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FILTRATION SHRINKAGE BY LEVEL-CROSSINGS
OF A DIFFUSION

BY A. DENIZ SEZER

York University

We develop the mathematics of a filtration shrinkage model that has re-
cently been considered in the credit risk modeling literature. Given a finite
collection of points x1 < · · · < xN in R, the region indicator function R(x)

assumes the value i if x ∈ (xi−1, xi ]. We take F to be the filtration generated
by (R(Xt ))t≥0, where X is a diffusion with infinitesimal generator A. We
prove a martingale representation theorem for F in terms of stochastic inte-
grals with respect to N random measures whose compensators have a simple

form given in terms of certain Lévy measures F
j±
i , which are related to the

differential equation Au = λu.

1. Introduction. Let x1, . . . , xN be a finite collection of points in R, in in-
creasing order. These levels separate R into N + 1 regions, namely, (−∞, x1],
(x1, x2], . . . , (xN,∞). Let us put Ri = (xi, xi+1], i = 0, . . . , n−1, R0 = (−∞, x1]
and RN = (xN,∞). We define the region indicator function R(x) as

R(x) = i if x ∈ Ri.

Next, we consider a nonsingular diffusion X, with state space I , an interval
of R, and with infinitesimal generator A of the form

A = 1

2
a(x)

d2

dx2 + b(x)
d

dx
,

where a(x) is strictly positive and continuous and b(x) is locally integrable on I ,
acting on a domain of functions as described in [7, 10]. We assume that I either is
open or has absorbing boundary.

Assuming that the points x1, . . . , xN belong to the interior of I , we let F0 =
(F 0

t )t≥0 be the filtration generated by (R(Xt))t≥0. (We reserve the notation F for
a slightly larger filtration, which is right continuous and complete.)

F0 is a sub-filtration of the natural filtration of X and among the “filtration
shrinkage” models that have recently been considered in the credit risk literature
[5, 8, 15]. These models aim to represent the incomplete and dynamic information
about a process of interest as a sub-filtration of the natural filtration of the process,
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and are intended to fill in the gap between the so-called structural and reduced form
models for the default time [14]. In the credit risk context this particular model has
the following interpretation [15]. X represents the asset value of a company, and
the default happens when X reaches a default barrier, say, x1. The market cannot
observe X perfectly, and is informed by the company management when there are
significant changes in its economic standing, that is, when X reaches some other
thresholds, say, x2, . . . , xN .

The purpose of this paper is to lay out the mathematics of this model. More pre-
cisely, we would like to describe the martingales and totally inaccessible stopping
times of F0.

Our departure point is the Azéma’s martingale. Azéma [1] established a formula
for what is now known as the Azéma’s martingale: let B be a standard Brownian
motion and define a filtration A0

t = σ {sign(Bs); s ≤ t} and let A denote the com-
pleted filtration (At )t≥0. Let A denote the martingale At = E{Bt |At } and letting
gt = sup{s ≤ t :Bs = 0}, Azéma’s formula for this martingale is

At = sign (Bt )

√
π

2

√
t − gt .

Emery [6] has named this Azéma’s martingale and has proved many properties
of it and related martingales, including homogeneous chaos representation and a
fortiori martingale representation. (See [20] for an exposition and relevant back-
ground references.) There is, however, a treatment of a closely related theory estab-
lished much earlier, related to regenerative sets in Markov process theory. Loosely
speaking, a regenerative set is a homogeneous random set M ⊂ �×[0,∞) which
has a renewal property at stopping times whose graphs are contained in M . For
example, the zero set {(ω, t) :Bt(ω) = 0} of Brownian motion is a regenerative set
due to the strong Markov property. There is a classification of regenerative sets due
to [12]. According to this classification, the zero set of Brownian motion is of a
particular kind; for fixed ω, M(ω) is a perfect and closed set with no interior. (We
call these sets perfect regenerative sets.) We refer the reader to [12] for a precise
definition, general classification of regenerative sets.

In [12], Jacod and Mémin focus on an unbounded perfect regenerative set M ⊂
� × [0,∞). They define the fundamental process Ut(ω) = t − sup{s ≤ t, (ω, s) ∈
M}, and consider the random measure µ0 associated to the jumps of the process U .
Taking H = (Ht )t≥0 to be the smallest right continuous filtration which makes U

adapted, they provide the explicit form of the predictable compensator of µ0 with
respect to H and prove that µ0 has the martingale representation property for H;
that is, any martingale M adapted to H can be written as a stochastic integral with
respect to (µ0 − ν0). To use this to prove the martingale representation property
of Azéma’s martingale (by taking M to be the zero set of the Brownian motion)
requires minor modifications, since H does not give the same information as the
previously defined filtration A (because one does not know when the paths are
positive or negative, only when they are not zero). The key idea remains the same,
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however, that is, to make a time change of A using the inverse local time at zero,
resulting in a filtration Â which can be shown to be generated by a Poisson random
measure and, hence, to have martingale representation.

