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Let {X;;}, i,j = ..., be a double array of i.i.d. complex random

variables with EXj = 0, E|X11|> = 1 and E|X1;|* < oo, and let A, =
%Tnl/ 2x n X Tnl / 2, where T,,l/ 2 is the square root of a nonnegative definite
matrix 7, and X, is the n x N matrix of the upper-left corner of the dou-
ble array. The matrix A, can be considered as a sample covariance matrix of
an i.i.d. sample from a population with mean zero and covariance matrix 75,
or as a multivariate F' matrix if 7}, is the inverse of another sample covari-
ance matrix. To investigate the limiting behavior of the eigenvectors of A,
a new form of empirical spectral distribution is defined with weights defined
by eigenvectors and it is then shown that this has the same limiting spectral
distribution as the empirical spectral distribution defined by equal weights.
Moreover, if {X;;} and T, are either real or complex and some additional
moment assumptions are made then linear spectral statistics defined by the
eigenvectors of A, are proved to have Gaussian limits, which suggests that
the eigenvector matrix of A, is nearly Haar distributed when 7}, is a multiple
of the identity matrix, an easy consequence for a Wishart matrix.

1. Introduction. Let X, = (X;;) be an n x N matrix of ii.d. complex

random variables and let 7,, be an n x n nonnegative definite Hermitian ma-
trix with a square root Tnl/ 2 In this paper, we shall consider the matrix A, =
%Tnl/ 2X,, X, nl/ 2 I T, is nonrandom, then A, can be considered as a sample co-
variance matrix of a sample drawn from a population with the same distribution

as T,}/zx.,l, where X. | = (X11, ..., Xu1). If T,, is an inverse of another sample
covariance matrix, then the multivariate F' matrix can be considered as a special
case of the matrix A,.

In this paper, we consider the case where both dimension n and sample size N
are large. Bai and Silverstein [7] gave an example demonstrating the considerable
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difference between the case where n is fixed and that where n increases with N
proportionally. When T,, = I, A, reduces to the usual sample covariance matrix
of N n-dimensional random vectors with mean O and covariance matrix /. An
important statistic in multivariate analysis is

N
Wy =In(detA,) = In(1)),
j=1
where A;, j =1,...,n, are the eigenvalues of A,. When n is fixed, by taking a
Taylor expression of In(1 + x), one can easily prove that

[N
Zw, 2 N, EXY = ).
n

It appears that when 7 is fixed, this distribution can be used to test the hypothesis
of variance homogeneity. However, it is not the case when » increases as [cN] (the
integer part of ¢N) with ¢ € (0, 1). Using results of the limiting spectral distribu-
tion of A, (see [12] or [1]), one can show that with probability one that

c—1

1
_Wn_)
n

In(1 —c¢c)—1=d(c) <0,

which implies that

\/an ~d(c)vVNn — —o0.

More precisely, the distribution of W), shaft to left quickly when n increases as n ~
cN. Figure 1 gives the kernel density estimates using 1000 realizations of W,, for
N =20, 100, 200 and 500 with » = 0.2N. Figures 2 and 3 give the kernel density

estimates of \/g W, for the cases n =5 and n = 10 with N = 50. These figures

clearly show that the distribution of W, cannot be approximated by a centered
normal distribution even if the ratio c is as small as 0.1.

This phenomenon motivates the development of the theory of spectral analysis
of large-dimensional random matrices which is simply called random matrix the-
ory (RMT). In this theory, for a square matrix A of real eigenvalues, its empirical
spectral distribution (ESD) F4 is defined as the empirical distribution generated
by its eigenvalues. The limiting properties of the ESD of sample covariance matri-
ces have been intensively investigated in the literature and the reader is referred to
[1,17,5-7, 11-13, 20, 21, 23].

An important mathematical tool in RMT is the Stieltjes transform, which is
defined by

1
mG(Z)Z/A—_ZdG(A), zeCT={zeC, Jz>0},

for any distribution function G (x). It is well known that G, % G if and only if
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FI1G. 1. Density of Wy, under different sample sizes, c = 0.2.

mg,(z) — mg(z), forall z € C*.
In [13], it is assumed that:

(i) for all n,i, j, X;; are independently and identically distributed with
EX;;=0and E|X;;]* = 1;
(i) FTn 2 H , a proper distribution function;
(iii) § — c¢>0asn— oo.

It is then proved that, with probability 1, F4» converges to a nonrandom distribu-
tion function F©# whose Stieltjes transform m(z) = m pe. (2), for each z € CT,
is the unique solution in C* of the equation

1.1 = ! dH(t
(1D m(z)_/t(l—c—czm)—z ©.

LetA, = %X T, X n. The spectrum of A, differs from that of A, only by [n — N|
zero eigenvalues. Hence, we have

n n
Fin = 1——)1 — FAn,
< N)0oFy

It then follows that

12 . _1=n/N n
(1.2) mn(Z)—mFAn(Z)——T‘FNmFAn(Z)
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FIG. 2. Probability density of /X Wy, (n =5, N =50).

and, correspondingly for their limits,
1—c
(1.3) m(z) =mpen(z) =———+cm),

where F! is the limiting empirical distribution function of A,,.
Using this notation, equation (1.1) can be converted to equation (1.4) for m(z).
That is, m(z) is the unique solution in C* of the equation

tdH(t) ) -
1.4 =—|z— .
(1.4) m (z |l T tm
From this equation, the inverse function has the explicit form
1 tdH(t
(1.5) z=——+c ().
m 1+tm

The limiting properties of the eigenvalues of A, have been intensively investigated
in the literature. Among others, we shall now briefly mention some remarkable
ones. Yin, Bai and Krishnaiah [22] established the limiting value of the largest
eigenvalue, while Bai and Yin [2] employed a unified approach to obtain the lim-
iting value for the smallest and largest eigenvalues of A,, when Ty = I. A break-
through on the convergence rate of the ESD of a sample covariance matrix was
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FIG. 3. Probability density of /X W,y (n =10, N =50).

made in [3] and [4]. In [5], it is shown that, with probability 1, no eigenvalues of
A, appear in any interval [a, b] which is contained in an open interval outside the
supports of FHn for all large N under the condition of finite 4th moment (here,
¢, =n/N and H, is the ESD of T,).

However, relatively less work has been done on the limiting behavior of eigen-
vectors of A,. Some results on this aspect can be found in [14-16]. That more
attention has been paid to the ESD of the sample covariance matrix may be due
to the origins of RMT, which lie with quantum mechanics (QM), where the eigen-
values of large-dimensional random matrices are used to describe energy levels
of particles. With the application of RMT to many other areas, such as statistics,
wireless communications,—for example, the CDMA (code division multiple ac-
cess) systems and MIMO (multiple input multiple output) systems, finance and
economics, and so on, the importance of the limiting behavior of eigenvectors has
been gradually recognized. For example, in signal processing, for signals received
by linearly spaced sensors, the estimates of the directions of arrivals (DOA) are
based on the noise eigenspace. In principal component analysis or factor analysis,
the directions of the principal components are the eigenvectors corresponding to
the largest eigenvalues.
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Now, let us consider another example of the application of eigenvectors of a
large covariance matrix A, which is important in wireless communications. Con-
sider transmission methods in wireless systems. In a direct sequence CDMA sys-
tem, the discrete-time model for a synchronous systems is formulated as

K

r= Z biSi +w,
k=1

where bi(e C) and sg(e CV) are the transmitted data symbols and signature
sequence of the user k, respectively, and w is an N-dimensional background
Gaussian noise of i.i.d. variables with mean zero and variance 2. The goal is to
demodulate the transmitted by for each user. In this case, the performance measure
is defined as the signal-to-interference ratio (SIR) of the estimates. In a large net-
work, since the number of users is very large, it is reasonable to assume that K is
proportional to N. That is, one can assume that their ratio remains constant when
both K and N tend to infinity. Thus, it is feasible to apply the theory of large-
dimensional random matrices to wireless communications and, indeed, there has
already accumulated a fruitful literature in this direction (see, e.g., [18] and [19],
among others). Eldar and Chen [10] derived an expression of SIR for the decor-
relator receiver in terms of eigenvectors and eigenvalues of random matrices and
then analyzed the asymptotics of the SIR (see [10] for details).

Our research is motivated by the fact that the matrix of eigenvectors (eigenma-
trix for short) of the Wishart matrix has the Haar distribution, that is, the uniform
distribution over the group of unitary matrices (or orthogonal matrices in the real
case). It is conceivable that the eigenmatrix of a large sample covariance matrix
should be “asymptotically Haar distributed.” However, we are facing a problem on
how to formulate the terminology “asymptotically Haar distributed” because the
dimensions of the eigenmatrices are increasing. In this paper, we shall adopt the
method of Silverstein [14, 15]. If U has a Haar measure over the orthogonal matri-
ces, then for any unit vector x € R", y = Ux = (y1, ..., y,)" has a uniform distrib-
ution over the unit sphere S, = {x e R"; x| =1}.Ifz= (21, ...,2,) ~ N(O, I,,),
then y has the same distribution as z/||z]|.

