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ATTRACTING EDGE AND STRONGLY EDGE
REINFORCED WALKS

BY VLADA LIMIC1 AND PIERRE TARRÈS2

CNRS, Université de Provence and Oxford University

The goal is to show that an edge-reinforced random walk on a graph of
bounded degree, with reinforcement weight function W taken from a general
class of reciprocally summable reinforcement weight functions, traverses a
random attracting edge at all large times.

The statement of the main theorem is very close to settling a conjecture of
Sellke [Technical Report 94-26 (1994) Purdue Univ.]. An important corollary
of this main result says that if W is reciprocally summable and nondecreas-
ing, the attracting edge exists on any graph of bounded degree, with prob-
ability 1. Another corollary is the main theorem of Limic [Ann. Probab. 31
(2003) 1615–1654], where the class of weights was restricted to reciprocally
summable powers.

The proof uses martingale and other techniques developed by the authors
in separate studies of edge- and vertex-reinforced walks [Ann. Probab. 31
(2003) 1615–1654, Ann. Probab. 32 (2004) 2650–2701] and of nonconver-
gence properties of stochastic algorithms toward unstable equilibrium points
of the associated deterministic dynamics [C. R. Acad. Sci. Sér. I Math. 330
(2000) 125–130].

1. Introduction. Consider a connected graph G with the set of vertices V =
V (G) and the set of (unoriented) edges E = E(G). The only assumption on the
graph is that each vertex has at most D(G) adjacent vertices (edges) for some
D(G) < ∞. So the graph G is either finite, or infinite with bounded degree. Special
cases are infinite lattices.

Call two vertices v, v′ adjacent (v ∼ v′ in symbols) if there exists an edge,
denoted by {v, v′} = {v′, v}, connecting them. For vertex v of G, let A(v) ⊂ V

denote the set of adjacent vertices v′ ∼ v.
Let W(k) > 0, k ≥ 1, be the weight function. The edge-reinforced random walk

on G records a random motion of a particle along the vertices of G with the fol-
lowing properties:

(i) if currently at vertex v ∈ G, in the next step, the particle jumps to a vertex
in A(v);
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(ii) the probability of a jump to v′ is W -proportional to the number of previous
traversals of the edge {v, v′}.

More precisely, let the initial edge weights be Xe
0 ∈ N for all e ∈ E. We assume

throughout the paper that supe Xe
0 < ∞.

Let In be a V -valued random variable, recording the position of the particle at
time n, n ≥ 0. For concreteness, set I0 = v0 for some v0 ∈ V . A traversal of edge
e occurs at time n + 1 if e = {In, In+1}. Denote by Xe

n − Xe
0 the total number of

traversals of edge e until time n. Let Fn be the filtration σ {(Ik,X
e
k, e ∈ E), k =

0, . . . , n} = σ {Ik, k = 0, . . . , n, (Xe
0, e ∈ E)}.

The edge-reinforced random walk on G with weight function W is a Markov
chain (I,X) = {(In,X

e
n, e ∈ E),n ≥ 0} on state space V (G)×N

E with the follow-
ing conditional transition probabilities: on the event {In = v}, for v′ ∈ A(v),

P
(
In+1 = v′, Xe

n+1 = Xe
n+1{e={v,v′}} , e ∈ G |Fn

) = W(X
{v,v′}
n )∑

w∈A(v) W(X
{v,w}
n )

.(1)

It is easily seen that the edge-reinforced random walk is well defined for any
weight function W , where W(k) > 0, k ∈ N. Let (H0) be the following condition
on W : ∑

k∈N

1

W(k)
< ∞.(H0)

Let us make a few preliminary observations. A simple calculation shows that
(H0) is the necessary and sufficient condition for

P({In, In+1} = {I0, I1} for all n) > 0,

so that an attracting edge exists with positive probability. This implies that (H0) is
necessary and sufficient to have

P(walk is attracted to a single edge) > 0,

and a variation of the above argument also implies that

P(walk is attracted to a finite subgraph) = 1.

However, it can easily be shown that if
∑

k 1/W(k) = ∞ and W is nondecreas-
ing, then any edge adjacent to an edge traversed by the walk infinitely often must
also be traversed infinitely often.

The case G = Z has been studied by Davis in [1], who has proven that if (H0)
does not hold and W is nondecreasing, then, with probability 1, every vertex in Z is
visited by the walk infinitely often, that is, the walk is recurrent. This statement has,
in fact, no proven general counterpart for other infinite graphs: even the original
recurrence/transience question raised by Coppersmith and Diaconis [2] in 1986 for
W linear and G = Z

d , d ≥ 2, is still open. For recent results on linearly ERRW, see



STRONGLY EDGE REINFORCED WALKS 1785

[4, 6]. Sellke [7] provided examples of W not nondecreasing and not satisfying
the condition (H0) such that for the corresponding reinforced walk, an attractor
consisting of two or more edges exists with positive (or full) probability on Z, as
well as on other graphs.

In the case where (H0) holds, the first result is due to Davis [1], who proved
that on Z, there exists almost surely some random integer i such that the walk
visits only i and i + 1 at all large times. Sellke [7] generalized this statement and
showed that, if G = Z

d , d ≥ 1, then under the necessary assumption (H0) (without
any monotonicity requirement), there exists almost surely some random attracting
edge, which is traversed by the walk at all large times. The same paper contains
the conjecture that the above property holds for edge-reinforced random walks on
general graphs of bounded degree.

The argument developed by Sellke [7] carries over to the setting where G is any
graph of bounded degree without odd cycles, a fact used by Limic [3].

In [3], it was proven that on any graph of bounded degree, the attracting edge
exists with probability 1 if W(k) = kρ for ρ > 1. In this paper, we show a gener-
alization of this result to a large class of weight functions W , including the class
of nondecreasing weights satisfying (H0), making use of the techniques developed
by the authors in [3, 8] and [9].

A cycle C in G of length |C| is a subgraph of G spanned by a |C|-tuple of vertices
(v1, v2, . . . , v|C|), such that {vi, vi+1} ∈ E, i = 1, . . . , |C| − 1, {v|C|, v1} ∈ E, and
vi �= vj if i �= j .

For each n ∈ N, let

αn := ∑
k≥n

1

W(k)2 ,

δn :=
∞∑

k=n+1

∣∣∣∣ 1

W(k)
− 1

W(k − 1)

∣∣∣∣.
Let

ν(G) := sup
G′⊂G odd cycle

√
2|G′|,

with the convention that ν(G) = 0 if there are no odd cycles. Note that if there are
odd cycles of arbitrarily large length in G, then ν(G) = ∞.

Let (H1) be the following condition:

ν(G) lim inf
n→∞

δn√
αn

< 1,(H1)

with the convention that ∞ × 0 = 0 × ∞ = 0 [i.e., if the lim inf is 0, then the
condition (H1) is satisfied for any graph G; if ν(G) = 0, then (H1) is satisfied for
any value of the lim inf].
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Let

G∞ =
{
e ∈ E : sup

n
Xe

n = ∞
}

be the (random) graph spanned by all edges in G that are traversed by the walk
infinitely often. Note that

{G∞ has only one edge} = {∃N < ∞ s.t. {In, In+1} = {In, In−1} ∀n ≥ N
}

=
{
∃e ∈ E such that sup

e′ �=e

sup
n

Xe′
n < ∞

}
.