We build our results on the ideas of [12] because our setting can be thought
of as a generalization of theirs [if we have only one level, say, x1, then F0 is the
same as the filtration generated by (sign(Xs − x1))s≥0]. Analogously, we prove a
martingale representation theorem in terms of N random measures, µ1, . . . ,µN .
These random measures are the key objects; we construct them and find their com-
pensators using the technique of [12], [16] and [21], and the excursion theory of
Markov processes. We also give formulae to explicitly compute the compensators
in terms of the infinitesimal generator of the given diffusion. To do this, we use the
results of [10] and [19].

Organization of this paper is as follows. In Section 2 we review the relevant
results of excursion theory of Markov processes. In Section 3 we define the random
measures µi, i = 1, . . . ,N , and compute their compensators with respect to F. In
Section 4 we prove the representation theorem for F, and in Section 5 we give a
method to compute the compensators in terms of the infinitesimal generator of the
underlying diffusion.

2. Point process of excursions. Here we give only a brief account of the ex-
cursion theory of Markov processes following [3]. We formulate the results in
terms of the diffusion X defined in the preceding section; however, we remark
that this theory is developed for more general Markov processes (e.g., not nec-
essarily with continuous paths). A detailed treatment of this subject can be found
in [3]. Following the standard process notation, we consider the canonical six-tuple
(�,G,G,Xt , θt ,P

x) describing the diffusion X.
Let a ∈ int(I ). We let Ma(ω) = {t ≥ 0 :Xt(ω) = a}. Ma(ω) is a closed set since

X has continuous paths. As (Ma(ω))c is open, there exist countably many disjoint
open intervals, (ln, rn), n ≥ 1, such that

(Ma)
c =

∞⋃
n=1

(ln, rn).

(Here the dependence of all the terms on ω is implicit and dropped from the no-
tation.) The open intervals (ln, rn) are called the excursion intervals away from a.
Note if (l, r) is an excursion interval, the path f (s) = Xl+s , 0 ≤ s < r − l, is a con-
tinuous function whose graph lies entirely either in the upper positive half plane
R+ × [a,∞) or in the lower positive half plane R+ × (−∞, a].

Let La be the local time at a and τa be its right continuous inverse, that is,

τa
t = inf{s :La

s ≥ t}.
The key observation here is that 	τa

t > 0 if and only if there exists an excursion
interval (ln, rn) such that τa

t− = ln. Using this, we can define a point process on
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(�,G,P a), called the excursion point process, denoted by Ya . For fixed ω, Ya(ω)

is the point function that maps the points in the set

DYa
ω

= {t > 0|τa
t (ω) − τa

t−(ω) > 0}
to � (i.e., the space of all continuous functions from [0,∞) to I ). For each t in
DYa

ω
, Ya

t (ω) is defined as

Ya
t (ω)(s) = Xa(

θτa
t−(ω), s

)
, s ∈ R+,

where Xa denotes the stopped process X at the hitting time, Ha , of a, that is,

Xa(ω, t) = X
(
ω,Ha(ω) ∧ t

)
,

where

Ha(ω) = inf{t > 0,ω(t) = a}.
Note Ya

t is precisely the continuous path f (s) = Xl+s , 0 ≤ s < r − l, if (l, r) is
the excursion interval corresponding to t .

The following theorem, which is originally due to Itô [9], is the most important
result of excursion theory. We give a generalized version of his result [17, 18] to
include the case when a is transient.

THEOREM 1 (Itô’s theorem). Under P a , Ya is a Poisson point process ab-
sorbed at �∞ = {ω ∈ �|Ha(ω) = ∞} with respect to Ĝa := (Gτa

t
)t≥0. Equiv-

alently, there exists a measure na on (�,G0) (called the characteristic mea-
sure of Ya) s.t. for every nonnegative Ĝa-predictable process Z and (�,G0)-
measurable nonnegative g

Ea
∑

	τa
s �=0

Zsg(Y a
s ) =

∫
�

g(ω)na(dω)Ea
∫ La∞

0
Zs ds.

We will refer to this formula as the excursion formula.
We go over two consequences of the excursion formula that are of particular

importance to our analysis.

2.1. Decomposition of the inverse local time and a representation theorem. Itô
and McKean [10] gave the following decomposition for τa under P a :

τa
t = τ

a,−
t + τ

a,+
t ,

where

τ
a,+
t =

∫ τa
t

0
1{Xs>a} ds and τ

a,−
t =

∫ τa
t

0
1{Xs<a} ds.