Now, define a stochastic process Y, (¢) in the space D (0, 1) by

n[m] , 1
o= T -3)
(1) 2;w .
iﬁi%(k.ﬁ_W)
2 |jz))2 =\ n )

where [a] denotes the greatest integer < a. From the second equality, it is easy
to see that Y, (¢) converges to a Brownian bridge (BB) B(f) when n converges
to infinity. Thus we are interested in whether the same is true for general sample
covariance matrices.

(1.6)
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Let U, A, U, denote the spectral decomposition of A,, where A, = diag(i,
A2, ..., Ay) and U, = (u;;) is a unitary matrix consisting of the orthonormal eigen-
vectors of A,. Assume that x,, € C", ||x,|| = 1, is an arbitrary nonrandom unit vec-
tor and that y = (y1, ¥2, ..., yn)* = U;’x,,. We define a stochastic process by way
of (1.6). If U, is “asymptotically Haar distributed,” then y should be ‘“asymptot-
ically uniformly distributed” over the unit sphere and Y, (¢) should tend to a BB.
Our main goal is to examine the limiting properties of the vector y through the
stochastic process Y, (¢).

For ease of application of RMT, we make a time transformation in Y;,(¢),

X, (x) = Y, (FA (x)),

where FA» is the ESD of the matrix A,,. If the distribution of U, is close to Haar,
then X, (x) should approximate B(F &H(yx)), where F&H is the limiting spectral
distribution of A,,.

We define a new empirical distribution function based on eigenvectors and
eigenvalues:

(1.7) F ooy =" 13ilP 1 (i < ).

i=l

Recall that the ESD of A, is
A 1¢
Foir(x)y==>Y I(h <x).
(x) ”;:1 (A <x)

It then follows that

X, (x) = \/g (F{ (x) — FA(x)).

The investigation of Y, (¢) is then converted to one concerning the difference
F 1A "(x) — FAn(x) of the two empirical distributions.

It is obvious that F IA "(x) is a random probability distribution function and that
its Stieltjes transform is given by

(1.8) mFlA,, (Z):)C;:(An—zl)_lxn.

As we have seen, the difference between F 1A "(x) and FA»(x) is only in their dif-
ferent weights on the eigenvalues of A,,. However, it will be proven that although
these two empirical distributions have different weights, they have the same limit;
this is included in Theorem 1.1 below.

To investigate the convergence of X, (x), we consider its linear functional,
which is defined as

Ra(g) = / 2(x) d X, (x),



ASYMPTOTICS OF EIGENVECTORS 1539

where g is a bounded continuous function. It turns out that

R n 1 n
Xa(g) = ,/%[Z 3180 — = > g(@-)}
j=1 =1

=/§[ [swdr e - [eartw].

Proving the convergence of X, (g) under general conditions is difficult. Following
an idea of [7], we shall prove the central limit theorem (CLT) for those g which are
analytic over the support of the limiting spectral distribution of A,,. To this end, let

Gn(x) =V N(F{ (x) — Fortn (x)),

where ¢, = § and where F cn:Hn (x) denotes the limiting distribution by substitut-
ing ¢, for ¢ and H, for H in FoH,
The main results of this paper are formulated in the following three theorems.

THEOREM 1. Suppose that:

(1) foreachn, X;; = X{’j, i,j=1,2,..., are i.i.d. complex random variables
with EX11 =0, E|X11|> =1 and E|X11|* < o0;
() x, €eCl ={xeC", | x||=1} and lim, . = ¢ € (0, 00);

(3) T, is nonrandom Hermitian nonnegative definite with its spectral norm

bounded in n, with H, = F 2 H a proper distribution function and with
x(T, — 2D x, —» mpu(z), where mpu(z) denotes the Stieltjes transform of
H (t). It then follows that

FIA" (x) > FSH(x) a.s.

REMARK 1. The condition x) (7, — 2D 1x, —» mpn(z) is critical for our
Theorem 1 as well as for the main theorems which we give later. At first, we
indicate that if 7;, = b1 for some positive constant b or, more generally, Apax (7;,) —
Amin(7,) — 0, then the condition X' (T, —z/ Yy Ix, > m p# () holds uniformly for
all x, € CT.

We also note that this condition does not require 7}, to be a multiple of an iden-
tity. As an application of this remark, one sees that the eigenmatrix of a sample
covariance matrix transforms X,, to a unit vector whose entries’ absolute values are
close to 1/ VN. Consequently, the condition X (7,, — zI )_lxn — mpu(z) holds
when 7}, is the inverse of another sample covariance matrix which is independent
of X,,. Therefore, the multivariate F matrix satisfies Theorem 1.

In general, the condition may not hold for all x, € C}. However, there always
exist some x,, € C/ such that this condition holds, say x, = (u; +--- +u,)/ Jn,
where uy, ..., u, are the orthonormal eigenvectors of the spectral decomposition
of T,,.
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Applying Theorem 1, we get the following interesting results.

COROLLARY 1. Let (A});i,m=1,2,..., denote the ith diagonal elements
of matrices A}'. Under the conditions of Theorem 1 for X, = e, it follows that for
any fixed m,

-0 a.s.,

(A™;i — / X dFeH (x)

lim
n—0o0
where e,; is the n-vector with ith element 1 and all others 0.

REMARK 2. If T, = bl for some positive constant b or, more generally,
Amax (Ty) — Amin(T,) — 0, then there is a better result, that is,

—0 a.s.

(A™Yii — / X dFEH ()

(1.9 lim max
n—oo

[The corollary follows easily from Theorem 1. The uniform convergence of (1.9)
follows from the uniform convergence of condition (3) of Theorem 1 and by care-
ful checking of the proof of Theorem 1.]

More generally, we have the following:

COROLLARY 2. [If f(x) is a bounded function and the assumptions of Theo-
rem 1 are satisfied, then

n 1 n
SO == fGN =0 as.
j=1 j=1

REMARK 3. The proof of the above corollaries are immediate. Applying
Corollary 2, Theorem 1 of [10] can be extended to a more general case without
difficulty.

THEOREM 2. In addition to the conditions of Theorem 1, we further assume
that:

4) g1,...,8k are defined and analytic on an open region D of the complex
plane which contains the real interval

(1.10) [1in}linfx§;gn1(o,1)(c)(1 — Vo), 1imnsupxlflnax(1 + 4/ )2}
and
)
Slzlp VN

as n — oQ.

x:(mFﬁ'n,Hn (Z)Tn + I)ilx

1
n— / —dHn(t)‘ —0
M pen, Hp (Z)t+1
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Then the following conclusions hold:

(a) The random vectors

(L11) (/gl(x)dGn(x), ...,/gk<x>dGn(x>)

form a tight sequence.

(b) If X11 and T, are real and EX ‘1‘1 = 3, then the above random vector con-
verges weakly to a Gaussian vector Xg,, ..., Xg, with mean zero and covariance
function

Cov(Xg,, Xg,)
1
1) = [ [ aeee)
v C /Gy
(zam(z2) —zimG@D)*
c2z122(z2 — 21) (m(z2) — m(z1))

The contours C and C, in the above equation are disjoint, are both contained in
the analytic region for the functions (g1, ..., g) and both enclose the support of
Fer-Hn for all large n.

(c) If X1 is complex with EX121 =0 and E|X11|* = 2, then the conclusions

(a) and (b) still hold, but the covariance function reduces to half of the quantity
given in (1.12).

z1dzp.

REMARK 4. If T, = bl for some positive constant b or, more generally,
V1 (max (Tn) — Amin(T5)) — 0, then condition (5) holds uniformly for all x,, € CF.

REMARK 5. Indeed, we can also establish the central limit theorem for X 2(2)
according to Theorem 1.1 of [7] and Theorem 2. Beside Theorem 2, which holds
for more general functions g(x), the following theorem reveals more similarities
between the process Y;,(¢) and the BB.

THEOREM 3. Beside the assumptions of Theorem 2, if H(x) satisfies
dH(t) _/ dH(t) dH(t)
(I +tm(z1)(1 +1tm(z2)) (I+tm(z1)) )] A+tm(z2))

then all results of Theorem 2 remain true. Moreover, formula (1.12) can be simpli-
fied to

(1.13)

2 c,H
COV(Xgl,Xg2)=;(/gl(X)gz(X)dF’ (x)
(1.14)

- f Q) dFeH (xy) f gz(X2)dFC’H(X2))-
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REMARK 6. Obviously, (1.13) holds when 7,, = bI. Actually, (1.13) holds if
and only if H(x) is a degenerate distribution. To see this, one need only choose z>
to be the complex conjugate of z;.

