∣∣] ≤ cL(logL)−µM1−ν.(5.20)

A similar bound holds as well with H1 in place of H0. Indeed, one simply needs
to replace the sum in the last line of (5.19) with

∑M

=1 c(
β/2)−(2ν)/β ≤ cM1−ν ;

see (5.2) and below (5.13).
We now want to derive similar controls to (5.20) when πZ replaces πG. With

analogous arguments as for (5.17), we see that, for x ∈ Di,j and W as in (5.15),∑
W⊆Di,j

Px

[
HW < TB̃ ′∩(A×Z)

]
≤ 2 sup

x̃∈Di,j

Ex̃

[∣∣πZ

(
X[0,T(B(giL,L logL)∩A)×Z] ∩ Di,j

)∣∣](5.21)

(5.3)≤ cLβ/2(logL)−µ−β/2.

Proceeding as in (5.16) and (5.19), we thus obtain

sup
z∈E

Ez

[ ∑
(i,j)∈H0

∣∣πZ

(
X[0,TB̃′ ] ∩ Di,j

)∣∣] ≤ cLβ/2(logL)−µ−β/2M1−ν,(5.22)

and a similar inequality holds with H1 in place of H0.
Using once again a variation on Khasminskii’s lemma (cf. (2.46) of [8]), (5.20)

and (5.22) imply that for m = 0,1,

sup
z∈E

Ez

[
exp

{
c
(logL)µ

LM1−ν

∑
(i,j)∈Hm

∣∣πG

(
X[0,TB̃′ ] ∩ Di,j

)∣∣}]
≤ 2(5.23)

and

sup
z∈E

Ez

[
exp

{
c
(logL)µ+β/2

Lβ/2M1−ν

∑
(i,j)∈Hm

∣∣πZ

(
X[0,TB̃′ ] ∩ Di,j

)∣∣}]
≤ 2.(5.24)

We now return to our main objective, that is, bounding the probability in (5.11).
We thus see with (5.13), (5.14) and the above controls that, for large G ∈ G̃ and
x ∈ E,

Px

[
S is not good in D and

∑
k≥1

1
{
R̃k ≤ |G|2(1−δ)} ≤ K0

]
≤ 2 exp{c(log |G|)ρ log log |G|}(5.25)
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× sup
H0,H1

sup
m∈{0,1}

Px

[ ∑
(i,j)∈Hm

∑
1≤k≤K0

∣∣πG

(
X[0,TB̃′ ] ∩ Di,j

)∣∣
◦θR̃k

≥ L

2

[
M

2

]]

+ Px

[ ∑
(i,j)∈Hm

∑
1≤k≤K0

∣∣πZ

(
X[0,TB̃′ ] ∩ Di,j

)∣∣ ◦ θR̃k

≥ 1

2
[Lβ/2(logL)−β/2]

[
M

2

]]
(5.23),(5.24)≤ 2 exp{c(log |G|)ρ log log |G|}

× 2K0

(
exp

{
−c

LM

LM1−ν
(logL)µ

}

+ exp
{
−c

Lβ/2(logL)−β/2M

Lβ/2M1−ν
(logL)µ+β/2

})
(5.7),(5.9)≤ c exp{−c(logL)µMν} (5.7)−(5.9)≤ o(|G|−2)

[with the last inequality of (5.7) and (5.9), logL is comparable to log |G|]. This
shows (5.11) and thus concludes the proof of Theorem 5.2. �

We now provide an application of Theorem 5.2 in the spirit of Corollary 4.6.
We consider an infinite connected graph G∞ with degree bounded by d0 ≥ 2,
satisfying the heat kernel bounds of (0.5) [and hence, (0.6) for suitable κ̃i , i = 1,2],
but unlike (4.24), we now assume that

β ≥ 2, β ≥ α ≥
(

1+ β

2

)
∨(β−1) (and therefore, G∞ is recurrent).(5.26)

We refer to Barlow [3] for examples of such G∞, when β > 2, the case
β = 2 being more common. We assume that we have a sequence of finite con-
nected graphs GN , N ≥ 1, with degree bounded by d0 ≥ 2, and lim |GN | = ∞,
and (4.25) and (4.26) hold. We then have following:

COROLLARY 5.3. Under the above assumptions for all δ > 0, ε > 0,

lim
N→∞ inf

x∈EN

Px

[|GN |2(1−δ) ≤ TGN
≤ |GN |2(log |GN |)4+ε] = 1.(5.27)

PROOF. We only need to discuss the lower bound on TGN
. We choose

0 < δ < 1
2 ∧ η; see (4.26). For the remainder of the proof, all constants c may
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depend on d0, δ, α,β, κi,1 ≤ i ≤ 4 [cf. (0.5)] and η. We choose for large N

[cf. (4.25) and (5.1)]

AN = B(gN, rN) and VN a geodesic segment initiating at gN with
(5.28)

|VN | =
[
rN

8
∧ |GN |δ/8

]
.

With similar arguments as for the proof of (4.29), with the only difference that in
the last expression of (4.31), and in the first term in the last member of (4.34), there
is an additional factor T , since (5.26) replaces (4.24), one has

for large N, GN ∈ G0

(
d0, δ, δ

′ = δ

8
∧ η

2α
,γ = α

β
,a = κ1

)
.(5.29)

In view of Theorem 5.2, our claim will thus follow if we can see that we can select
the remaining parameters µ,ν, a′, aG, aZ, so that (5.4) holds and

for large N, GN ∈ G̃0.(5.30)

To this end, we consider the walk on G∞ × Z
def= E∞, and its Green function

g∞(x, x′) = ∑
k≥0

P E∞
x [Xk = x′], x, x′ ∈ E∞.(5.31)

LEMMA 5.4 (α+1 ≥ β ≥ 2, α > 1). For a suitable c > 1, for any x, x′ in E∞,

1

c
D(x, x′)−(2α/β−1) ≤ g∞(x, x′) ≤ cD(x, x′)−(2α/β−1) with

D(x,x′) = max
(
dG∞(g, g′)β/2, |u′ − u|,1

)
,(5.32)

x = (g,u), x′ = (g′, u′).

We refer to the Appendix for the proof of this lemma. Then consider W a
geodesic segment in G∞ of length m ≥ 2, and J an interval of Z with length
[mβ/2(logm)−β/2]. Picking x0 = (g0, u0) ∈ W × J , with (5.32), one has

inf{g∞(x, x0);x ∈ W × J } ≥ cm−(α−β/2),(5.33)

and it now follows from the fact that g∞(Xn∧HW×J
, x0), n ≥ 0, is a martingale

under any P E∞
x , x = (g,u) ∈ E∞, that

P E∞
x [HW×J < ∞] ≤ g∞(x, x0)

cm−(α−β/2)

(5.34)
(5.32)≤ c′

[
max

(
d(g, g0)

m
,
|u − u0|2/β

m

)]−(α−β/2)

.
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This readily implies that (5.2) holds for large N , with an adequate choice
of a′ = 1 ∨ c′, with c′ as in (5.34) and

ν = α − β

2
.(5.35)

We then continue and check (5.3). Let W,J be as above, and define for g0 ∈ W ,
Ug0 = {g0} × J and

Ug0(z) = ∑
x∈Ug0

g∞(z, x) for z ∈ E∞, so that(5.36)

inf
z∈Ug0

Ug(z)
(5.32)≥ c

|J |∑

=1


−(2α/β−1) ≥
{

c logm, if α = β,
c|J |2(1−α/β), if α < β.

(5.37)

On the other hand, for z = (g,u) ∈ W × J we also have with (5.32)

Ug0(z) ≤ c

|J |∑

=1

1

d(g, g0)α−β/2 ∨ 
2α/β−1

(5.38)

≤


c

(
1 + log

(
m

d(g,g0) ∨ 1

))
, if α = β,

c

( |J |
(d(g, g0) ∨ 1)α−β/2

)
∧ |J |2(1−α/β), if α < β.