The main result of this paper is the following theorem.

THEOREM 1. If W satisfies (H0) and (H1), then the edge-reinforced random
walk on G traverses a random attracting edge at all large times a.s., that is,

P(G∞ has only one edge) = 1.(2)

Theorem 1 is proven in Section 2. It implies, in particular, that if W is nonde-
creasing and (H0) holds, then G∞ has only one edge almost surely. This statement
is shown in Corollary 3 below, based on the observation that if (H1) does not hold
and W is nondecreasing, then W belongs to a fairly large class of weights (affec-
tionately called the sticky weights), given by the condition

lim inf
n→∞

(
max

0≤j<n
W(j)

) ∑
k≥n

1

W(k)
< ∞,(H2)

for which the attracting edge property is shown in Lemma 2 below. Another conse-
quence of Theorem 1 is stated and proved at the end of this section in Corollary 4.

LEMMA 2. (H2) implies (2).

PROOF. Denote the finite lim inf from (H2) by l and let N = {n ≥ 1 :
(max0≤j<n W(j))

∑
k≥n

1
W(k)

< l + 1}. Then, clearly, N is an infinite set. Fix
m ∈ N and let the ERRW (I·,X·) run until the time

Jm := inf
{
k ≥ 1 : there exists an edge e such that Xe

k = m,max
e′ �=e

Xe′
k < m

}
,

at which one edge has been traversed m times (where we take into account the
initial number of visits Xe

0 to the edge) and all others have been traversed strictly
fewer times. Note that the stopping time Jm is a.s. finite for any m > supe∈E Xe

0.
Indeed, as long as all of the edges have been visited at most m− 1 times, the prob-
ability transitions of the random walk depend only on the values of W on the set
{1, . . . ,m − 1} and are therefore bounded both below and above by positive and
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finite constants. Hence, for any n < ∞, given Fn∧Jm (here and later “∧” denotes
the minimum operator), and on the event {n < Jm}, the probability that any partic-
ular edge e ∈ E adjacent to the current position In will be traversed back and forth
from time n until the moment its corresponding number of traversals Xe· reaches
value m is bounded below by a positive constant. This implies Jm < ∞ a.s. by the
conditional Borel–Cantelli lemma.

Take m > supe∈E Xe
0 and denote by eJm the edge e such that Xe

Jm
= m. Set

d = D(G) < ∞ and note that the probability that from time Jm onward the walk
traverses only edge eJm is bounded below by

∞∏
k=0

W(m + k)

W(m + k) + d maxj<m W(j)

(3)

=
∞∏

k=0

(
1 − d maxj<m W(j)

W(m + k) + d maxj<m W(j)

)
,

which is, uniformly in m ∈ N , bounded away from 0 since
∞∑

k=0

maxj<m W(j)

W(m + k) + d maxj<m W(j)
< l + 1.(4)

Therefore, there exists c > 0 such that, for all m ∈ N ,

E
(
1{attracting edge exists}|FJm

) ≥ c > 0.

Now, (FJm,m ∈ N ) is a filtration with the natural ordering of elements of N ,
and {attracting edge exists} is contained in the limiting σ -field limn Fn =
limm→∞,m∈N FJm . Here, we use the fact that Jm are strictly increasing in m,
almost surely. Therefore, the Lévy 0–1 law implies that an attracting edge must
exist with probability 1. �

COROLLARY 3. Assume that W is nondecreasing and that (H0) holds. Then
G∞ has one edge almost surely.

PROOF. If W is nondecreasing, then δn = 1/W(n). Recall that (H0) implies
δn → 0 as n → ∞. Let us prove that if lim inf δn/

√
αn > 0, then

lim sup
n→∞

W(n)
∑
k≥n

1

W(k)
< ∞,(5)

implying (H2), so that an attracting edge exists almost surely by Lemma 2. This
will complete the proof of the corollary since lim inf δn/

√
αn = 0 would imply

(H1).
Using the fact that lim inf δn/

√
αn > 0, there exists ε > 0 such that for n ≥ n0,

1

W(n)2 ≥ ε

∞∑
k=n

1

W(k)2 .
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This implies, for all n ≥ n0, that

1

W(n)2 ≥ ε

∞∑
k=n

1

W(k)2 ≥ ε2
∑
k≥n

∑
j≥k

1

W(j)2 = ε2
∑
j≥n

j − n + 1

W(j)2

≥ ε3
∑
j≥n

∑
k≥j

j − n + 1

W(k)2 ≥ ε3

2

∑
k≥n

(k − n + 1)2

W(k)2 .

Using the Cauchy–Schwarz inequality, for all n ≥ n0,
∑
k≥n

1

W(k)
= ∑

k≥n

k − n + 1

W(k)

1

k − n + 1

≤
√√√√∑

k≥n

(k − n + 1)2

W(k)2

√√√√∑
k≥n

1

(k − n + 1)2

≤ π√
6

√
2

ε3

1

W(n)
,

which yields (5). �

REMARK. Note that no assumption on ν(G) is needed in the result above, nor
in the next result.

Let, for all n ≥ 2,

W ′(n) := W(n) − W(n − 1).

Let (H3) be the following condition:

∑
n≥2

(
W ′(n)

W(n)

)2

< ∞.(H3)

COROLLARY 4. Assume that (H0) and (H3) hold. Then G∞ has only one edge
almost surely.

PROOF. It suffices to prove that (H3) implies (H1). Suppose (H3). Then there
exists A ∈ R

∗+ such that for all n ≥ 2, W(n − 1) ≥ AW(n) [using the fact that
W(n − 1)/W(n) → 1 as n → ∞, by (H3)] and

δn = ∑
k≥n

∣∣∣∣ 1

W(k)
− 1

W(k − 1)

∣∣∣∣ = ∑
k≥n

|W ′(k)|
W(k)W(k − 1)

≤ A−1
∑
k≥n

|W ′(k)|
W(k)2

≤ A−1

√√√√∑
k≥n

(
W ′(k)

W(k)

)2
√√√√∑

k≥n

1

W(k)2 = √
αn

(
A−1

√√√√∑
k≥n

(
W ′(k)

W(k)

)2
)
,
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by the Cauchy–Schwarz inequality in the last line.
This last inequality yields, together with (H3), that lim sup δn/

√
αn = 0, which

implies (H1). �

REMARK. Let us give two examples of a reciprocally summable weight for
which we still do not know whether or not an attracting edge exists almost surely,
on graphs with at least one odd cycle. Let W(k) := k1+ρ/(2 + (−1)k). Then
δn ∼n→∞ 2ρ−1n−ρ and

√
αn = O(n−(ρ+1/2)), so that (H1) is not satisfied. As-

sumption (H2) is not satisfied either since
∑

k≥n 1/W(k) ∼n→∞ 2ρ−1n−ρ . Sim-
ilarly, W(k) = exp{k(2 + (−1)k)}, constructed from two weights satisfying hy-
pothesis (H2) does not satisfy it anymore; nor does it satisfy (H1)—whenever G
contains an odd cycle—since δn and

√
αn are then of the same order asymptoti-

cally.

