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LARGE DEVIATIONS FOR THE CHEMICAL DISTANCE IN
SUPERCRITICAL BERNOULLI PERCOLATION

BY OLIVIER GARET AND RÉGINE MARCHAND

University of Orléans and University of Nancy

The chemical distance D(x,y) is the length of the shortest open path
between two points x and y in an infinite Bernoulli percolation cluster. In
this work, we study the asymptotic behavior of this random metric, and we
prove that, for an appropriate norm µ depending on the dimension and the
percolation parameter, the probability of the event{

0 ↔ x,
D(0, x)

µ(x)
/∈ (1 − ε,1 + ε)

}

exponentially decreases when ‖x‖1 tends to infinity. From this bound we also
derive a large deviation inequality for the corresponding asymptotic shape
result.

1. Introduction and statement of main results. The matter of this article is
the study of the asymptotic length of the shortest open path between two points in
an infinite Bernoulli percolation cluster.

Let us first recall the Bernoulli percolation model and its usual notation. Con-
sider the graph whose vertices are the points of Zd , and put a nonoriented edge be-
tween each pair {x, y} of points in Zd such that the Euclidean distance between x

and y is equal to 1: two such points are called neighbors, and this set of edges is
denoted by Ed .

Set � = {0,1}Ed
. We denote by Pp the product probability (pδ1 + (1 −

p)δ0)
⊗Ed

on the set �. For a point ω in �, we say that the edge e ∈ Ed is open
in the configuration ω if ω(e) = 1, and closed otherwise. The states of the differ-
ent edges are thus independent under Pp . In the whole paper, the parameter p is
supposed to satisfy p ∈ (pc,1], where pc = pc(d) is the critical probability for
Bernoulli bond percolation on Zd .

A path is a sequence γ = (x1, e1, x2, e2, . . . , xn, en, xn+1) such that xi and xi+1
are neighbors and ei is the edge between xi and xi+1. We will also sometimes
describe γ only by the vertices it visits γ = (x1, x2, . . . , xn, xn+1) or by its edges
γ = (e1, e2, . . . , en). The number n of edges in γ is called the length of γ and is
denoted by |γ |. Moreover, we will only consider simple paths for which the visited
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vertices are all distinct. A path is said to be open in the configuration ω if all its
edges are open in ω.

The clusters of a configuration ω are the connected components of the graph
induced on Zd by the open edges in ω. For x in Zd , we denote by C(x) the cluster
containing x. In other words, C(x) is the set of points in Zd that are linked to x by
an open path. We write x ↔ y to signify that x and y belong to the same cluster.
For p > pc, there exists almost surely one and only one infinite cluster. We denote
by C∞ the random set: C∞ = {k ∈ Zd : |C(k)| = +∞}, which is almost surely
connected.

We introduce the chemical distance D(x,y)(ω) between x and y in Zd , de-
pending on the Bernoulli percolation configuration ω:

D(x,y)(ω) = inf
γ

|γ |,
where the infimum is taken on the set of paths whose ends are x and y and that
are open in the configuration ω. It is of course only defined when x and y are
in the same percolation cluster. Otherwise, we set by convention D(x,y) = +∞.
The random distance D(x,y) is thus, when it is finite, the minimal number of
open edges needed to link x and y in the configuration ω, and is thus larger than
‖x − y‖1, where ‖ · ‖1 is the usual �1 norm: ‖x‖1 =∑d

i=1 |xi |.
Note that the chemical distance D(0, x) on the infinite Bernoulli cluster with

parameter p > pc can be seen as the travel time between 0 and x in a first-passage
percolation model where the passage times of the edges are independent identically
distributed random variables with common distribution pδ1 + (1 − p)δ+∞.

Antal and Pisztora [1] have proved that the chemical distance cannot asymptot-
ically be too large when compared with the usual distance ‖ · ‖1: for each p > pc,
there exists a positive constant ρ such that

lim sup
‖x‖1→+∞

ln Pp(0 ↔ x,D(0, x) ≥ ρ‖x‖1)

‖x‖1
< 0.(1)

If we think of the chemical distance as a special travel time in a first-passage
percolation model, it is natural to expect that the term ρ‖x‖1 in (1) could be re-
placed by a smaller term, depending on a directional functional. Indeed, a good
candidate exists, which has been defined in a previous paper of the authors:

PROPOSITION 1.1 ([7]). Let p > pc and consider the chemical distan-
ce D(·, ·) for Bernoulli percolation with parameter p. There exists a norm µ on Rd

such that, almost surely on the event {0 ↔ ∞},

∀u ∈ Zd lim
n→∞

D(0, Tn,uu)

Tn,u

= µ(u),

where (Tn,u)n≥1 is the increasing sequence of positive integers k such that
ku ↔ ∞.
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It is then natural to study the fluctuations around this limit, and to look for
exponential decay results analogous to the ones obtained, for instance by Grimmett
and Kesten [8], in first-passage percolation. Therefore, the main objective of this
work is to prove the following large deviation bound:

THEOREM 1.2. Let p in the interval (pc,1] and denote by µ the norm on Rd

given by Proposition 1.1. Then,

∀ε > 0 lim sup
‖x‖1→+∞

ln Pp(0 ↔ x,D(0, x)/µ(x) /∈ (1 − ε,1 + ε))

‖x‖1
< 0.

The proof of Theorem 1.2 is divided into two parts: the upper large devia-
tions and the lower large deviations, which are, respectively, dealt with in Sections
3 and 4.

First, in Section 3, we prove an upper large deviations inequality or, more pre-
cisely, the following exponential bound for the probability that the chemical dis-
tance between two points x and y is abnormally large:

THEOREM 1.3. For every p > pc(d) and every ε > 0, we have

lim sup
‖x‖1→+∞

ln Pp(0 ↔ x,D(0, x) ≥ (1 + ε)µ(x))

‖x‖1
< 0.

The proof of this result strongly relies, through an appropriate renormalization
argument, on the fact that, when p is sufficiently close to one, the chemical dis-
tance looks like the usual distance ‖ · ‖1.

THEOREM 1.4. For each α > 0, there exists p′(α) ∈ (pc(d),1) such that for
every p ∈ (p′(α),1], the Bernoulli percolation with parameter p satisfies:

lim sup
‖x‖1→+∞

ln Pp(0 ↔ x,D(0, x) ≥ (1 + α)‖x‖1)

‖x‖1
< 0.

We also obtain, as a corollary of this result, the continuity in p = 1 of the map
p 
→ µp , where µp denotes the norm associated to the chemical distance in the
Bernoulli percolation with parameter p:

COROLLARY 1.5. limp→1 sup‖x‖1≤1 |µp(x) − ‖x‖1| = 0.

In Section 4, we prove a lower large deviations inequality or, more precisely, the
following exponential bound for the probability that the chemical distance between
two points x and y is abnormally small.
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THEOREM 1.6. For every p > pc(d) and every ε > 0, we have

lim sup
‖x‖1→+∞

ln Pp(0 ↔ x,D(0, x) ≤ (1 − ε)µ(x))

‖x‖1
< 0.

In its main lines, the proof follows the strategy used by Grimmett and Kesten [8]
to prove an exponential bound for an analogous quantity concerning first-passage
percolation along the first coordinate axis. However, two types of extra difficulties
arise in our context: we want to obtain an exponential bound in every direction, not
only along the first-coordinate axis, and moreover we want this bound to be uni-
form with respect to this direction. Thus, we first study in Lemma 4.2 the minimal
number of open edges needed to join the origin to hyperplanes with a given direc-
tion. Then in Lemma 4.3 we study the minimal number of open edges needed to
cross a box oriented along the same direction. All estimates are done uniformly in
the direction, and, to conclude the proof of Theorem 1.6, we use a renormalization
argument.

Let us discuss briefly the speed—in ‖x‖1—that appears in the previous large
deviations inequalities. Let us first look at the lower large deviations. Choose an
x ∈ Zd , and then, by the classical FKG inequalities, we obtain

Pp

(
D
(
0, (m + n)x

)≤ (1 − ε)(m + n)µ(x)
)

≥ Pp

(
D(0,mx) ≤ (1 − ε)mµ(x),D

(
mx, (m + n)x

)≤ (1 − ε)nµ(x)
)

≥ Pp

(
D(0,mx) ≤ (1 − ε)mµ(x)

)
Pp

(
D(0, nx) ≤ (1 − ε)nµ(x)

)
.

Thus, the limit 1
n‖x‖1

ln Pp(D(0, nx) ≤ (1 − ε)nµ(x)) exists as n goes to infinity,
and is strictly negative by Theorem 1.6. Now, two distinct cases can occur:

• Either µ(x) = ‖x‖1. This corresponds to the existence of a flat face in the as-
ymptotic shape and occurs for some x as soon as p > −→pc(d), critical probability
for oriented percolation on Zd (see [7]). In this case, because of the inequal-
ity D(0, x) ≥ ‖x‖1, the asymptotic speed in the direction of x is as fast as it is
permitted by the geometry of the lattice: thus, we have

1

n
ln Pp

(
D(0, nx) ≤ (1 − ε)nµ(x)

)= −∞.

• Or µ(x) > ‖x‖1. Then for any ε small enough to have (1 − ε)µ(x) > ‖x‖1, we
can force a deterministic path with exactly n‖x‖1 edges with ends 0 and nx to
be open, which implies that the chemical distance between 0 and nx is less than
(1 − ε)nµ(x):

Pp

(
D(0, nx) ≤ (1 − ε)nµ(x)

)≥ pn‖x‖1,

that is,
1

n‖x‖1
ln Pp

(
D(0, nx) ≤ (1 − ε)nµ(x)

)≥ lnp > −∞.
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Thus the exponential rate in Theorem 1.6 is optimal.
Turning to the upper large deviations, we can once again force a deterministic

path with exactly �n(1 + ε)‖x‖1 + 1 edges with ends 0 and nx to be the only
open path between 0 and nx, which implies that the chemical distance between 0
and nx is larger than (1 + ε)nµ(x):

Pp

(+∞ > D(0, nx) ≥ (1 + ε)nµ(x)
)≥ (

p(1 − p)2d)�n(1+ε)‖x‖1+1
,

whence

lim inf
n→+∞

ln Pp(+∞ > D(0, nx) ≥ (1 + ε)nµ(x))

n‖x‖1
≥ (1 + ε) ln

(
p(1 − p)2d).