With a similar argument as in (5.34), we find that for z = (g,u) ∈ W × J ,

P E∞
z [HUg0

< ∞] ≤


c

logm

(
1 + log

(
m

d(g,g0) ∨ 1

))
, if α = β,

c

( |J |2/β

d(g, g0) ∨ 1

)α−β/2

∧ 1, if α < β.
(5.39)

Note that, for x ∈ E∞,

EE∞
x

[∣∣πG

(
X[0,∞) ∩ (W × J )

)∣∣]
= EE∞

x

[ ∑
g0∈W

1{HUg0
< ∞}

]

= EE∞
x

[
HW×J < ∞,E

E∞
XHW×J

[ ∑
g0∈W

1{HUg0
< ∞}

]]
(5.40)

(5.39)≤ max
z=(g,v)∈W×J

∑
g0∈W

c

logm

(
1 + log

(
m

d(g,g0) ∨ 1

))

≤


c

m

logm
, if α = β,

c
m

logm
log logm, if α < β,
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using the fact that W is a geodesic segment of length m, and the last line of (5.39)
together with the inequality α ≥ 1 + β

2 and |J |2/β ≈ m/ logm, when α < β [note

that the log logm factor in the last line of (5.40) is only needed when α = 1 + β
2 ].

This takes care of the first estimate in (5.3). For the second estimate, we consider
u0 ∈ J , Wu0 = W × {u0} and

Wu0(z) = ∑
x∈Wu0

g∞(z, x) for z ∈ E∞.(5.41)

Again with (5.32), we see that

inf
z∈Wu0

Wu0(z) ≥ c

m∑

=1

1


α−β/2 ≥


c, if α > 1 + β

2
,

c logm, if α = 1 + β

2
.

(5.42)

When z = (g,u) ∈ W × J , we also find

Wu0(z) ≤ c

m∑

=1

1


α−β/2 ∨ |u − u0|2α/β−1

(5.43)

≤


c(|u − u0| ∨ 1)2/β(1+β/2−α), if α > 1 + β

2
,

c

(
1 + log

(
m

|u − u0|2/β ∨ 1

))
, if α = 1 + β

2
.

As in (5.39), we find that, for z = (g,u) ∈ W × J ,

P E∞
z [Wu0 < ∞]

(5.44)

≤


c(|u − u0| ∨ 1)2/β(1+β/2−α), if α > 1 + β

2
,

c

logm

(
1 + log

(
m

|u − u0|2/β ∨ 1

))
, if α = 1 + β

2
.

A similar computation as in (5.40) shows that, for x ∈ E∞,

P E∞
x

[∣∣πZ

(
X[0,∞) ∩ (W × J )

)∣∣]
≤ max

z=(g,u)∈W×J

∑
u0∈J

c(|u − u0| ∨ 1)2/β(1+β/2−α)

(5.45)

≤


cmβ/2+(1+β/2−α), if α > 1 + β

2
,

c
mβ/2

(logm)β/2+1 log logm, if α = 1 + β

2
.

Combining (5.40) and (5.45), we see that with a suitable choice of aG,aZ ≥ 1, and

µ < 1,(5.46)
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condition (5.3) holds for large N . This concludes the proof of (5.30), with para-
meters [cf. (5.35) and (5.46)] that fulfill (5.4). �

In the same spirit as Remark 4.7, we have the following:

REMARK 5.5. (i) Corollary 5.3 applies, in particular, when GN is some ball
of radius N in G∞ (with possibly variable center), with G∞ as above in Corollary
5.3.

(ii) We can choose G∞ to be Z
2, with its usual graph structure, corresponding

to α = β = 2 in (5.26). Corollary 5.3 then applies to the case GN = (Z/NZ)2,
N ≥ 1. This with Remark 4.7(ii) recovers Theorems 1.1 and 2.1 of [8], for arbitrary
d ≥ 1. Of course, Corollary 5.3 applies just as well to GN = [0,N]2, N ≥ 1.

(iii) When GN = [0, [Nλ]] × [0,N], N ≥ 1, with λ ∈ (0,∞), then for large N ,
λGN

N2(λ∨1) remains bounded and bounded away from zero. Picking AN as a ball
with suitable center and radius a small multiple of Nλ∧1, we can apply Corol-
lary 5.3, as soon as [cf. (4.26) and Remark 4.7(iii)], 1

2 < λ < 2.