2. Proof of Theorem 1. This section is devoted to the proof of Theorem 1.
The following proposition follows from results of [3] and [7].

PROPOSITION 5. Assume that (H0) holds. Then, almost surely, G∞ is either a
cycle of odd length or a single edge.

PROOF. The arguments of Section 2 in [3] apply here verbatim, but for the
benefit of the reader, we provide more details. Recall that we assume throughout
the paper that each vertex has at most D(G) adjacent vertices for some D(G) < ∞,
that is, that the graph is of bounded degree. Define by G1 the subgraph of G spanned
by the edges visited at least once by the walk. We know from [7], Lemma 4, that
G1, and therefore G∞, is a finite graph. First, [7], Theorem 3 (alternatively, [3],
Lemma 1), shows that there is a.s. no even cycle contained in G∞ and that if G∞ is
a tree, it a.s. only consists of two vertices and one edge connecting them. Second,
[3], Lemma 2, says that there is at most one odd cycle contained in G∞, almost
surely. Third, [3], Corollary 1, says that with probability 1, G∞ contains no vertex
of degree ≥ 3. Therefore, with probability 1, either G∞ contains an odd cycle, in
which case it is exactly equal to this cycle, or it is a single edge. �

Now, the event {G∞ is an odd cycle} is a union of at most countably many events

{G∞ is an odd cycle C},(6)

where C is any fixed odd cycle in G. Therefore, it suffices to prove that each
event above happens with probability 0. Moreover, as observed in [3], if the edge-
reinforced random walk on G stays within a finite cycle C of length � starting from
some time n0, at which the current edge weights on the edges of C are given by
z1, . . . , z�, then its transition probabilities starting from time n0 (and therefore its
law, and asymptotic behavior) are identical to those of the edge-reinforced random
walk on the cycle of length � started from the initial configuration of edge weights
z1, . . . , z�. Since the event in (6) is a countable union over all finite times n0 and all
finite configurations z1, . . . , z�, it is sufficient to prove the following proposition.
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PROPOSITION 6. Let G be a cycle of length �, where � is an odd number.
Assume that (H0) holds and that

lim inf
n→∞

δn√
αn

<
1√
2|G| = 1√

2�
.

Then for any choice of initial condition Xe
0 ∈ N, e ∈ E, we have

P(G∞ = G) = 0.(7)

REMARK. For the sake of concreteness (and brevity of notation), we provide
the proof of this result for the initial condition Xe

0 ≡ 1. We remark in Section 2.3
how the proof easily extends to the general initial condition setting.

Therefore, we assume in the sequel that G := Z/�Z, with � odd, without loss of
generality.

This section is divided into three parts: in 2.1 we introduce the processes of
interest and justify them, in 2.2 we prove preliminary estimates and results, and
sketch the proof of Proposition 6, which is given in 2.3.

2.1. Preliminary notation and intuition. For all n ∈ N, let W ∗(0) = 0 and

W ∗(n) :=
n∑

k=1

1

W(k)
.

For all n ∈ N and x ∈ Z/�Z, let

ζn(x) :=
n∑

k=1

(
1{Ik−1=x,Ik=x+1}
W(X

{x,x+1}
k−1 )

− 1{Ik−1=x+1,Ik=x}
W(X

{x,x+1}
k−1 )

)
,

εn(x) :=
n∑

k=1

(
1{Ik−1=x,Ik=x+1}
W(X

{x,x+1}
k−1 )

− 1{Ik−1=x,Ik=x−1}
W(X

{x,x−1}
k−1 )

)
,

κn(x) :=
n∑

k=1

(
1{{Ik−1,Ik}={x,x+1}}

W(X
{x,x+1}
k−1 )

− 1{{Ik−1,Ik}={x,x−1}}
W(X

{x,x−1}
k−1 )

)

= W ∗(
X{x,x+1}

n − 1
) − W ∗(

X{x,x−1}
n − 1

)
.

Let us make the following observations, in order to justify the definitions of the
above processes. First, note that under (H0), all of the above processes, being dif-
ferences of nondecreasing bounded sequences, are bounded and have random finite
limits as n → ∞. Fix x ∈ Z/�Z. The process κ·(x) is a useful way to keep track of
the changes due to repeated visits of the random walk to the two edges {x, x − 1}
and {x, x + 1}. In particular,{

sup
n≥1

X{x,x−1}
n = sup

n≥1
X{x,x+1}

n = ∞
}

⊂
{

lim
n→∞κn(x) = 0

}
,(8)
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so knowing that, almost surely, κ∞(x) = limn→∞ κn(x) �= 0 for at least one x ∈
Z/�Z would be sufficient to conclude (7). The proof of Proposition 6 relies on this
observation.

The process ε·(x) is analytically the nicest of the three since it is a martingale.

LEMMA 7. For each x ∈ Z/�Z, the process (εn(x))n∈N is a martingale.

PROOF. Given x ∈ Z/�Z, (εn(x))n∈N is a martingale since for all n ∈ N,
εn+1(x) = εn(x) if In �= x and if In = x, then

E
(
εn+1(x) − εn(x)|Fn

)

= W(X
{x,x+1}
n )

W(X
{x,x+1}
n ) + W(X

{x,x−1}
n )

1

W(X
{x,x+1}
n )

− W(X
{x,x−1}
n )

W(X
{x,x−1}
n ) + W(X

{x,x+1}
n )

1

W(X
{x,x−1}
n )

= 0. �

Note that ε·(x) only captures half of the traversals of edges {x, x + 1} and
{x, x − 1}, namely those originating from the central vertex x.

Process ζ·(x) is a measure of difference in the directional visits to edge
{x, x + 1}. Clearly,

n∑
k=1

1{{Ik−1,Ik}={x,x+1}}
W(X

{x,x+1}
k−1 )

= 2
n∑

k=1

1{Ik−1=x,Ik=x+1}
W(X

{x,x+1}
k−1 )

− ζn(x)

and, similarly,

n∑
k=1

1{{Ik−1,Ik}={x,x−1}}
W(X

{x,x−1}
k−1 )

= 2
n∑

k=1

1{Ik−1=x,Ik=x−1}
W(X

{x,x−1}
k−1 )

+ ζn(x − 1).