Once again, the exponential rate in Theorem 1.3 is optimal.
This phenomenon is quite different from what is expected of large deviations

in first-passage percolation with bounded passage times. Indeed, in the context of
first-passage percolation with bounded passage times, building a bad configuration
that forces the travel time between 0 and nx to be too large should cost more
that cn‖x‖1 . We expect then a speed in ‖x‖d

1 ; see [10] and also [3]. On the other
hand, building a configuration that allows the travel time between 0 and nx to be
too small should typically still need a cost of order cn‖x‖1 , as it is sufficient to build
one “too good” path. Thus the speeds for upper large deviations and lower large
deviations in classical first-passage percolation could be different.

Finally, in Section 5, thanks to the uniformity with respect to the direction pro-
vided by Theorem 1.2, we will also prove a large deviation inequality for the as-
ymptotic shape of the set Bt of points that are at a distance less or equal to t from
the origin:

Bt = {x ∈ Zd : 0 ↔ x,D(0, x) ≤ t}.
Since p > pc, we can condition the probability measure on the event that the ori-
gin 0 is in an infinite cluster, which has positive probability:

Pp(A) = Pp(A ∩ {0 ∈ C∞})
Pp(0 ∈ C∞)

.

In order to study the convergence of the random set Bt/t , we also introduce the
Hausdorff distance between two non empty compact subsets of Rd :

1. For x ∈ Rd and r ≥ 0, Bµ(x, r) = {y ∈ Rd :µ(x − y) ≤ r}.
2. The Hausdorff distance between two nonempty compact subsets K1 and K2

of Rd is defined by

D(K1,K2) = inf{r ≥ 0 :K1 ⊂ K2 + Bµ(0, r) and K2 ⊂ K1 + Bµ(0, r)}.
Note that the equivalence of norms on Rd ensures that the topology induced by
this Hausdorff distance does not depend on the choice of the norm µ. We can now
state the random set version of Theorem 1.2.
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THEOREM 1.7. For every p > pc(d), for every ε > 0, there exist two strictly
positive constants A and B such that

∀t > 0 Pp

(
D

(
Bt

t
,Bµ(0,1)

)
≥ ε

)
≤ Ae−Bt .

This result improves the following asymptotic shape result that was proved by
the authors in [7]: for every p > pc(d),

lim
t→+∞D

(
Bt

t
,Bµ(0,1)

)
= 0, Pp a.s.

Let us begin now with the main notations and a reminder of some common
useful results in supercritical percolation theory. We also include in the following
section a technical lemma to build bases of Rd that are adapted to the proof of
directional estimates.

2. Notations and preliminary results.

2.1. Norms, balls and spheres. On the space Rd , consider the canonical basis
(e1, . . . , ed). For every x ∈ Rd , define the three classical following norms:

‖x‖1 =
d∑

m=1

|xi |, ‖x‖2 =
(

d∑
m=1

|xi |2
)1/2

, ‖x‖∞ = max
1≤m≤d

|xi |.

For i ∈ {1,2,∞}, x ∈ Rd and r > 0, we define the following balls in Zd :

Bi (x, r) = {y ∈ Zd :‖y − x‖i ≤ r} and Si = {x ∈ Rd :‖x‖i = 1}.
Recall that

‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 ≤ √
d‖x‖2.

We also consider the norm µ given by Proposition 1.1. We recall the reader that,
for x ∈ Rd and r > 0, we chose to consider, for the norm µ, balls in Rd rather than
in Zd :

Bµ(x, r) = {y ∈ Rd :µ(y − x) ≤ r}.
We also introduce µinf = infy∈S1 µ(y), which is strictly positive. As µ is invari-

ant under the symmetries of the grid, we get the inequality

µinf‖x‖1 ≤ µ(x) ≤ µ(e1)‖x‖1.
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2.2. Exponential inequalities. Let us rewrite the result of Antal and Pisz-
tora [1] in an appropriate form to further computations: there exist three strictly
positive constants A1, B1 and ρ, depending only on the dimension d and on the
percolation parameter p > pc(d), such that

∀x ∈ Zd Pp

(
0 ↔ x,D(0, x) ≥ ρ‖x‖1

)≤ A1e
−B1‖x‖1 .(2)

We also recall here some classical results concerning the geometry of the clus-
ters in supercritical percolation. Thanks to [2], we can control the radius of finite
clusters: there exist two strictly positive constants A2 and B2 such that

∀r > 0 Pp

(|C(0)| < +∞,0 ↔ ∂B1(0, r)
)≤ A2e

−B2r .(3)

We can also control the size of the holes in the infinite cluster: there exist two
strictly positive constants A3 and B3 such that

∀r > 0 Pp

(
C∞ ∩ B1(0, r) = ∅

)≤ A3e
−B3r .(4)

When d = 2, this result follows from the large deviation estimates by Durrett and
Schonmann [6]. Their methods can easily be transposed when d ≥ 3. Nevertheless,
when d ≥ 3, the easiest way to obtain it seems to use [9] slab’s result.

Note that in (3) and in (4), the choice of the norm ‖ · ‖1 is, of course, irrelevant
thanks to the norm equivalence.

2.3. Stochastic comparison. First, there is a natural partial order � on � =
{0,1}Ed

: for ω and ω′ in �, one says that ω � ω′ holds if and only if ωe ≤ ω′
e for

each e ∈ Ed . Consequently, we say that a function f :ω → R is nondecreasing if
f (ω) ≤ f (ω′) as soon as ω � ω′. An event A is said to be nondecreasing if its
indicator function 1A is nondecreasing.

Let us now recall the concept of stochastic domination: we say that a probability
measure µ dominates a probability measure ν if∫

f dν ≤
∫

f dµ

holds as soon as f in an nondecreasing function. We also write ν � µ.
In the following, it will often be useful to compare locally dependent fields with

products of Bernoulli probability measures: remember that a family {Yx, x ∈ Zd}
of random variables is said to be locally dependent if there exists k such that, for
every a ∈ Zd , Ya is independent of {Yx :‖x − a‖2 ≥ k}.

PROPOSITION 2.1 ([11]). Let d, k be positive integers. There exists a non-
decreasing function π : [0,1] → [0,1] satisfying limδ→1 π(δ) = 1 such that the
following holds: if Y = {Yx, x ∈ Zd} is a locally dependent family of random vari-
ables satisfying

∀x ∈ Zd P (Yx = 1) ≥ δ,

then PY � Ber(π(δ))⊗Zd
.
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This is in fact a particular case, but sufficient for our purposes, of a more general
result given in [11].

2.4. Some consequences of the symmetry properties. Let us introduce some
notation: we denote by Sd the symmetric group on {1, . . . , d}. For each x =
(x1, . . . , xd) ∈ Rd , σ ∈ Sd and ε ∈ {+1,−1}d , we define

σ,ε(x) =
d∑

i=1

ε(i)xσ(i)ei .

Then O(Zd) = {σ,ε :σ ∈ Sd, ε ∈ {+1,−1}d} is the group of orthogonal trans-
formations that preserve the grid Zd . Consequently, its elements also preserve the
norm µ.

When studying the chemical distance in a given direction x, we want to find
a basis of Rd adapted to the studied direction, that is, made of images of x by
elements of O(Zd). The next technical lemma gives the existence of such a basis,
and an extra uniformity property in the direction y:

LEMMA 2.2. There exists a constant Cd > 0 such that, for each x ∈ Rd , there
exists a family (g1,x, g2,x, . . . , gd,x) ∈ (O(Zd))d with g1,x = IdRd and such that
the linear map Lx : Rd → Rd defined by

∀i ∈ {1, . . . , d} Lx(ei) = gi,x(x)

satisfies

∀y ∈ Rd Cd‖y‖1‖x‖1 ≤ ‖Lx(y)‖1 ≤ ‖y‖1‖x‖1.(5)

If moreover, for each n ∈ S2, we set (n1, n2, . . . , nd) = (n, g2,n(n), . . . , gd,n(n)),
then we have

∀y ∈ Rd Cd

d3/2 ‖y‖2 ≤
(

d∑
m=1

〈y,nm〉2

)1/2

≤ √
d‖y‖2.(6)

Note that in dimension two, this construction is much simpler: if R denotes the
rotation with angle π/2, we can set

Lx(e1) = x and Lx(e2) = R(x).

However, this is more intricate in higher dimension. For instance, in dimension
three, if x = (1,1,1), none of the images of x by O(Zd) is orthogonal to x. In
particular, even if ‖x‖2 = 1, Lx may not be in O(Rd).

PROOF OF LEMMA 2.2. Choose x ∈ Zd . Then, for every (g1, . . . , gd) ∈
(O(Zd))d , denote by Ax

g1,...,gd
the only linear map which satisfies

∀i ∈ {1, . . . , d} Ax
g1,...,gd

(ei) = gi(x).
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Let y = d∑
i=1

yiei ∈ Rd : by linearity, we have

‖Ax
g1,...,gd

(y)‖1 =
∥∥∥∥∥

d∑
i=1

yiA
x
g1,...,gd

(ei)

∥∥∥∥∥
1

=
∥∥∥∥∥

d∑
i=1

yigi(x)

∥∥∥∥∥
1

≤
d∑

i=1

|yi | × ‖Ax
g1,...,gd

(ei)‖1 =
d∑

i=1

|yi | × ‖x‖1 = ‖y‖1‖x‖1.

Now define, for each x ∈ Rd ,

b(x) = max
(g2,...,gd )∈O(Zd )d−1

inf
y∈S1

‖Ax
Id,g2,...,gd

(y)‖1,

and define Lx to be an application Ax
g1,...,gd

which realizes the maximum in the
definition of b(x). Let us set

Cd = inf
x∈S1

b(x).

It is easy to see that, for every x ∈ Rd , Lx satisfies equation (5) and it only remains
to prove that Cd > 0.