When a is recurrent, [10] showed that τa,−, τ a,+ are two independent subor-
dinators. A different formulation of this result can be given in terms of the point
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process of excursions which extends the result to the case when a is transient. Note
that the jump times of τa are exactly the jump times of τa,− and τa,+; τa,− (resp.
τa,+) jumps at t ∈ DYa

ω
if and only if the graph of the excursion Ya

t lies entirely in
R+ × (−∞, a] (resp. R+ × [a,∞)). Let Ua,+ = {e ∈ �,e(t) ≥ a,∀ t ∈ R+} and
Ua,− = {e ∈ �,e(t) ≤ a,∀ t ∈ R+}. Then 	τ

a,±
t = Ha(Y

a
t )1{Ya

t ∈Ua,±}. So, we can
consider a point process ϕa , defined for fixed ω as the point function from DYa

ω
to

[−∞,0) ∪ (0,∞], where

ϕa
t = Ha(Y

a
t )1{Ya

t ∈Ua,+} − Ha(Y
a
t )1{Ya

t ∈Ua,−} for t ∈ DYa
ω
.

We let Ĥa be the filtration generated by ϕa , made to be right continuous and com-
plete with respect to P a (see [3] for a review of point processes).

Let Z be Ĥa-predictable, and g be Borel on [−∞,0) ∪ (0,∞], both non-
negative. Since Z is also Ĝa-predictable, the excursion formula gives

Ea
∑
s≤t

Zsg(ϕa
s )1{	τa

s �=0}
(1)

= Ea
∫ La∞∧t

0
Zs ds

(∫
Ua,+

dna(e)g(Ha(e)) +
∫
Ua,−

dna(e)g(−Ha(e))

)
.

Let Fa be the measure defined on [−∞,0) ∪ (0,∞] by

Fa(A) =
∫
Ua+

dna(e)1{Ha(e)∈A∈(0,∞]} +
∫
Ua−

dna(e)1{−Ha(e)∈A∈[−∞,0)}.

(1) implies that ϕa is a Poisson point process absorbed at {−∞} ∪ {∞} with char-
acteristic measure Fa .

Consider the random measure

µ̂a(dt × dx) = ∑
	τa

s �=0

ε(s,ϕa
s )(dt × dx).

(1) also implies that the Ĥa-predictable compensator of µ̂a is the measure

ν̂a(dt × dx) = 1{t≤La∞} dt × Fa(dx).

Since this uniquely characterizes the law of ϕa (hence, P a on Ĥa∞) [18], µ̂a has
the representation property (see, e.g., [13], page 174) for Ĥa , which we state in the
following theorem.

Let G1(µ̂a) be the space of P̃ a
H = P̂ a

H ⊗B([−∞,0)∪(0,∞])-measurable func-
tions defined on �̃ = �×[0,∞)×[−∞,0)∪ (0,∞] s.t. Ea[(W 2 ∗ µ̂a∞)1/2] < ∞.
(Here P̂ a

H is the predictable σ -algebra associated to Ĥa .)

THEOREM 2. Any local martingale M̂ adapted to Ĥa is of the form

M̂t = M̂0 + W ∗ (µ̂a − ν̂a)t ,

where W ∈ G1
loc(µ̂

a).
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2.2. Weil’s formula for conditioning on ĜT −. Let Z be a stochastic process
and A be its natural filtration. Weil [21] gave a formula for the conditional dis-
tribution of (ZT −,ZT ) given the “strict past,” AT −, for certain stopping times T

of A, when Z admits a Lévy system. [16] applied this formula to find the transition
kernel of the process U of a regenerative set M .

We reformulate Weil’s original result for the point process of excursions of X.
We omit the proof and refer the reader to [21] to see how easily his proof can be
recast to prove our version using the excursion formula.

Let � be a nonnegative B[0,∞) ⊗ G0-measurable function on [0,∞) × �.

THEOREM 3 (Weil’s formula). Let T = inf{s ∈ DYa
ω

: (τ a
s−, Y a

s ) ∈ H }, where
H ∈ B(0,∞) ⊗ G0 is such that on {T < ∞}, T (ω) ∈ DYa

ω
and (τ a

T −, Y a
T ) ∈ H

P a-a.s. Then

Ea[
�(τa

T −, Y a
T )1{0<T <∞}|Ĝa

T −
] = QH(τa

T −,�)1{0<T <∞},
where

QH(t,�) =




∫
�(t, e)1H (t, e)na(de)∫

1H(t, e)dna(e)
, if 0 <

∫
1H (t, e) dna(e) < ∞,

0, if
∫

1H (t, e)dna(e) = 0 or ∞.