A useful relation follows:

κn(x) = 2εn(x) − ζn(x) − ζn(x − 1).(9)

Moreover, note that for all n ∈ N,∑
x∈Z/�Z

(
ζn(x) − εn(x)

) = 0(10)

since

ζn(x) − εn(x) =
n∑

k=1

(
1{Ik−1=x,Ik=x−1}
W(X

{x,x−1}
k−1 )

− 1{Ik−1=x+1,Ik=x}
W(X

{x,x+1}
k−1 )

)
,
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which implies that∑
x∈Z/�Z

(
ζn(x) − εn(x)

)

= ∑
x∈Z/lZ

n∑
k=1

1{Ik−1=x,Ik=x−1}
W(X

{x,x−1}
k−1 )

− ∑
x∈Z/lZ

n∑
k=1

1{Ik−1=x+1,Ik=x}
W(X

{x+1,x}
k−1 )

=
n∑

k=1

∑
x∈Z/lZ

1{Ik−1=x,Ik=x−1}
W(X

{x,x−1}
k−1 )

−
n∑

k=1

∑
x∈Z/lZ

1{Ik−1=x,Ik=x−1}
W(X

{x,x−1}
k−1 )

= 0.

Recall that δn = ∑∞
k=n+1 | 1

W(k)
− 1

W(k−1)
|. For all k, n ∈ N such that n ≥ k, let

δk,n(x) := δ
X

{x,x+1}
k

− δ
X

{x,x+1}
n

, if k ≤ n < ∞,

δk,∞(x) := δ
X

{x,x+1}
k

, if k ≤ ∞,

�k,n := ∑
x∈Z/�Z

δk,n(x), if k ≤ n ≤ ∞.

Note that

1

W(X
{x,x+1}
k )

≤
∞∑

j=X
{x,x+1}
k

∣∣∣∣ 1

W(j)
− 1

W(j + 1)

∣∣∣∣ = δk,∞.(11)

Fix m ∈ N. For all n ∈ N ∪ {∞} and x ∈ Z/�Z, let Xx
n be the number of times the

vertex x has been visited during time interval [m,n]:

Xx
n :=

n∑
k=m

1{Ik=x}.

REMARK. Recall that for e ∈ E , Xe
n is the number of times plus Xe

0 that edge
e has been visited up to and including time n. The new notation will not cause
confusion since edges will be always denoted either by letters e, f or sets {·, ·}.

For each n ∈ N ∪ {∞} and x ∈ Z/�Z, let tn(x) (that also depends on m fixed
above) be the time of nth visit to x during interval [m,∞]:

tn(x) := inf{k ≥ m :Xx
k = n} = inf{k > tn−1(x) : Ik = x}.

Note that tn(x) may take the value ∞ (if Xx
k < n,∀k) and then tj (x) = ∞ for

all j ≥ n. However, if tn(x) < ∞, then tn+1(x) > tn(x), almost surely.
In the proof, we will focus on one particular vertex of the cycle, adjacent to

the least-visited edge at some particular time. We will suppose it is vertex 0 for
simplicity and let

κn := κn(0), tn := tn(0).
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Note that

P(G∞ �= G|Fm)

= E
(
P(G∞ �= G|Ftn)|Fm

)
(12)

= E
(
P(G∞ �= G|Ftn)1{tn=∞} + P(G∞ �= G|Ftn)1{tn<∞}|Fm

)
≥ P(tn = ∞|Fm) + E

(
E

(
1{G∞�=G}|Ftn

)
1{tn<∞}|Fm

)
.

We will provide a uniform lower bound

E
(
1{G∞�=G}|Ftn

)
1{tn<∞} ≥ c1{tn<∞}(13)

for some c > 0, for all n ∈ N sufficiently large [cf. discussion preceding (26)]. This
will imply that

P(G∞ �= G|Fm) ≥ P(tn = ∞|Fm) + (
1 − P(tn = ∞|Fm)

)
c ≥ c

for all m sufficiently large, and the Lévy 0–1 law will imply (7).

2.2. Preliminary results. The proof of Proposition 6 is based on a study of the
behavior of κn(x), x ∈ Z/�Z. We prove in Section 2.3 that there exists a.s. x ∈
Z/�Z such that κn(x) does not converge to 0, which enables one to conclude that,
almost surely, either {x, x + 1} or {x, x − 1} is visited finitely often [otherwise,
κ∞(x) = 0].

Given x ∈ Z/�Z, the process (κn(x))n≥0, contrary to (εn(x))n≥0, is not a mar-
tingale. Our first aim is therefore to estimate its mean behavior. Note that if �

were even, we would be able to answer the question without such an estimate, by
the construction of a martingale (Rn(x))n≥0 combining the processes (κn(x))n≥0,
x ∈ Z/�Z:

Rn(x) := ∑
x∈Z/�Z,x even

κn(x) = ∑
x∈Z/�Z

(−1)xεn(x).

Then an upper bound of the variance of the increments would enable us to prove
that Rn(x) a.s. does not converge to 0, which subsequently implies that there is at
least one x ∈ Z/�Z such that κn(x) does not converge to 0, as required. Sellke [7]
obtains the corresponding result (for � even) using a construction due to Rubin.

The behavior of (κn(x))n∈N is described by equation (9):

κn(x) = 2εn(x) − ζn(x) − ζn(x − 1),

where ζn(y), y ∈ Z/lZ, defined in Section 2.1, is the difference between the
weighted numbers of visits from y to y + 1 and those from y + 1 to y. Hence,
the study of κn(x) requires [through ζn(x) and ζn(x − 1)] some information on the
probabilities of cycles

→
qn := P({Itn+1 = 1} ∩ {Itn+1−1 = −1 or tn+1 = ∞}|Ftn),

←
qn := P({Itn+1 = −1} ∩ {Itn+1−1 = 1 or tn+1 = ∞}|Ftn).
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The quantity
→
qn defined here is the probability of a cycle from the right (from 0

to 1 and then returning 0 by −1), whereas
←
qn is the probability of a cycle from the

left (from 0 to −1 and then return to 0 by 1).
A natural method to compare

→
qn and

←
qn would be to write them explicitly for

each possible path and then to find a coupling of the corresponding paths with
reversed paths, as done in [3] for W(n) = nρ , ρ > 1. But this method is difficult to
apply since the estimates depend on the regularity of W, as well as on the current
numbers of visits to the edges.

We relate the quantities
→
qn and

←
qn using the two following observations:

(i) for any x ∈ Z/�Z, E(ζtn+1(x) − ζtn(x)|Ftn) provides a good estimate of (
→
qn

− ←
qn)/W(X

{x,x+1}
tn ), provided E(δtn,tn+1(x)|Ftn) is small [see Lemma 8(i) and (ii)];

(ii)
∑

x∈Z/�Z ζn(x) is a martingale [Lemma 7 and equation (10)].
Therefore, since all of these estimates of E(ζtn+1(x) − ζtn(x)|Ftn) have the sign

of
→
qn − ←

qn and sum to zero,
→
qn − ←

qn is negligible and (κtn)n∈N is close to a mar-
tingale with respect to filtration (Ftn)n∈N [see Lemma 8(iv)]. Here, we also need
the fact that under assumption (H1), E(δtn,tn+1(x)|Ftn) can be neglected for any
x ∈ Z/�Z.