Clearly, x 
→ b(x) is a continuous map. So, since S1 is a compact set, it is
sufficient to prove that b(x) �= 0 for any x ∈ S1. Let then x �= 0: there exists i0
such that xi0 �= 0. Consider i ∈ {1, . . . , d}; we can find σ ∈ Sd with σ(i) = i0.
Now let h ∈ {−1,+1}d with h(i) = −1 and h(j) = 1 for i �= j : then one has
σ,(1,...,1)(x) − σ,h(x) = 2xi0ei . It follows that the vector space generated by
{g(x) :g ∈ O(Zd)} is equal to Rd . Then, since x �= 0, one can find a family
(g2, . . . , gd) ∈ (O(Zd))d−1 such that (x, g2(x), . . . , gd(x)) is a basis of Rd . Thus,
Ax

g1,...,gd
is a linear invertible map. This implies that inf‖y‖1=1 ‖Ax

g1,...,gd
(y)‖1 > 0,

and hence that b(x) > 0.
Let us prove inequality (6). If we define

B(x) =
d∑

m=1

〈nm,x〉em,

then we have
∑d

m=1〈x,nm〉2 = ‖B(x)‖2, and moreover, 〈B(ej ), ei〉 = 〈ni, ej 〉 =
〈Ln(ei), ej 〉 = 〈L∗

n(ej ), ei〉, which is equivalent to say that B = L∗
n. Equation (5)

and the equivalence of norms imply then that

∀x ∈ Rd ‖Ln(x)‖2 ≥ Cd

d3/2 ‖x‖2.(7)

Let us denote by |‖A|‖2 = supx∈S2
‖Ax‖2. We have:

‖L∗
nx‖2 ≥ 1

|‖(L∗
n)

−1|‖2
‖x‖2.
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It is clear from (7) that |‖L−1
n |‖2 ≤ d3/2

Cd
. Applying to A = L−1

n the classical identity

|‖A|‖2 = sup
x∈S2

‖Ax‖2 = sup
x∈S2,y∈S2

〈Ax,y〉 = sup
x∈S2

‖A∗x‖2 = |‖A∗|‖2,

it follows that

∀x ∈ Rd

(
d∑

m=1

〈x,nm〉2

)1/2

= ‖L∗
nx‖2 ≥ Cd

d3/2 ‖x‖2,

which concludes the proof of the left-hand side. The right-hand side is obvious.
�

3. Upper large deviations: Proof of Theorem 1.3. The aim of this section
is to prove the upper large deviations estimate, Theorem 1.3, for the chemical
distance. First, we prove the exponential inequality for p close to 1 given by Theo-
rem 1.4, then we deduce Corollary 1.5 and finally, via a renormalization argument,
we prove the large deviations result for every p > pc.

3.1. Chemical distance for p close to 1: proof of Theorem 1.4. For this proof,
we also consider the ∗-topology on Zd : two points x, y ∈ Zd are ∗-neighbors if
and only if ‖x − y‖∞ = 1. A ∗-path is a sequence (x1, . . . , xn) such that for every
i ∈ {1, . . . , n − 1}, xi and xi+1 are ∗-neighbors. A set E is ∗-connected if between
any two of its vertices, there exists a ∗-path using only vertices in E.

Given a configuration ω, say that a point x ∈ Zd is wired if each bond e = (s, t)

with ‖s − x‖∞ ≤ 1 and ‖t − x‖∞ ≤ 1 satisfies ωe = 1. Otherwise, say that x is
unwired. The wired points should be considered as the good guys, whereas the
unwired points are the bad ones. Let Yx = 1{x is unwired}; then x is wired if and only
if Yx = 0.

Let us define V (x)(ω) to be the set of points y ∈ Zd such that there exists a
∗-path of unwired vertices from x to y, which means that there exist n ≥ 0 and
x = x0, x1, . . . , xn = y, with Yxi

= 1 for each i ∈ {0, . . . , n} and ‖xi − xi+1‖∞ = 1
for each i ∈ {0, . . . , n − 1}. Note that V (x) = ∅ as soon as x is wired. By defini-
tion, V (x) is always a ∗-connected set. For x ∈ Zd , we define

V1(x) = V (x) + {−1,0,1}d and V2(x) = V1(x) + {−1,0,1}d .

Let us show that when p is large enough, V (x) is almost surely a finite set.
For each p ∈ [0,1], the field (Yx)x∈Zd is a locally dependent {0,1} valued station-
ary field, with limp→1 Pp(Y0 = 1) = 1. It follows from Proposition 2.1 that there
exists r1(p) with

(Pp)Y � Ber(r1(p))⊗Zd

and limp→1 r1(p) = 1. We can thus find p′
1 ∈ (pc(d),1) such that for every

p > p′
1,

(2d − 1)
(
1 − r1(p)

)
< 1.(8)
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By a classical counting argument, this ensures that V (x) is Pp almost surely a
finite set. Suppose for the sequel that p > p′

1. Under this assumption, we have the
following result:

LEMMA 3.1. Let x ∈ Zd . Suppose that s, t ∈ V1(x) with s ↔ t . Then, there
exists an open path from s to t which only uses vertices in V2(x).

PROOF. Since V (x) is bounded, V (x)c has only finitely many ∗-connected
components and exactly one of them is of infinite size. Of course, a path from s

to t can meet one or more of these sets. We will prove that for every connected
component K of V (x)c and every open path β from s to t , the path β can be
modified to get an open path from s to t which never enters K\V2(x).

Suppose that β = (s = x0, x1, . . . , xn = t) and define i = min{k ≥ 0 :xk ∈ K}
and j = max{k ≥ 0 :xk ∈ K}. Clearly i > 0 and j < n. Obviously, {xi, xj } ⊂
∂ in∗ (K), where ∂ in∗ (K) is the set of points x in K such that there exists y ∈ Zd\K
with ‖x−y‖∞ = 1. By part (ii) of Lemma 2.1 in [5], the set ∂ in∗ (K) is ∗-connected.
Note that by definition of V (x), every point of ∂ in∗ (K) is wired. But if a and b are
∗-neighbors, then b ∈ a + {−1,0,1}d . Since a is wired, there exists an open path
from a to b using only edges in a+{−1,0,1}d . Then, there exists a open path from
xi to xj which only uses points in ∂ in∗ (K) + {−1,0,1}d ⊂ V1(x) + {−1,0,1}d =
V2(x). �

We can now come back to the proof of the theorem. Let α > 0. Choose x in Zd

and let γ = (0 = x0, x1, . . . , xn = x) be a fixed path from 0 to x with the minimal
possible number of edges n = ‖x‖1. We let

V = ⋃
y∈γ

V (y).

Now suppose that there exists an open path from 0 to x. Let us prove that under
this condition, we can find an open path from 0 to x which only uses points in
γ ∪ (V + {−2,−1,0,1,2}d).

Let i be the greatest integer in {0, . . . , n} such that there exists an open path
from 0 to xi which only uses points in γ ∪ (V + {−2,−1,0,1,2}d). Note that
since 0 ↔ xi and 0 ↔ x, we have xi ↔ x. We want to prove that i = n.

Suppose by contradiction that i < n. The maximality of i implies that xi can
not be wired. So V (xi) ⊃ {xi}, therefore it is not empty, which allows to define
j = max{k ∈ {i + 1, . . . , n} :xk ∈ V (xi)}.
• If j = n, then xi and x belong to V (xi). Since xi ↔ x, it follows from the previ-

ous lemma that there exists an open path from xi to x which only uses vertices
in V2(xi). Joint with the part of the path γ from 0 to xi , this gives an open path
from 0 to x which only uses points that are in γ ∪ (V + {−2,−1,0,1,2}d),
which is a contradiction.
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• If j < n, let K be the connected component of V (xi)
c which contains x. On one

side, xi /∈ K , so there exists l ∈ {i +1, . . . , n} such that xl ∈ ∂ in∗ (K). On the other
side, xi /∈ K and x ↔ xi−1 by definition of i, thus there exists z ∈ ∂ in∗ (K) such
that x ↔ z. Since points in ∂ in∗ (K) are linked, xl ↔ z, but x ↔ z and xi ↔ x so
finally xi ↔ xl . Since {xi, xl} ⊂ V1(xi), by the previous lemma we see that there
exists an open path from xi to xl using only points of V2(xi), which contradicts
again the maximality of i.

Thus under the assumption that 0 and x belong to the same cluster, we have
constructed an open path from 0 to x which only uses points in γ ∪ (V +
{−2,−1,0,1,2}d), and thus is not too far away from the deterministic path γ .

Define, for every y ∈ Zd , the event

Fy = ⋃
z : ‖z−y‖∞≤2

{z is unwired}

and set Zy = 1Fy . Since (Zy)y∈Zd is locally dependent with limp→1 Pp(Zy = 1) = 0,
it follows from Proposition 2.1 that there exists r2(p) with

(Pp)Z � Ber(r2(p))⊗Ed

and limp→1 r2(p) = 0. Note that by definition of (Zy)y∈Zd , the open path we built
only uses points y that are in γ or satisfy Zy = 1. Moreover, if we suppose now
that D(0, x) ≥ (1+α)‖x‖1, the length of this path is also greater than (1+α)‖x‖1.

The idea is now the following: if 0 ↔ x and D(0, x) ≥ (1 + α)‖x‖1, then
by the previous construction, there must exist an open path between 0 and x

with length larger than (1 + α)‖x‖1 and that contains only points in γ ∪ (V +
{−2,−1,0,1,2}d): this path must then contain at least α‖x‖1 points such that
Zy = 1, which is unlikely when p is large enough. Let us turn this crude argument
into a rigorous proof via a counting argument.

Let � be the family of self-avoiding paths from 0 to x. Clearly, if β ∈ �,

Pp(∀y ∈ β\γ, Zy = 1) ≤ r |β|−|γ |,
where r = r2(p) and |β| denotes the number of edges in β . Remember that
limp→1 r2(p) = 0. We can thus find p′

2(α) ∈ (pc(d),1) such that ∀p > p′
2(α),

r = r2(p) satisfies

(2d − 1)r < 1 and (2d − 1)1+αrα < 1.(9)

It follows that

Pp

(
0 ↔ x,D(0, x) ≥ (1 + α)‖x‖1

)
≤ ∑

β∈� : |β|≥(1+α)|γ |
Pp(∀i ∈ β\γ,Zi = 1)

≤ ∑
β∈� : |β|≥(1+α)|γ |

r |β|−|γ |
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≤
+∞∑

n=(1+α)|γ |
(2d)(2d − 1)n−1rn−|γ |

≤ 2dr−|γ |

(2d − 1)(1 − (2d − 1)r)

(
(2d − 1)r

)(1+α)|γ |

≤ 2d

(2d − 1)(1 − (2d − 1)r)

(
(2d − 1)1+αrα)|γ |

.

As |γ | = ‖x‖1, taking p′(α) = max{p′
1(α),p′

2(α)}—quantities respectively de-
fined in (8) and (9)—ends the proof of the theorem.

3.2. Continuity of µp at p = 1: Proof of Corollary 1.5. Let α > 0 and x ∈ Zd .
Using the Borel–Cantelli lemma and Theorem 1.4, we obtain for p > p′(α):

lim sup
n→+∞

1{nx↔0}
D(0, nx)

n
≤ (1 + α)‖x‖1, Pp a.s.