REMARK 7. Theorem 3 extends the theorem of Silverstein [15]. First, one
sees that the rth moment of FlA "(x) is x; Al x,, which is a special case with
g(x) =x". Then applying Theorem 3 with 7, = bl and combining with Theo-
rem 1.1 of [7], one can obtain the sufficient part of (a) in the theorem of Silver-
stein [15]. Actually, for 7,, = I, formula (1.12) can be simplified to

2
Cov(X gy, Xgp) = ;( [ @ dr.m
(1.15)

- [aidricn [ drn).
where F,(x) is a special case of FOH(x),as T, =1.

The organization of the rest of the paper is as follows. In the next section, we
complete the proof of Theorem 1. The proof of Theorem 2 is converted to an
intermediate Lemma 2, given in Section 3. Sections 4 and 5 contain the proof of
Lemma 2. Theorem 3 and some comparisons with the results of [15] are given in
Section 6. A truncation lemma (Lemma 4) is postponed to Section 7.

2. Proof of Theorem 1. Without loss of generality, we assume that || T, || <1,
where | - || denotes the spectral norm on the matrices, that is, their largest singular
values. Throughout this paper, K denotes a universal constant which may take
different values at different appearances.

LEMMA 1. (Lemma 2.7 in [5]). Let X = (X1, ..., X,), where X;’s are i.i.d.
complex random variables with zero mean and unit variance. Let B be a determin-
istic n X n complex matrix. Then for any p > 2, we have

E|X*BX —tr B|” < K,((E|X1|*tr BB*)P> + E|X > t(BB*)P/?).

For K > 0, let X;; = X;;1(|X;;| < K) — EX;;I(|X;j| < K) and A, =
%Tnl/z)?nf(;l“Tnl/z, where X, = (f(,y). Let v = 3z > 0. Since X;; — f(,-j =
XijI(1Xi;| > K) — EX;;1(1X;j| > K) and ||(A, — zI)~"| is bounded by 1, by
Theorem 3.1 in [22], we have

X5 (An —2D) %y — X5 (A — 21) 7' x4
<Ay —zD7 ' = (A, —zD 7|

<Ay — 2D YA, = ADI(A, — 2D 7Y
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1 v * v * vk
< W(“xn = XullIX5 I+ 1 X X5 — X5 0D

1+ - .
54 *ﬂ X (EVA Xy - X PEVAIX 0P+ EVA X)) as.

2(1+ /c)
- 72\/_E1/2|X11|21(|X11| > K).

The above bound can be made arbitrarily small by choosing K sufficiently large.
Since lim,_, E|X 11|2 = 1, the rescaling of X;; can be dealt with similarly.
Hence, in the sequel, it is enough to assume that |X;;| < K, EXy; = 0 and
E|X11|> =1 (for simplicity, suppressing all super- and subscripts on the vari-
ables X;;).

Next, we will show that

(2.1) X (A —zD) 7%, =X E(A, — 2D 7', > 0 as.
Let s; denote the jth column of TTI/ZXn, AGR) = A, —zl, Aj(z) = Az) —
587
@) =S5 A7 Q%X (Em, (T, +1)'s,
1 T
— S (Em, T, + D)7 AT @,
£ =547 ()] — T4 @)
]Z—SJ'J-ZSJ Nrnj Z),
_ _ 1 _ _
yi= s}’fAJ- l(z)xanAj I(Z)Sj — Nszj l(z)TnAj L)x,
and
Bj(z) = —1 bj(z) 1
. Z H Z = .
/ 1+st47 1 (2)s; ’ 1+ N T,A7 (2)

Noting that |8;(z)| < |z|/v and ||A;1(z)|| <1/v, by Lemma 1, we have

1 1
(2.2) E|sjA;1(z)xnx,";A;1(z)sj|’ = O(W)’ Elgi ()l = O(W)

Define the o-field ¥; = o (sy,...,s;), let E;(-) denote conditional expectation
given the o-field F; and let Eq(-) denote the unconditional expectation. Note that

X' (A, — 2D 'x, — x E(A, — D7 'x,
N

= ZXZEjA_l (D)%n —XEEj_1 A7 (2)xs
2.3) j=1
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N
=Y XE (AT @) - AT @)% — XEE; (AT () — AT ()xa
j=1

N
=—Y (Ej—Ej-DB@sTAT @xxi AT (2)s)

N
— Z Eib;j(2)y;(z)
=1

—(Ej—Ej- I)SJA (Z)an Ai (2)8jBj(2)bj(2)§(2).

By the fact that lﬁ' 5 2l and use of the Burkholder inequality, (2.2) and
J

the martingale expression (2.3), we have

EIX Ay —zD) 7%, =X E(A, —2D) 7 x|

N r/2
< E[Z Ej 1[(Ej — E;j-1)Bj (s} A7 (%X AT (z)sﬂ
j=1

+EZ|<E — Ej_)Bj(s5 AT @xax; AT ()1
j=1

N 2 r/2
SE[Z L i@ + EjilsiA (z)xnx:A;‘(asjsj(z)F}
Jj=1

U

N r
Z _
+3 1'}' E|siA7 (z)anZAjl(z)Sjlr
j=1

Thus (2.1) follows from Borel-Cantelli lemma, by taking r > 2.
Write

N
A@) = (—2Em, ()T, —zl) = ) _ 885 — (=2Em, (2)T,.
j=1
Using the identities
“AT @) = Bi()sTAT (2)

and

1 N
(2.4) my () == ; Bj(2)
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(see (2.2) of [13]), we obtain
EA™'(2) = (—2Em, ()T, —21) "

N
= (zEm, ()T, +z1) " 'E [Z $jS; — (—zEm, (Z))TnA_l(Z)]
j=1

N

: —
j=1

_ %(Emn(z)Tn + 1)‘1T,,EA—1(Z)].

Multiplying by X on the left and x,, on the right, we have

XS EATN ()%, — X (—2Em, ()T, — 2I) ',

— N%Em(z) [STAfl(z)anZ(Emn(Z)Tn +1)" sy

(2.5) |
= % (Em, ()T, + 0~ 'T,EA™! <z>Xn}
25, +8 + 8,
where
N
81 = ?Eﬂl(z)ou(z),

1

1 -
& = EE,BI(Z)X:(Emn(Z)Tn + 1) Th(AT @) — A7 (@))xn,

1 _
5= —Ef @OX(Em, )T+ 1) ' Th(A™ (2) — EA™'(2))x,.

Similar to (2.2), by Lemma 1, for r > 2, we have

Bl = 0577

J - Nr :
Therefore,
N —3/2

(2.6) 8 = —;Ebl(Z)ﬂl(Z)Sl (D)a1(z) = ON"7).
It follows that

1 _ _ _
18] = E|E,812(z)xﬁ(Emn(z)Tn +1) 1T,,A1 1(z)slsj‘A1 1(z)x,,|

Q.7) < K(EKX(Em,)T, + 1) ' T, AT @s112ElstAT ()%, %) /2
= 0N
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and
183] = %|El31(2)b1(1)51 @XS(Em, ()T, + 1)
x Ti(A™ (@) — EA' (@))%,
(2.8) < K(El51 @) PEX; (Em, ()T, + 1)

X T,(A7'(2) — EA™' @)xa[) /2
=o(N~'7?),

where to estimate the second factor, we need to use the martingale decomposition
of A™1(2) — EA™1(2).
Combining the above three results and (2.5), we conclude that
(2.9) X*EA ()%, — X' (—z2Em, ()T, — 21) "' x, — 0.
In [13], it is proved that, under the conditions of Theorem 1, Em,, (z) — m(z),
which is the solution of equation (1.2), and we then conclude that
X' EA™N(2)x, — X5 (—zm(2) T, — zI)_lxn — 0.
By condition (3) of Theorem 1, we finally obtain that
dH(t
X;:EA_I(Z)X;,, — / #,
—zmt — 2

which completes the proof of Theorem 1.

3. An intermediate lemma. In the sequel, we will follow the work of Bai
and Silverstein [7]. To complete the proof of Theorem 2, we need an intermediate
lemma.

Write

M,(z) = \/ﬁ(mFlAn (2) = M pen.in (2)),

which is defined on a contour C in the complex plane, described as follows. Let u,
be a number which is greater than the right endpoint of interval (1.10) and let u;
be a negative number if the left endpoint of interval (1.10) is zero, otherwise let
u; € (0, liminf, )ng'inl(ovl)(c)(l — ﬁ)z). Let vy > 0 be arbitrary. Define
Cy={u+ivy:u € lu,ul}.
Then the contour
C=C,U{u;+iv:vel0,vl}U{u,+iv:vel0,vyl}

U{their symmetric parts below the real axis}.
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Under the conditions of Theorem 2, for later use, we may select the contour € in
the region on which the functions g are analytic.