Moreover, for any H ′ ∈ B(0,∞) ⊗ G0, if TH ′ is defined as

TH ′(ω) =
{

T (ω), if T < ∞ and (τ a
T −, Y a

T ) ∈ H ′,
∞, otherwise,

then

Ea[
�

(
τa
TH ′−, Y a

TH ′
)
1{TH ′<∞}|Ĝa

TH ′−
] = QH∩H ′

(
τa
TH ′−,�

)
1{TH ′<∞}.

3. The filtration generated by R(X) and the associated random measures.
Let us put L = {x1, . . . , xN }. Following [12], we can consider the process U de-
fined by

Ut := t − sup{s ≤ t :Xs ∈ L}.(2)

If L consists of only one point, say, a, then F is the same as the filtration gener-
ated by sign(Xs −a), and as discussed earlier in this case, the results of [12] can be
modified to obtain a representation theorem for F with respect to the random mea-
sure associated to the jumps of U . Let us denote this random measure by µ. When
L consists of more than one point, µ is no longer enough to generate all martin-
gales of F. We can explain this using excursions. As before, {s ∈ [0,∞) :Xs ∈ L}
is a closed set, hence, its complement can be written as a countable union of
disjoint open intervals (an, bn), we call these intervals excursion intervals away
from L. A representation theorem with respect µ implies the following: All mar-
tingales jump only at the ends of excursions, that is, at the points bn (since these
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are the only jump times of U ), and the size of the jump (which could be zero) is
determined by a predictable process. This is not true if L has more than one ele-
ment because one can construct martingales that jump only if X ends the excursion
at a point xi , the information of which is not “predictable.” This suggests that we
should decompose µ according to the values of X at the bn, which would give rise
to random measures µi for each xi . These random measures turn out to be the right
choice in terms of which we can prove a martingale representation theorem.

We first establish our stochastic basis (�,F ,F,P ) and then construct the ran-
dom measures µ1, . . . ,µN and find their compensators using the technique of [12]
and [16].

We let F i = (
∨

t≥0 F 0
t ) ∨ N i , where N i is the set of null sets of P xi . To have

a complete stochastic basis for each P xi , we let F i
t = F 0

t ∨ N i .

PROPOSITION 4. (�,F i ,Fi , P xi ) is a complete stochastic basis.

PROOF. Clearly F i is complete under P xi and each F i
t contains all P xi -null

sets of F . So we only need to check the right continuity of Fi . First we observe
that F i

0 = F i
0+, following from Blumenthal’s 0–1 law, since F 0

0+ ⊂ G0+ ⊂ N .
Next for t > 0, it is a standard result that P xi (Xt ∈ L) = 0, therefore, {Xt ∈ L}
is null, hence, in F i

t and therefore, (
⋂

s>t F
i
s ) ∩ {Xt ∈ L} = F i

t ∩ {Xt ∈ L}. For
t > 0 s.t. Xt ∈ Lc, R(X) is constant in a neighborhood of t . In [4], page 304, this
is referred to as strong continuity at t , by the argument of [4], page 304, we also
have that (⋂

s>t

F i
s

)
∩ {Xt ∈ Lc} = F i

t ∩ {Xt ∈ Lc}.

Now for any A ∈ ⋂
s>t F

i
s , both A ∩ {Xt ∈ L} ∈ F i

t and A ∩ {Xt ∈ Lc} ∈ F i
t ,

hence, A ∈ F i
t . �

It will prove fundamental to have a collection of stopping times exhausting the
jumps of U . This can be achieved as follows. For x > 0, let us define the following
collection of stopping times:

T x
1 = inf{t > 0 :Ut > x},

Sx
n = inf{t > T x

n :Ut = 0} for n ≥ 1,

T x
n+1 = inf{t > Sx

n :Ut > x} for n ≥ 1.

Let D = {(ω, t) :	Ut(ω) �= 0}. Then D = ⋃
x∈Q

⋃∞
n=1[|Sx

n |]. We note that U is
adapted to Fi for each i, since P i -a.s.

Ut = t − sup{s ≤ t,R(Xs) �= R(Xt)}.(3)
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We remark that (3) would not be true if the points xi were not regular, as this
would not rule out the possibility that R(X) is constant in a left neighborhood of
sup{s ≤ t,Xs ∈ L}.

As U is adapted to Fi , for each n ≥ 1 and x > 0, T x
n and Sx

n are stopping times
of Fi . We also observe that XSx

n
is F i

Sx
n
-measurable, since

XSx
n

=
N∑

i=1

xi+11{R(XSx
n
)=R(XT x

n
)=i} + xi1{R(XSx

n
)+1=R(XT x

n
)=i}.