By the very definition of µp , the left-hand side is equal to µp(x). Using moreover
the fact that µp(x) ≥ ‖x‖1, we have proved

∀α > 0, ∀p > p′(α), ∀x ∈ Zd ‖x‖1 ≤ µp(x) ≤ (1 + α)‖x‖1.

By homogeneity and continuity of µp and ‖ · ‖1, we obtain the same property for
x ∈ Qd , and next for x ∈ Rd :

∀α > 0, ∀p > p′(α), ∀x ∈ Rd ‖x‖1 ≤ µp(x) ≤ (1 + α)‖x‖1,

which ends the proof.

3.3. Upper large deviations: proof of Theorem 1.3. We can now prove the up-
per large deviations result Theorem 1.3 for the chemical distance for every p > pc.

Step 1. Choice of constants.
Let p > pc(d) and ε > 0 be fixed.
As µ is a norm, it is bounded away from 0 on the compact set S1, and we can

choose η > 0 small enough to have

∀x̂ ∈ S1

(
1+ 3η

2ρ

)
(1+η)2µ(x̂)+2η < (1+ε)µ(x̂) and η <

8

9
ρ,(10)

where ρ has been defined in (2). Note also

α = η

2ρ
.(11)

From now on, let us denote by M a fixed integer which is such that M ≥
d
η

max(
µ(e1)

2 ,
ρ

3Cd
), where Cd is the constant given by Lemma 2.2.
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For every x̂ ∈ Rd ∩ S1, there exists r̂ ∈ 1
M

Zd ∩ S1 such that ‖x̂ − r̂‖1 ≤ d
2M

.
Then, by the previous choice of M , one has

‖x̂ − r̂‖1 ≤ d

2M
≤ Cdα

3
and |µ(x̂) − µ(r̂)| ≤ µ(e1)‖x̂ − r̂‖1 ≤ η.(12)

Intuitively, r̂ is a rational direction that approaches the “real” direction x̂. Note
that the result in Theorem 1.3 is uniform in the direction, and the proof of this
uniformity will use the fact that 1

M
Zd ∩ S1 is a finite set.

Step 2. Renormalization.
For x ∈ Zd and N ∈ Z+, let us define the following set around Nx:

IN
x = {

y ∈ B1
(
Nx,

√
N
)

:y ↔ ∂B1(Nx,N)
}
,

where ∂B1(Nx,N) = {y ∈ Zd :‖Nx − y‖1 = N}. We define the related random
variable IN

x by

IN
x =

{
Nx, if IN

x = ∅,
infIN

x , otherwise,

where infIN
x denotes the point in IN

x which is the closest to Nx. If there are
several, use for instance the lexicographic order on the coordinates to choose a
unique point. Note that:

• the random variable IN
x only depends on the states of the edges in B1(Nx,N).

• ‖Nx − IN
x ‖1 ≤ √

N .

Since IN
x is close to Nx, the chemical distance D(IN

0 , IN
x ) should be of the same

order as Nµ(x). This is rigorously proved in the following lemma:

LEMMA 3.2. The following results hold Pp almost surely:

• For each x ∈ Zd , IN
x ↔ ∞ for large N .

• The sequence (IN
0 )N≥1 is convergent.

• For each x ∈ Zd ,

D(IN
0 , IN

x )

N
→ µ(x).

PROOF. • The first assertion easily follows from Borel–Cantelli arguments.
At first, it follows from the exponential decay of the radius of finite clusters—see
equation (3)—that Pp almost surely, IN

x = B(Nx,
√

N) ∩ C∞ for large N . The
fact that B(Nx,

√
N) ∩ C∞ is Pp almost surely nonempty for large N is now a

consequence of (4).
• Let us denote by H the smallest element of C∞, that is, the point in C∞

which is the closest to 0 and among these points if there are several, the one which
is the smallest for the lexicographic order on the coordinates. For large N , we have
H ∈ B(0,

√
N), so (IN

0 )N≥1 converges to H .



LARGE DEVIATIONS FOR THE CHEMICAL DISTANCE 847

• If x = 0, there is nothing to prove. Suppose then that x �= 0. By the previ-
ous point, the sequence with general term D(IN

0 , IN
x )/N has the same asymp-

totic behavior as the sequence with general term D(H, IN
x )/N . It was proved in

Lemma 5.7 of [7] that for every ε > 0,

Pp

( ∃M > 0 ∀y ∈ Zd

(‖y‖1 ≥ M and y ↔ 0) �⇒ |D(0, y) − µ(y)| ≤ ε‖y‖1

∣∣∣∣ 0 ↔ ∞
)

= 1.

By taking M = |C(0)| when 0 �↔ ∞, we can remove the conditioning and obtain

Pp

( ∃M > 0 ∀y ∈ Zd

(‖y‖1 ≥ M and y ↔ 0) �⇒ |D(0, y) − µ(y)| ≤ ε‖y‖1

)
= 1.

Using translation invariance, this implies

Pp

( ∀x ∈ Zd ∃Mx > 0 ∀y ∈ Zd

(‖y‖1 ≥ Mx and y ↔ x) �⇒ |D(x,y) − µ(y)| ≤ ε‖y‖1

)
= 1.

This implies

lim
N→∞

D(IN
0 , IN

x ) − µ(IN
x )

‖IN
x ‖1

= 0, Pp a.s.

Since ‖Nx − IN
x ‖1 ≤ √

N , one has |Nµ(x) − µ(IN
x )| ≤ √

Nµ(e1) and ‖IN
x ‖1 ∼

N‖x‖1; the desired result follows. �

We can now introduce a macroscopic percolation: in order to study the chemi-
cal distance in the direction r̂ , we are going to build a large grid, with mesh NM ,
whose axes are adapted to Mr̂ : the large grid is the image by NLMr̂ of the grid Zd ,
where LMr̂ is given in Lemma 2.2 (see Figure 1). The macroscopic edge e = {x, y}
has macroscopic ends x and y that correspond in the microscopic graph to the
points NLMr̂(x) and NLMr̂(y); for instance, the macroscopic vertex with coordi-
nates (1,0, . . . ,0) corresponds to the vertex NMr̂ in the microscopic lattice. By
construction of LMr̂ , we expect the chemical distance between neighborhoods of
the microscopic ends of any macroscopic edge to have a value of order NMµ(r̂).
If this event occurs, we say that the corresponding macroscopic edge e is open,
which should happen with high probability.

LEMMA 3.3. For each r̂ ∈ 1
M

Zd ∩ S1, for each positive integer N , we define

a field (R
N,r̂
e )e∈Ed : if e = {x, y},

R
N,r̂
e = 1

G
N,r̂
e

and G
N,r̂
e = {

D
(
IN
LMr̂ (x), I

N
LMr̂ (y)

)≤ NMµ(r̂)(1 + η)
}
.

Then there exists a function p : Z+ → [0,1], independent of the choice of r̂ ∈
1
M

Zd ∩ S1 such that

lim
N→+∞p(N) = 1 and PRN,r̂ � Ber(p(N))⊗Ed

,

where PRN,r̂ denotes the law of the field (R
N,r̂
e )e∈Ed on {0,1}Ed

.
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FIG. 1. The macroscopic grid NLMr̂(Z
d) adapted to the direction r̂ . The vertex x̄ of the macro-

scopic grid has coordinates NLMr̂(x̄) in the microscopic grid. It is surrounded by a small ball with
radius

√
N which contains a black point, denoted by IN

LMr̂ (x)
, which is the point of the infinite clus-

ter that is the closest to NLMr̂(x̄) in the microscopic grid. The macroscopic edge between x̄ and
ȳ is said to be open if D(IN

LMr̂ (x)
, IN

LMr̂ (y)
) ≤ NMµ(r̂)(1 + η), which happens with a probability

going to 1 as N goes to infinity. As the states of the macroscopic edges are locally dependent, by
choosing N large enough, the chemical distance in the macroscopic grid can be made very close to
the l1-distance.

PROOF. Our aim is to apply once again the comparison result of Proposi-
tion 2.1.

Note that for any choice of r̂ ∈ 1
M

Zd ∩ S1, and any edge e = {x, y}, the macro-

scopic event G
N,r̂
e only depends on states of the microscopic edges in the ball

B1(NLMr̂(x),NM(2 + (1 + η)µ(e1))). Note also that, by Lemma 2.2, we have

‖y − x‖1 >
2

Cd

(
2 + (1 + η)µ(e1)

)
⇒ ‖LMr̂(y − x)‖1 > 2M

(
2 + (1 + η)µ(e1)

)
⇒ ‖NLMr̂(y) − NLMr̂(x)‖1 > 2NM

(
2 + (1 + η)µ(e1)

)
.

The field (R
N,r̂
e )e∈Zd is locally dependent, for some constant k that does not de-

pend on N , nor on the choice of r̂ ∈ 1
M

Zd ∩ S1, nor on M . Since (R
N,r̂
e )e∈Ed is

invariant under translations and symmetries of the grid Zd , we only have to prove
that

lim
N→+∞ Pp(G

N,r̂
e ) = 1

uniformly in r̂ for the edge e = (0, e1). But the set 1
M

Zd ∩ S1 is finite, so it is
sufficient to prove this limit for any r̂ ∈ 1

M
Zd ∩S1. By applying Lemma 3.2 to x =
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LMr̂(e1) for a given r̂ ∈ 1
M

Zd ∩S1 and using the fact that almost sure convergence
implies convergence in probability, we end the proof of Lemma 3.3. �

Choose now N large enough to be sure that p(N) given by Lemma 3.3 satisfies

p(N) > p′
(

1 + 3α

1 + 2α
− 1

)
> pc(d),(13)

where p′(·) is defined in Theorem 1.4 and α has been defined in (11). For each
r̂ ∈ 1

M
Zd ∩ S1, we can construct a macroscopic percolation with mesh NM : we

say that the edge e ∈ Ed is open in the macroscopic percolation associated to r̂ if
the event G

N,r̂
e occurs, and closed otherwise. This induces a dependent percola-

tion model on the macroscopic edges: all vertices in the macroscopic lattice will
be denoted by an overlined letter, the infinite cluster of this macroscopic will be
denoted C∞, while the chemical distance in this macroscopic lattice will still be
denoted by D. The previous lemma compares this locally dependent macroscopic
percolation with i.i.d. Bernoulli percolation, and the choice we made for N allows
us to use the result of Theorem 1.4.