The link between E(ζtn+1(x) − ζtn(x)|Ftn) and (
→
qn − ←

qn)/W(X
{x,x+1}
tn ) de-

scribed above is a consequence of the fact that the evolution ζtn+1(x) − ζtn(x)

is only significant over the excursions (tn, tn+1) away from 0 which are cycles,
where it increases (resp., decreases) by 1/W(X

{x,x+1}
tn ) if the cycle is from the

right (resp., from the left), while during the excursions which are not cycles (this
happens whenever Itn+1 = Itn+1−1), for each x, the traversals of an edge {x, x + 1}
contribute as many times positively as negatively to the evolution of ζ·(x).

The property that (κtn)n∈N is close to a martingale enables one to control the
evolution of κ2

tn
(Lemma 10) and to prove (in Section 2.3) that κtn does not con-

verge to 0 with lower bounded probability if {0,1} is at some point traversed fewer
times than the other edges {x, x + 1}, x �= 0.

For all x ∈ Z/�Z, let us define the (Ftn)n≥2-adapted processes (un(x))n≥2,
(�n)n≥2, (λn(x))n≥2 and (vn)n≥2 by

un(x) := ζtn(x) − ζtn−1(x)

− 1{Itn−1+1=1}∩{Itn−1=−1 or tn=∞} − 1{Itn−1+1=−1}∩{Itn−1=1 or tn=∞}
W(X

{x,x+1}
tn−1

)
,(14)

�n := ∑
x∈Z/�Z

1

W(X
{x,x+1}
tn )

,

λn(x) := 1/W(X
{x,x+1}
tn )

�n

∈ (0,1)(15)
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and

vn := ∑
x∈Z/�Z

(
λn−1(0) + λn−1(−1) − 1x∈{0,−1}

)
un(x).

The processes (un(x))n≥2 and (vn)n≥2 play an important role, as made ex-
plicit in the following lemma: E(vn+1|Ftn) is the drift increment of κtn+1 − κtn

[Lemma 8(iii)] and un(x) and vn+1 [which is a weighted sum of un+1(x), x ∈
Z/�Z] are small, by Lemma 8(ii), |un(x)| ≤ δtn−1,tn(x). Recall that we concentrate
here on the behavior of the process κn ≡ κn(0).

LEMMA 8. For all x ∈ Z/�Z and n ∈ N, a.s. on {tn < ∞}:
(i) E(ζtn+1(x) − ζtn(x) − un+1(x)|Ftn) =

→
qn−←

qn

W(X
{x,x+1}
tn

)
,

(ii) |un+1(x)| ≤ δtn,tn+1(x), |vn+1| ≤ �tn,tn+1,

(iii) E(κtn+1 − κtn − vn+1|Ftn) = 0,

(iv) |E(κtn+1 − κtn |Ftn)| ≤ E(�tn,tn+1 |Ftn).

PROOF. Property (i) follows directly from definition (14).
Let us prove property (ii): Assume that tn < ∞ and note that by symmetry, it

suffices to consider the case Itn+1 = 1. We then have

ζtn+1(x) − ζtn(x) =
X

{x,x+1}
tn+1

−1∑
k=X

{x,x+1}
tn

(−1)k−X
{x,x+1}
tn

W(k)
(16)

since during the time interval (tn, tn+1), there are X
{x,x+1}
tn+1

− X
{x,x+1}
tn (possibly

infinitely many) traversals of the edge {x, x +1} in alternating directions and since
the first traversal (if there is one) happens in the direction of the directed edge
(x, x + 1).

Assume first that, in addition, tn+1 < ∞. Now, either Itn+1−1 = Itn+1 = 1 or
Itn+1−1 = −1. In the former case, there is an even number of summands in (16)
with alternating signs for each x, and, clearly,

|un+1(x)| = |ζtn+1(x) − ζtn(x)| ≤ δtn,tn+1(x).

In the latter case, (16) consists of an odd number of terms and, similarly,

|un+1(x)| = ∣∣ζtn+1(x) − ζtn(x) − 1/W
(
X

{x,x+1}
tn

)∣∣ ≤ δtn,tn+1(x).(17)

Next, assume that tn+1 = ∞. Then there exists y �= 0 such that {y, y + 1} be-
comes the attracting edge during the “uncompleted excursion” [tn,∞). The rea-
soning is very similar to the one above. Namely, if x < y, then the sum in (16)
consists of an odd number of alternating terms and, again, an estimate (17) ap-
plies. If x > y, then (16) has an even number of terms and we use estimate (11) to
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derive (17). If x = y, then (16) is an infinite alternating sum, so the reasoning from
the tn+1 < ∞ case applies.

To bound vn+1, use the fact that λn(0) + λn(−1) ∈ [0,1] and conclude that

|vn+1| ≤
∑

x∈Z/lZ

|un+1(x)| ≤ ∑
x∈Z/lZ

δtn,tn+1(x) = �tn,tn+1 .

Let us now prove (iii): for all x ∈ Z/�Z, (εn(x))n∈N are martingales and equa-
tion (10) holds, therefore (

∑
x∈Z/�Z ζn(x))n∈N is a martingale. This implies, sum-

ming (i) over x ∈ Z/�Z, that

(
←
qn − →

qn)
∑

x∈Z/�Z

1

W(X
{x,x+1}
tn )

= ∑
x∈Z/�Z

E
(
un+1(x)|Ftn

)

or, alternatively,

←
qn − →

qn=
E(

∑
x∈Z/�Z un+1(x)|Ftn)

�n

.(18)

Hence, property (i) for x ∈ Z/�Z implies that on {tn < ∞}, we have

E
(
ζtn+1(x) − ζtn(x)|Ftn

) = E
(
un+1(x)|Ftn

) − λn(x)
∑

y∈Z/�Z

E
(
un+1(y)|Ftn

)

= ∑
y

(
1{y=x} − λn(x)

)
E

(
un+1(y)|Ftn

)
.

Accordingly, using (9) and Lemma 7, we conclude that on {tn < ∞},
E(κtn+1 − κtn |Ftn) = − ∑

x∈{0,−1}
E

(
ζtn+1(x) − ζtn(x)|Ftn

)

= ∑
x∈Z/�Z

(
λn(0) + λn(−1) − 1x∈{0,−1}

)
E

(
un+1(x)|Ftn

)

= E[vn+1|Ftn].
Property (iv) follows from (ii) and (iii). �

Even more precise estimates of the drift of κ· will be needed and the following
technical lemma provides the necessary calculations.

LEMMA 9. (i) On {tn < ∞} ∩ {Itn+1 = 1}, we have

E(κtn+1 − κtn+1 − vn+1|Ftn+1) = λn(0)
(
1 − λn(0) − λn(−1)

)
�n.

(ii) On {tn < ∞} ∩ {Itn+1 = −1}, we have

E(κtn+1 − κtn+1 − vn+1|Ftn+1) = −λn(−1)
(
1 − λn(0) − λn(−1)

)
�n.
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REMARK. Note that Lemma 8(iii) is a consequence of (i)–(ii) by nested con-
ditioning on Ftn+1, although we preferred to give its proof independently for the
benefit of the reader.

PROOF OF LEMMA 9. Let us assume that tn < ∞ and Itn+1 = 1, and prove
(i).