As in [7], due to technical difficulties, we will consider M (z), a truncated
version of M, (z). Choose a sequence of positive numbers {§,} such that for 0 <
p <1,

3.1) 8n 40, Sp>n"".
Write

e = { {ur+iviveln '8, v},  ifu; >0,
{u; +iv:v €0, vol}, if u; <0,

and
@r = {ur —+ iv:vE [l’lil(gna UO]}'

Let Gy = C, UC; U C,. Now, for z =u + iv, we can define the process

M, (z), _
if z € CyU Cp,
nv+4§ L 8yp —nv L
25, nMn(ur+ln 18n)+ n28” M, (u, —in lfsn),

* —
M, () = ifu=u,, vel[-n18,,n718,],

nv+4 L Op — NV .
2, nM,,(uH—m 15,,)—1— n28n M,(u; —in l8,,),

ifu=u; >0, ve[—n"18,,n718,].

M;(z) can be viewed as a random element in the metric space C(C, R?) of con-
tinuous functions from € to R?. We shall prove the following lemma.

LEMMA 2. Under the assumptions of Theorem 1 and assumptions (4) and (5)
of Theorem 2, M (z) forms a tight sequence on C. Furthermore, when the condi-
tions in (b) and (c) of Theorem 2 on X1 hold, for z € C, M, (z) converges to a
Gaussian process M (-) with zero mean and for 71, 72 € C, under the assumptions
in (b),

2(zom(z2) — z1m(z1))?
c?z1z22(z2 — 21)(m(z2) — m(z1))’

(3.2) Cov(M(z1), M(z2)) =

while under the assumptions in (¢), the covariance function similar to (3.2) is the
half of the value of (3.2).

Similar to the approach of [7], to prove Theorem 2, it suffices to prove Lemma 2.
Before proceeding with the detailed proof of the lemma, we need to truncate, re-
centralize and renormalize the variables X;;. However, those procedures are purely
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technical (and tedious), thus we shall postpone then to the last section of the pa-
per. Now, according to Lemma 4, we further assume that the underlying variables
satisfy the following additional conditions:

IXijl <ean't,  EX1i=0,  ElXul’=1,  ElXul*<oo
and

E[Xnl*=3+o(D),

if assumption (b) of Theorem 2 is satisfied,
EX3 =o(n™ /%), ElX1|*=2+0(1),

if assumption (c) of Theorem 2 is satisfied.

Here, ¢, is a sequence of positive numbers which converges to zero.
The proof of Lemma 2 will be given in the next two sections.

4. Convergence in finite dimensions. For z € C, let

M, (z) = \/N(mFlA,, (@) = Em o (2)

and
M?(z) =+/N (Em pan (2) = m pen.n (2)).
Then
M (@) = My (2) + M3 (2).
In this section for any positive integer » and complex numbers ay, ..., a,, we

will show that
Y aiMy(z) (37 #0)
i=1

converges in distribution to a Gaussian random variable and will derive the covari-
ance function (3.2). To this end, we employ the notation introduced in Section 2.
Before proceeding with the proofs, we first recall some known facts and results.

1. (See [7].) Let Y = (Yy,...,Y,), where Y;’s are i.i.d. complex random vari-
ables with mean zero and variance 1. Let A = (a;)nxn and B = (b;}),x, be com-
plex matrices. Then the following identity holds:

E(Y*AY —tr A)(Y*BY —tr B)
(4.1) .
=(EN|* = |EY}? —=2)) aiibi + |EY{ |t ABT +tr AB.
i=1
2. (See Theorem 35.12 of [9].)
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LEMMA 3. Suppose that for each n, Yn1, Yn2, ..., Yy, is a real martingale
difference sequence with respect to the increasing o -field {F,;} having second
moments. If, as n — 0o, we have

’'n .
M Y EWy|Fa o) o’
j=1

2

where o* is a positive constant and for each ¢ > 0,

n
(ii) Y E(Yai Iy, =) = 0,
j=1

then
I'n D
> ¥ = N0, 0?).
j=1

3. Some simple results follow by using the truncation and centralization steps
described in Lemma 4 given in the Appendix:
E|siCs; — N"'&T,C|P < K,||C||P(e2P~*N~P/2 4 N7P/2)
“ < K,lICIPN=P/2,
(43) EIS;Cx,X:Ds; — N™'x:DT,Cx,|P < K,||C||P||D||Pe2P~*N~P/>~1
(4.4) E|s;Cx,x:Ds1|? < K,|C||P||D||Pe2P~4N—P/>~1,

Let v = Jz. To facilitate the analysis, we will assume that v > 0. By (2.3), we
have

\/N(mFlA,, (z) — EmFlAn (2))

N
= —VN Y (Ej — E;-DBj(@s}A7 Oxax; AT (2)s,.
j=1

Since
Bi(2) =bj(z) — Bj(2)b;(2)§;(x) =b;(2) — b} (2)€;(2) + b3 (2)Bj ()€} (2),
we get

(Ej — Ej-)Bi (s AT %X AT (2)s;
1
=Ejbj(2)y;(@) — Ej (bﬁ(z)s,- (z)ﬁxZAJTI (z)TnA;‘(z>xn>
+(Ej — Ej-) (b5 2B (DE Q)sT AT @xux; AT (2)s;

— b (D )y (2))-
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Applying (4.2), we obtain

2

1
j <b3 (Z)Sj (Z)NX:;A;I (2) TnA;l (Z)Xn)

4

1
:NZ |E; (b ()& ()X, A7 '@, Aj '@)xa))?

|Z|4 —1
<K—E|§1(Z)| O(N™),

which implies that VN Y0, E; (02 (2)&; () 435 A7 T, AT (2)x) 5 0.
By (4.2), (4.4) and Holder’s inequality, we have

2

J-DbH DB (E R)STAT (@xaxi AT (2)s)

1
<K(|i|> V(B @U@+ EE Ol AT OTAT o)
= O(N73/?),
which implies that

N .
VN () = Ej-0bj B (5] 8] AT %X, AT ()8 5 0.
j=1

Using a similar argument, we have
N .
VN Y (E; - E;_)bA ()€ (Dyj () 0.
j=1
The estimate above (4.3) of [5], (2.17) of [7] and (4.3) collectively yield that
E|(bj@) + mm@)y; )|

= E[E(|(bj ) +zm@)y; @0 i # )]

= E[Ib;j(2) + zm(PE(ly; (@) lo (si, i # )] = o(N ),
which gives

N
VN Y Ej[(b; (bj(2) +zm@)y;] % 0.
j=1
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Note that the above results also hold when Jz < —vp, by symmetry. Hence for
finite-dimensional convergence, we need only consider the sum

r N N r
Yoai D Vi)=Y ai¥i(),
i=1 j=1 j=li=1
where Y (z;) = —v/Nzim(z;) Ey;j(z;). Since

E|lY;z)|*=0(@EiNTD),

(oot <25

Thus condition (ii) of Lemma 3 is satisfied.
Now, we only need to show that for z1,z2 € C\ R,

we have

(>

r

4
Zai Yi(zi)

=0(eh.

ZalY (Zl

Za,Y (Zl
i=1

N
4.5) > Ej_1(Yi(z)Y[(z2)

j=1

converges in probability to a constant under the assumptions in (b) or (c). It is easy
to verify that

_ _ _ _ 1
4.6) |rE;(A7' Gxax AT GO E (AT G)xX; AT @) T < e

where v = J(z1) and vy = J(z3). It follows that, for the complex case, applying
(4.1), (4.5) now becomes

2122m(21)m(22)N ZE ~1trEj(A; znxax;; A_ (1) Ty
j=1

x Ej(A7 @)xnx, AT @) Ty) + 0p(1)

4.7)
| N
=a2m@m@E) Y B0 AT @) T AT (22)%)
] 1
x G AT @) T AT (20)%0) + 0, (1),
where A 1(z,) is defined similarly as A7 Y(z2) by (s1,...,8j—1,8j41,...,Sn) and
where § SJ+1, ..., Sy are i.i.d. copies ofsJH, ..., SN.

