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MODERATE DEVIATIONS AND LAWS OF THE ITERATED
LOGARITHM FOR THE LOCAL TIMES OF ADDITIVE LEVY
PROCESSES AND ADDITIVE RANDOM WALKS

BY XI1A CHEN!
University of Tennessee

We study the upper tail behaviors of the local times of the additive Lévy
processes and additive random walks. The limit forms we establish are the
moderate deviations and the laws of the iterated logarithm for the L,-norms
of the local times and for the local times at a fixed site.

1. Introduction. Let X (¢) be a d-dimensional symmetric Lévy process with
the characteristic exponent v (1), that is,

REe* X — p=1¥ A 1>0, reRY.

The symmetry assumption implies that i (1) takes only real values and (1) > 0.
Throughout we assume that there is a deterministic and positive function a(t)
on RT such that a(t) — oo as t — oo, and that the limit

(1.1) lim “/’(a/(\_t)> =W(L)

t—00

exists for every A € R?. Notice that (1.1) holds if and only if there is a symmetric
d-dimensional stable random variable Y such that

(1.2) X(1)/a(t) - v.
In this case we have that
(1.3) Ee*Y = Y™ L eRY,
and that W ()) is continuous, nonnegative with the properties
W(rA) =r®W() and W(—1)=W), r>0,1reR?,

where a € (0, 2] is the stable index of Y. It is a classic fact that a(r) must be
regularly varying at co with regular exponent 1/«:

(1.4) lim a(@)/a()=6"*,  6>0.
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Throughout we assume that Y is nondegenerated, which means that there is a con-
stant C > O such that

CTHAIY < W) < CIAI",
Let p > 1 be a fixed integer such that
(1.5) d<ap

andlet X(7), ..., X, (¢) be p independent copies of X (7). Our first goal is to study
the upper tail behaviors of the local times of the additive Lévy process

X(t,...otp) =X1(t) +-+ Xptp),  t,....tp eRT.

The multi-parameter processes are a natural extension of existing one-parameter
processes. The subject connects to other disciplines, such as functional analy-
sis, group theory and analytic number theory; we refer to the book by Khosh-
nevisan [31] for these links. The multi-parameter processes also arise in applied
contexts, such as mathematical statistics [40], statistical mechanics [36] and brain
imaging [5].

Since they locally resemble Lévy sheets, and since they are more amenable to
analysis, additive Lévy processes first arose to simplify the study of Lévy sheets
(see [15, 16, 26, 27]). They also arise in the theory of intersection of Lévy trajec-
tories. The study of additive processes connects to probabilistic potential theory.
We mention [23, 25, 30, 32, 33] and refer the reader to the detailed discussion and
for the further reference.

The local times of the multi-parameter process X(t,..., tp) are defined differ-
ently in the following two different situations. The first is when
(1.6) /d[l + YW Pdr < 0.
R

According to the recent papers by Khoshnevisan, Xiao and Zhong [34, 35], the
occupation measure

/Lt(A):/[O ]p]lA(Y(sl,...,sp))dsl---dsp, AC]Rd,
f

is absolutely continuous (for all # > 0) with respect to the Lebesgue measure
on R4, if and only if (1.6) holds. In this situation the local time of X (¢, ..., tp),
denoted by L(, x), is defined as the density function (with respect to the Lebesgue
measure) of the occupation measure ;. A formal way of writing L(z, x) is

L(t,x):/ Sx(Xi(s) 4+ X,(sp))dsy -+~ dsp, t>0, x e RY.
[0,£]7

See [34, 35] for some discussion on the path continuity of L(z, x).
In the second situation, we assume that i/ ()) is a periodic function with pe-
riod 27:

(1.7) v (r+kQ2m)) = ¥R, keZ reRY.
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Clearly, the conditions (1.6) and (1.7) do not co-exist. Indeed, (1.7) holds if and
onll if the process X (¢) takes only Z4-values. Under (1.7) the local time L(t, x)
of X(#1,...,1p) is defined as

L(t,x)= /[‘0 " ]l{Xl(sl)-i—----i—Xp(sp):x}dsl cee dsp, t>0,x¢ Zd.
N

Define

fO+v)fiy) ]”
1.8 = d dl
a8 n= o [ e e ]

Fh+9fy) ]2"
1.9 — d d
(19 P ||;ﬁz11/ﬂ;d[ R/ T+ +y)/T+HY(y) Y '

112=( [, fz(A)dk)l/z.

In [8] we show that (1.5) implies that 0 < p1, p2 < 0.

A special case in the category defined by (1.6) is when the Lévy process is
actually a stable process, in which case we always use Y (¢) for the stable process
that generates the additive stable process Y, and Ly (¢, x) for the local time of Y.
For the process Y (¢), (1.2) and (1.3) automatically hold, (1.5) is equivalent to (1.6),

and Y (1) 4 Y. We [9, 10] recently proved that

where

lim ~%/“1ogP{Ly(1,0) >t}
—00

(1.10) iy
d d \@r=d/d _
- _—(271)“(1 - —) py !
o ap
and that
lim r~o/d 1ogp{/dL’§(1,x)dx zt}
—00
(1.11) ¥ o
d d \Ger=dld
_ _—(2n)“(1 - —) py "
2« 20p

In the present work we consider the setting of Lévy processes, where the scaling
properties given in (1.16) below are no longer reality in general. The form of large
deviation we shall establish is called moderate deviation in literature, which is
related to the weak law given in (1.2).

To this end, let b, be a deterministic positive function on R satisfying

(1.12) by —> o0 and b, =o0(1) (t = 00).
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THEOREM 1.1. Assume (1.1), (1.5) and (1.12). Under both (1.6) and (1.7),

1 t\4
O r,
tl_l)n(;lo b, logJP’{L(t,O) > A\t a(b ) }

1

(1.13)
d d (ap—d)/d A a/d
e d(-2)" ()
o ap 1
li 11 plr > 2Pt -
oo, CEE AT Y,
(1.14)

d d QRap—d)/d A a/d
a5
20 2ap 02

for every A > 0, where
/sz(t,x)dx, under (1.6),
] JR
(1.15) lh= LAt x), under (1.7).

xeZd

1/a

Notice that in the stable case, a(t) =t'/* and for any ¢ > 0,

Ly(t,0) L s@r=d/ep (10) and
(1.16)

/Rd L3(t, x)dx L {Cor=d)/e /Rd L2(1,x)dx.

Hence, (1.13) and (1.14) lead to (1.10) and (1.11), respectively.

Our second goal is to study the upper tail behaviors of the local times of the ad-
ditive random walks. Let S(n) be a symmetric d-dimensional random walk taking
74 -values with S(0) = 0. We assume that S(r) is in the domain of attraction of a
nondegenerated d-dimensional stable law Y with the characteristic exponent W (A).
More precisely, there exist a nondecreasing deterministic positive sequence a(n)
with a(n) — 0o as n — 00, and a nondegenerate, symmetric d-dimensional stable
random variable Y described as above, such that

(1.17) S(n)/a(n) — Y (n — 00).

We extend a(n) into a function a(t) on R™ by interpolation. By the classic theory
of the central limit theorem, (1.4) holds also in this case.

Let the integer p > 1 be fixed and satisfy (1.5) and let Si(n),...,S,(n) be p
independent copies of S(n). The multi-parameter process S(n1, ...,n p) given by

E(nl,...,np):Sl(nl)-i----+Sp(np), ni,...,np=0,1,2,...,
is called the additive random walk generated by the random walks Si(n), ...,
Sp(n). Its local time [(n, x) is defined as
n

I(n,x)= Z ]1{Sl(k1)+---+Sp(kp):x}, X € Zd, n=1,2,....
kv k=0
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Let b, be a deterministic positive sequence satisfying

(1.18) b, — oo and b, =o0(n) (n — 00).

THEOREM 1.2. Under (1.5), (1.17) and (1.18),

lim - 1oePli0r. 0) = an? AN
Jim g tox 2.0 2 2na( ) |

n

(1.19)
d d (ap—d)/d A a/d
e (-2) " ()
o op p1
. 1 2 2p n —d
nll)ngoalogP szl (n,x)>n a<a>
(1.20) e ooy p
d d “p— A\?
e (-
2 20p 02

forevery A > 0.
Theorems 1.1 and 1.2 apply to the following laws of the iterated logarithm.

THEOREM 1.3. In the assumptions of Theorem 1.1,

1 d
Ii — L(t,0
(1.21) iy "’a<10glogt> *.0

' J{ o\ d \—(p—d/®)
=Q2m)” (—) <1 — —) o1 a.s.,
d ap
1 t\¢
limsup 2—a< ) It
(122) t—oo t=P \loglogt

2a d/a 4 d —QRap—d)/a
= <?) 2m) (1 — @) 02 a.s.,

where I; is given in (1.15).
In the assumptions of Theorem 1.2,

d
) [(n,0)
loglogn

a\d/ d \ —(p—d/a)
=<2n>—d(5) (1—@) P—

1
lim sup —a(
n—oo NP

(1.23)
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1
limsup —— 3,4

im sup ) Z *(n, x)

4 2a d/a d —Qap—d)/a
= (2m) — 1—— 02 a.s.
d 20p

A special case covered by our theorems is when X (¢), S(n) are square integrable
and therefore are attracted, according to the classic central limit theorem, by the
normal distributions with a(¢) = /7. Let " be the covariance matrix of X (1) [or
of S(1)]. By our assumption, I' is positive definite and

W) =1r. (), reRY,

Let A be a d x d positive definite matrix such that I' = AZ. Notice that, under the
substitution f(A) = JdetT g(AN),

log logn
(1.24)

/ [ SO+ fy) dy}pdx
R /THUA+y)/T+U(y)
p
:[detF]P/Q/ [/ gAML+ y))g(Ay) dy] ”
RILRS 14 2-1 A+ )21+ 271 Ay 2

1 [ g +y)gly) p

= d)/} di,
det" JR4 /Rd \/1+2_1|)»+)/|2\/1+2_1|)/|2

where the second step follows from the linear transform (A, y) — (AX, Ay). Sim-
ilarly,