The strategy is now the following: for a large x ∈ Zd , choose a r̂ whose direction
is close to the one of x and build the macroscopic percolation associated to r̂ . Use
Theorem 1.4 to find a macroscopic path from a point not too far from 0 to a point
not too far from x, and whose length is well controlled. Then come back to the
initial microscopic percolation, and verify that the existence of this macroscopic
path implies, on the event 0 ↔ x, the existence of an open microscopic path whose
length is also well controlled.

Step 3. Construction of the macroscopic and microscopic paths.
From now on, we suppose, without loss of generality, that x ∈ Zd satisfies

‖x‖1 ≥ 8
√

N

α
.(14)

We emphasize that the constants α and N have been defined in (11) and (13) before
any choice of x.

Then, we associate to x̂ = x/‖x‖1 an approximate r̂ ∈ 1
M

Zd ∩ S1 satisfying
equation (12).

We build the macroscopic percolation associated to r̂ and denote by

x̄ = �‖x‖1/(NM)e1(15)

the vector in the coordinates of the macroscopic grid that approximates x,
where �t denotes the integer part of the real number t .

Remember that, thanks to Lemma 2.2, the application LMr̂ maps e1 to Mr̂ and
satisfies

∀i ∈ {1, . . . , d} µ(LMr̂(ei)) = Mµ(r̂) and ‖LMr̂(ei)‖1 = M
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and ∀r̂ ∈ 1

M
Zd ∩ S1 ∀t ∈ Rd CdM‖t‖1 ≤ ‖LMr̂(t)‖1 ≤ M‖t‖1.(16)

For each z ∈ Zd and each r > 0, we define the annulus

A(z, r) = {y ∈ Zd : r/2 ≤ ‖y − z‖1 ≤ r}
and consider the following “good” event of {0,1}Ed

in the macroscopic percola-
tion:

G =
{∃a ∈ A(0, α‖x‖1)∃b ∈ A(x,α‖x‖1) such that

a ↔ b and D(a,b) ≤ (1 + 3α)‖x‖1

}
.

Note that for the complementary set of G, we have

Gc ⊂ {A(0, α‖x‖1) ∩ C∞ = ∅} ∪ {A(x,α‖x‖1) ∩ C∞ = ∅}
∪ ⋃

a∈B1(0,α‖x‖1)

b∈B1(x,α‖x‖1)

{a ↔ b,D(a, b) > (1 + 3α)‖x‖1}

⊂ {A(0, α‖x‖1) ∩ C∞ = ∅} ∪ {A(x,α‖x‖1) ∩ C∞ = ∅}
∪ ⋃

a∈B1(0,α‖x‖1)

b∈B1(x,α‖x‖1)

{
a ↔ b,D(a, b) >

1 + 3α

1 + 2α
‖b − a‖1

}
.

As G is an increasing event, we have by Lemma 3.3

PRN,r̂ (G
c) ≤ Ber(p(N))⊗Ed

(Gc).

It follows that

PRε,N (Gc) ≤ 2Pp(N)

(
B1(0, α‖x‖1) ∩ C∞ = ∅

)
+ ∑

a∈B1(0,α‖x‖1)

b∈B1(x,α‖x‖1)

Pp(N)

(
a ↔ b,D(a, b) >

1 + 3α

1 + 2α
‖a − b‖1

)
.

By the choice (13) we made for N , the inequality p(N) > pc(d) is satisfied, so,
by equation (4),

Pp(N)

(
B1(0, α‖x‖1) ∩ C∞ = ∅

)≤ A3e
−B3α‖x‖1 .

Moreover, our choice of N in (13) was intended to apply Theorem 1.4: thus, there
exist two strictly positive constants A and B such that

∀a ∈ B1(0, α‖x‖1), ∀b ∈ B1(x,α‖x‖1)

Pp(N)

(
a ↔ b,D(a, b) >

1 + 3α

1 + 2α
‖a − b‖1

)
≤ Ae−B‖b−a‖1 .
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Thus we obtain

PRε,N (Gc)

≤ 2A3e
−B3α‖x‖1 + (Cα‖x‖1)

2dAe−B(1−2α)‖x‖1

≤ 2A3e
−B3α‖x‖1/NM + (

Cα(‖x‖1/NM + 1)
)2d

Ae−B(1−2α)‖x‖1/NM,

where C is a constant depending only on the dimension of the grid Zd .
So, with a probability tending to 1 exponentially fast with ‖x‖1, there exists

a path in the macroscopic percolation from a point in the set A(0, α‖x‖1) to a
point in the set A(x,α‖x‖1) which uses only edges e such that G

N,r̂
e holds and

whose length is smaller or equal to (1 + 3α)‖x‖1. This implies the existence of a
microscopic open path from some microscopic vertex S ∈ NLMr̂A(0, α‖x‖1) +
B1(0,

√
N) to some microscopic vertex T ∈ NLMr̂A(x,α‖x‖1) + B1(0,

√
N),

and whose length, by Lemma 3.3, is smaller than (1 + 3α)‖x‖1(1 + η)NMµ(r̂) ≤
(1 + 3α)(1 + η)2‖x‖1µ(x̂) by the choice of r̂ in (12) and the definition (15) of x.

Step 4. It remains now to link the ends S and T of this microscopic path to 0
and x respectively, and to prove that with high probability, these links are very
short.

Thanks to the definition of the annuli and to equations (16) and (14), one has

3

8
Cdα‖x‖1 ≤ Cdα‖x‖1

2
− √

N ≤ ‖S‖1 ≤ α‖x‖1 + √
N ≤ 9

8
α‖x‖1,

3

8
Cdα‖x‖1 ≤ Cdα‖x‖1

2
− √

N ≤ ‖T − ‖x‖1r̂‖1 ≤ α‖x‖1 + √
N ≤ 9

8
α‖x‖1.

It follows that the distance between S and T is at least

‖x‖1 − 2
(9

8α‖x‖1
)≥ (

1 − 9
4α
)‖x‖1.

So, by equation (3), we have

Pp

(
S ↔ T , |C(S)| < +∞)
≤ ∑

(3/8)Cdα‖x‖1≤‖s‖1≤(9/8)α‖x‖1

Pp

(
s ↔ ∂B

(
s,
(
1 − 9

4α
)‖x‖1

)
, |C(s)| < +∞)

≤ (
1 + 2 × 9

8α‖x‖1
)d

A2e
−B2(1−(9/4)α)‖x‖1 .

So with a probability tending to 1 exponentially fast with ‖x‖1, S and T belong to
the infinite cluster. Now,

Pp

(
S ↔ 0,D(0, S) ≥ η‖x‖1

)
≤ ∑

(3/8)Cdα‖x‖1≤‖s‖1≤(9/8)α‖x‖1

Pp

(
0 ↔ s,D(0, s) ≥ η‖x‖1

)

≤ ∑
(3/8)Cdα‖x‖1≤‖s‖1≤(9/8)α‖x‖1

Pp

(
0 ↔ s,D(0, s) ≥ ρ‖s‖1

)
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≤ ∑
(3/8)Cdα‖x‖1≤‖s‖1≤(9/8)α‖x‖1

A1e
−B1‖s‖1

≤ (
1 + 2 × 9

8α‖x‖1
)d

A1e
−B1(3/8)Cdα‖x‖1 .

The second inequality is due to the choice (10) for η, the third to the result of Antal
and Pisztora (2). We have

‖x − T ‖1 ≤ ∥∥x − ‖x‖1r̂
∥∥

1 + ∥∥‖x‖1r̂ − T
∥∥

1

≤
(

Cd

3
+ 9

8

)
α‖x‖1 ≤ 2α‖x‖1 = η

ρ
‖x‖1,

and thus, similarly,

Pp

(
T ↔ x,D(x,T ) ≥ η‖x‖1

)
≤ Pp

(
T ↔ x,D(x,T ) ≥ ρ‖x − T ‖1

)
≤ ∑

(3/8)Cdα‖x‖1≤‖t−‖x‖1 r̂‖1≤(9/8)α‖x‖1

Pp

(
x ↔ t,D(x, t) ≥ ρ‖x − t‖1

)

≤ ∑
(3/8)Cdα‖x‖1≤‖t−‖x‖1 r̂‖1≤(9/8)α‖x‖1

A1e
−B1‖x−t‖1

≤ (
1 + 2 × 9

8α‖x‖1
)d

A1e
−B1(1/24)Cdα‖x‖1,

where the last inequality follows from the estimate

‖x − t‖1 ≥ ∥∥‖x‖1r̂ − t
∥∥

1 − ∥∥x − ‖x‖1r̂
∥∥

1 ≥ Cd

24
α‖x‖1.

Denote by G̃ the event G seen not as an event in the macroscopic percolation,
but as a set of configurations of the microscopic percolation. Note that the event

G̃ ∩ {|C(S)| = +∞} ∩ {S ↔ 0,D(0, S) ≤ η‖x‖1} ∩ {T ↔ x,D(x,T ) ≤ η‖x‖1}
is included in{

0 ↔ x,D(0, x) ≤
((

1 + 3η

2ρ

)
(1 + η)2µ(x̂) + 2η

)
‖x‖1

}
.

Thus, using equation (10) for η, and collecting all our previous estimates, we ob-
tain

Pp

(
0 ↔ x,D(0, x) > µ(x̂)(1 + ε)‖x‖1

)
≤ Pp

(
0 ↔ x,D(0, x) >

((
1 + 3η

2ρ

)
(1 + η)2µ(x̂) + 2η

)
‖x‖1

)

≤ Pp(G̃c) + Pp

(
S ↔ T , |C(S)| < +∞)+ Pp

(
S ↔ 0,D(0, S) ≥ η‖x‖1

)
+ Pp

(
T ↔ x,D(x,T ) ≥ η‖x‖1

)
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≤ 2Ae−(B/(NM))α‖x‖1 +
(

1 + Cα

NM
‖x‖1

)2d

Ae−(B/(NM))(1−2α)‖x‖1

+
(

1 + 2 × 9

8
α‖x‖1

)d

A2e
−B2(1−(9/4)α)‖x‖1

+ 2
(

1 + 2 × 9

8
α‖x‖1

)d

A1e
−B1α‖x‖1/2,

which ends the proof of the theorem.

4. Lower large deviations. The aim of this section is to prove the lower large
deviations estimate for the chemical distance given by Theorem 1.6. First, we in-
troduce some definitions linked to the convexity of the asymptotic shape Bµ(0,1).
Then, in Lemma 4.2, we study the minimal number of open edges needed to reach
a given hyperplane at distance r of the origin, and, in Lemma 4.3, the minimal
number of open edges needed to cross a parallelepipedic box. Finally, we prove
the lower large deviations results.