APPENDIX

We prove here Lemma 5.4. We can clearly replace g(·, ·) in (5.32) with

�g∞(x, x′) = EE∞
x

[∫ ∞
0

1{�Xt = x′}dt

]
, x, x′ ∈ E∞,(A.1)

since for a suitable constant c ≥ 1, 1
c

≤ �g∞/g∞ ≤ c. We then use a similar rep-
resentation as in Lemma 3.3. We introduce the continuous (piecewise linear) in-
creasing processes

At =
∫ t

0
deg(�Yr) dr, t ≥ 0, and

(A.2)
τs = (A−1)s = inf{t > 0;At > s}, s ≥ 0,

and the time changed process

Ỹs = �Yτs ,(A.3)

so that under P G∞
g , Ỹ· is the continuous time walk on G∞ with constant jump rate

equal to 1, starting at g ∈ G∞. We also note that with (A.2) and (A.3)

τs =
∫ s

0
deg(Ỹr )

−1 dr, s ≥ 0.(A.4)

With similar calculations as in Lemma 3.3, we thus find that, for x = (g,u), x′ =
(g′, u′) in E∞, one has

�g∞(x, x′) = EG∞
g ⊗ EZ

u

[∫ ∞
0

1{Ỹs = g′}1{�Zτs = u′}deg(Ỹs)
−1 ds

]
,(A.5)
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and therefore, for a suitable constant c ≥ 1,
1

c
≤ 1

g∞(x, x′)

∫ ∞
0

EG∞
g [Ỹs = g′, q(τs, u,u′)]ds ≤ c

(A.6)
with q(t, u,u′) = P Z

u [�Zt = u′].
We first show the right-hand side inequality of (5.32). As in (3.21), we denote
with Nt, t ≥ 0, a Poisson counting process with unit intensity. We set t0 = D, with
D as in (5.32) and note that with (3.21), P [Nt ≥ 2D] ≤ P [Nt0 ≥ 2D] ≤ ce−cD ,
for t ≤ t0, so that∫ ∞

0
EG∞

g [Ỹs = g′, q(τs, u,u′)]ds

≤ t0

(
ce−cD + sup

k≤2D

P G∞
g [Yk = g′] sup


≤cD

P Z

u [Z
 = u′]
)

+
∫ ∞
t0

(
ce−ct + sup

t/2≤k≤2t

P G∞
g [Yk = g′] sup

ct≤
≤c′t
P Z

u [Z
 = u′]
)

dt

(0.5)(i)≤ t0

(
ce−cD + c exp

{
−c

(
dG∞(g, g′)β

D

)1/(β−1)

− c
|u − u′|2

D

})
(A.7)

+ ce−ct0 +
∫ ∞
t0

c

tα/β+1/2

× exp
{
−c

(
dG∞(g, g′)β

t

)1(β−1)

−c
|u − u′|2

t

}
dt

≤ cDe−cD1/(β−1) + c

D2α/β−1 ≤ c

D2α/β−1 ,

using the change of variable t = D2s to bound the last integral. With (A.6), this
proves the right-hand side inequality of (5.32). To prove the left-hand side inequal-
ity of (5.32), we note in addition to (3.21) that, for a suitable constant c ≥ 1,

1

c
≤ P [Nt = k + 1]/P [Nt = k] ≤ c

(A.8)

for all k ∈
[
t

2
,2t

]
and t ≥ 1.

We now write with (0.5)(ii) and a similar bound for the walk on Z:

g∞(x, x′)
(A.6)≥ c

∫ ∞
D2

EG∞
g [Ỹs = g′, q(τs, u,u′)]ds

(A.9)
≥

∫ ∞
cD2

c

sα/β+1/2 ds = c

D2α/β−1 .
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This proves the left-hand side inequality of (5.32) and concludes the proof of
Lemma 5.4.

Acknowledgment. We wish to thank Amir Dembo for many helpful discus-
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