LEMMA 5.

(i) F i
T x

n − = F i
T x

n
,

(ii) F i
Sx

n
= F i

T x
n

∨ σ(XSx
n
,	USx

n
) (with the convention that X∞ = ∞, and

	U∞ = ∞),
(iii) F i

Sx
n− = F i

T x
n

∨ σ(	USx
n
),

(iv) F i
t ∩ {T x

n ≤ t < Sx
n } = F i

T x
n

∩ {T x
n ≤ t < Sx

n }.

PROOF. (i) This is an elementary consequence of the strong continuity of
R(X) at T x

n . The details are omitted; see [4], T28, for a sample argument.

(ii) Since XSx
n

and 	USx
n

are F i
Sx

n
-measurable, it is enough to show F i

Sx
n

⊂
F i

T x
n

∨ σ(XSx
n
,	USx

n
). We observe F i

T x
n

∨ σ(XSx
n
,	USx

n
) ⊃ σ(R(Xs∧Sx

n
), s ≥ 0) ∨

N i , since

R
(
XSx

n∧t

) = R
(
XT x

n ∧t

)
1{t<T x

n −	USx
n
−x}

+ 1{t≥T x
n −	USx

n
−x}

×
(

N∑
i

(i)1{R(XT x
n

)=i,XSx
n
=xi+1} + (i − 1)1{R(XT x

n
)=i,XSx

n
=xi}

)
.

So, we show

σ
(
R

(
Xs∧Sx

n

)
, s ≥ 0

) ∨ N i = F i
Sx

n
.

In general, one has the following:

F i
Sx

n
= ⋂

r>0

σ
(
R

(
Xs∧(Sx

n+r)

)
, s ≥ 0

) ∨ N i .

Note that ⋂
r>0

σ
(
R

(
Xs∧Sx

n+r

)
, s ≥ 0

) ⊂ σ
(
R

(
Xs∧Sx

n

)
, s ≥ 0

) ∨ G
Sx

n

0+,

where

G
Sx

n

0+
.= σ

(
θ−1
Sx

n
(B) ∩ {Sx

n < ∞} :B ∈ G0+
)
.
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We are done once we show

G
Sx

n

0+ ⊂ σ
(
XSx

n

) ∨ N i .

Let A = θ−1
Sx

n
(B) ∩ {Sx

n < ∞}. By the strong Markov property,

P xi
(
A ∩ {

XSx
n

= xj

}) = P xi
(
XSx

n
= xj

)
P xj (B).

By Blumenthal’s 0–1 law, P xj (B) = 0 or 1. If P xj (B) = 0, then A ∩ {XSx
n

= xi}
is null, and if P xj (B) = 1, then P xi (A ∩ {XSx

n
= xi}) = P xi (XSx

n
= xi), implying

that {XSx
n

= xi} − (A ∩ {XSx
n

= xi}) is null. Therefore, in either case, A ∩ {XSx
n

=
xi} ∈ σ(XSx

n
) ∨ N i and thus, A ∈ σ(XSx

n
) ∨ N i .

(iii) This is trivial because F i
Sx

n− is generated by null sets and the sets of the
form (for s < t)

{R(Xs) = j} ∩ {Sx
n > t} = ({R(Xs) = j} ∩ {Sx

n > t} ∩ {s ≤ T x
n })

∪ ({
R

(
XT x

n

) = j
} ∩ {Sx

n > t} ∩ {T x
n < s < Sx

n }),
where the right-hand side is in FT x

n
∨ σ(	USx

n
).

(iv) Trivial, because on {T x
n ≤ t < Sx

n }, R(Xs) = R(XT x
n ∧s) for all s ≤ t . �

Next, for each i = 1, . . . ,N , we define the stopping times

Sx
n,i =

{
Sx

n , if XSx
n

= xi ,
∞, otherwise,

and the corresponding random measures

µi(ω, ds, dx) = ∑
s≥0

1Di
(ω, s)ε(s,	Us)(ds, dx)

on R+ × (0,∞), where

Di = ⋃
r∈Q+

∞⋃
n=1

[|Sr
n,i |].