Let us define
→
rn := P(Itn+1−1 = −1 or tn+1 = ∞|Ftn+1),

←
rn := P(Itn+1−1 = 1 or tn+1 = ∞|Ftn+1).

Then by (14), for all x ∈ Z/�Z \ {0}, using the fact that ζtn(x) = ζtn+1(x) and
Itn+1 = 1, we have

E
(
ζtn+1(x) − ζtn+1(x)|Ftn+1

) = E
(
ζtn+1(x) − ζtn(x)|Ftn+1

)

= E
(
un+1(x)|Ftn+1

) +
→
rn

W(X
{x,x+1}
tn )

and, similarly using ζtn+1(0) = ζtn(0) + 1/W(X
{0,1}
tn ),

E
(
ζtn+1(0) − ζtn+1(0)|Ftn+1

) = E
(
un+1(0)|Ftn+1

) +
→
rn −1

W(X
{0,1}
tn )

.

Again using the fact that (
∑

x∈Z/�Z ζn(x))n∈N is a martingale, we obtain∑
x∈Z/�Z

E
(
ζtn+1(x) − ζtn+1(x)|Ftn+1

)

= 0 =→
rn �n +

( ∑
x∈Z/�Z

E
(
un+1(x)|Ftn+1

) − 1

W(X
{0,1}
tn )

)
.

Therefore,

→
rn=

(
λn(0) − 1

�n

∑
x∈Z/�Z

E
(
un+1(x)|Ftn+1

))
,

which, by (9), implies that

E(κtn+1 − κtn+1|Ftn+1)

= − ∑
x∈{0,−1}

E
(
ζtn+1(x) − ζtn+1(x)|Ftn+1

)

= 1

W(X
{0,1}
tn )

− →
rn

(
1

W(X
{0,1}
tn )

+ 1

W(X
{0,−1}
tn )

)
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− ∑
x∈{0,−1}

E
(
un+1(x)|Ftn+1

)

= λn(0)�n −
(
λn(0) − 1

�n

∑
x∈Z/�Z

E
(
un+1(x)|Ftn+1

))(
λn(0) + λn(−1)

)
�n

− ∑
x∈{0,−1}

E
(
un+1(x)|Ftn+1

)

= ∑
x∈Z/�Z

(
λn(0) + λn(−1) − 1x∈{0,−1}

)
E

(
un+1(x)|Ftn+1

)

+ λn(0)�n

(
1 − λn(0) − λn(−1)

)
= E[vn+1|Ftn+1] + λn(0)�n

(
1 − λn(0) − λn(−1)

)
.

One can similarly show (ii). �

LEMMA 10. For all n ∈ N, a.s. on {tn < ∞},

E(κ2
tn+1

− κ2
tn
|Ftn) ≥ E

(X
{0,1}
tn+1

−1∑
k=X

{0,1}
tn

1

W(k)2 +
X

{0,−1}
tn+1

−1∑
k=X

{0,−1}
tn

1

W(k)2

∣∣∣Ftn

)

− 2E(|κtn+1|�tn,tn+1 |Ftn).

PROOF. We split

κ2
tn+1

− κ2
tn

= (κ2
tn+1

− κ2
tn+1) + (κ2

tn+1 − κ2
tn
)

and compute the conditional expectation of each summand separately. First,
κtn+1 − κtn = εtn+1 − εtn implies that

E(κtn+1 − κtn |Ftn) = 0(19)

and, therefore,

E(κ2
tn+1 − κ2

tn
|Ftn) = E

(
(κtn+1 − κtn)

2|Ftn

)
(20)

= E

( 1{Itn+1=1}
W(X

{0,1}
tn )2

+ 1{Itn+1=−1}
W(X

{0,−1}
tn )2

∣∣∣Ftn

)
.

Next, we wish to estimate E(κ2
tn+1

− κ2
tn+1|Ftn) from below. Note first that

κ2
tn+1

− κ2
tn+1

= (κtn+1 − κtn+1)
2 + 2κtn+1(κtn+1 − κtn+1)

= (κtn+1 − κtn+1)
2 + 2κtn+1(κtn+1 − κtn+1 − vn+1) + 2κtn+1vn+1(21)

= (κtn+1 − κtn+1)
2 + 2κtn(κtn+1 − κtn+1 − vn+1)

+ 2(κtn+1 − κtn)(κtn+1 − κtn+1 − vn+1) + 2κtn+1vn+1.



STRONGLY EDGE REINFORCED WALKS 1799

Now,

E
(
(κtn+1 − κtn+1)

2|Ftn

)
(22)

= E

(1{Itn+1−1=1,tn+1<∞}
W(X

{0,1}
tn+1−1)

2
+ 1{Itn+1−1=−1,tn+1<∞}

W(X
{0,−1}
tn+1−1)

2

∣∣∣Ftn

)
.

Lemma 8(iii) and identity (19) imply that

E
(
2κtn(κtn+1 − κtn+1 − vn+1)|Ftn

) = 0.(23)

Lemma 9(i)–(ii) implies that E(κtn+1 − κtn+1 − vn+1|Ftn+1) is positive when
Itn+1 = 1 and negative when Itn+1 = −1, hence that it has the same sign as
κtn+1 − κtn . Therefore, by nested conditioning with respect to Ftn+1, we obtain
that

E
(
2(κtn+1 − κtn)(κtn+1 − κtn+1 − vn+1)|Ftn

) ≥ 0.(24)

Adding together inequalities (20), (22), (23) and (24) completes the proof, using
the second inequality in Lemma 8(ii). �

2.3. Proof of Proposition 6. Assume that the conditions of Proposition 6 hold.
Fix a < 1, for which the subset of N defined by

� ≡ �a :=
{
n ∈ N : δn ≤ a

√
αn√
2�

}
is infinite.(25)

Let

A :=
{

min
x∈Z/�Z

X{x,x+1}∞ < ∞
}

= {G∞ �= G}.

As remarked earlier, it suffices to prove that there exists a constant C ∈ R
∗+ such

that, for all m ∈ N sufficiently large, P(A|Fm) ≥ C.
Let m ∈ N. Let, for all n ∈ N,

on ∈ arg min
e∈E(Z/�Z)

{Xe
n}

so that on is an edge (if there is more than one edge minimizing X·
n, choose on

arbitrarily from the set of minima) corresponding to the smallest X·
n. Note that if

Xe
0 ≡ 1, then on corresponds to the least-visited edge at time n.
Define stopping time k1 ≡ k1(m) := inf{n > m :Xon

n ∈ �\ {Xom
m }}. Without loss

of generality, assume that {k1 < ∞} happens, since

P(A|Fm) = E(1A|Fm) = E
(
1A1{k1=∞}|Fm

) + E
(
1A1{k1<∞}|Fm

)
(26)

= P({k1 = ∞}|Fm) + E
(
P(A|Fk1)1{k1<∞}|Fm

)
,

where we use the fact that � is infinite and therefore {k1 = ∞} ⊂ {G �= G∞} = A.
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Without loss of generality, assume that ok1 = {0,1} and Ik1 = 0, and note that
we have tk0 = k1, for some (random) positive integer k0.