4.1. Definitions. For each y ∈ Rd\{0}, the ball Bµ(0,µ(y)) is a convex set,
so one can find a vector ny ∈ S2 such that the linear form φy defined by

∀x ∈ Rd φy(x) = 〈ny, x〉
satisfies to φy(y) ≥ 0 and to

∀x ∈ Rd (
µ(x) ≤ µ(y)

) �⇒ (
φy(x) ≤ φy(y)

)
.(17)

Note that the choice of ny is not necessarily unique. Using the fact that the
norms µ and ‖ · ‖2 are homogeneous, it is possible to choose the vector ny in such
a way that for each y ∈ Rd\{0} and each r > 0, one has nry = ny . In the following,
we associate to every y ∈ Rd\{0} a unique ny satisfying these properties. We also
introduce the hyperplane Hy = kerφy = (ny)

⊥: geometrically speaking, y +Hy is
a support hyperplane of the convex set Bµ(0,µ(y)) at the point y.

For y ∈ Rd\{0} and r ∈ R+\{0}, note

S0
y = {x ∈ Rd :φy(x) < φy(y)} and S∞

y = {x ∈ Rd :φy(x) > φy(y)}.
Then S0

y—respectively, S∞
y —is the open half-space, delimited by the support hy-

perplane y + Hy of Bµ(0,µ(y)) at the point y, containing—respectively, not
containing—the origin (see Figure 2).

The aim of the next lemma is to obtain, uniformly in y ∈ S2, a bound on the
norm of points in the half-plane S∞

ry :

LEMMA 4.1. There exist two constants cd, c′
d > 0 such that for every y ∈ S2,

we have:
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FIG. 2. Support hyperplane of the convex set Bµ(0,µ(y)) at the point y: the hyperplane Hy may
not be orthogonal to y.

• 〈y,ny〉 ≥ cd .
• For every r > 0, inf{‖z‖2, z ∈ S∞

ry } ≥ cdr .
• For every r > 0, inf{‖z‖1, z ∈ S∞

ry } ≥ c′
dr .

PROOF. As µ is a norm, it is equivalent to ‖ · ‖2, so there exists K1,K2 ∈
(0,+∞) such that

∀x ∈ Rd K1‖x‖2 ≤ µ(x) ≤ K2‖x‖2.

Note cd = K1
K2

. Choose y ∈ S2 and set x = cdny . We have µ(x) ≤ K2‖x‖2 =
K2cd = K1 ≤ µ(y). It follows that φy(x) ≤ φy(y), or equivalently

cd = 〈x,ny〉 ≤ 〈y,ny〉.
Now, let z ∈ S∞

ry : we have

‖z‖2 ≥ 〈z,nry〉 = φry(z) > φry(ry) = 〈ry, nry〉 = r〈y,ny〉 ≥ cdr.

The last point is clear by the norm equivalence. �

4.2. Passage-time from a point to a hyperplane. Choose a direction y ∈ S2.
Define then for r > 0

by(r) = inf{D(0, z) : z ∈ S∞
ry }.

This quantity is analogous to the usual passage time between the origin and a
hyperplane orthogonal to the first-coordinate axis at distance r of the origin. In
this special case, y = (1,0, . . . ,0), and thanks to the symmetries of the grid, the
direction of the support hyperplane of Bµ(0,µ(y)) at the point y is orthogonal
to y. But in a general direction y, the relevant hyperplane for the growth of the
set Bt of wet vertices at time t in the direction y is Hy , which does not need to
be orthogonal to y (see Figure 2). As in the paper by Cox and Durrett [4], we
can study this quantity by using the asymptotic shape result given in [7]: for every
p > pc(d),

lim
t→+∞D

(
Bt

t
,Bµ(0,1)

)
= 0, Pp a.s.(18)

and obtain the following lemma:
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LEMMA 4.2.

sup
y∈S2

∣∣∣∣by(r)

r
− µ(y)

∣∣∣∣→ 0, Pp a.s.

PROOF. As we work under Pp , we restrict ourselves to the event {0 ↔ ∞}.
Let ε > 0. By the asymptotic shape result (18), there Pp a.s. exists a random T

such that

∀t ≥ T
Bt

t
⊂ (1 + ε)Bµ and Bµ ⊂ Bt

t
+ Bµ(0, ε).(19)

For every r > 0, for every y ∈ S2, there exists a point z
y
r ∈ S∞

ry such that
by(r) = D(0, z

y
r ) ≥ ‖zy

r ‖1. Note that, by the previous lemma, we have ‖zy
r ‖1 ≥

inf{‖z‖1 : z ∈ S∞
ry } ≥ c′

dr , and thus, as soon as c′
dr ≥ T , we have

∀y ∈ S2
z
y
r

by(r)
∈ Bby(r)

by(r)
⊂ (1 + ε)Bµ.

This implies, by definition of Hy and by convexity of Bµ, that 1
by(r)

〈zy
r ,ny〉

〈y,ny〉 y ∈
(1 + ε)Bµ and thus Pp a.s., for all r large enough,

∀y ∈ S2
r

by(r)
≤ 1 + ε

µ(y)
.

On the other hand, by definition of by(r), we have S∞
ry ∩ Bby(r)−1 = ∅, or, in

other words, Bby(r)−1 ⊂ S0
ry . By dilatation, we obtain

Bby(r)−1

by(r) − 1
⊂ S0

ry/(by(r)−1),

and by definition of Hy , this leads to:

Bby(r)−1

by(r) − 1
+ Bµ(0, ε) ⊂ S0

(r/(by(r)−1)+ε)y.

Using (19), we obtain, as soon as c′
dr − 1 ≥ T ,

∀y ∈ S2 Bµ ⊂ Bby(r)−1

by(r) − 1
+ Bµ(0, ε),

and thus Bµ ∩ S∞
(r/(by(r)−1)+ε)y = ∅, leading to

µ

((
r

by(r) − 1
+ ε

)
y

)
=
(

r

by(r) − 1
+ ε

)
µ(y) > 1.

Finally, we get Pp a.s., for all r large enough,

∀y ∈ S2
r

by(r) − 1
≥ 1

µ(y)
− ε,

which ends the proof. �
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4.3. Crossings of parallelepipedic boxes. We want first to find d directions
(y1 = y, y2, . . . , yd) with yi ∈ S2 such that the asymptotic time constants are the
same along all these directions and such that the directions of the support hyper-
planes of Bµ in these directions are linearly independent.

For y ∈ S2, consider the vector ny ∈ S2 orthogonal to a support hyperplane
of Bµ in the direction y as defined previously, and the isometries (gny,2, . . . ,

gny,d) ∈ (O(Zd))d−1 given by equation (6) in Lemma 2.2 and set

(n1, n2, . . . , nd) = (
ny, gny,2(ny), . . . , gny,d(ny)

)
,

(y1, y2, . . . , yd) = (
y,gny,2(y), . . . , gny,d(y)

)
.

For k ∈ Zd , α ∈ (R∗+)d , we define boxes adapted to study the travel times in the
directions y1, y2, . . . , yd ; they are analogous to the rectangular boxes introduced
to estimate the travel time in the first-coordinate axis in classical first-passage per-
colation.

T(y)(k,α) =
{
v ∈ Zd : ∀m ∈ {1, . . . , d}km ≤ 〈v,nm〉

〈ym,nm〉 < km + αm

}
,

∂m−T(y)(k,α) =




v ∈ Zd\T(y)(k,α) :

•∀j ∈ {1, . . . , d}\{m}kj ≤ 〈v,nj 〉
〈yj , nj 〉 < kj + αj

• 〈v,nm〉
〈ym,nm〉 < km

•∃w ∈ T(y)(k,α)‖w − v‖1 = 1




,

∂m+T(y)(k,α) =




v ∈ Zd\T(y)(k,α) :
•∀j ∈ {1, . . . , d}\{m} kj ≤ 〈v,nj 〉

〈yj , nj 〉 < kj + αj

• 〈v,nm〉
〈ym,nm〉 ≥ km + αm

•∃w ∈ T(y)(k,α)‖w − v‖1 = 1




.

We can now define, using the same terminology as in first-passage percolation, the
crossing time of the box T(y)(k,α) in the mth direction:

tm(y)(k,α) = inf




|γ |, where γ is an open path from
a point in ∂m−T(y)(k,α) to a point in ∂m+T(y)(k,α)

included but its ends in T(y)(k,α)


 .

The next lemma gives a convergence in probability, uniformly in the direction y,
of these minimal crossing times of boxes:

LEMMA 4.3. Let α = (α1, . . . , αd) ∈ (0,+∞)d . Then for every ε > 0 we have

∀m ∈ {1, . . . , d} lim
r→+∞ sup

k∈Zd

sup
y∈S2

Pp

(
tm(y)(k, rα) ≤ (

µ(y) − ε
)
rαm

)= 0.
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PROOF. Fix α = (α1, . . . , αd) ∈ (0,+∞)d and ε > 0. Choose

η = Cdε

6ρd5/2

(
min

1≤m≤d
αm

)
> 0,(20)

where Cd is given in Lemma 2.2 and ρ is the constant introduced by Antal and
Pisztora—see equation (2); set τ = ηr .

Choose k ∈ Zd and y ∈ S2.
We introduce the following partition of Zd into boxes of size τ , which tends

to infinity when r goes to infinity, but will still be small when compared to r : for
every x ∈ Zd , and every A ⊂ Zd

R(y)(x) =
{
v ∈ Zd : ∀m ∈ {1, . . . , d}xmτ ≤ 〈v,nm〉

〈ym,nm〉 < (xm + 1)τ

}
,

R(y)(A) = {
x ∈ Zd : R(y)(x) ∩ A �= ∅

}
.

Then R(y)(∂
m−T(y)(k, rα)), which plays the role of an approximation at a larger

scale of ∂m−T(y)(k, rα), is ∗-connected and a simple estimation leads to

∣∣R(y)

(
∂m−T(y)(k, rα)

)∣∣≤ (
2 + 1

ηr

) ∏
1≤j≤d

j �=m

(
2 + αj

η

)
.

The partition into boxes with size τ was introduced to obtain this estimate:
while |∂m−T(y)(k, rα)| is of order rd−1, the cardinal |R(y)(∂

m−T(y)(k, rα))| of its
approximation with large boxes remains bounded when r goes to infinity. If
v ∈ ∂m−T(y)(k, rα), then there exists a unique xv ∈ R(y)(∂

m−T(y)(k, rα)) such that
v ∈ R(y)(xv). We define

W(v) = {
x ∈ R(y)

(
∂m−T(y)(k, rα)

)
:‖x − xv‖∞ = 2

} �= ∅.