FO+V) ) 2p
,/|:]Rd\/1+ll’()\+)/)\/l+\l-’()/)dyi| dr

_ 1 [/ g +7)g(y) dy]zf’dk
JdetT" JrRIL/RY \/1+2_1|k+y|2\/1+2_1|y|2

Hence, we have

1 1
P11 = P1 and P2 = 02,
J/detT JdetT
where
A 14
5= / [/ gr+y)gly) dy} "
o S0 L JIH2 Ty 21427y 2
A 2p
b= sup / [/ gr+y)gly) dy] o
lalo=1 RILIRE 1ot 4y 2 14212

To avoid repeating statements, we only consider the additive random walk in
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the following corollary.
COROLLARY 1.4. Assume that d < 2p and assume that E|S(1)|? < co. Then

1
im — Qp—d)/21.d/)2
nlggo ™ logP{l(n,0) > An b’}

(1.25)
4\ @p—d)/d aRRL
=—2dn2<1——> (detT)"/ (—) ,
2p P1
.1 2 (4p—d)/21.d)2
nli)ngozlogp{ ZZdl (n,x)>An b,
(1.26) - (4p—d)/d 2/d
d p= A
=—d7r2<1——> (detr)l/d<_—) ,
4p 02
limsupn~?P=D/2(loglogn)~4/*(n, 0)
(1.27) e s
_ d \~@r- 7
= (vV2dm) d(l — —) il a.s.,
2p JdetT’
limsupn_(“‘l’_d)/z(loglogn)_"'/2 Z 1%(n, x)
n—oo xEZd
(1.28) w2
_ d \~¢r- 7
= (\/En) d(l — —> P2 a.s.
4p J/detI’

REMARK. From Lemma 5.1 and (6.4) given later, one can see that if we re-
place L(¢,0) by L(¢, x) for a fixed x in Theorems 1.1-1.3 and Corollary 1.4, then
our results still hold.

The limit laws for the local times in the classic case p = 1 have been exten-
sively studied and it is impossible for us to list all works in the literature. We
mention [3, 6, 14, 17, 20, 24, 28, 39, 41] for classic reference.

The study of the quadratic form of the local time is linked to the limit theorems
for random walks in random sceneries. We refer the reader to [13, 29, 36, 42]. The
study is also motivated by the needs from physics for investigating self-intersection
of the random paths. We cite [1, 2, 11, 12] for some recent results on the large and
moderate deviations for the self-intersection local times in the case p =1 and [19,
43-46] for the physicists’ view on the self-intersection local times. To see how our
theorems connect to the problem of self-intersection, we take the additive random
walks as example. We introduce the notation

{Kkis o kp), (s 1))

for a two-element set where each of the elements is a point in (Z ™). In particular,
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this set is viewed as being identical to the set

{(i, . lp), ki, kp))
The object of interest is the random quantity

Ap=#{{k1, .. kp), 1y L) 0<kyy o kpolyy .oy <m
(k],...,kp);ﬁ(h,.‘.,lp) and
Si(k) 4+ Splkp) = S1) + -+ S, Up)},

which counts the self-intersection of the additive random walk S(ny, ..., n p) dur-
ing the “period” [0, n]”. On the other hand, notice that

Z lZ(n,x)

xez4
=#{(ky, ..., kp,11,...,1,) €[0,n]*7;
Sik1) 4+ Splkp) = Si(1) + -+ SpUp)}
=2A, +n?

and that under (1.5),
n —d
n? :o{nzl’a(b—) } (n — 00)

n
for every sequence {b,} satisfying (1.18). From (1.20) and (1.24), we have the
following:

COROLLARY 1.5. In the assumption of Theorem 1.2,

. 1 2 n\ "4
lim —10gIP’{A,, > An pa(—) }
n—>oo p, b

n

Qap—d)/d d
— _2—(a+d)/d(2n)ag(1 _ i) =/ (i)a/ ,
o 2ap 02

(1.29)

. 1 n d
lim sup —a( ) Ap
n—oo n?P \loglogn

2u d/a d —QRap—d)/a
=2(=) o) 1-— 02 as.
d 20p

(1.30)

From the technical view point, the multi-parameter case is quite different from
the single-parameter case. In the multi-parameter case, our ability of using the
Markov property is severely limited. Due to lack of scaling properties, our ap-
proach is fundamentally different from the one used in [9, 10] in the stable case,
where time exponentiation is essential to the solution.

To outline our approach, recall a general theorem (Theorem 4, [8]) of Gértner—
Ellis type: Let {Z;} be a family of nonnegative random variables and let p > 1 be
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an integer. Assume that, for any 6 > 0, the following limit exists:

lim elog Z (EZ’”)‘/P A(6).

e—=0t
Write

I(}) = psup{r/P6 — A(9)).
6>0

By an argument of duality, we have that, for any 6y > 0,

1/p 1
supiA - F0y — —I(A) t = A(6o).
A>0 p

Assume further that, for any Ag > 0, there is a 6y > 0 such that ¢ is the unique
maximizer of the function

1
9() =170y — —1 ().
p
Then
lim eloglP{Z, > A} =—1(}), A>0.
e—0t

To prove Theorem 1.1 and (1.20) in Theorem 1.2, therefore, it is sufficient to
show

X gm bt m ¢ md/p " 1p
tlggob—logz (t) a(E) (EL™(z,0))

(1.31)
— (27-[)_O‘d/(ap—d)Io‘lx/(ap—d)eap/(ap_d),
1 00 gm  p N\NM s p\Mmd/2p
A log Z ( tt) “(b—> [EI™2)1/p
t
(1.32)
= (2r) =/ Qap—d) 2/ Qerp=d) pap/ Qap—d),
n md/2p 5 m/2y1/p
nli?o‘o b—log Z ( ) <E> {E|: Z [ (n,x)] }
xeZd
(1.33)

— (Zn)—ad/(Zap—d)pg/(zap_d)QZap/(Zap—d) )

Unfortunately, the argument we shall use for (1.31) is broken in the case of ad-
ditive random walks. The proof of (1.19) in Theorem 1.1 follows from a separate
treatment. The basic tool we adapt to achieve these goals is Fourier transformation.

For technical reasons, the proof of our theorems is not given in the order that
the theorems are stated. In Section 2 we prove the lower bounds for (1.31), (1.32)
and (1.33). Our proof relies on the Feynman—Kac type minoration developed in [7].
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In Section 3 we prove that the local times and the quadratic forms of the local times
weakly converges to their stable counterpart if properly normalized. In addition to
being interesting for its own sake, this result is needed in the proof of the upper
bounds of (1.31), (1.32) and (1.33). In Section 4 we establish the upper bounds
for (1.31), (1.32) and (1.33). The central pieces of this section are the establish-
ment of some moment inequalities. By the time we end Section 4, the proof of
Theorem 1.1 and (1.20) in Theorem 1.2 will be complete. In Section 5 we prove
the laws of the iterated logarithm given in (1.21), (1.22) and (1.24) as the appli-
cations of Theorems 1.1 and 1.2. In Section 6 we prove (1.19) in Theorem 1.2
and (1.23) in Theorem 1.3. The basic idea is to approximate the local time of the
additive random walks by the local time of a properly constructed additive Lévy
process and the involved techniques include randomization, symmetrization and
moment comparison. In the Appendix we prove an analytic lemma.

2. Lower bounds in (1.31), (1.32) and (1.33). In this section we establish

T B L N N |
liminf — log Z:Oﬁ(_> a<—> (EL™(t,0)) /p
m=

oo by t by
(2.1)
> (zn)—ad(P-F1)/(01p—d)p(lll/(ap—d)eap/(ap_d)’
1 00 gm spN\NM s p \Md/2p
liminf —log _(_,) a(_) L
o by m=0 ml\t by
2.2)
> (271—)*0“1/(20‘1’*‘1)pg/(z"‘l’*d)QZap/(zapfd),
2y1/p
1 X gm sp \N™M md/2p m/
v () o2 e 1
n—>oo p, o mt\n b, =
(2.3)

> (2n)—ad/(2ap—d)pg/(zap—d)QZap/(Zap—d) )

We start with a simple lemma.

LEMMA 2.1. Let X(t) be a symmetric Lévy process. For any A1, ..., , € R?
and any ty, ..., 11 >0,

1
Eexp{i Z)‘k . X(tk)} > 0.

k=1

PROOF. Without loss, generality, we may assume that 1) <t, <.-- <1

1 [ [
Eexp{i > e X(tk)} = Eexp{i Z( xj) (X W) — X (1))
k

k=1 k=1 \j=
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I !
= 1_[ eXP{—(tk - tk—1)¢<z kj)} >0
k=1

Jj=k

where we use the convention 7p =0. [

In the rest of the paper, the Fourier transformation will be frequently used. For
any function g(x) on R4, we use 2()) for its Fourier transform:

200 = / () dx,  reRY
R4
We refer the reader to the books by Edwards [21, 22] for the general information
on Fourier analysis.

Write

Fy = {g c Jiz(Rd);/ 22(x)dx = 1 and
]Rd
(2.4)
/ TP (L) dA < oo}.
R4

Finally, a function f(x) on R, 74 or [—m, n]d is said to be symmetric if

f(=2)=F0), reR?, 74 or [—m, 717,
LEMMA 2.2. Let f()A) be a symmetric function on R such that

(2.5) /IRd|f(k)|dA<oo

and write
£ _ il-x d
f(x)—/Rdf(k)e i, x € R%.

Let 0 > 0 be fixed but arbitrary.