Therefore, it suffices to find a positive lower bound on P(A|Fk1) = P(A|Ftk0
),

on the event {k1 < ∞}.
Let

ε := 1 ∧ a−1 − 1

1 + √
2

.

For all n ∈ N, define

e(n) := X
{0,1}
tn ∧ X

{0,−1}
tn

to be the number of traversals of the weaker (i.e., visited fewer times) edge at 0.
Note, in particular, that e(k0) = min{X{0,1}

tk0
,X

{0,−1}
tk0

} = X
{0,1}
tk0

= X
{0,1}
k1

∈ �, and
that n �→ e(n) is nondecreasing, which implies, in particular, that n �→ αe(n) and
n �→ δe(n) are nonincreasing. We next state a few similar and easy facts for future
reference. For all n ≥ k0,

δe(n) ≤ δe(k0), 2�tn,tn+1 ≤ 2�tk0 ,∞ ≤ 2�δe(k0) ≤ a
√

2αe(k0).(27)

Define the (Ftn)n≥k0 stopping time

S := inf
{
n ≥ k0 : |κtn | ≥ ε

√
αe(n) + �tn,∞

}
∧ inf

{
n > k0 : |κtn−1+1| ≥ ε

√
αe(k0) + �tk0 ,∞

}
.

The next three lemmas make use of the techniques developed in Lemmas 1 and 2
in [8], and in [5].

REMARK. To explain the technique informally, consider the martingale M· =
κt· − drift(κt·). Then the first lemma says that |M·| infinitely often becomes larger
than a fixed small ε proportion of the total standard deviation

√
αe(·) = SD(M∞ −

M·) of the (infinitely many) remaining increments of M ; the next two lemmas say
that in each situation above, there is positive (bounded away from 0) probability
that |M·| remains strictly above value 0, either by not exiting (ε

√
αe(·)/2,4

√
αe(·))

or by exiting it through the larger boundary point and not coming back to 0 due to
Doob’s L2 inequality. However, if κn → 0 as n → ∞ then Mn → 0 as n → ∞.

REMARK. We prove Proposition 6 for the initial condition Xe
0 ≡ 1, e ∈ E, but

the same proof carries through for a general initial condition, after a few minor
modifications: the first line in the definition of the κ·(x) processes changes and the
second line remains the same,

κn(x) = W ∗(
X{x,x+1}

n − 1
) − W ∗(

X{x,x−1}
n − 1

)
,

so that the important relations (9)–(10) are replaced by an equality up to a con-
stant. This does not modify the results in Section 2.2, which only use estimates of
differences κn+1 − κn and ζn+1 − ζn. The goal is still to prove that κn does not
converge to 0 a.s.



STRONGLY EDGE REINFORCED WALKS 1801

LEMMA 11. For a and ε defined above, P({S < ∞} ∪ A|Ftk0
) ≥ aε/19.

PROOF. Assume that S > k0 and let, for n > k0,

zn := κ2
tn

+
√

2αe(k0)

(|κtn−1+1| − ε
√

αe(k0) − �tk0 ,∞
)+

,

where x+ = max(x,0). Then on {n < S},
zn+1 − zn = κ2

tn+1
− κ2

tn
+

√
2αe(k0)

(|κtn+1| − ε
√

αe(k0) − �tk0 ,∞
)+

and using (27), it is easy to check that

2�tn,tn+1 |κtn+1| ≤ 2�tn,tn+1

(
ε
√

αe(k0) + �tk0 ,∞
)

(28)
+

√
2αe(k0)

(|κtn+1| − ε
√

αe(k0) − �tk0 ,∞
)+

.

Due to (28) and Lemma 10, on {k0 ≤ n < S},

E(zn+1 − zn|Ftn) ≥ E

(X
{0,1}
tn+1

−1∑
k=X

{0,1}
tn

1

W(k)2 +
X

{0,−1}
tn+1

−1∑
k=X

{0,−1}
tn

1

W(k)2

∣∣∣Ftn

)

− 2
(
ε
√

αe(k0) + �tk0 ,∞
)
E(�tn,tn+1 |Ftn).

A careful reader will note that the definition of stopping time S is designed
precisely to give the inequality above, that is, to eliminate the auxiliary term
−2|κtn+1|�tn,tn+1 in the drift estimate for κ2

tn
in Lemma 10.

Therefore, by uniform integrability,

E(zS − zk0 |Ftk0
)

≥ E

(X
{0,1}
tS−1−1∑

k=X
{0,1}
tk0

1

W(k)2 +
X

{0,−1}
tS−1 −1∑

k=X
{0,−1}
tk0

1

W(k)2

∣∣∣Ftk0

)

− 2
(
ε
√

αe(k0) + �tk0 ,∞
)
E(�tk0 ,t∞|Ftk0

)(29)

≥ P({S = ∞} ∩ Ac|Ftk0
)αe(k0) − 2

(
ε
√

αe(k0) + �δe(k0)

)
E(�tk0 ,t∞|Ftk0

)

≥ [P({S = ∞} ∩ Ac|Ftk0
) − (1 − aε)]αe(k0),

using, in the third inequality, the fact that e(k0) ∈ � [cf. (25)], so

2
(
ε
√

αe(k0) + �δe(k0)

)
�tk0 ,t∞ ≤ 2

(
ε
√

αe(k0) + �δe(k0)

)
�δe(k0)

≤ √
2aεαe(k0) + a2αe(k0)

≤ a
(
1 + √

2ε
)
αe(k0) ≤ (1 − aε)αe(k0),
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where the last inequality follows from the definition of ε.
On the other hand, note that (κtn+1 − κtn)

2 ≤ 4αe(n) for all n and if n ∈ [k0, S)

then,

κ2
tn+1

= (κtn + κtn+1 − κtn)
2 ≤ 2

(
κ2
tn

+ 4αe(n)

)

≤ 2
((

a√
2

+ ε

)2

αe(k0) + 4αe(k0)

)
≤ 16αe(k0)

and κtn+1 ≤ κtn + √
αe(n) ≤ κtn + √

αe(k0). Hence, on {S < ∞}, we have

zS ≤ (
16 + √

2
)
αe(k0) ≤ 18αe(k0),

on {S = ∞}, we have

zS ≤
(
ε + a√

2

)2

αe(k0) ≤ 18αe(k0)

and on {S = ∞} ∩ Ac, we have zS = 0, so

E(zS − zk0 |Ftk0
) ≤ 18αe(k0)P ({S < ∞} ∪ A|Ftk0

),(30)

since zk0 ≥ 0.
If we combine (29) with (30) and the two preceding inequalities, we obtain, for

p := P({S < ∞} ∪ A|Ftk0
),

18p ≥ 1 − p − (1 − aε) = aε − p,

which implies the lemma. �

Now, assume that S < ∞ and, for instance, κtS−1+1 ≥ ε
√

αe(k0) + �tk0 ,∞ with
S > k0, and define the (Ftn) stopping time

U := inf
{
n ≥ S :κtn /∈

(
ε

2
√

αe(k0) + �tn,∞,4
√

αe(k0) + �tn,∞
)}

.