For the real case, (4.5) will be twice the magnitude of (4.7).
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Write

x5 (A7 (@) = Ej AT @) Th AT (22)x
4.8) ‘ ' '

N
=Y X(EAT @) — B AT @) AT (2%
i=j

From (4.8), we note that

Ej (AT @D TLAT cx) (AT () T AT (z1)%0)
N ~ ~
=Y Ejix(EAT @) — B AT @) LA cxaxg AT (z2)
t=j

x Ty(E:A7 (21) — 147 (20)x,
(4.9) +Ej (G (Ej1 AT @D T AT (22)%)
x (G AT @) TW(Ej1A7 (21)xn)
= Ej_1(x(Ej—1A7 @) T) AT 22)%)
x AT @) TW(Ej-1 A7 @)x) + O(NTY,
where we have used the fact that
[Ej -1 (E:AT (1) — E—1 A7 21)
x T A7 (22X AT @) Th (B AT (21) — B AT (20) 4]
<4(E;j-11Bii x5 (A @nsisy (A @D T AT (z2)xal
x Ej_1|Bi X AT @) Tu(A @DsistAT @))xa )2 = O(N72).
Similarly, one can prove that
Ej 1((Ej1A7 GDT) AT @x) (G AT @) T (Ej-1 A7 (21))%0)
=Ej 1(GA7 @) T AT (22)x0)
x Ej (AT @) T AT (20%) + O(NTH.
Define
Ay =A@ s =55 T e = (ail - NT_lbnl(an)l,

1

and b, 1(z) = ——-
l—i—N_lEtrT,,A12 (2)

pii@) = ——
T TstaG @
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Then (see (2.9) in [7])
(4.10) Aj(z1) =—=T""(z1) + bu1(z1)Bj(z1) + Cj(z1) + D (z1),
where B (z1) = Bj1(z1) + Bj2(z1),

Bjizn) =y T~ )(sist — N~' )AL @),

i>j

Bja(z)) =Y T~ ') (sisf — N™'T) A ),
i<j

Cjz1) =Y (Bij(z) —bm @) T~ z1)sisf A} (21)
i#]

and

Dj(z))=N""bu@)T ' @T Y (A 1) — A1),
i#]
It follows that
Ej (AT @) LA Gx) Ej1 (G AT (22) T AT (21)x0)

= —Ej,](XZA;I(ZI)TnAVJTI(ZZ)Xn)

4.11)
X Ej_l(X:A;l(ZZ)TnT_l(Zl)Tnxn)
+ B(z1,22) + C(z1, 22) + D(z1, 22),
where
B(z1,22) =bn1 G Ej -1 (AT @) T AT (22)%0)
x Ej 106 AT (22) Ty Bja(21)%),
C(z1,22) = Ej 1 (AT @D T AT (z2)%0)
X Ej 1 AT (2) T Cii(z1)%0)
and

D(z1,22) = Ej 1 AT @D T AT (2)%) G AT @) T Dj (1))
We then prove that
(4.12) E|C(z1,22)|=0(1) and E|D(z1,22)| = o(l).

Note that although C and D depend on j implicitly, E|C(z1, z2)| and E|D(z1, z2)|
are independent of j since the entries of X, are i.i.d.
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We then have

1
E|C(z1,22)] = ﬁEIX @) T Cli 2%

=<
lviv2|

Y (ElBij(z1) = b (z)]?
i#]
x ElstA7 @oxaxi (A7 @) T, T~ @psi?) 2.

When i > j, s; is independent of A;l (z2). As in the proof of (2.2), we have
(4.13) ElstA;; @0xnx; (AT @) T, T znsil> = O(N 7).

When i < j, by substituting A;l(zz) for Ai_jl(zz) - ,éij (ZZ)Ai;l(Zz)S,'S?X
Al;l (z2), we can also obtain the above inequality. Noting that
@.14)  E|Bij@) = bur @D = ElBij 20)ba1 D& = 0™,

where §;;(z) = s*A (z)s, — —trA (z) and Eij(ZQ) is defined similarly to
Bij(z2), and combmmg (4.13)— (4 14), we conclude that

E|C(z1,22)| = o(1).

The argument for D(zy, z2) is similar to that of C(zy, z2), only simpler, and is
therefore omitted. Hence, (4.12) holds.

Next, write
(4.15) B(z1,22) = Bi(z1, 22) + B2(z1, 22) + B3(21, 22),
where
Bi(z1,22) = anl(ZI)EJ 1X), ﬁz,(m)A,, (z1)siS] A_ (DT, A Nz2)xu

i<j
kil -1 -l 1
X E]—lanJ' (22) T, T~ (z1)(sis; — N Tn)Aij (Z1)Xn,

By(z1,22) = ) b @D Ej 1AL @D T AL @o)sist A (22) Bij (z2)%

i<j
x Ej XA @) T T~ ) Gsisf — N7 T) A @x,
and

B3(z1,22) = y_ b @D Ej 1AL D LA )%,

i<j

x Ej X AT @) T T~ @) (sisf — N7 T) A 1)xa.
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Splitting A;l(zg) into the sum of Ai_jl(m) and —Bij (zg)Ai;l(zz)sis;"Ai;l(Zz), as
in the proof of (4.14), one can show that

E|B1(z1, 22)|
<> b GOEI:Bij @D A @sist AL @) T AT (22)%
i<j
x Bl AT @) T T @) sisf — N7 T AS coxal)'?
=O0(N~?),

By the same argument, we have
E|By(z1,22)| = O(N7).
To deal with B3 (z1, z2), we again split A]—l (z2) into the sum of Al_jl (z2) and
—,5’,-,- (ZQ)AZ-;I (zz)sis;“fii_jl (z2). We first show that

B3i(z1,22) = ) b @D Ej1x, A5 @D T A (22)%,

i<j
(4.16) x Ej 1X3A @) LT~ @)sisf — N7 T)AS 2%,
=o0p,(1).
We have
E|B3(z1, 2P = Y. baGOIPEE; XA, [ @D TA | (22)%,
i1,ia<j

CIGAL I GDTAL L G)x,

1@ (z1)

x E; X} Allj

x (siy87, = N7 L)AL L @Dxax AL (Z2)

x T, T~ G1)(siys, — N7 T AL LD X
When i =iy, the term in the above expression is bounded by

KEIX A H(z) T T~ @)(sysf, — N T AL @0)xal> = O(NT2).

i1j
For i| #i» < j, define

1
1+s5A; ]

i1izj

Aiyipj(z1) = A(z1) = siS], — iy S;, — S8

Biiinj(z1) =

(Zl)szz

and similarly define /3,-1,,-2,]-(12) and Ailizj (z2).
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We have

|EEj 1X, All i, J(ZI)S12512 i, ,2 J(Zl)ﬂll iz, j(Zl)T A”J(ZZ)
X X, Ej_1X) Ai_zj(Z1)TnAi_2j(52)Xn

L) T, T~ (Zl)(5i15,1 N7 A )%,

X Ej_ 1XA i

i1Jj
x XA @) T, T (zo(sizsf ~ NI A )Xl

i2j
< K(EIXGA;Y (@0sosh ALY @D L. GDTWAT (z)xa D)
x (E|x:Ai_~(zz)TnT_ (z1)(si S}, — N1 Tn)Al'_lj(Zl)an )
< (I A @) T T~ @) (s, — N7 T AL zoxa )
= O(N7/?),
EEj X, ALY, j@OT AL 1 @)siS AL, (2B, j(22)%n
x Ej 1X5AL NG T AL @)%,
x Ej XA @) T T @) Gsist — N7 T AL L anx,
< XE A T T G0 (3,8, — N—lTn)A,-‘}- (Z1)%n|
<K(EIXGA;L i @DTWALL (@)sush AL (@) i j(z)xa )
< (I A @) T T~ @) (siys), — N7 T AL S oxa )
x (EIXE A @) T T~ @) (sish, — N7 T AL L oxa )V
= 0N
and, by (4.1),
|EE;_1X,A;

(DT AL (@)% EjiXi AL G T, A,U(ZZ)Xn

i, 12 J i2j

x Ej x5 ALY (@)sishAL L ((20)Bir iy j(2) T T~ (21)

X (s,-ls;-"] - N7'T)

I, tzJ

X At @DXXEAD @ T @) (8, — NI AL Gl

<K(EIXGA; L j@)sinsh ALY ()BT T~ (@)

2\ 1/2
x (51,8, = N7' T A7 b ez )

i2]

v _ _ — — 1/2
x (EIXE A @) T T~ @) (sish, — N7 T AL L oxa?) Y



ASYMPTOTICS OF EIGENVECTORS 1557

K(EXGA; L (z)sis, AL @) T T @)

x (51,85 = NI T AL L) ? x o(vh

< K(EX! Allll2 j(zz)sizsl2 i ,2 J@)T, T YT, T '@,
x AL @sishALY (GxexE AL GEDTL AL (20X
x O(N7%)
1 , 1 1/4
<K(E|x; A” L. @suShAL L E)xa)
x (EIshAL L @ T T @O L T GOTAL L, ;Gsi)
x O(N7?)
= O(N~%.