(a) In the assumptions of Theorem 1.1 and under (1.6),

1 f11 ATEAY diy--- dr
minttoe 32 () [ v i

(2.6) x []f[ f(Ak):| [Eﬁ[/ot exp{ia(bit>_lkk-X(s)}dsi|

> sup{ f Foog (x)dx—f 200 wm}
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(b) In the assumptions of Theorem 1.1 and under (1.7),

0 Om bt m
hmlnf—lo ( ) / diy---dr
b, & Z t (a(tby H=m,x1d)m ! "

2.7) X L];[l f(kk):| [Ek]i[lfot exp{ia<bit)_l,\k : X(s)}ds}

> sup {9 [, fogwar— [ rg‘(x)ﬂw(x)dx}.

geFy

(¢) In the assumptions of Theorem 1.2,

9}”1 b m
hmlnf—lo < ) / diy---di
n—00 b £ Z (a(nb;])[—n,ﬂ]d)’” : "

n

2.8) x (k];[1 f(kk)) [E I Zexp{za( . ) e S(l)}]

k=11=1

> sup {0 [, Fwgwa- [ |§(x>|2w<x>dx}.

geFw

PROOF. Due to similarity, we only prove (2.6) under (1.6). For each integer

m>1,
di ---dkm‘ll A
/(.d) 1 h 1f( k)

Hence,
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Under (2.5), f_ (x) is a real, bounded and continuous function on R¥. By the same
argument as Theorem 4.1 of [7],

liminf - log {eb’/tf(C)_lX())d}
mini — 10 X — —
t—o00 b, g p t Jo 4 b, s §

> sup {9 [ iwgwar- [ |§(k>|2w<x>dx}.

geFy
This leads to (2.6). O

We are back to the proof of (2.1), (2.2) and (2.3). Due to similarity, we only
prove (2.1) and (2.2) under the condition (1.6). For any nonnegative and symmetric
function f()) satisfying (2.5), write

gM)g(y)
= — drd
L) HgSJiIil f,/]Rded A )/)\/1 +UA)J/T+Y(y) v

g+y)gy) }
- A dy | do.
Hgslﬁgl R4 /¢ )[ Ré /TH+W+y)/T+Y(y)

We now prove (2.1). By inverse Fourier transformation,
1 —iAX
L(t’O)_W/Rd[/IZRde L(t,X)deId)\.

:ﬁéd['/otn-/olexp{—ik-(X1(81)+---

+ Xp(sp))} dsy - dsp:| di

1 L
= — dx /e_’k'x-f(s)ds.
(2m)d /Rd jl:[] 0

For any integer m > 1,

2.9

(2.10)  EL™(t,0) = (27)"™ /( .

m t p
d,\l...d)\m[E]‘[f e”k"“‘)ds} .
0
k=1

Let g > 1 be the conjugate number of p defined by the relation p~! 4+¢~' = 1.
We now let (1) be a symmetric nonnegative function on R¢ satisfying (2.5) and
Il fllg = 1. By rescaling,

(BL™(t,0))"/"

t —md/p
= (2n)—md/l’a(—)
by
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X {/ di -+ diy
Rym
mo -l ryl/p
X [EH/ exp{ia(—) = X(s)}ds:| }
k=170 by
t —md/p
> (2n)"”"/pa<—) f dny - dhy,
bt (Rdym

X Lli[lf(kk):| [Elﬁl/otexp{ia<b%)_lkk-X(s)}ds:|,

where the inequality follows from the Holder inequality and from the crucial fact
that

(2.11) Elﬁ/olexp{ia<é>_

which is supported by Lemma 2.1.
Taking 0 = p(f)~'(27)4/? in Lemma 2.2 gives

1
Ak-X(s)}dszo,

1 1
1ilminf—10g Z —(p(f)~L@m)d/Pym
—00 by, m:Om!

b, m t md/p " 1p
2.12) x <7> a<b_t) (EL™(t,0))

L BN [ ook }_
ngeufpw{p(f) [ Fwgmar- [ 1goPen i) =

where the last step follows from Lemma A.1 in the Appendix.
Let 6 > 0 be given as in (2.6) and let ¢ > 0 be arbitrarily small. By regularity
of a(t) given in (1.4), for large ¢, we have

5 ﬁ(%)m(f )md/p(EL’"(t, 0)"”

|
m—0 m:

(p(H)~ @) Py™@p(f)(2m) 4/ Pym

1
m

bi\"™ ! md/p m l/p

t

00 1 Ab,\™M md/p
= 3 et et (52 ) () o)

Ab;



968 X. CHEN

where
=1 =e)Op(f)Q2m)~WPyer/er=d,
Replacing b; by Ab; in (2.12),

L 0™ (b \™ [t \"/P
hmlnfb—logz < z) a<—> (ELm(t,O))l/p

t— 00 t b,

> (1 —&)(@p(f)(2m)~d/Pyar/@p=d)

Letting ¢ — 0T,

L &0m (b \™ (1 \"P
11m1nf—1ogz < l) a(—) (EL’"(I,O))UP

t—00 t by

(2.13)
> (2) "0/ @r=D o f)er/@p=Dyer/@p=d)

Notice that, for any g € L£2(R?) with g > 0 and ||g||> = 1, the function

g+ 7)8(y)
R /THWOR+ )T+ ()

is nonnegative and symmetric on R?. Hence,

H,(A) =

Sup,O(f)>SUP sup J (M) Hg (1) dx
f ||g||201 R
g>

= sup sup f(A)H (A)dAa
lgl=1 f
8=0

1/p 1/p
= sup (/Rd|Hg(k)|PdA> =p,'",

llglla=1
g>0

where “sup” is taken over all symmetric f satisfying (2.5) with || fl; = 1.
f
Summarizing what we have proved since (2.13), we have (2.1).

We now come to the proof of (2.2) under (1.6). By Parseval’s identity, for any
t >0,

/ L2(t,x) dx
R4

1
(2.14) = —(271)”1 ./I;{d

2
/ L(t,x)e?*dx| dx
R4

f exp{ir - (X1(si)+---
[0,¢]P
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2
+ Xp(sp))ydsi - dsp| di

1 LA ?

= Gt Ju T Jy 0]
T Re | 0

j=l1

Let f(A) > 0 be symmetric on R? such that || fll2 = 1. By rescaling and the
Cauchy—Schwarz inequality,

[A‘gd Lz(t, x) dx}l/2
> (2m)4?a < )_d/2
Lt
o)

n

< [, 1
For any m > 1,

|;/ dkf(k)]i[ { < ) A-Xj(s)}ds

= (1‘[ f(xk))

(Rd)’"
t t -1
exp{ia(—) Ak-X(s)}ds
1 0 bt

2 [, @1 (1‘[ mk))

k=1

m t t
x |E / ex {i a (—)
kl:[l 0 P by
Let g > 1 be the conjugate number of p and let 4 be a symmetric function on R¢
satisfying

2.15) A;d IhO)| f (M) dr < oo and /Rd IhO9 F () dh = 1.

2 }1/2
/texp{la< )_lx.xj(s)}ds dx
r
T

p

ofuls) oo

-1
M - X(s)} ds
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We have

{E[/Rd Lz(t, X) dxi|m/2}1/p

t —md/(2p)
i)

x :/(Rd)m dhy--- d/\m(]_[ f(/\k)>

k=1

Ekli[l/()t exp{ia(b%)l)\k . X(s)}ds p}l/”

m t —md/(2p) m
> (27) d/(ZP)a<b—> f(Rd)m dry - diy (ﬂ(fh)(kk))

t

X [Elﬁ/g exp{ia(é)_lkk . X(s)}ds:|.

Taking 6 = (27)%/?P p(fh)~" and replacing f by fh in (2.6) of Lemma 2.2,

| X1/ @2m)dzeNT
liminf — log —(—)
(=00 by 2 mI\ p(fh)

=0
b\ £ \md/2p ) m/2y1/p
(7)) el o]

TR dx = [ g0PYe) dx} 1,
Rd

> (2”)—md/(2p)a (

X

1
= sup {
com Lp(7) Jes

where the last step follows from Lemma A.1 given in the Appendix.
As for the general 6 > 0, similar to the argument used in the proof of (2.1),

1 X gm b\ ¢ md/2p
liminf —log > —(—t) a(—)
=00 bt =0 m! t bl‘

m/2y1/
(2.16) X{E[/RdLZ(t,x)dx} },,

> (27T)—ad/(2ap—d)p(fh)Zap/(Zozp—d)02ap/(2ap—d).

Notice that

gl +1)g(y) T}”p
h) =
poth) nfﬁ‘il{fw drf) M@ NES vV EaToyked I B
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where the supremum is taken over all symmetric functions £ satisfying (2.15).
Taking supremum on both sides over all symmetric, nonnegative functions f with
Il fll2 =1, we have

1/2
sup p(fh) = py/ .
f,h

Finally, taking supremum over 2 and f on the right-hand side of (2.16)
proves (2.2).

REMARK. A careful reader may notice that, in the context of the additive ran-
dom walks, the statement corresponding to (2.1) in the Lévy case is missing. The
reason is the absence of the property like (2.11) in the case of the random walks.
This also creates a problem in the proof of the upper bounds.

3. Laws of weak convergence. In our assumptions, the Lévy processes and
random walks are attracted by stable processes. Naturally, we expect that this re-
lation passes to the local times. Recall that Y is a stable random variable given
in (1.2) and (1.16), Y (¢) is a stable process in R such that Y (1) 4 Y,and Ly (¢, x)
is the local time of the additive stable process generated by Y (¢).

THEOREM 3.1. In the assumptions of Theorem 1.1,

d
3.1) “i? L. 0) -5 Ly(1,0) (t = 00),
d
(32) “g; 1,_d>/RdL2y(1,x)dx (1 > 00),

where I; is given in (1.15).
In the assumptions of Theorem 1.2,

a(n)? d
(3.3) o L1.0) = Ly(1,0) (n — o),
d
(3.4) ar(lzl), > lz(n,x)—d>/Rd L3(1,x)dx  (n— o00).

xeZ4

PROOF. Due to similarity, we only prove (3.1) and (3.2) under the condi-
tion (1.6). We first rescale in (2.9) and (2.14):

1 _ L LX)
L(t,O):(ZT)da(t) d/Rddx[j];[I/O exp{zk.ﬁ}ds},

omts = 5ot [ s 1| [ s 2 uf
/Rdl‘(t’x)dx_Qn)da(t) /Rddk}:[l/oexp iA a0 ds| .
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Let D{[0, 1], (R%)P} be the space of the (R¢)”-valued functions on [0, 1] which
are right continuous and have left limits on [0, 1]. Under the uniform convergence
topology, D{[0, 1], (R¥)?} is a Banach space. For any fixed M > 0, the functionals

p 1
F(x yeeey X :/ d)\‘ / el)vx]'(s)ds ,
(x1 ») ot |:J];[l A

p 1. 2
(xX1,...,x% )=/ d ‘/ M) gg
J g [—M.M]¢ JEII 0

are continuous on D{[0, 1], (R%)?}. By the invariance principle,

tip MM]dd)\’{l_[\/‘ exp{l)L X(S)}d:|

1
—d>/ di H/ MYl gg |,
[—M, M) j=170

Ko, f
a(t)

1 . 2
/ oY) g
0
ast — oQ.