REMARK. The two remaining cases where S happens due to |κtS | > ε
√

αe(S)+
�tS,∞, can be dealt with in a very similar way. Assuming that κtS > 0, one would
redefine

U := inf
{
n > S :κtn /∈

(
ε

2
√

αe(S)/2 + �tn,∞,4
√

αe(S) + �tn,∞
)}

and, in the statement (and proof) of the next lemma, e(k0) would have to be re-
placed by e(S) and tS−1 +1 by tS everywhere, and the estimate Lemma 9(i) would
no longer be needed.

Note that if U = ∞, then it is not the case that both {0,1} and {0,−1} are visited
infinitely often, so A happens.
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LEMMA 12. If S > k0 and κtS−1+1 ≥ ε
√

αe(k0) + �tk0 ,∞, then

P
({U = ∞} ∪ {

U < ∞, κtU ≥ 4
√

αe(k0) + �tU ,∞
}|FtS−1+1

) ≥ ε/16.

PROOF. Using Lemma 8(iii) with n ∈ [S,U), Lemma 9(i) with n = S −1, and
nested expectation, we get

E

(
κtU − κtS−1+1 −

U−1∑
k=S−1

vk+1

∣∣∣FtS−1+1

)
≥ 0.(31)

Now, let us assume that S > k0 and κtS−1+1 ≥ ε
√

αe(k0) + �tk0 ,∞, and let us define

W := κtU − �tU ,∞ − (κtS−1+1 − �tk0 ,∞) ≤ κtU − �tU ,∞ − ε
√

αe(k0).

Inequality (31) implies, using Lemma 8(ii), that

E(W) = E(κtU − κtS−1+1 + �tk0 ,tU ) ≥ 0.(32)

Now, note that on {U < ∞, κtU ≤ ε
√

αe(k0)/2 + �tU ,∞}, we have, by definition,

W ≤ κtU − �tU ,∞ − ε
√

αe(k0) ≤ −ε
√

αe(k0)/2.(33)

On the other hand, on the complement {U = ∞} ∪ {U < ∞, κtU ≥ 4
√

αe(k0) +
�tU ,∞} (and in fact on the whole probability space),

W ≤ κtU − �tU ,∞ ≤ 7
√

αe(k0).(34)

Indeed, if U = ∞,

κtU − �tU ,∞ = lim
n→∞(κtn − �tn,∞) ≤ 4

√
αe(k0),

by definition of U , and if U < ∞, then, using (27),

κtU − �tU ,∞ = κtU−1 − �tU−1,∞ + (κtU − κtU−1)

+ (�tU−1,∞ − �tU ,∞)

≤ κtU−1 − �tU−1,∞ + 3
√

αe(U−1) ≤ 7
√

αe(k0).

In summary, equations (32), (33) and (34) imply, letting

p := P
({U = ∞} ∪ {

U < ∞, κtU ≥ 4
√

αe(k0) + �tU ,∞
}|FtS−1+1

)
,

that

0 ≤ E(W) ≤ −(1 − p)ε
√

αe(k0)/2 + 7
√

αe(k0)p,(35)

which completes the proof. �

LEMMA 13. If U < ∞ and κtU ≥ 4
√

αe(U) + �tU ,∞, then

P(A|FtU ) ≥ P

(
lim inf
n→∞ κtn > 0|FtU

)
≥ 7/16.
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PROOF. Define the (Ftn)-adapted process

ξn := κtn − ∑
k≤n

vk.

By Lemma 8(iii), (ξn)n≥1 is a bounded martingale (note that this is not a Doob–
Meyer decomposition), and hence converges a.s.; this can also be seen as a con-
sequence of the convergences of κtn and

∑
vk , being differences of nondecreasing

bounded sequences.
Since

∑
k>U |vk| ≤ �tU ,∞ by Lemma 8(ii), we have

P(κt∞ = lim infκtn > 0|FtU ) ≥ P
(|ξ∞ − ξU | < 4

√
αe(U)|FtU

)
.(36)

Now, due to a martingale property of ξ ,

E
(
(ξ∞ − ξU )2|FtU

) = E

( ∞∑
k=U

(ξk+1 − ξk)
2
∣∣∣FtU

)
.(37)

To estimate the right-hand side of (37), note that for all k ≥ U , using

ξk+1 − ξk = (κtk+1 − κtk+1) + (κtk+1 − κtk ) + vk+1,

we obtain that

(ξk+1 − ξk)
2 ≤ 3[(κtk+1 − κtk+1)

2 + (κtk+1 − κtk )
2 + v2

k+1]
≤ 3[(κtk+1 − κtk+1)

2 + (κtk+1 − κtk )
2 + �2

tk,tk+1
].

This implies, using identities (20) and (22), and nested expectation, that

E

( ∞∑
k=U

(ξk+1 − ξk)
2
∣∣∣FtU

)

= E

( ∞∑
k=U

E
(
(ξk+1 − ξk)

2|Ftk

)∣∣∣FtU

)
(38)

≤ 3E

(
2

∞∑
j=X

{0,1}
tU

∧X
{0,−1}
tU

1

W(k)2 + �2
tU ,∞

∣∣∣FtU

)
≤ 9αe(U).

Using (37) and (38), together with the Markov inequality, we obtain

P
(|ξ∞ − ξU | ≥ 4

√
αe(U)|FtU

) ≤ E((ξ∞ − ξU )2|FtU )

16αe(U)

≤ 9

16
,

which gives the conclusion, by (36). �

The three lemmas above enable us to complete the proof. Indeed, let us de-
fine t̃S by t̃S := tS−1 + 1 if S > k0 and κtS−1+1 ≥ ε

√
αe(k0) + �tk0 ,∞, and t̃S = tS
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otherwise. Then {S < ∞} is F ˜tS -measurable. By Lemmas 12 and 13 (and the re-
mark preceding Lemma 12), the same argument as in equality (26) yields, using
{U = ∞} ⊂ A, that if S < ∞, then

P(A|F ˜tS )

= P(U = ∞|F ˜tS ) + E
(
P(A|FtU )1{U<∞}|F ˜tS

)
≥ P(U = ∞|F ˜tS ) + E

(
P(A|FtU )1{U<∞,κtU

≥4√
αe(k0)+�tU ,∞}|F ˜tS

)
≥ P

({U = ∞} ∪ {U < ∞, κtU ≥ 4
√

αe(k0) + �tU ,∞}|F ˜tS
) ≥ 7ε/256.

Now, this inequality yields, together with Lemma 11, that

P(A|Ftk0
) ≥ E

(
1A1{S=∞}|Ftk0

) + E
(
1{S<∞}P(A|F ˜tS )|Ftk0

)
≥ P(A ∪ {S < ∞}|Ftk0

) × 7ε/256 ≥ 7aε2/4864.

Due to inequality (26) and the Lévy 0–1 law, we conclude that Proposition 6
holds.
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