The conclusion (4.16) then follows from the above three estimates.
Therefore,

B3(z1,22) = B32(21,22) +0p(1),
B3(z1,22) = — Zbnl(Zl)Ej—IX;:Ai_jl(Zl)TnAl’_jl(ZZ)Xn

i<j
x Ej XA (22)sisTA (22)Bij (2) T T~ (21)
x (sist — N™'T,) A (),

=Y buGDE 1A @D T AL (2%,

i<j

X Ej_lxﬁfii_jl(zz)sis:‘fii_jl(zz)gij (z2)T, T~ " (z1)
x sisf A 21X + 0p(1).

By (4.3) of [5], (4.2) and (4.4), for i < j, we have

E|x;A; (z2)sistA @0xa (57 AL (22)Bij G T T~ z1)si
— N7 () o T, AL @) T, T~ (21)]
<(EIX;AZ zo)sistAL z)xp)' /2
(4.17) x [(E1Bij ) PIsF A G T T~ z)si
N LA @ LT @)
+(Elfij(z2) = bu1 @) PIN T 0 T AL (@) T, T~ @ )]

= 0N/,
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Collecting the proofs from (4.10) to (4.17), we have proved that

B(z1,22) = =bp1(21)bn1(22)
x Y Ej XA @D T AL @)X Ejo
i<j
x (G AL @)sist AL Gxa N~ o T, e T, A @) T, T (2)
+op(1).
Similarly to the proof of (4.16), we may further replace s;s; in the above expression
by N1 T,, that is,
B(z1,22) = ~bn1 (2)bn1 (22)N 2

X ZEj,1XZA;il(Zl)TnAvi_jl(Z2)XnEj71
i<j

x (G A @) T A @)X r T A @) T T~ @) + 0, (1),

Reversing the above procedure, one finds that we may also replace Al-_jl (z1) and
Ai_jl(zz) in B(z1, z2) by A;l(zl) and A;l(zz), respectively. That is,
bn1(z1)bn1(z2)(j — 1)
_ V2
x AT @) TAT @X e T, AT @ T T @) + 0, (D).

B(z1.22) = Ej 1x;AT @) AT @)% Ejo

Using the martingale decomposition (4.8), one can further show that
b (zD)ba1(z2)(G — 1
N2
X Ej X3 A7 @) T AT GOXEjo e T, AT @) T, T~ (21)
+o0,(1).
It is easy to verify that
N~ (T M (@) T, T (21)) = 0p(1)

B(z1,22) =

Ej X AT @) AT (z2)x,

when M (z») takes the value B i(22), C j(z2) or D j(z2). Thus, substituting the de-
composition (4.10) for A]_I (z2) in the above approximation for B(z1, z2), one finds
that

bu1(z)bn1(z2)(j — 1)
N2
(4.18) x Ej 1X;A7 (2) T AT (21)xs

B(z1,22) = Ejix;AT (DT AT (22)x,

x Ej_ 1 T,T ™ @) T, T~ (z1) +0,(D).



ASYMPTOTICS OF EIGENVECTORS 1559
Finally, let us consider the first term of (4.11). Using the expression for A;l (z1)
in (4.10), we obtain
wio) —E; XA @D LA @)% Ej i AT @) T T 2%,
= Wi(z1, 22) + Wa(z1, z2) + W3(z1, 22) + Wal(z1, 22),

where

Wiz1,22) = Ej i, @D AT @)% Ejo i AT @) T T~ 2%,

Wa(z1,22) = —bu1 21 Ej 1%, B3 (2D Th AT (22)%,

x Ej1x AT @) T T~ @)X,

Wi(z1,22) = —E;1%,C; @D T AT @)% Ej o1 AT @) T T~ (2%
and

Waz1,22) = —Ej 15D @) T AT (@)% Ej XA (@) T T~ (1),
By the same argument as (4.12), one can obtain
(4.20) E|\W3(z1,22)|=0(1) and E|Wa(z1,22)| =o0(1).

Furthermore, as in dealing with B(z, z2), the first A;l(zz) in Wa(z1, z2) can
be replaced by —by; (zz)fi;jl (zz)sis;*A;jl (z2), that is,

Wa(z1, 22)
= bp1(z1)bn1(z2)
XY Ei ;T @(sist — N7 T)AG @ T
i<j
x Avl.;I(Zz)SiS}kAi_jl(ZQ)XnEj,1XZAV;1(Zz)TnT_l(Zl)Xn +o0p(1)
= bn1(21)bn1(22)
x Yy Ej_leT_l(Zl)SiS?Ai;l(Zl)Tn
i<j

x A (20)sist A @)% Ej -1 AT (@) T T (20)%0 + 0, (1)
_ b ()b (z2)(j — 1)
- =
X Ej 1T @) TAT @)% r T, AT (2 T AT (22))

X Ej1%,A7 @) T T~ @)X + 0p(1).
It can also be verified that

XM (22) T, T (21)%, = 0, (1),
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when M (z,) takes the value éj (z2), éj (zp) or bj (z2). Therefore, W5(z1, z2) can
be further approximated by

bn1(21)bn1(z2)(j — 1)
N2
4.21) x Ej 1 (T, A7 @) T A (22)) + 0, (1).
In (2.18) of [7], it is proved that
Ej (T A7 @) TAT (z2))

B (T, T~ @) T, T~ (22)) + 0, (1)
1= (= D/N2z1zom(z)m(z2) u(T, T~ (z) T, T~ (z2)

By the same method, W1 (z1, z2) can be approximated by

(422) Wi(z1,22) =xX:T @) T T~ @)% X T @) T T~ (z1) %0 + 0, (1).

Wa(z1, 22) = T )T T (22)%0)?

Consequently, from (4.11)-(4.22), we obtain
Ej XA @D TEj (AT % Ej 1 AT @) T AT (21)x,
x[l - anl(m)bnl(zz)itrT_l(Zz)TnT_l(Zl)T”}
N N
(4.23) =T LT @%X, T @) T T ™ @)X
« (1 b @bt (2) 3 By (AT @ T A 1(Z2)T"))

+o,(1).

Recall that by, (z) = —zm(z) and FT» — H. Hence,

1
d(z1,22) 1= 1imbn1(11)bn1(22)ﬁtr(T_l(Zl)TnT_l(Zz)Tn)

(4.24) H(t)

B f c?m(z1)m(z2)
) A+ tm@)) (1 + tm(z2))
m(z1)m(z2)(z1 — z22)

=1
* m(z2) —m(z1)

By the conditions of Theorem 2,
h(z1, z2) = limzy zom(z)m(z2)xX T~ (z1) T T~ (z2) %
X XAT N (2) T T~ (21)%n

_ mz)m(z2) ( *m(z1)m(z2)
 an (I +tm(z)(1 +1m(z2))

2
4.25) dH (t))
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_ m(z)m(z2) ( / tdH (1) )2
o (14 tm(z1)(1 + tm(z2))

_ mE)mz) <Z1M(z1) - sz(12))2
2122 (m(z2) —m(z1))
From (4.10), (4.24) and (4.25), we get

" | 1 U 1d(z1,22)
4.7y = h(z, ZZ)(/O mdt+/() (1— td(Zl,ZZ))2 dl‘)

__hGizm) (zam(z2) — z1m(z21))?
1 —d(z1,22) c2ziz2(z2 — z1)(m(z2) — m(z1))

5. Tightness of M,} (z) and convergence of M,% (z). First, we proceed to the
proof of the tightness of M,% (z). By (4.3), we obtain

r N 2 N r
Doaiy Y| =Y EY ai¥i(z)
j=1 li=1

i=1  j=1

Thus, as pointed out in [7], condition (i) of Theorem 12.3 of [8] is satisfied. There-

fore, to complete the proof of tightness, we only need verify that

My (z1) = My @) _
|21 — 2212 -

2

E <K.

(5.1) K if 71,20 € C.