To prove (3.1) and (3.3), therefore, we need only to show that

2
1 Pt X
(3.5) lim limsup—IE/ dxr H/ exp{ik- J(S)}ds =0
RI\[—M, M4 =170 a(t)

M—>00 ;o0 2P

1

— di

12 [ M, M l_[

-, / ]
[—M,M]d

j=1

exp{ik-

and that

1
3.6 hm lim su f d\E
(3-6) P RI\[—M, M H

M—o0 50

_ 2
exp{ik . XJ—(S)}ds’ =0.
a(t)

Notice that

2
/]Rd\[—M,M]d dk[li[l/()t exp{ik- )ij(g) } ds]'

A-X(s1)—y-X(s2) P
- MM]d)zd)‘dV[// EeXp{ pro }dslds2:|

A X)) —v-X p
< 21’/ drd [/ f Eexp{ (s1) ~y - X(52) } dsy dsl}
(RIN[-M, M]?)2 51 a(r)

E
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=2 | sy Y

<L el () - oo (G5 faman]
oy il o o]

[ ool ()} a]
<[l [fool-wv(355)} o] )

o s L f ool=(G5)]

where the last step partially follows from the substitution A — y > A and y > y.
Hence, we need only to show that

n imn ol ool ()]

and that

1 ! y p
3.8 hm lim su —/ d [/ ex {—s <—>}ds} =0.
©-8) M— o0 t—>ooptp RIAN[-M, M4 v 0 P v a(t)
Indeed,

til’ RIN\[—M, M4 dy [/(;t exp{—sw<£>}ds]p
- Rd\[—M,M]d[tl//(%)} p[l—exp{ w(a(l))}]pdy'

By (1.5), there is a ¢ > 0 such that (¢ — ) p > d. By (1.6), there isa N > 0 such
that Y (A) > 2 forall A ¢ [—N, N1%. In view of (1.1), by an estimate similar to the
one used for (2.1) in [38], there is a constant § > O such that

(3.9 tl/f(%) > 8|A|*78, r€[—a(t)N,a(t)N,

for large ¢. Thus,

Lo ()] Tr=esoferw ()] o

-P
< 3—1’/ AIP@0 @5 4 [mﬁ(L)] dy.
RI\[-M, M4 RI\[—a(t)N,a(t)N1? a(r)
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By (1.4), (1.5) and (1.6),

/ ()]
t -
RI\[—a(t)N,a()N 4 w(d(f)) v

Py -
=t7Pa(t) /Rd\[N,N]dWI()L)] Pd) —s 0

as t — 0o. Hence, (3.8) holds. The proof of (3.7) is similar.
We now come to the proof of (3.6). Notice that

1 p t X 2
== dAEH exp{ik- ](S)}ds
1P JRA\[-M, M4 =110 a(r)
1 ! X 2
== dxr E/ expyii - ds
2P Jrd\[—p, M} 0 a(t)

1 rot X(s2)— X P
=2—f dA[ZE/ / exp{ik-M}dszdsl]
12P JRA\[—M, M) 0 Js a(r)

and that
IE/ / exp{ X(SZ)()X(Sl)}dszdsl
= [ [ ew] -2 =s0w (2 ) asaas
0 Js; a(r)
A\ A\ 72
— R — 1_
"”(a(r)) ‘[’(a(t)) [ eXp{ ””<a(;>>”
)\’ _1
() -
Hence,
L dMElﬁ[ ex {'A-Xj(s)}ds‘z
127 Jrd\[-m, M} il Pl e
(3.10)

A \NTP
P A
=2 ./Rd\[—M,M]d [Iw <a(t) ﬂ ar.

By (3.9), (3.6) holds. U

4. Upper bounds in (1.31), (1.32) and (1.33). In this section we establish

X gm b N\ ¢ md/p
hmsupb—logz ( t) a<—> (BL™(t,0))"/"

t—o0 U t by

“4.1)
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< (Zn)fad(p+1)/(O‘p*d)p?‘/(o‘p_d)gap/(apfd)’

1 X gm sp N\ ¢ md/2p
limsupb—logzw<—l> a< ) (EI™*/p
m=0 """

t—oo0 Ut t b_t
4.2)
< (27_[)—ota'/(Zap—d)pg/(zap—d)QZap/(Zap—d)’
/2y 1/p
. 1 o gm by, m n md/2p 5 m
hrfr_l)solép—nlog Z %<7) a(a) E Z “(n, x)
4.3) m=0 x€Z4

< (27_[)—ad/(Zap—d)pg/(QaP*d)QZap/(Zap—d).

We first concentrate on the proof of (4.1) and (4.2) and then work (4.3) out later.

LEMMA 4.1. Under both (1.6) and (1.7), for anyt > 0 and any integerm > 1,
(4.4) EL™(t,0) < (m))P[EL(t,0)]",
(4.5) EI™ < (m!)*P[EL]™.

PROOF. This time we pick up the discrete case defined by (1.7). Similarly to
(2.9) and (2.14),

1 L
4.6 L(t,0 z—f d) / e MK gg.
(4.6) 0 =7 | Jl:[l 5

2
dh.

P
(4.7) 3 L2, x)dx = l—[/ S Xi6) g
xezd j=1"0

Let X, be the group of permutations on {1, ..., m}. By (4.6),
EL™(z,0)

- ! / dhy - di ]Eﬁ/te“‘k'x(“)ds :
- m
Qm)ymd J(—x z1dym iy J0
1
Q2m)md /<[—m]d)m l "

m p
X |: Z /{0 }Eexp{iZka(k)-X(sk)}dsl---dsm]
<5< Ssp <t

o€y k=1

1
(2m)d /[fr,ﬂ]d

ne
< m) / diy--- diy
Q2aymd J((—z m1dyn

m )4
X U Eexp:iZAk-X(sk)}dsl---dsm]
{0551 <-=Sm ft}

k=1
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(mh)P
:W/_ dhy-diy
(2m) ([~ 714)

m m
X Eexpii Aj
[/{Ossls-ssmft} p{ 2 (2:: ’)

p
(X (k) — X(Sk—1))} dsy-- dsm]

_ (m? / dip - d
~ @) Ja ey "

P
X {/{OSMSWS%SI}exp[ Z(Sk — Sk— 1)1#(2)» )}dsl } ,

where the third step follows from the Jensen inequality and the index permutation
and where we adopt the convention that sog = 0.
Write

FOa, o Am)

m

P
= [f exp{—Z(sk —sk_ow(xk)}dsl--- dsm} :
{0<s1=<--<sp <t}

k=1

where Aq, ..., Ay € RY. By (1.7), we have that, for any ki, ...,k,, € 74 and for
anykl,...,kmeRd,

(4.8) f()q + Qmo)Kky, ..., Ay + (271)km) = f(A1,..., Am)-
Notice that

~d Moo D M
/([—n,n]d)m mf(,; ¢ Z: ¢ )
= dhy -+ dhp (Zxk,ZAk,.--,xm>dm.
k=1 k=2

([—m,m]dym=1 (-, 714
By periodicity,
m
/ Zkk,ZAk,...,Am>dA1=/ f xl,Zxk,...,/\m)d/\].
[—’”’]d k=1 k= [} k=2
So we have

m m
f dM.--dxmf<2,\k,2xk,...,xm>
(= mym k=1 k=2

m
:/ dhy - dh fLAL D Moy A )
([—m,m]4)m k=2
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Repeating this procedure, we obtain
f “dhm f(ZAk,Zkk,..., )
([_”vﬂ]d)m k=1 —

=/ dry - dhon FOLs -y Am).
(= )ym

In summary, we have proved that
EL™(t,0)

(m!)?
< / - diom
Q) J(—m m1dym

m p
x U exp{—Z(sk—s“)w(xk)}dsl dsm} :
{0<s1 < <sm <t} k=1

4.9)

Notice that

m
/ eXP{—Z(Sk —Sk1)1/f()»k)}dS1 e dsp
{0<s1=<--<sm =t}

k=1

\

et <t exp{— Zskw(xk)} dsy---ds
k=1

STyeeesSm =

t t m
sfo fo exp{—gskw(m]dn---dsm

m t
= 1_[/ e SV g,
k=170

Hence,

1 t pym
m P —s¥(A)
EL"(1,0) < (m!) {(2ﬂ)d f[_m]ddx[/o e ds] }
= m)?[EL(t, 0)]".

We now prove (4.5). By (4.7),

E[ Z Lz(t, x) dx:|

xeZ4

1
- diy - da
Qmymd -/([—ﬂ,fr]d)’” : "

m
expyi ) A X (s ) S dst - ds
[ 2 /0<s15.‘.55m3} p{ Y o) (k)] ! n

OEX, k=1
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1

- dip - d
= 2m)md f([—n,n]d)m 1 "

Lz

m
expyi Aok
'/{\Ofslf"'fsmft} p{ Z 7@

k=1

‘X(Sk)}dsl e dsy

n2p
< (m)) / dii---diy
Q) J—m z1dym

(m!)%P
~ @y /q-n iy 17 B

m [/ m
X Ef expyi Aj
{ {0<s) < <sp<t} p{ Z(g j)

k=1

m
/ exp{iZAk-X(sk)}dsl---dsm
{0<s1<--<sp =<t}

k=1

'

(X (1) — X(Sk—l))} dsi--- dsp

Since X (¢) takes only lattice values, the function

fQa, o Am)
/{O , expii > M (X (i) —X(sk_o)}dsl--- dsim
<§1 < Ssp <

T
.