If R(y)(x) ∩ C∞ �= ∅, then define c(x) as the point in R(y)(x) ∩ C∞ which is
the closest to τ(x + (1/2, . . . ,1/2)) (use the lexicographic order if necessary).
Remember that the box R(y)(x) has size τ , which tends to infinity with r , and thus
as r goes to infinity, we expect the probability that R(y)(x) ∩ C∞ �= ∅ to go to 1.

Now, in the following inequality, we approximate the event {tm(y)(k, rα) ≤
(µ(y) − ε)rαm} by the event in (21), and the three last terms correspond to the
difference between them, and are expected to be small:

Pp

(
tm(y)(k, rα) ≤ (

µ(y) − ε
)
rαm

)
(21)

≤ Pp




•∀x ∈ R(y)

(
∂m−T(y)(k, rα)

)
R(y)(x) ∩ C∞ �= ∅

•∀v ∈ ∂m−T(y)(k, rα)
(
v ↔ ∂m+T(y)(k, rα) ⇒ v ↔ ∞)

•∃v ∈ ∂m−T(y)(k, rα) such that
∃w ∈ ∂m+T(y)(k, rα)D(v,w) ≤ (

µ(y) − ε
)
rαm

∃x ∈ W(v)D
(
v, c(x)

)
< ρ‖v − c(x)‖1
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+ Pp

(∃x ∈ R(y)

(
∂m−T(y)(k, rα)

)
R(y)(x) ∩ C∞ = ∅

)
(22)

+ Pp

(∃v ∈ ∂m−T(y)(k, rα) v ↔ ∂m+T(y)(k, rα), v �↔ ∞)
(23)

+ Pp


•∀x ∈ R(y)

(
∂m−T(y)(k, rα)

)
R(y)(x) ∩ C∞ �= ∅

•∃v ∈ ∂m−T(y)(k, rα)∀x ∈ W(v)

D
(
v, c(x)

)≥ ρ‖v − c(x)‖1


 .(24)

Let us estimate the three error terms first.
Estimate for (22). Let x ∈ Zd , and let us prove that R(y)(x) contains a ball

for the norm ‖ · ‖2 with radius proportional to τ . Let us introduce first the point
ax ∈ Rd , which represents the center of R(y)(x), such that

∀m ∈ {1, . . . , d} 〈ax, nm〉
〈ym,nm〉 =

(
xm + 1

2

)
τ.

Then we have, with cd given by Lemma 4.1,

R(y)(x) =
{
v ∈ Zd : ∀m ∈ {1, . . . , d} − τ

2
≤ 〈x − ax, nm〉

〈ym,nm〉 <
τ

2

}

⊃
{
v ∈ Zd : ‖x − ax‖2 ≤ τcd

2

}
.

Thus the box R(y)(x) contains the ball B2(ax, τcd/2); this radius does not depend
on the direction y.

Using then equation (4), we get

(22) ≤ ∣∣R(y)

(
∂m−T(y)(k, rα)

)∣∣ sup
z∈Zd

Pp

(
B2(z, τcd/2) ∩ C∞ = ∅

)

≤
(

2 + 1

ηr

) ∏
1≤j≤d

j �=m

(
2 + αj

η

)
A3 exp

(
−B3cdηr

2
√

d

)
,

which tends to 0 when r goes to infinity, uniformly in the direction y ∈ S2.
Estimate for (23). Note that if v ∈ ∂m−T(y)(k, rα) and w ∈ ∂m+T(y)(k, rα), then,

by definition of the box, we have∣∣∣∣〈w − v,nm〉
〈ym,nm〉

∣∣∣∣≥ rαm.

By Lemma 4.1, we have√
d‖w − v‖1 ≥ ‖w − v‖2 ≥ |〈w − v,nm〉| ≥ cdrαm,

and thus, using translation invariance and equation (3),

(23) ≤ ∣∣∂m−T(y)(k, rα)
∣∣Pp

(
|C(0)| ≥ cd√

d
rαm,0 �↔ ∞

)

≤ Kαrd−1A2 exp
(
−B2

cd√
d

rαm

)
,
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which tends to 0 when r goes to infinity, uniformly in the direction y ∈ S2. (Kα is
a constant depending only on the dimension and α.)

Estimate for (24). Let v ∈ ∂m−T(y)(k, rα) and x ∈ W(v) such that R(y)(x) ∩
C∞ �= ∅. Then by construction,

max
1≤m≤d

∣∣∣∣〈v − c(x), nm〉
〈ym,nm〉

∣∣∣∣≥ τ.

But then, using Lemma 4.1, we obtain

‖v − c(x)‖1 ≥ 1√
d

‖v − c(x)‖2 ≥ 1√
d

max
1≤m≤d

|〈v − c(x), nm〉|

≥ cd√
d

max
1≤m≤d

∣∣∣∣〈v − c(x), nm〉
〈ym,nm〉

∣∣∣∣≥ cdτ√
d

.

Using Antal and Pisztora’s result (2), one has the following bound:

(24) ≤ ∣∣∂m−T(y)(k, rα)
∣∣× 5d−12dA1 exp

(
−B1

cdηr√
d

)
,

which tends to 0 when r goes to infinity, uniformly in the direction y ∈ S2.
Estimate for (21). Let v ∈ ∂m−T(y)(k, rα) and x ∈ W(v) such that R(y)(x) ∩

C∞ �= ∅. Then by construction,

max
1≤m≤d

∣∣∣∣〈v − c(x), nm〉
〈ym,nm〉

∣∣∣∣≤ 3τ.

But then, using equation (6) in Lemma 2.2, we have

‖v − c(x)‖1 ≤ √
d‖v − c(x)‖2 ≤ d2

Cd

‖v − c(x)‖(ni),2

≤ d5/2

Cd

max
1≤m≤d

|〈v − c(x), nm〉|

≤ d5/2

Cd

max
1≤m≤d

∣∣∣∣〈v − c(x), nm〉
〈ym,nm〉

∣∣∣∣
≤ 3d5/2τ

Cd

.

We obtain

(21) ≤ Pp




∃x ∈ R(y)

(
∂m−T(y)(k, rα)

)
such that

•R(y)(x) ∩ C∞ �= ∅,

•∃w ∈ ∂m+T(y)(k, rα)

D
(
c(x),w

)
<

3ρd5/2ηr

Cd

+ (
µ(y) − ε

)
rαm


 .
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By the choice (20) we made for η, we obtain that

(21) ≤ ∣∣R(y)

(
∂m−T(y)(k, rα)

)∣∣
× sup

x∈Zd

Pp


•R(y)(x) ∩ C∞ �= ∅,

•∃y ∈ ∂m+T(y)(k, rα), D
(
c(x), y

)≤ (
µ(y) − ε

2

)
rαm




≤
(

2 + 1

ηr

) ∏
1≤j≤d

j �=m

(
2 + αj

η

)
Pp

(
bym(αmr) ≤

(
µ(y) − ε

2

)
αmr

)

which tends to 0 when r goes to ∞ by Lemma 4.2. Note that this convergence is
uniform in k ∈ Zd and y ∈ S2. �

4.4. Lower large deviations: proof of Theorem 1.6. We essentially follow the
main lines of the proof in the classical case by Grimmett and Kesten [8]: A “too
short” path should cross “many” boxes in a “too short” time, and by the previous
result and a counting argument, this probability can be made exponentially small.
The two main difficulties are to deal with geometric problems due to the fact that
we want large deviations not only along the coordinate axes, but in all directions
and the uniformity we require in this direction.

Step 1. Definition of boxes adapted to direction y.
Choose M and N large enough, that will be fixed later.
For k = (k1, . . . , kd) ∈ Zd , we define

S(y)(k) =
{
v ∈ Zd : ∀m ∈ {1, . . . , d}Nkm ≤ 〈v,nm〉

〈ym,nm〉 < N(km + 1)

}
,

T(y)(k) =



v ∈ Zd :∀m ∈ {1, . . . , d}
Nkm − M ≤ 〈v,nm〉

〈ym,nm〉 < N(km + 1) + M


 .

The S(y)(k)’s are large “twisted square” boxes, adapted to the studied direction of
progression y and its conjugates (y2, . . . , yd), that induce a partition of Zd , and
the T(y)(k)’s are still much larger boxes centered in the S(y)(k)’s.

In T(y)(k), the small box S(y)(k) is surrounded by 2d boxes of the type (1 ≤
m ≤ d):

B+
(y),m(k) =




v ∈ Zd :

∀j �= mNkj − M ≤ 〈v,nj 〉
〈yj , nj 〉 < N(kj + 1) + M,

N(km + 1) ≤ 〈v,nm〉
〈ym,nm〉 < N(km + 1) + M
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B−
(y),m(k) =




v ∈ Zd :

∀j �= mNkj − M ≤ 〈v,nj 〉
〈yj , nj 〉 < N(kj + 1) + M,

Nkm − M ≤ 〈v,nm〉
〈ym,nm〉 < Nkm




.

We define the inside border and the outside border of the box B−
(y),m(k), relatively

to T(y)(k):

∂inB
−
(y),m(k) = {

v ∈ T (k)\B−
(y),m(k) :∃w ∈ B−

(y),m(k)‖v − w‖1 = 1
}
,

∂outB
−
(y),m(k) =

{
v ∈ T(y)(k1, . . . , km−1, km − 1, km+1, . . . , kd)\T(y)(k) :

∃w ∈ B−
(y),m(k)‖v − w‖1 = 1

}
,

and the borders of the other boxes can be defined in the obvious analogous manner.
The point is that a path, visiting S(y)(k) and exiting from T(y)(k), has to cross

one of these 2d boxes surrounding S(y)(k) in T(y)(k) from a point in its inside
border to a point in its outside border, say B+

(y),m(k), for instance. And, roughly
speaking, the fastest way to cross it is to follow the ym direction, and this should
take an amount of steps of order µ(ym)M = µ(y)M if M is large. We can easily
estimate the size of borders of boxes:

LEMMA 4.4. There exist a strictly positive constant Kd depending only on the
dimension d and not on y ∈ S2 such that for every k ∈ Zd , for every m ∈ {1, . . . , d},

1

Kd

(N + 2M)d−1 ≤ ∣∣∂inB
+
(y),m(k)

∣∣ ≤ Kd(N + 2M)d−1,

1

Kd

(N + 2M)d−1 ≤ ∣∣∂outB
+
(y),m(k)

∣∣≤ Kd(N + 2M)d−1.