3.1. Compensators of the random measures µi . For the rest of the discussion
we fix P = P xi∗ and F = Fi∗ . Let P be the predictable σ -algebra of F. Our first
task is to determine the predictable compensators of the µi under P , which we
denote by νi . Clearly, the process νi([0, t] × (x,∞)) is the sum of its increments
over the intervals (T x

n ∧ t, Sx
n ∧ t]. Because of Lemma 5, these increments can be

given in terms of the conditional distribution of (	USx
n
,XSx

n
) given FT x

n
(see, e.g.,

[12, 13]). In particular,

νi

([0, t] × (x,∞)
)

=




0, if t ≤ T x
1 ,

νi

([0, T x
n ] × (x,∞)

) +
∫

Gi
n,x(du)

Gn,x((u,∞])1{x<u≤x−T x
n +t∧Sx

n },

if T x
n ≤ t ≤ T x

n+1,
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where on {T x
n < ∞},

Gi
n,x(ω, dy) = P

(
Sx

n − T x
n + x ∈ dy,XSx

n
= xi |FT x

n

)
and

Gn,x(ω, dy) =
N∑

i=1

Gi
n,x(ω, dy).

Note that, on {T x
n < ∞},

Gn,x(ω, dy) = P
(
Sx

n − T x
n + x ∈ dy|FT x

n

)
.

We use excursion theory to compute Gi
n,x , following the technique of [16]. For

each xi , let U+
i (resp. U−

i ) denote the set of all paths in � whose graphs lie in the
upper (resp. lower) half plane R+ × [xi,∞) (resp. R+ × (−∞, xi]). Let ni be the
characteristic measure of the point process of excursions of X away from xi and
Hi be the hitting time of xi [i.e., Hi(ω) = inf{t > 0 : ω(t) = xi}]. We define the
following measures on (0,∞]: For A ∈ B(0,∞],

F 1+
i (A) =

∫
U+

i

1{Hi+1∈A}(e)1{Hi+1<∞}(e) dni(e) for i = 1, . . . ,N − 1,(4)

F 1−
i (A) =

∫
U−

i

1{Hi−1∈A}(e)1{Hi−1<∞}(e) dni(e) for i = 2, . . . ,N,(5)

F 0±
i (A) =

∫
U±

i

1{Hi∈A}(e)1{Hi≤Hi±1}(e) dni(e) for i = 1, . . . ,N,(6)

and

F+
i (A) = F 1+

i (A) + F 0+
i (A),(7)

F−
i (A) = F 1−

i (A) + F 0−
i (A),(8)

where we set F 1−
1 = F 1+

N = 0.

Each of the measures F
j±
i is a Lévy measure and the functions F

j±
i [x,∞] are

continuous in x (see Section 5).

THEOREM 6. P -a.s. on {T x
n < ∞},

Gi
n,x(ω, dy) =




F 1+
i−1(dy)

F+
i−1(x,∞]1{y>x}, if XT x

n −x = xi−1 and R
(
XT x

n

) = i − 1,

F 0+
i (dy)

F+
i (x,∞]1{y>x}, if XT x

n −x = xi and R
(
XT x

n

) = i,

F 0−
i (dy)

F−
i (x,∞]1{y>x}, if XT x

n −x = xi and R
(
XT x

n

) = i − 1,

F 1−
i+1(dy)

F−
i+1(x,∞]1{y>x}, if XT x

n −x = xi+1 and R
(
XT x

n

) = i,

0, otherwise.
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PROOF. We derive the first case only, other cases can be done similarly. We
fix n and x, and let f be a nonnegative Borel function on (0,∞]. If T = inf{t >

Sx
n−1,Xt = xi−1}, by the strong Markov property,

P
(
f (Sx

n − T x
n + x) · 1{XSx

n
=xi}1{XT x

n −x=xi−1,R(XT x
n

)=i−1,T x
n <∞}|FT x

n

)
= (

P xi−1
(
f (Sx

1 − T x
1 + x)1{XSx

1
=xi}1{XT x

1 −x=xi−1}1{R(XT x
1

)=i−1}|F i−1
T x

1

))
(9)

◦ θT 1{T <T x
n }1{T x

n <∞}.

Let T̂0 = inf{s ∈ D
Y

xi−1
ω

: (τ xi−1
s− , Y

xi−1
s ) ∈ [0,∞) × �x}, where �x = {ω ∈

� :Hi(ω) ∧ Hi−1(ω) ∧ Hi−2(ω) > x} and

T̂ =
{

T̂0, if T̂0 < ∞, Y
xi−1

T̂0
∈ U+

i−1,

∞, otherwise.

Let A = {XT x
1 −x = xi−1,R(XT x

1
) = i − 1}. We note that 1{T̂ <∞} = 1A, and on A,

T x
1 = τ

xi−1

T̂ − + x, P xi−1 a.s. Moreover, on A, R(Xu) = i if T x
1 − x ≤ u ≤ T x

1 , and

R(Xu)1{u<T x
1 −x} is Ĝ

xi−1

T̂ − -measurable (since u < T x
1 −x if and only if L

xi−1
u < T̂ ).

Thus,

F i−1
T x

1
∩ A ⊂ Ĝ

xi−1

T̂ − ∨ N i−1.