- [E
k=1

satisfies (4.8). Consequently, (4.9) holds. So we have

E|: Z Lz(t, x) dx}

xeZd

n2p
< mh f dhy- - diy,
Qaymd J((—z zidyn

m
expli )\.k . X(Sk)
f{0§s15~-5sm§t} pi /; (

- X(Sk—l))} dsy---dsy

T
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Let fl(t), ...,)N(m(t) be independent copies of X (¢). Then for any Ap,

Am €RY,

E

m
expyi Mo (X (Gsp) — X(sk—1)) ¢ dsy---ds
‘/{05515‘“537‘”5[} p{ ]; ( ) "
d = ot
= exp iZAk-Xk(sk—sk_l) dsy---dsy
{0<s1 < <sp =<t} k=1
m ~
= [ totsy <t exp{i Z)‘k . Xk(sk)} dsy---dsp.
S1yeeesSm >0 k=1
By Lemma 2.1, we have
m 2
/ exp iZ)Lk-)?k(sk) dsy---dsy
{s1+-+sm <t} k=1
2

t t m -
SEff exp iZ)»k-Xk(sk) dsi---dsy
0 0 =1

m t 2
E‘/ SXE) g

k=1 MO

t

Summarizing what we have proved,
m
]E[ > L, x)]

xezd

2 m
dk]

< (m!)2p|: ! / E /teikk'x(s) ds
a Q) Ji—zme o

= (m!)?? [E > Lz(t,x)]
O

xezd
Under both (1.6) and (1.7), for any integers a > 2 and m > 1

LEMMA 4.2.
and forany ty,...,t; >0,
[EL" (1) 4 - - - + o, 0)]1/7
(4.10) .
< > ———ELNG, 0]V [EL* (1, 0)]'7,
kil---kg!
ki +-Akoa=m
ki,....,kq>0
|
@iy [Eg, 1% < 3 PR ,m' 1107/ RN 17 Al Rl
1 kg!
kit +kg=m
Toeees kqs>0
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where I is defined by (1.15).
Consequently, for any 6 > 0,

. om 1 0" mrm 1/
@412) 3 S (BL" (t 4+ + 14, 0)] P<1‘[ Z—[]EL (1. 0)1'/7,
m=0"" k=1 m=o ™!
o 0" jen 1/@p)
(4.13) z B ) < 1‘[ Z Elm P

k= lm—0

PROOF. Used inductively, only the establishment of (4.10) and (4.11) in the
case a = 2 is needed. That is, we only need to show that

@19 B0+ .07 = () ) ELA G, 01 PEL" 0. 0],
k=0

(4.15) (B, ]/ < Z( ) [E14]VCP[E1p-H1/CP,

We only consider the continuous case defined by (1.6), as the proof in the case (1.7)
is analogous. Write

no. H+ty
(4.16) Al(k)=/ e XD gr  and Az(k):/ XD gy, 1 eRY.
0

n

By (2.10),
EL™ (11 + 12, 0)
- E - (Ar(n Ar(A ’
- Qm)md /(Rd)m Am kljl 1 (M) + A2(0p))
1 2 p
:W,/(‘Rd)md |: Z[m 1E All()‘l)Alm()\m)):| .

By Lemma 2.1, for any (A, ..., Ay) and (1, ..., 1),
E(A, (A1) -+ Ay, (A)) = 0.
So the triangular inequality for the L ,-norm applies here, which gives
[EL" (11 + 1, 0)]"/7

o
- (27‘[)’"d

» 1/p
X Z {/(Rd)md)”l"'d)""[E(All()‘l)"'Alm()»m))] } ‘

I,y In=1

(4.17)
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Let (I1,...,1,) be arbitrary but fixed and let k be the number of 1’s among
I, ... Ly

o dag [E(A A a)l?
Jp 1 din[E(A1, G- Ay, Go)]

=/ d)q---dAm|:E(A1(?»1)-“A1()»k)
(Rd)m

9 p{( Zx) .xm)})

(4.18) )
= /(Rd)m—k Ayt dip [E(A(A‘k-‘rl) . A()Lm))]P
X /(Rd)k dhy--- dig [E(Al ) A1)
m P
X exp{i( Z Al) .X(tl)})i| ’
I=k+1
where
4.19) Z()\) _ /fz eiA.X(.v) ds, A€ ]Rd,
0

and where the second step follows from the independent increment property of
Lévy processes.
Foreach 1 < j < p, write

, o,
A-{()\):f e XiWgg  peR?,
0

Then for any Ag41,...,Am € R4,
m p
/ d)q---d)q{E(Al(kl)---Al(kk)exp{z( > A,)-X(zl)}ﬂ
R I=k+1
p ) ) m
= d)q---dkkIEl_[<A{(k1)---A{(Ak)exp{i( > xl) -Xj(t1)})
RN j=1 I=k+1
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sl (3 (S0

p ) )
X /(Rd)k di--- dAkJI;II(A{(Al)...A{(Ak))}_

By (2.9),
p . .
.. ‘] ... j
/(Rd)kdxl dkkg(Al(kl) A Op))
P . k
= [/Rd dr ] A (A)} = )" L*(,0) > 0.
j=1
So we have
m p
f dm---dxk[ﬂ-z(m(xl)---Al(mexp{i( > xz>-X<r1)}>]
R I=k+1

< @emMEL* (1, 0).
We now come back to (4.18). By Lemma 2.1, for any Ag4q, ..., A, € R4,
[E(AGu+1) -+ A(Am))]” = 0.

Therefore,
P
/(Rd)md)q d)»m[IE(All(Al) Alm()»m))]
S(Zn)kdELk(tl,O)/ g di
Rd)ym—
(4.20) (RY)

X [E(AGut1) - - AGm))]P
= )™ [EL* (1), )IEL™ ¥ (12, 0)],

where the last step follows from (2.10). Thus, (4.14) follows from (4.17)
and (4.20).

We now come to the proof of (4.15). Recall that Aj(X) and A (1) are defined
by (4.16). By (2.14),

E|:/ L2(t1+t2,x)dxi|

R4
= ! / di di, | E
~ @y Jgap "

T

[T(A1Gw) + A2(hp)
k=1
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'

2
A (M) - Ay, (M)
=1

1
= G /( oy 21 i [E

1
<— dry - dh
= @m)ymd /(w : "

2 2p
[ ) {E(\Az,w---|Azm<xm>|>2}”ﬂ ,
I =

Iy

where the last step follows from the triangular inequality for the L;-norm. Using
the triangular inequality for the L;,-norm,

{E[/Rd L*(t + 12, x) dx:|m}1/2p

1 2
4.21 dhy---dxr
( ) = (27‘[)'"d ll’v%ZI{/(‘Rd)m 1 m

51 1/2P
< (B8 G-+ |81, ) )
Let (/1,...,I) be arbitrary but fixed and let k£ be the number of 1’s among
I, ..., Ly
/qu)m dhy - dhn[E(| Ay )|+ A, G )T
= | dri dh[E(I8100)] - 1A1G0)1)
(Rdym
X (1820w DI+ 1820 ]"

By the identity

1A2(0)| = ‘/ " X0 i (X=X g
0

’

_ ‘/’2 oI (X () =X (1) g
0

we have that

t .
{22 2 R L {’/ 2 X g
0

T AE Rd}
and that the two families
(AT v eRYY and  {|A2(W)]; + € RY)

are independent. Hence,



984 X. CHEN

dii- - dAn[E(|AL QD]+ |AL (Mg 29p
/(Rd)m 1 [E(J AL G0 [Ag, Cn)])]

k
_ {/(Rd)k A dkk[E
1_[ / l)»j X(s)dx

X A1 -
{/(]Rd)mk |: j= k1

k m
= (271)de[/le L%(1, x)dx] E[/Rd L% (1, x)dx]

Finally, (4.5) follows from (4.21) and (4.22). [J

o
el)L]"X(S) dx

Il

(4.22)

i

—k

The idea used in the above proof can be used to establish some similar results.
Let f(A) > 0 be bounded on R4 and write

14 t .
/ S O»)[]‘[ f eHXi® dsi| dh, under (1.6),
R -~ Jo
j=1
p t
/ d f()»)|:l_[/ e M Xi ) ds:| dh, under (1.7).
[—m,7] . 0
j=1

We state the following lemma without proof, as it is an obvious modification of
the proof of (4.12).

Li(f) =

LEMMA 4.3. Under both (1.6) and (1.7), for any t1, ..., t, > 0 and any inte-
germ > 1,

EL™ ( ) 1/p
(4.23) [ [T Rt o f]

!
< Y P L o

Consequently, for any 6 > 0,

o0 gm a o0 Qm
@24 3 S[BLY L, ()] 17 < l_[ > ol [E|Lq (P[]
m= 0 k=1m=0

REMARK. Inequalities (4.4) and (4.5) take a form similar to the inequality
obtained in Lemma 3.1 of [38]; and (4.10) and (4.11) take a form similar to Theo-
rem 5.1 of [7] and Theorem 6 of [8]. On the other hand, there are some differences
at the technical level. First, all mentioned previous results are established in the set-
ting of the random walks. Second, the proof of these results comes from a direct
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estimate of the local time (or intersection local times). In our setting, the estimate
is carried out through Fourier transformation. Consequently, the property given in
Lemma 2.1 is crucially needed. As a result, our argument can not be extended to
the setting of additive random walks unless we put on some additional assump-
tions. For example, if we assume that

(4.25) Ee*SM >, A eRY,

then Lemmas 4.1 and 4.2 hold for the additive random walks. In the following we
state a slightly different lemma in this direction.

To state the lemma, let {wy }x>1 be an i.i.d. of symmetric random sequence with
every finite moment and let {w k}i>1, ..., {wp r}k>1 be its independent copies.
We also assume independence between

{SE k=15 {S1 () Yk=1, -+ - {Sp (KD }k=1}

and

H{odiz1: {o1idiz1s - {0p a1}

Write
n

Emx)= Y (01k 0p k) LS k)bt Splhp)=r)s X €L
k],.,.,kp:1

By symmetry, we have

(4.26) E&2"1(n, x) =0, mn=1,2,....
LEMMA 4.4. Assume (4.25). For any integers ny, ..., ng > 1 and m > 1,
[B&>" (n1 + -+ +nq, 0)]'/7
2m)!
(4.27) <y e
P S k! (2ky)!
kiyeoka>0

x [EE2K1 (ny, 0)]1/7 - .. [E&%a (n,, 0)]1/7.