Write
0@1.22) = VNXu(Ay =21 )™ (An —22D) 75
Recalling the definition of M!, we have

|M)(z1) — M) (22)]
|21 — 22|
|Q(z1,22) — EQ(z1, 22),

if 21,22 € Gy U Cyp,

[0(z1,224) — EQ(z1, 22)| + 1021, 22-) — EQ(z1, 22-)1,
if z; € Gy U Cg only,

[0(z+,2-) — EQ(z4,2-)l,

otherwise,

=

-1 x

where N(zo+) = Nz2, J(z204) = 6,07, J(z+) = :t&_nn_1 and N(z4+) = uj or u,.
Thus we need only to show (5.1) when z1, z2 € Co U Cop.
From the identity above (3.7) in [7], we obtain

MY (z1) — M} (22)
71 — 22

N
=vVNY (E; — E;_)xi A @D A (22)x,
j=1

= Vi(z1,22) + Va(z1, 22) + V3(z1, 22),

(5.2)
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where

N
Vizi.22) =N Y (Ej — Ej—l)ﬂj(zl)ﬁj(22)571‘\;1(Zl)A;l(Zz)Sijf
=

x A7 @)X X AT (21)s ),

N
Va(z1,22) = VN Y (Ej — Ej-DBjc)sTAT @D AT cxaxi AT (20)s)
j=I1

and

N
Vi(z1,22) =V/N ) (Ej — Ej-1)B; (2285 A7 (2)xax; AT (2D AT (20)s.
j=1

Applying (3.1) and the bounds for §;(z) and s’J‘fA;l(z 1)A;1(12)s j given in the
remark concerning (3.2) in [7], we obtain

N
E\Viz1.2P =N Y E|(E; — E; - 1)B;(z1)B;z)s; A7 z1)
j=1

x A7 (z2)8j8TAT %X x AT @1)s
(5.3) <KN*(EIs;AT @)xaxi AT (z0)s)

—12_2 Aq
+v 2 P(| ALl > up or ALY <up))

<K,
where (1.9a) and (1.9b) in [7] are also employed. It is easy to see that (1.9a) and
(1.9b) in [7] also hold under our truncation case. Similarly, the above argument
can also be used to treat V»(z1, z2) and V3(z1, z2). Therefore, we have completed

the proof of (5.1).
Next, we will consider the convergence of M,% (2). Note that

(5.4) M pen.ty (2) = dH,(1).

1
_2 / 1+ tm pey. i, (2)
Substituting (2.5) into (5.4), we obtain that

VN ((KEE(A™) @)%y — 1 e (2)))

(5.5) =\/N(XZ(—Emn(z)Tn —I)_1 dHn(t)>

X, + / -
" 1 +thC‘n,Hn (Z)
+VNz (81 + 82+ 83).
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Applying (2.6)—(2.8), we have
VNZ@1 482 +83) = o(1).
On the other hand, in Section 4 of [7], it is proved that
(5.6) sup VN (i pen.iin (z) — Em, (z)) = 0.

Following a similar line to (4.3) of [7], along with (4.2) of [7], we can obtain
sup || (2 pen.n )T + 1) || < 00
n,zeCo
It follows, via (4.3) of [7] and the assumption of Theorem 2, that
t

| H, .
(5.7) n,szlé%o (1 + tm e (2)) (L Em, (2) + 1) dH,(t) < oo

Appealing to (4.1), (4.3) in [7], (5.6) and (5.7), we conclude that

* -1 _ 71
ﬁ(xn(Emn<z>Tn+1) X, / Em (0 HdHn(z))

= ﬁ(x: (1 penitn )Ty + 1) 'x dHn(t)> +o(1).

" / M penin (2)1 + 1
Using (5.6) and (5.7), we also have
JN (

dH, (1) dH, (t))

1 1
f Emn(z)t + 1 B / 1 + th(rn,Hn (Z)
t

[ d
A +tmpen,m, (2))(tEm,(z) + 1)

= /N (1 por.1y (2) — Em, (2) H, (1)

=o(1).
Combining the above arguments, we can conclude that

(5.5 —0.

6. Proof of Theorem 3 and supplement to Remark 7. In this section, when
T, = I, we will show that formula (1.12) includes (1.2) of [15] as a special case
and we will also present a proof of (1.14).

First, one can easily verify that (1.15) reduces to (1.2) of [15] when g(x) =
x". Next, our goal is to prove that (1.12) implies (1.14) under the condition of
Theorem 3.

Write

(zam(z2) — zim(zD))’ = 2122(m(z1) — m(22)) + m(z)m(z2) (2 — 21)°
(6.1) + zom(22)(z2 — z1) (m(z2) — m(z1))

+z1m(21)(z2 — z1) (m(z2) — m(z1)).
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Recall that
2 =—— H
©2 ¢ m(z) /1+r mo 71
from which [together with assumption (1.13)] we obtain
m@z)m@) (2 —2) _ | PmE)mE)dH (@)
m(z2) —m(z1) (I +1m(z1)(1 +tm(z2))
L Ctm(z1) tm(z2)
= T men aHO [ s (e O

=1—c (1 +z1m(z) (1 + z22m(22)).

Replacing one copy of z» — z; by this in the second term on the right-hand side of
(6.1), we obtain

(zam(z2) — 21m(z1))*
= 2122(m(z1) — m(22))’
+ (22 — 21)(m(z2) — m(z))[(A — ™ H(1 + z1m(z1) + 22m(22))

— ¢ 'nizam(zDm(z2)].
Using this and the facts that (1), (2), (3), we obtain RHS

1 _1 | g0, if C encloses the origin,
270 ?g T gldz= { 0, otherwise,

(6.3)

1
S fe m(2)g()dz = — / g()dFH (x),

b ?g m(z2) —m(z1)
dn2JeJe, n-u

when C; enclose the origin, we obtain
RHS of (1.12)

g1z g2(z2) dzy dza = / g1 (g2 () dFSH (),

2
=5 [ @amdE @
2(c 1)

+ (gl(O)gz(O) 0 [ @dE" @)
~ 20 5100 dE’Hm)
2
-5 f 100 dESH (x) / 0200 dFSH (x)

2
= E</ gl(x)gz(X)dFC,H(x) _/gl(x)dFC’H(x)/gz(x)dFC’H(x))_
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The same we can obtain when C; does not enclose the origin, we can obtain the
same result even more easily.
Thus the result is proved.

7. Truncation, recentralization and renormalization of X;;. In this sec-
tion, to facilitate the analysis in the other sections, the underlying random variables
need to be truncated, recentralized and renormalized. Since the argument for (1.8)
in [7] can be carried directly over to the present case, we can then select &, such
that

(7.1) en — 0 and s;“/ |X11|* = 0.
{

[X11|=enn1/4}

Let )A(” = Xl/1(|le| = &nn 1/4) - EX111(|X1/| = éyn 1/4) X = Xn — Xn’
d An = +T,7R, %57, where X, = (X;)). Let 02 = E|X)1|? and 4, =
T

2%, )?*T‘/z Write A=1(z2) = (A, —zD)~ ' and A~ (2) = (A, — z)~\.

LEMMA 4. Suppose that X;; € C,i=1,...,n,j=1,...,N, are i.i.d. with
EX{1 =0, E|X11|2 =1 and E|X11|4 < 00. For 7 € Gy, we then have

(7.2) VNX (A (@)%, —xF AT (@)x, B0
PROOF. Corresponding to the truncated and renormalized variables, we simi-

larly define §j, Sj, A_l(z), AII(Z), Bj (2), lejz (z) and szjl (2).
We then have

VN(xEAT (2)x, —xE AT (2)x,)

AT QT2 (X, — X)XET2 A (),

§\~

XA VT2 X, (X5 = XHTV A7 (2)x,)

N N
(7.3) = «/NZ XZA_1(2)§J-57A_1(2)X,, + «/NZ XZA_I(z)§j§jA_1(z)xn

j=1 j=1

N
=VN Y Bi@x AT (2555 AT (D)x,

j=1

N
+VN Y Bix AT (29885547 ()%,

j=l1

A
=wi + wy.
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Consider first the term w;.
N ~
Eloi> <N Y EIBj(x; A7 (238747 ()%l
j=1

+N Y |EB; (%A (205,85 AT (),
J1#J2
(7.4) N <t A—1s
X Bjp (D)X, A7, (28,87, A7 (D)X
A
= w11 + w12,

where B,(z) is the complex conjugate of 8,(z).

Our next goal is to show that the above two terms converge to zero for all z € G,
and z € G; when u; < 0.

In this case, B;(z) is bounded. It is straightforward to verify that

E|Bj()x; AT (2)8;85 A7 @)%, |

s <KEISiAT @xx; AT (205 = o(N7?),
EISAT )8 — EXnXipN " r A7 @ =o(N D),
ElsiAT @xxi AT @)8;P = O(N 7).

Therefore,

EIBi (0B @x; A7 (2)8;85A7 (20885 A7 (D)%l
<K(ER5AT @3 — EQnXipN v AT @14
x (Elsi AT @xaxs AT (20812
+ EIXulPI(X 1] = ean' M EIS; AT (@xax5 AT (20817 = 0o(N 7).