Therefore, P xi−1 -a.s. on A,

P xi−1
(
f (Sx

1 − T x
1 + x)1{XSx

1
=xi}1{XT x

1 −x=xi−1}|F i−1
T x

1

)
(10)

= P xi−1
(
P xi−1

(
f (Hi(Y

xi−1

T̂
))1{Hi(Y

xi−1
T̂

)<∞}1{T̂ <∞}|Ĝxi−1

T̂ −
)|F i−1

T x
1

)
.

By Weil’s formula, the inner conditional expectation is given by∫
U+

i−1
f ◦ Hi1{x<Hi<∞} dni−1∫

U+
i−1

1{Hi∧Hi−1>x} dni−1 1{T̂ <∞} =
∫
(x,∞] f dF 1+

i−1∫
(x,∞] dF+

i−1

1{T̂ <∞}.(11)

The desired expression follows from (9), (10) and (11), and observing 1{T̂ <∞} ◦
θT 1{T <T x

n }1{T x
n <∞} = 1{XT x

n −x=xi−1}1{XT x
n

>xi−1}1{T x
n <∞}. �

COROLLARY 7.

(i) P -a.s., νi(ω, {t} × (0,∞)) = 0.
(ii) The stopping times Sx

n are totally inaccessible with respect to F.

PROOF. (i) is true simply because the functions F
j±
i [x,∞] are continuous.

For (ii), observe that the compensator of the one point process 1{Sx
n≤t} is

At = 1{t≥T x
n }

N∑
i=1

∫ (t∧Sx
n )−T x

n +x

x

Gi
n,x(du)

Gx
n[u,∞] ,
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which is again continuous because the functions F
j±
i [x,∞] are continuous. �

4. Representation theorem. Let M (resp. M2) be the space of uniformly
integrable (resp. square integrable) martingales with càdlàg paths and adapted to
F. Let V be the space of processes with finite variation, again with càdlàg paths
and adapted to F. Let G1,i (resp. S2

i , Si) be the space of P̃ := P ⊗ B(0,∞)-
measurable functions W on �̃ = �×[0,∞)×(0,∞) s.t. E[(W 2 ∗µi)∞)1/2] < ∞
(resp. E[(W 2 ∗µi)∞] < ∞, E[(|W | ∗µi)∞] < ∞). (Note that, due to Corollary 7,
these are the right choices of integrand spaces in order for the stochastic integral
to be in M, M2 and M ∩ V , resp.; see, e.g., [13] for a definition of the stochastic
integral with respect to a random measure.)

THEOREM 8. For any M ∈ Mloc, there exists Wi in G1,i
loc such that

Mt = E[M0] +
N∑

i=1

(
Wi ∗ (µi − νi)

)
t .

Moreover, if M ∈ M2, then Wi ∈ S2
i ; and if M ∈ M and of finite variation, then

Wi ∈ Si .

PROOF. Let us consider the random measure µ̄ on �
.= �×[0,∞)×E, where

E = (0,∞) × {x1, . . . , xn} defined by

µ̄
(
ω,dt × (dx × {xi})) = µi(ω, dt × dx).

Let P
.= P × E , where E is the σ -algebra generated by the sets B × {xi}, and

B ∈ B(0,∞); and P is the predictable σ -algebra of F. We define the spaces G1,
S1 and S2 for µ̄ analogously. Clearly, P -compensator of µ̄ can be given in terms
of νi , in particular,

ν
(
ω,dt × (dx × {xi})) = νi(ω, dt × dx).

Let D = {(ω, t) :µ(ω, {t} × E) = 1}. Then we have that

D = ⋃
r∈Q+

∞⋃
n=1

[|Sr
n|].

We recall that

FSx
n

= FT x
n

∨ σ
(
XSx

n
,	USx

n

)
.(12)

Since {XSx
n

= xi,−	USx
n

∈ A} = {µ̄([Sr
n] × (A × {xi})) = 1} and

D = ⋃
n,m

[|S1/m
n |],
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condition (12) allows us to use a special case of Jacod’s decomposition theorem
of martingales with respect to random measures (see [11], e.g., Theorem 4.1 and
remark 3 following Theorem 4.1, and Proposition 2.4). That is, for any local mar-
tingale M , there exists W ∈ G1

loc such that

M = M0 + W ∗ (µ̄ − ν̄) + M ′,
where M0 is F0-measurable and integrable, and M ′ is a local martingale with
M ′

0 = 0, adapted to F, and that does not jump on the support of µ̄. Since
F0 consists only of null sets, M0 = E[M0] a.s. Also, if we let Wi(ω, t, y) =
W(ω, t, (y, xi)), then each Wi ∈ G1,i

loc and

W ∗ (µ̄ − ν̄) =
N∑

i=1

Wi ∗ (µi − νi).