Consequently, for any 6 > 0,

> " 2m 1/p
mgo(zm)!ﬂas (N1 + -+ +ng, 0)]

(4.28)
em
2m)!

[E£2™ (ng, 0)]'/7.

219>

k=1m=0
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PROOF. Notice that, forany m > 1 and n > 1,

1

2m n p
4.29) E&(n,0)= ——— f dkl--~dkzm[IE wlet'k'S(l)} ,
(277)2md ([—m,7]4)2m kl:[”:Zl

To use the argument used in the proof of (4.14), we need the following property:
forany Ay,..., A7 € R4 and for any integer ji, ..., j1 > 1,

l
(4.30) EJ]wje™ St > 0.
k=1

Indeed,

/ 1
E 1—[ wjkei)\k's(jk) =E(w;, ---a)j,)EeXp{i Z)‘k . S(jk)}-
k=1 k=1

By (4.25) and by an argument similar to the one used in Lemma 2.1, we have

)
Eexp:iZkk-S(jk)} > 0.

k=1
Write
. R ll lr
Wjy+ Wy = Oy = O
where ki, ..., k511, ..., > 1 are integers and ki, ..., k, are distinct. If any of
l1, ..., I, are odd number, then by symmetry and independence, E(wj, - --wj,) = 0.

Otherwise we have E(wj, ---wj,) > 0.
Finally, by a proof similar to the proof of (4.14),

[EE2™ (ny + na, 0)]/7

2m
=) (2,’31) [EI§ (1, 011V P[EE> (12, 0] /7

k=0
= (22’};) [E&% (11, 00/ P[E€>" ) (12, 0)]7,
k=0

where the second step follows from (4.26). [
The following lemma is an application of Lemma 4.1 and Lemma 4.2.

LEMMA 4.5. In the assumptions of Theorem 1.1, for any § > 0, there is a
C > 0 such that,
(4.31) EL™(t,0) < C(m)P8™t"Pa(t) ™™,
(4.32) EI™ < C(m!)*P8"t>"Pa(r)~™4
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for all m > 1 and sufficiently large t, where I; is defined by (1.15).
Consequently, for any 6 > 0,

[e.e] Qm
Tim > —"a@)" P (EL" (1,00)""
_)OOmzo m:
(4.33) o gn
Z ; (ELY(1,0)0)"7,
(e e] em
lim Y —t"a@)"*PEL") /P
t—>oom:0 m!
(4.34)

_ iem{ [/ 12, x)dx] }UQP),

where Ly(t,x) is the local time of the additive stable process generated by the
stable process Y .

PROOF. By the argument used in the proof of Theorem 3.1, one can see that
there is M > 0 such that

EL(t,0) < MtPa(t)™ and EI, < Mt*Pa(t)™

for large . From (1.4) and (1.5), there is an integer N > 1 such that N™”ax
(N~'1)=4 < @M)~'8a(r)~? as t is large. By (4.10) in Lemma 4.2 and by (4.4) in
Lemma 4.1,

[EL™(t,0)]"/?

m!
< —[ELA (N, 0017 [ELY (N e, 0)]1/P
S T ML VP [BLMY( )]

|
N MNT HPa(NT kP
k!

IA
v

X oo X kN MN "' HPa(N~r)=dykn/p

=m(M(N"')Pa(N"'ny~hymr N1

ki+-+ky=m
ki,..., kny=>0

m+N—1>

<m!27'8)™ P q(r)~mdlp (
m

< cYrmgm/pemgr)y—mdlp,
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where the fourth step partially follows from the combinatorial fact that the equation
ki+---+ky =m has (m+r1n\/ _1) (Z1)N -valued solutions, and the last step follows
from the generous bound

(m+N—1)<Cl/p2m/p’ m=1.2
m < g Ly eee

The proof of (4.32) is similar. By the dominated convergence theorem and by
Theorem 3.1, (4.33) and (4.34) follow from (4.31) and (4.32), respectively. [

We now prove (4.1). Let s > 0 be fixed for a moment and let n;, = [s~1b,],
ry =t/n;. By (4.12) in Lemma 4.2,

Sl O P

|
m—0 m:

(S ) o) o

ny

|
m—0 m!:

Take the regularity given in (1.4) into account:

d/

% a( bL ) " @/ I (s o).
t

By (4.33) in Lemma 4.5, therefore,

X gm sp N\ md/p
B )

|
m—0 mi\t

o0 em 4 |
— Zoﬁs(“l’ WeprmErma,0)/? (1 — o0).
=

Hence,
1 0™ (b \™ [t \"P |
limsup — lo —( =) al— EL™(¢t,0 /p
(4.35)
< llog i ﬂs(ap—d)/(ap)m(ELm(l O))l/l’
s = m! iz ’

In view of (1.10), by Theorem 5 in [8],

lim ~log ZOO 0" sap-arapm g1, 0))/"
500 § o m! ran
m=|

d d (ap—d)/d A o/d
= sup{e,\‘/l’ — pl—(zn)“<1 — —> (-) }
A>0 o ap P1

_ (27_[)—aa’/(otp—d)pll)l/(ﬂlp—d)eotp/(otp—d) )
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Letting s — oo on the right-hand side of (4.35) gives (4.1).
Similarly, applying (4.13) in Lemma 4.2, (4.34) in Lemma 4.5, Theorem 5 in [8]
and (1.11), we can prove that

) 1 X gm p ™M ¢ md/2p
hmsup;log{Z—(%) a(b—[> ([E[tm)l/zp

t—oo bt o ™!
(4.36) d \Qap=d/d ;5 \a/d
<sup{Or'/?P —2p)~! —(271)"‘ l=-— P '
2
A>0 “p P2

We now claim that (4.36) implies (4.2). Indeed, by (ii) in Lemma 5.3 (with p being
replaced by 2p) of [7], (4.36) leads to

1 ay [t
lim sup ™ log}P’{I, > Mt ”a(b—> }
t

—00 t
(4.37)
d d Qap—d)/d A a/d
Lo (=) )
200 2ap 02
or
1 1\ "4?
llmsup—logP{(1)1/2>Ktpa< ) }
t—oo b by
(4.38)
d d \Qap—d)/d ;32\ a/d
on(i-a) ()
20 2ap 02
Notice that

0 gm b, m md/2p t —d/2yq1/p
wi(t) o) o zaee () )
t b[ bl‘

m:O
£ \—d/2)71/2p
<[l a(l) |
by
X gm m t md/2p
_ E[™/2p .
<X (3) o) e
From (4.36) and (4 38)
1 bt t md/2p
sim i v 2 5 (7))

—d/2y91/p
m I3
x []EI, /21{(1,)1/2 zml’a<b—> H = —c0.
t

By Lemma 5.3(i) of [8], therefore, (4.38) leads to

1 X gm sp N\M ¢ md/2p
hmsup—logZ ( t) a(—) {EI,m/z}l/”

t—o0 Uy t b,
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2ap—d)/d
—sulonr — tome @ (1 4\
=sup p  (Q2m) 1

2>0 20 2ap
— (271)—oed/(2ap—d)pg/(zap—d)QZap/(Zap—d)'

pza/d)LZ(x/d}

We have proved (4.2).
Finally, we prove (4.3). Let {tx}«>0 be an i.i.d. sequence of exponential times
such that Etgp = 1 and that {74 }x>0 is independent of {S(k)}x>0. Write

To =0, Tir=t0+ -+ Tk
and define
Ny =k, if T <t < Ty, k=0,1,2,....

It is well known that N, is a Poisson process with

t}’l
P(N;=n}=e"'—, n=0,1,2,...,
n!
and the process X (¢) defined by
X (1) =S(Ny)
is a pure jump Lévy process with

Eexplir- X (1)} = ) P{N; =k}o(3)"
k=0

ot
=e ’;ﬁpm = exp{—1[1 — (W]},

where @p(\) = Ee'*SM | 1n particular, the condition (1.7) is satisfied by X (¢).
By (1.17) and by the classic law of large numbers for Ny, (1.4) holds.

Let {rkl >0y - s {t,f}kzo be independent copies of {7 },>0. We assume the in-
dependence between

{8} k=0 {S1()} k=0, -, {Sp(K) }k=0}
and
{{mhe=03 {1 }k20, -+ (T =0}

Let (Ntl, Tkl), e (N,p, Tkp) be generated, respectively, by {Tkl}kzo, e, {t,f}kzo

in the same way. Write X ; (1) = SJ-(N,]), j=1,...,p.
From our construction,

T1 Tl’
X — n+tl n+1
Ln = \/0 .. \/0 l{X](S])_F“._'_Xp(sp):x} dS] . dsp

kp+1
. /;pp ]l{Xl(;Y1)+...+Xp(sp):x}dsl . dSp
kp

(4.39) Kok =0 Th,
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n
p d
= Z (Tkl e Tkp):u‘{sl (kp)+-+Sp(kp)=x}» x €Z°.
kp

Let A > 1 be fixed but arbitrary. By the Jensen inequality, for any m,n > 1,

E{ > Lz(kn,x)}

xeZ4

An an Jym/2
E{ Z |:/ . / ]1{X1(s1)+..,+xp(sp):x} dsy--- dspi| }
xezZd 0 0

E! Z ]l{maxlfjfp Tnj+15}‘”}

xezd

T L' 5y m/2
X |:/(‘) .. '/0 1{X1(51)+"‘+Xp(sp)=x}ds] N dsp] }

n
1 p .
- E! Z |: Z E(Tkl o Tkp)jl{maxlsjﬁp T, <in)

v

2ym/2
X ﬂ{sl<k1>+~-~+sp(k,,):x}} }

m/2
= (Eflﬂ{Tmsm)mPE{ > 12(”»x)} :

xeZd

Notice that K117, ,<n) — 1 as n — oo. Applying (4.2) with ¢ = nA and with b,
being replaced by b, = bp-147» and noticing

dj2 I dj2
b_na(£> . A(Zap—d)/&ap)ﬁa(;) s o),
n \by t \p

we have

1 0 gm s \M md/2p m/2\1/p
limsupb—log Z %<—n) a(bl) E Z 1>(n, x)
m=0 """ n

n—oo n n cezd
241/p
1 X gm sp \M md/2p m/
<limsup — log Z —(—n) a(£> E Z L*(An, x)
n—00 b}’l — m! n bn
m=0 xeZd

< (27_[)—ad/(2ap—d)pg/(zap_d)QZ(xp/(Zap—d))\.