It then follows that
N A ~ ~
w11 < KN Y (EIBi (B @)X A7 (2088147 885 A7 ()%l
j=1

(7.6) + EIB; (x5 AT (2)8;57AT @)xul?)
=o(1).
Now consider the term wi2. We have

EBj,(2)Bj, ()85, A7 @xux A7 (25,85, A7 @xux AN (205,

=A1+ Ar+ Az 4 Ay,
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where
= EBj, QB (DB, (2B, (2)s% AT (0xux; AL (2)s),85, A7 ()8,
x 85 A @xaxi AT (208,85 A7 (2055,
=—EBj,()B;,(D)B; ()85 A7 (@xaX; AL D8y

x §} AJ2 (z)S,zsnAJ2 @xnx, A}, @5,

A3z = —EBj, (2)B;, (2B ()55 AT (Oxuxi A7 (D)5 ),8%5, A7 (D)%,
x X3 AT (208,85 A7 ()55,

A4 = EBj, (2)B),(D)s], A, ' (D)xx; A, (Z)SHS,ZA L@)x,x AJ1 (2)8j,.

In the sequel, A will be further decomposed. However, since the expansions
of A are rather complicated, as an illustration, we only present estimates for some
typical terms; other terms can be estimated similarly The main technique is to

extract the jith and j>th column, respectively, from 7}, 12 X of A (z) and A ( ),
and so on. We will evaluate the following terms of Aj:

A1, A1z, A1z, Aqa.

Their definitions will be given below, when the corresponding terms are evaluated.

Define

Vi=sj Amz(z)xnx Amz(z)sﬁ’

A

Vi=§,45% @8, - ERuXipN~'w AL @,
V2 _S AJljz(Z)X”X AJlJz(Z)SJI’

V4—s Ajljz(z)s,1 E(XHX“)N trAJljz(z)T
One can then easily prove that
EVsP=oN"h),  EVa’=0o(N7D),
7D 4 4 4 4
EVi"=0(N"") and E|V|"=0(NT").

Using (7.7) and (7.1), we obtain
|Aul=|E[B), (z)ﬂj2 @B (DB Ds AL @Oxxs AL (D)s )y

A A*

e .
XS A (Z)SDSJZAJUZ(Z)X”X Ajljz(z)sll J1 jljz(z)sfl]|

J1J2
< K[EIV1|*1VHLEIVa MY ALE | V3 Vg 2112
+ KE|X111P1(1X11] = eon HEIVIMYALEI VMY E V3212
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+ KE|X111P1(1X11] = eon HEIVHYAEI VMY E V4212
n K(E|X11|21(|X11| > g,n'/*)?

x [Els3 A7 L @xaxi AL (208, 17117

12
x [ES5 ALY @xixiATh @)sp P12
=o(N7Y),
where we make use of the independence between §72A;1Jz (2)8, and §ij A; b’z (2)8},
when A;ljz (z) is given.
Let
Vs = s AJUZ(Z)XnX Aj]]z(z)sflS]1A]1]2(Z)SJ2

Similarly, we have

Els; A}, @83 1' = 0N ),
(7.8) E|Vs|*=0(N™%),

E|sh AT, (@xixiATY (D)sp17 = O(NT).

J1j2 12

Consequently, by (7.5), (7.7), (7.8) and (7.1), we have
|Asal = |E[B}, (DB, D) B)njs (D) Bji (DB RIS AT (2885, AT ()%

X X"Ajlj (Z)SJZSJZ Ajuz (Z)SJZ

§. & "—1 <.
Xs AJIJ2(Z)X” n J1Jz(z)sll Ji jljz(Z)Sh“

< K[EIs}, AL (@xax; A7 B)sj, P12 x [E| V3 Va4 x [E| V5|

J1J2
+ KEIXulPI(X11| = eanDIEIs} AT L @xix5 AT s 1117
x [E|Va|*1V*E V5|14
+ KEIXulPI(X11| = eanIEIs}, A7 L @xax3 AT (R)s 1112
x [E| V3| A E Vs
+ K(EIX11 P11 X111 = ean ) [El8, ATY @xixE AT @571
x LEIV21VHES], AT @85, 11
=o(N7).

Let Vg = s Am2 (2)x,x *AM2 (z)shs“Am2 (z)sj,. By Lemma 1, one can ob-
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tain E|V6|2 = O(N_3). Hence,
|A3l = E[B}, (DB DB jo @) Bjnjs (DB 2B, ()5, AT (s,
X 8} Ajljz(Z)X" n Jljz(z)sflsjlAjljz(Z)sﬂsjzAjljz(Z)sJ2
x s Ajljz(Z)X”X AJ]]Z(Z)gflAjl A;jz(z)gjl]|
< K[E|Ve|1'2[EIV3Val1V* x [E|Vs|*]1/4
+KEIX1P1(X11] > ean' ™K E| V6|12 [EVaI*1Y* x [E V51114
+KEIX1PT(X11] = ean ™ME V621 LE V1MV x [E| V5|14
+K(EIX1PI(X11] = ean'/h)?
x [E|Ve[’1'2LEIVa| 1 E s, AT (2)s%, 114
=o(N7d).
Before proceeding, we need the following estimate:
(7.9)  Els,A,, (z)sq Ay @)%t qu (z)éqAZ q (z)spl =O(N™%.
For p # q, write
T2 A5, (T, = (auw),
T, Ay @%aXs Ay (T, = (b),
T,2A,, T, = (ci)).

Then
Els;, Ay (1848, A4 QXX AL (34854, D)3,
1
= N12 ZEau1v1au2v2au3v3au4v4
X XMIPX"QPXIBPX’MPXUIququU3qX:4q
(7.10) X bmlllbmzlzbm3hbm4l4
X XmlpszpXmngmthXllqX;kqulMX;;q

X Ciy j1Cin joCi3 j3Cigjs
* *
X XZIPthpXBPXMPXMXJZq Xj3q XJ4‘1’

where the summations run over all indices except p and g, and where X* «, p denotes
the complex conjugate and transpose of X u; p» that is, the intercrossed element of

the uth row and pth column of matrix X,,. Observe that:
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(1) none of the indices of the above twenty-four random variables appear
alone, 0therw1se the expectatlon 1s zero,
2) tr(A "oT, A 4@ T,) = O(N) and 1X.p| < ean'/;

3) |X*A (z)T A 4 1(2)x,| is bounded. Combining the above, we obtain (7.9).
Similarly to (7.9), one can also verify that

ax A=l oA ok 4—1 ¥ a—1 ;=ve ok A—1 =va 4 —4
E|sj2Aj]j2(z)sjlsj2Aj1j2(z)xnx Aj]jz(z)sjlsjlAjljz(z)sjzl =O0(N),

(7.11) S
E|SJ2A]1]2(Z)SJI J2 ]1]2(Z)S]1| =o(N~ )

and that

(7.12) Els5 A7L 28,8547 28, 1' = 0(N 2.

It follows that
|A14] = |ELB},(2) B, @B s D Bjsii @) By @) Bj, @ By iy @By (2))?
x 85 A @854 @xaxi AT (28185, A7, (D)

AA*A— NaL ok A=l ova. ok 41 (o
X SJZSJzAJuz(Z)SJl J1 j1j2(Z)sﬂsjzAjljz(Z)sflsjlAj1j2(Z)X”

§. §* A N §. & A
ok AJlJz(Z)SJZ J2 Jljz(z)sll Juz(z)sﬁ J2 Juz(z)sfl]l

* 44— cox AL s * A — &. 8% A1 5va. 1/4
< K[E|s;, A}, (2885 A7 @xax A (208,85, A7, (D85, 1]

s 72—l ma ok 41 wa—1 (oo ax Al o na. 4q1/4
< LEIS) Aj 5, (R)8)p85, A j, (XX A 5, ()88, A, (28 []

ak Aol s ok =1 oo (4114
< LEIS) Aj 5, (2088, 4, (DS pl']

" 1/4
X [E|szAJuz(Z)Sll 2 JlJz(Z)s”l ]

=o(N7?).

All other terms of A can be dealt with in a similar manner. Hence, combining the
above arguments, one can conclude that

n Z A1 — 0.
J1#2
Similarly, one can also prove thatn 3~ ; i, Az, n}_j 45, Azandn }j ;) Ag con-
verge to zero. Hence, wi» — 0. Combining this with (7.6), we have

w1 P,
Using the same method, one can prove that w»> converges to zero in probability.
Hence, we complete the truncation and centralization of X;;. The rescaling of ran-
dom variables X;; can be completed in a similar way. By Theorem 1 in [2], we
have

L i LA,
llllrgg(ljfmm(ur — Amaxs Amin — 1) >0 a.s.
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and

A u;) >0 a.s.

.. . Ay
1}1111) géf min(u, — A i

max?

Hence, for z € C;, u; > 0 or z € C,, we can also proceed with the truncation, cen-
tralization and rescaling of X;; by the above method. Thus the proof is complete.
g
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