The same is also true for the borders of B−
(y),m(k)’s.

Step 2. Construction of crossings.
The construction is exactly the same as the one in [8]. We thus only give the

way to adapt it.
Let r > 0 large enough and let γ = (v(0), . . . , v(ν)) be a path from 0 to a point

in S∞
ry . We associate to γ the following two sequences. First set k(0) = 0 and

a(0) = 0. Let then v(a(1)) be the first vertex along γ to be outside T(y)(k(0)), and
let k(1) be the coordinates of the small box of type S containing v(a(1)): v(a(1)) ∈
S(y)(k(1)), and build the two sequences recursively, to obtain (a(1), . . . , a(τ (γ )))

and (k(0), . . . , k(τ (γ ))) such that:

1. 0 = a(0) < a(1) < · · · < a(τ(γ )) ≤ ν,
2. v(a(i)) ∈ S(y)(k(i)),
3. a(i + 1) is the smallest integer a larger than a(i) such that v(a) /∈ T(y)(k(i)).
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The final terms satisfy

∀a(τ(γ )) ≤ j ≤ ν v(j) ∈ T(y)(k(τ (γ ))).

Note that the portion γ (i) of γ between v(a(i −1)) and v(a(i)) has to cross one of
the 2d boxes of type B(y),m(k(i − 1)) surrounding S(y)(k(i − 1)) in T(y)(k(i − 1))

from a point in its inside border to a point in its outside border. We are interested
in these crossings and the amount of steps they use.

But first, by the process of loop removal described in [8], remove the double
points from � = (k(0), . . . , k(τ (γ ))), and obtain

�̃ = (
l(0), . . . , l(σ (γ ))

)
,

where l(a) = k(ja) and 0 < j0 < · · · < jσ(γ ) ≤ τ(γ ). Note that although we can
have jσ(γ ) < τ(γ ), it is always true that k(jσ(γ )) = k(τ (γ )). By construction,

∀m ∈ {1, . . . , d} ∀j ∈ {0, . . . , τ (γ ) − 1}
∣∣∣∣〈nym, k(j + 1) − k(j)〉

〈nym, ym〉
∣∣∣∣≤ M

N
+ 1,

and this property is preserved by the loop removal process in the following sense:

∀m ∈ {1, . . . , d} ∀j ∈ {0, . . . , σ (γ ) − 1}
∣∣∣∣〈nym, l(j + 1) − l(j)〉

〈nym, ym〉
∣∣∣∣≤ M

N
+ 1.

Step 3. Coloring of crossings.
Consider the portion γ (i) of γ between v(a(i − 1)) and v(a(i)), and define:

L(i) = max
m∈{1,...,d}

∣∣∣∣〈nym, v(a(i)) − v(a(i − 1))〉
〈nym, ym〉

∣∣∣∣.
By construction, M ≤ L(i) ≤ M +N for 1 ≤ i ≤ τ(i). Now, for i ∈ {1, . . . , σ (γ )},
consider the portion γ (ji) between the two boxes S(y)(k(ji − 1)) and S(y)(k(ji))

and give to the vector l(i) = k(ji) the color white if

γ (ji) is open and |γ (ji)| ≤ (
µ(y) − 2ε

)
L(ji),

and in black otherwise. Denote by w(γ ) the number of white points in the sequence
(l(1), . . . , l(σ (γ ))) of crossings associated to γ . The next lemma corresponds to
Lemma 3.5 in the paper by Grimmett and Kesten [8]:

LEMMA 4.5. Suppose that ε, r , M and N satisfy the following:

1. ε is small: 0 < ε < min{µ(z) : z ∈ S2},
2. M/N is large: ∀z ∈ S2 M(µ(z) − 3ε) ≥ (M + N)(µ(z) − 4ε),
3. r is large: ∀z ∈ S2 rε ≥ (M + 2N)(µ(z) − 4ε).

Then for any y ∈ S2, an open path γ , traveling from 0 to S∞
ry and whose length |γ |

is less or equal to r(µ(y) − 5ε), satisfies

w(γ ) ≥ εσ

2µ(e1)
and σ(γ ) ≥ r

M + N
− 1.
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PROOF. The proof for a fixed y ∈ S2 is exactly as in [8]. The only difference is
the uniformity in y ∈ S2, that can be obtained because µ is a norm and is bounded
away from 0 and bounded away from infinity on the compact set S2. �

Note that the event {l(i) is white} in contained in the event

E(y),i =



a vertex in S(y)(k(ji)) is joined to a vertex
outside T(y)(k(ji)) by a path using
less than (M + N)(µ(y) − 2ε) steps


 .

To conclude the proof by a counting argument, as these event are only locally
dependent, it only remains to prove the following lemma:

LEMMA 4.6. Let 0 < ε < µinf = min{µ(z) : z ∈ S1}. Then

p(M,N, ε) = sup
k∈Zd

y∈S2

Pp

(∃v ∈ S(y)(k), ∃w /∈ T(y)(k),

v ↔ w,D(v,w) ≤ (M + N)
(
µ(y) − 2ε

))

goes to 0 when M and N go to infinity, provided that M ≥ 2N
ε

supx∈S2
µ(x).

PROOF. Note that M ≥ 2N
ε

supx∈S2
µ(x) implies (M + N)(µ(y) − 2ε) ≤

M(µ(y) − ε) and use Lemma 4.3 on the time needed to cross a box:

p(M,N, ε) ≤ 2d sup
k∈Zd

sup
y∈S2

sup
1≤m≤d

Pp

(
tm(y)(k,αr) ≤ (

µ(y) − ε
)
αmr

)
. �

5. Large deviations for the set of wet vertices: Proof of Theorem 1.7. We
can now prove Theorem 1.7, which follows quite naturally from the uniform esti-
mates in Theorem 1.3 and Theorem 1.6.

Let p > pc(d) and ε > 0. Let us note first that, for every t > 0,

Pp

(
D

(
Bt

t
,Bµ(0,1)

)
≥ ε

)
≤ Pp

(
Bt

t
�⊂ Bµ(0,1 + ε)

)

+ Pp

(
Bµ(0,1) �⊂ Bt

t
+ Bµ(0, ε)

)
.

Let us now estimate each term separately.
Step 1. In the first term, we estimate the probability that the random set Bt grows

too fast, which corresponds to the existence of a point x whose distance D(0, x)

from the origin is shorter than expected. Thus

Pp

(
Bt

t
�⊂ Bµ(0,1 + ε)

)

= Pp

(
∃x ∈ Zd D(0, x) ≤ t, µ

(
x

t

)
> 1 + ε

)
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= Pp

(
∃x ∈ Zd D(0, x) <

1

1 + ε
µ(x), µ(x) > (1 + ε)t

)

≤
∞∑

k=(1+ε)t/µ(e1)

∑
‖x‖1=k

Pp

(
D(0, x) <

1

1 + ε
µ(x)

)

≤
∞∑

k=(1+ε)t/µ(e1)

∑
‖x‖1=k

Ae−B‖x‖1 with Theorem 1.6

≤
∞∑

k=(1+ε)t/µ(e1)

Ckd−1Ae−Bk ≤ A′tde−Bt .

Step 2. In the second term, we estimate two types of discrepancies between Bt/t

and Bµ: on the one hand the probability that the random set Bt grows too slowly,
which corresponds to the existence of a point x whose distance D(0, x) from the
origin is larger than expected and on the other hand, the probability that the random
set Bt contains abnormally large holes. By definition,

Pp

(
Bµ(0,1) �⊂ Bt

t
+ Bµ(0, ε)

)

= Pp

(∃x ∈ Rd µ(x) ≤ t, Bµ(x, εt) ∩ Bt = ∅
)
.

Note that, as soon as t is large enough, one has

∀x ∈ Bµ(0, t) ∃y ∈ Zd such that

3ε

4
t ≤ µ(y) ≤

(
1 − 3ε

4

)
t and Bµ

(
y,

εt

8

)
⊂ Bµ(x, εt),

and so we obtain

Pp

(
Bµ(0,1) �⊂ Bt

t
+ Bµ(0, ε)

)

≤ Pp

(
∃y ∈ Zd 3ε

4
t ≤ µ(y) ≤

(
1 − 3ε

4

)
t,Bµ

(
y,

εt

8

)
∩ Bt = ∅

)

≤ ∑
(3ε/4)t≤µ(y)≤(1−3ε/4)t

Pp

(
Bµ

(
y,

εt

8

)
∩ Bt = ∅

)
.

If the event Bµ(y, εt
8 )∩Bt = ∅ occurs, then either Bµ(y, εt

8 ) contains no point of
the infinite cluster, or it contains a point of the infinite cluster whose distance from
the origin is larger than t :

Pp

(
Bµ

(
y,

εt

8

)
∩ Bt = ∅

)
≤ Pp

(
Bµ

(
y,

εt

8

)
∩ C∞ = ∅

)

+ Pp

(
∃z ∈ Bµ

(
y,

εt

8

)
t < D(0, z) < ∞

)
.



LARGE DEVIATIONS FOR THE CHEMICAL DISTANCE 865

By equation (4), the first term is less than A3 exp(− B3εt
8µ(e1)

). Note also that if z ∈
Bµ(y, εt

8 ), then µ(z) ≤ µ(y) + εt
8 ≤ (1 − 5ε

8 )t . Thus

Pp

(
∃z ∈ Bµ

(
y,

εt

8

)
t < D(0, z) < ∞

)

≤ ∑
z∈Bµ(y,εt/8)

Pp

((
1 − 5ε

8

)−1

µ(z) < D(0, z) < ∞
)
.

For such z, we have µ(z) ≥ µ(y) − εt
8 ≥ 5ε

8 t , and by Theorem 1.3, there exist two
positive absolute constants A,B such that

Pp

(
∃z ∈ Bµ

(
y,

εt

8

)
t < D(0, z) < ∞

)
≤ A(εt)de−Bεt .

And we finally obtain

Pp

(
Bµ(0,1) �⊂ Bt

t
+ Bµ(0, ε)

)

≤ ∑
(3ε/4)t≤µ(y)≤(1−3ε/4)t

A3 exp
(
− B3εt

8µ(e1)

)
+ A(εt)de−Bεt

≤ Ctd
(
A3 exp

(
− B3εt

8µ(e1)

)
+ A(εt)de−Bεt

)
,

which ends the proof of the theorem.
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