Letting A — 17 on the right-hand side gives (4.3).
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5. Proof of (1.21), (1.22) and (1.24). The proof of (1.22) and (1.24) is com-
pletely based on (1.14) and (1.20) and is the same as the proof of Theorem 1.2
in [9]. As for the upper bound of (1.21), it is a consequence of (1.13) of Theo-
rem 1.1 in a standard practice of Borel-Cantelli lemma. By the argument used in
the proof of Theorem 2.3 in [7], or Theorem 3 in [8], to prove the lower bound

1
lim sup — <

d
! 7 ) L(t,0)
— 00

a4/ 4 \—(p—d/a)
> Qn) = 1—— 01 a.s.,
d ap

we need only to establish the following lemma.

loglogt
(5.1 glog

LEMMA 5.1.  Under the assumptions of Theorem 1.1, for any € > 0,

1 t\ ¢
lim limsup —log  sup IP’{ |L(t,0) — L(t,x)| > stpa<b—> }
1

=07 t—oo by caqun

(5.2)
= —00.

PROOF. We prove (5.2) under (1.7). Let

. Pt
V(t, x) =f 11— e’}"xl[l_[/ el*'XJ‘(s)ds] dx, xeZ 1>0.
[—m,7]¢ j=1 0

Let r; =1t/[b;]. By Lemma 4.3,
m=0
[b¢]
0 gm b, m ¢ md/p o 1/2p
| SR () )

m!
om b, m t md/p 1
| = _ E m P
> (%) a(i) @venom

(=]

(D]

£ () e
(5.3) { i
m=0

Notice that
EV2m (re, x)

= /;[_ﬂ’n]d)znl d)"l e d)VZm

2m 2m .y, P
x <n|1—ei)‘k'x|> [EH/ eM"'X(s)dsi| :
k=1 k=170
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Asm=1,

2
EVz(rt,x) = a(”t)Zd/ drydin l_[ |1 — eia(r’)ilkk”
([—7,7]4)? Faiie]

2 L, p
X |:El_[/ i) M X () a’s:| .
k=19

An argument similar to the one used for (3.5) gives
¢ 2d
lim sup lim suptzpa(—) sup EV2(r;,x)=0.
§—>0t =00 t |x|<8a(r;)
As for general m > 1,

EV(r,, x) < 27"EL*"(r,, 0)

1 2mp ¢ 2mp ¢ —2md
< C(m!)2p<%> (b—> a(b—) . xeZd,
t t

where the second step follows from (4.31) in Lemma 4.5. By the dominated con-
vergence theorem,

o0 gm b, m t md/p 5 12
limsuplimsup sup Y _ —<—> a<—> (EV(ry, x)) /7P = 1.
=0t 100 |x|<8a(r) = m!\ t bt
By (5.3), for any 0 > 0,
1 X gm sp N\ ¢ md/p
limsuplimsup —log  sup Z —<—I> a(—) (]EVm(t,x))l/p =0.
§—s0+ t—o0 D¢ |x|§6a(tb,_1)m=0m! t b;
Consequently [notice that EV™ (¢, x) > 0 for all m > 1],

1 00 92m bt 2m ¢ 2md/p
limsuplimsup —log  sup Z (—) a(—)
§—0t t—00 t |x|§8a(rb71)m:O (2m)‘ t bt

x (EV¥"(t,x))"/? =0
On the other hand,

1
E[L(z,0) — L(t, 2m=7/ dry -+ dh
[L(z,0) (,x)] G2 i myiyon 1 m

2m . 2m p
x (H (1— elk"'x)> |:E H f oM X (5) ds}
k=1 k=120

< WEVZ'"(I, )C).
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Thus,

o0 2m 2m 2md/p
1 0 b; t
lim limsup —log  sup E (—) a (—)
§—>0T r—>o00 t ‘X|§6(l(l‘b;l)m:0 (Zm)' t bl

x (E[L(z,0) — L(1, x)1*™")"/? =o0.
By the Chebyshev inequality,

—dy\ l/p
(e'/Pp,)2m (]P’{|L(t,0) — L(t,x)| zeﬂ’a<bi) })
t

2m 2md/
() )™ - o
t

{i ()(f;z)z:n }(]}D{|L(;,0) —L(t,x)| > gtpa(b%)—le/P

m=0

o )L —/py\2m om 2md/p

i2m))V (7) a(bL) (EIL(.0) = LGt 0) 1) 7.
t

54

Hence,

(5.5)

m:O

Therefore,

1 1\~
lim limsup —log  sup ]P’{|L(t, 0)— L(t,x)| > etpa(—) } <-—pA\.
§=0" 100 Dty Csan ) by
Letting A — oo on the right-hand side gives (5.2). [
6. Proof of (1.19) and (1.23). Let 14, N;, T be defined as in Section 4 and
recall that X (r) = S(N,) is a Z4-valued Lévy process satisfying the conditions

given in Theorem 1.1. By Cramér’s large deviation principle (Theorem 2.2.30,
[18]), for any § > 0, there is a u > 0 such that

(6.1) P{ITy1 —n| = dn} <e™™",

as n is large. By the classical law of large numbers, 7,41 ~ n a.s. as n — o0.
Therefore, (1.13) in Theorem 1.1 and (1.21) in Theorem 1.3 imply, respectively,

1 0 n\ "¢
lim —log]P’{L >Anpa< ) }
n—o00 ph bn
d d (ap—d)/d A a/d
et )G
o ap P1
1 d
limsup —a ( n ) Lg
n—oo n? \loglogn

a\d/e 4\ —(r—d/@)
=(2n)—d(3> (1—@) o1 as.,

(6.2)

(6.3)
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where Ly is defined in (4.39).
The only thing we need to do in this section is to show that, for any ¢ > 0,

6.4 li 111@10L0>/\P”_d—
64  Jim togP{iin,0) — L = exn”a( ) | = o0,

which passes the moderate deviation and the law of the iterated logarithm from L
to [(n, 0), and therefore leads to (1.19) and (1.23).
By (4.39),

14
1LY —1(n,0) <Y

j=l1

' 41
> @ = 0E T LSt 6,)=0)

p
=>Jin), say.

By the triangular inequality and by an estimate similar to the one carried out
in (5.4) and (5.5), we will have (6.4) if we prove that, for any 1 < j < p and
any 6 > 0,

o0 92m b 2m n 2md/p
6.5 lim 1 L — EJ2Z" ()P =0
09 Jimgee mn () () e

Let {t}x>0 be a copy of {tx}k>0 and let {ex}x>0 be an i.i.d. sequence such that

{ex = —1} =P{ex = 1} = 1/2. We assume independence among all sequences we
defined so far. By the Jensen inequality,
EJ}™ (n)

2m
' j+1
<E E (‘EkJ — tkA)(thJH .. -rli)]l{sl (k1)+-~+S,,(k,,):0}:|

2m
j j+1
=E| Y e —u )@, ) s <k1>+-~.+s,,<k,,>=0}]

Lk kp=0
n ) } 2m\ 1/(2m)
< { (E[ > (e ) s, <k1>+~--+s,,<sk)=0}} )
ki kp=0
n 2m\ 1/(2m)2m
+(EL Xk: O(b“k,fk)(fk]+1 "f/f,,)ll{sl(k1)+---+s,,(kp)=0}} ) }
Lok p=

2m
2 j+1
=2 ME[ PORRCILAIC A "f/f,,)ﬂ{sl(k1)+---+s,,<k,,>=0}}
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- 2m

n

2m 1 j—1 IAY A I4

S 2 E Z (Tkl T Tkjfl)(gkj Tkj)(Tkj+l o Tkp):u'{sl(kl)+"'+Sp(kp):O}:|
Lk kp=0

- n 2m
2 1 2 14
=2""E (er; ) (T - T, ) sy (k1)+---+sp(kp)=0}} :

Lky,....kp=0

Similarly to (4.39),

n
> (o) (@ ) L1t 4+, (kp)=0)

ki eee k=0

2
2”: I/Tn+l /
0 0

Let y > 1 and use the notation “E?” for the expectation with respect to the se-
quence {&x}k>0. By the contraction principle (see, e.g., Theorem 4.4, page 95,

Tl
1{51(k)+X2(S2)+~-~+Xp(s[,)=0} dsy---dsp

in[37]),as T2, |, ..., Tl <yn,
n T2 Tp
n+1 n+1
E8|:Z<9kfkl/ /
=0 0 0

n L[ yn
<E° Zskfk/o fo LSy (k)4 Xa (s2) 44X p(s)=0) dS2 - - -
k=0

2m
L(S) (k) +Xa(52) 44X (s )=0} dsy--- dsp:|

2m
dsp:| .

Hence,

n T2 " 2m
1 n+1 n+1
E[Z Ek Tk /0 /O 1Sy (k) + X (52)++X p(s,)=0} A2+ + - dsp}
k=1

n
<2¥"E |:Z Ty
k=0

vn vn 2m
X /0 T 0 {8y (k)+ X2 (52) 44X p (5)=0} dsy---dsp

n
+ IE{ |:Z Sk‘Ekl
k=0
i T "
X fo /0 181 () + Xa(s2) 4+ X (5,)=0} 452+ - dsp}

1 i .
{maxa<j<p T/, =yn)
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Notice that the second term on the right-hand side is bounded by
1 P \2m .
E[(Tn—i-l e Tn—H) ]l{mamgjgp Tnj-szn}]
< BT )[BT )" P72 (pP{ T 1 = yn)'/2.
Write

n n n
1
Kn=) :gkfk_/o /O 181 (k) +Xa(s2)+++ X (s)=0) A2 - - dSp.
k=0

In view of (6.1), it suffices to show that, for any 6 > 0,

1 0 92m by 2m n 2md/p _
i n - /p _
(6.6) Jlim B logn;)(zm)!<n) a(bn> EK>MP =0,

Using the Lévy inequality (Proposition 2.3, page 47, [37]) conditionally,

EK 2"
2n+1 n " 2m
522’"1['3[2 ExTy /0 /0 L(81 () +Xa(52)++++X (5,)=0y A2 -+~ dsp]
k=0

2m
n n n
542’”{E{Z 2k Toy /0 /0 1S, (2h)+ X (s2)+++X (sp) =0} d 52 - - dsp}
k=0

n
1
+ E[Z E2%k+1Tx 41
k=0

2m
n n
X/o /0 ]1{31(2k+1)+X2(s2)+~--+X,,(s,,):o}dSZ'"dsp} }

Notice that

2m
n n n
1
E[E €2k Top /O /0 L{$1 @0+ Xa(s2)+++ X (s,)=0y 82 -+ dsp}
k=0

= (2m)~ 2 / diy -+ diom
([—m,m]d)2m
2m n . 2m Ly p—1
< |E 816%-3(21)} [E / ezkk-X(s)ds:| ‘

Write S‘(l) = S(20). Then {S‘(l)}lzo is a random walk satisfying the condi-
tion (4.25), and therefore (4.30) with w; = ¢;7;. By Lemma 2.1 and the Holder
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inequality,

2m
n n n
1
E[E :szkfzkfo /0 1(81@K) + X (s2) 44X (5,)=0} 452+ - dsp]
k=0

2m n R VAR
—2md o ire-S)
< (@) { /( iy dii -+ dhom [E [1D ee } }

k=11=0

2m L p
X dii---diy, | E / XS g
:/([n,n]dw : zm[ ,El 0

— (EéﬁZm (n’ O))I/P (ELZm (n’ O))(P_l)/.l”

(p—=1)/p

where
n
P _ 11 p_Dp - - d
En,x)= Z (gklrk)---(gkptk )]l{Sl(kl)+~-~+Sp(kp)=x}’ x ez,
ki, p=0
and where {sll}kzo, cen, {Slf}kzo are independent copies of {&}x>0.
Similarly,

2m
n n n
E{Z E24+1 Tk fo /0 (81 k+ D)X (s2)+++X p (5)=0) dsz“'dsp}
k=0

= (27)~2md / dry -+ diom

(=, ]4)2m

2m n ' 2m Ly p—1
<« |E glemk-S(zzH)ME fezkk-X(s)dS:| ‘
Bib 1

k=11=0

In view of (4.30) [with S(k) being replaced by S k)],

2m n 2m n _
‘E 13 et 5CH+D] = IRl Gt tAm S T 37 gyeiteSO
k=11=0 k=11=0

2m n 5
< E l_[ Zgleikk-S(l)‘

k=11=0

Therefore, we also have

2m
n n n
1
E[E 82k+1f2k+1/0 fo ]l{Sl(2k+1)+X2(sz)+---+Xp(sp):0}dSZ"'dsp:|
k=0

S (E§2m (n’ O))l/p(ELzm (n’ O))(P—l)/p‘
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Summarizing the argument since (6.6), it remains to show that, for any 6 > 0,
1 o0 92m b 2m 2md/p
lim — log Z (—") a(£>
=00 b, T = 2m)!\ n b,

x (E§2m(n, 0))1/172 (ELZm(n’ 0))([7—1)/!72 =0.

Let ¢ > 1 be the conjugate number of p defined by the relation p~! + ¢! =1
and let § > O be fixed but arbitrary. By the Holder inequality,

[ee) 92m bn 2m n 2md/p . . 2
Z (2m)| (;) Cl(b—) (}Eézm (n’ 0))1/}7 (ELZm (n’ 0))(17 )/p
m=0 : n

0 2m)! n by,

B () ) o]

(6.7)

(p=D/p

Since

o0 52qm b 2m 2md/p
S O

0 sqm by m n md/p ” 1p
by (1.31),

1 00 1 by 2m 2md/p
limsup —log > ( ) a(£> (EL" (n,0))"/”

oo by - = Qm)!\'n by

< (Zn)—ad/(otp—d)plfl/(ap—d)gapq/(ap—d)‘

Notice that we can make the right-hand side arbitrarily small by controlling §. To
prove (6.7), therefore, we need only to show that, for any 6 > 0,

) 1 [e'e} 92m bn 2m n 2md/p ~om 1/p
(6.8) ngrgoalogngo(zm)!(7) a(a) (EE“"(n,0)) " =0.

For any A C (Z™)P, write

P 11
EM = 3 (enm) (60, TN gyt 5y =0y

We claim that, for any m > 1 and any A C B,
(6.9) EE*"(A) <EE>™(B).
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Indeed, using the Jensen inequality conditionally on
{(etyThys oo 80, )5 (k1,... kp) € B\ A}
gives
E&*" (B)

11 p_p
= E|: Z (Skl ) (Skp Tk )1{51 (k1) +++8, (k) =0}
ki

2m
1_1
+ Z E[(er, ) -+ (81]:,, Tkp)]]l{ﬁl (k1)+---+§p(kp)=0}]
(k1,....kp)EB\A

=EEM(A).

In particular, by (6.9), we have EE2" (n,0) < EE¥™(n+41,0) forall n > 1. Write
rn = [nb;l] + 1. By Lemma 4.5,

o 2m 2m 2md/
> (b> <_) (B8 n,0)) 7

em)!'\ n by

0 g2m by 2m n 2md/p o Up [bn]+1
S{Z@mn(?) (i) EE0) } '

m=0

m=0

(6.10)

Notice that

'n

. B ) ~
EE%(r,, 0)=E ) L8, )45,k p)=0)
ki.kp=0

o)) e

ECa O < D T T 181 @k) 445, 2kp)=0)

6.11)

In addition,

ki kp=0
i <
a 1 P
S D Tk T, LS i@kt S, ) =0)
ki vk p=0

where T, = max|<j<, T,,j and the where last step follows from (4.39).
Using (4.31) in Lemma 4.5 conditionally on 7, we have that for any § > 0
there is a C > 0 such that, as n is sufficiently large,
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ELzm(Trt-i-l’ O)
< CLEm)PS*"E{(T,) P a(T,) ="
2mp —2md
< CL@m)1IP (A8)" (i) a (i)
by, by,
+CLEm) P E(T) a(T) ™" g, 4 220
for any m > 1, where A can be any fixed number greater than 2(“?~9/® and the

second step follows partially from the regularity given in (1.4).
Using (6.1) to control the second term on the right-hand side, we obtain

5 n 2mp n —2md
BEY (1, 0) = CT@m!1 69" (1) a( 1)
by by
for all m > 1 as n is sufficiently large.
We now take § small enough so A8 < 6~!. By the dominated convergence the-
orem and by (6.11),

0 g2m by 2m n \2md/p o Uy
mgo(zm)z<7) “(g) (EE™ (1, 00)/7 — 1 (n— 00).

Thus, (6.8) follows from (6.10).

APPENDIX
Let f € £'(R?) be a symmetric and nonnegative function on R? and write
7o) =/de“'Xf(x)dx, xeR?.
R

Let £y be defined as in (2.4) and write

gM)g(y)
= didy.
P nﬁﬁpl/ /R B R v Ty W e o R

In this section we prove the following lemma which was used in Section 2.

LEMMA A.1.

(A.1) sup {p(f)/ f(x)g (X)dx—/ (M) ‘P(?»)d)»}

g€Fw

where

gm:f g(x)e* dx, reRY,
]Rd
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PROOF. It is easy to see that the supremum in the definition of p(f) can
be taken only over the symmetric functions g. Write Q(A) = (1 + W(1))~!

h(x) =gA)/+~/ Q). Then
1P = [, 010G dx = 1.

A2 p()= / / 0= Y) Q@G Q( () didy
=1 R4 x

||h||£2(Q

- / FOIUGY d,

where
U = /Rd OA+y)h(A+y)Q)h(y)dy.

Notice that

Vix) = / U)e M da

(2m)d
1
-~ Qny

/de—mdi/d Q(y + MOWh(y + Mh(y)dy
(A3) - :

1 .
~ @ / /RdXRd e 'CTITQOR(G) Q)R (y) dhdy

2

[ e emmnmay

T @n)

and that Q(}) is the Fourier transform of the killed Green’s function
0
G(x) = / e p,(x)dt, xeR?,
0
where p; is the density function of Y;. Under the substitution
1 —iAX
=— h(L)dAa,
8@ =g [ e G
we have
a4 [ T euhdy =@n [ GG 0h()dy = @x)!Ghx)

and, therefore,

AS) g =00 [ Gt =gzt drdy = @m)g. Gg).
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By (A.2)-(A.5), and by Parseval’s identity,

p(f)=  sup / FOV () dx
(g.Gg)=m)—d /R
(A.6)

=2mn)¢  sup / F)[Gg(x)]*dx.

(g.Gg)=(2n)~4
Write h(x) = Gg(x) and recall the resolvent identity
I=G—A0G,

where [ is the identical operator and where A is the infinitesimal generator of
the Markov process Y (¢). It is a well-known fact (page 24, [4]) that the linear
operator 4 is determined by

Ah(x) = —/d WAL e da, xeRe,
R
Hence,

(g.Ge) = (h— Ah. ) = 2+ [ v RGP

= l2ll2 + 1A g
where
2 _ 2
1P = [, YOI di
From (A.6), we have

(A7) p(f) = @) sup [, Feonrwax.
||h||2+||h\|£2 §=0Cm~!
In addition, it is easy to see that the function
M= swplo [ Fwgwar— [ gorvwa).  o-o
R4 R4

g€Fw

is nonnegative, nondecreasing and continuous on (0, 00). By (A.7), given 0 < ¢ <
p(f), there is h, such that ||/, 1%+ ||h ||£2(w) (2n)*d and that

[, Feon2edx > @m~(o() — ).

Hence,

! ) _ V() = ©) Jpa O dx — foa W WIho (W] dh
p(f)—e Jra 1ho(x)|?dx

_ @) — [pa YWIhW P

B Jra 1ho(x)|? dx B

m;0)(
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Letting € — 0" on the left-hand side gives that

Mf(p%f)) > 1.

On the other hand, by (A.7),

“(55)

_ LI BN _ 12 }
= s [ Feogodr— [ wozora

b ~ a2 ]_ a2 }_
f;;‘;d{p(f)f)m[l+/Rd‘1’(”'g<”' ai| = [ wogmPar) =1.

g
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