According to [11], if M ∈ M and of finite variation (resp. M ∈ M2), then W ∈ S1

(resp. S2), which implies that each Wi ∈ Si (resp. S2
i ). So we only need to show

that M ′ = 0 and by localization, we may assume that M ∈ M.
We first argue that M ′ has a constant stretch during any excursion interval.

Equivalently, we can show M ′
Sx

n
− M ′

T x
n

= 0 for any x > 0 and n ≥ 1. We consider

the filtration Fn,x = (F n,x
t )t≥0, where F n,x

t = FT x
n

∨ FSx
n∧t , and the multivariate

“one” point process µn,x defined by

µn,x(ω, [0, t] × {xi}) = 1{Sx
n−T x

n +x≤t,XSx
n
=xi}.

Due to Lemma 5, Fn,x is the smallest right continuous filtration A for which µn,x

is optional and that has A0 = F n,x
0 . Therefore, Fn,x has martingale representation

with respect to µn,x (see [13], page 148). The martingale M
n,x
t = M ′

(T x
n +t)∧Sx

n
is

adapted to Fn,x and does not jump at Sx
n − T x

n + x, therefore has to be constant.
The second and last step is proving the following claim: Any uniformly inte-

grable martingale that stays constant during the excursion intervals is constant on
[0,∞). To prove this, we use a time change argument. To motivate, suppose L
consists of only one point, xi∗ . The uniformly integrable martingale M̂ ′ obtained
by applying the time change M̂ ′

t = M ′
τt

, where τ is the inverse local time of X

at xi∗, does not jump on the support of the random measure µ̂ corresponding
to the jumps of τ+ − τ−. Since M̂ ′ is adapted to the filtration generated by µ̂,
and µ̂ has the martingale representation property by Theorem 2, it follows that
M̂ ′

t = M̂ ′
0 = 0. Thus, M ′ = 0, since M ′

t = E[M̂ ′
Lt

|Ft ]. Now we improve this ar-
gument to prove the claim for the case when L consists of more than one point.
Let gt = sup{s < t,Xs ∈ L} and consider the process X̂ defined by X̂t = Xgt . The
paths of X̂ are step functions taking values in L. If X̂t = xi , the next jump time of
X̂ is the first time s > t , such that Xs ∈ [xi−1, xi+1]c. Therefore, if we consider the
stopping times

T0 = 0,

Tn = inf{t > Tn−1 :	X̂t �= 0}, n ≥ 1,
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we have XTn ∈ L, and
⋃∞

n=0[Tn,Tn+1) = [0,∞) due to continuity of X. We let

Xn
t = (

XTn−1+t∧Tn

)
1{Tn−1<∞}.

By the strong Markov property, Xn is a copy of the original diffusion with the
starting point XTn−1 stopped at the exit of the interval [xi−1, xi+1] if XTn−1 = xi .
Let Ln,i be the local time of Xn at xi , τn,i be its right continuous inverse, and ϕn,i

be the point process of the jumps of τn,i,+ − τn,i,−, where

τ
n,i,+
t =

∫ τ
n,i
t

0
1{Xn

s >xi} ds and τ
n,i,−
t =

∫ τ
n,i
t

0
1{Xn

s <xi} ds.

Let

Ln =
N∑

i=1

Ln,i1{XTn−1=xi},

τ n =
N∑

i=1

τn,i1{XTn−1=xi},

ϕn =
N∑

i=1

1{XTn−1=xi}ϕn,i

and we let µn be the random measure corresponding to the jumps of ϕn. We con-
sider the filtration Hn = (Hn

t )t≥0, where

Hn
t = σ(ϕn

s , s ≤ t) ∨ FTn−1 .

Let P n be the predictable σ -algebra associated to Hn. The predictable compen-
sator νn (with respect to P n ) of µn is given by

νn(dt × dx) =
N∑

i=1

1{XTn−1=xi}1{t≤L
n,i∞ } dt × ni

Xn(dx).

By the discussion preceding Theorem 2, it follows that νn completely describes the
restriction of P(·|XTn−1 = xi) to σ(ϕn

s , s ≥ 0) for each xi . Therefore, P on Hn∞ is
determined by νn and the restriction of P to FTn−1 , that is, following the notation
of [13], the martingale problem s(FTn−1,µ

N |P|FTn−1
, νn) has a unique solution.

By the fundamental representation theorem (see, e.g., [13], page 212), this implies
martingale representation with respect to µn for Hn.

We let

Nt = (
M ′

(Tn−1+t)∧Tn
− M ′

Tn−1

)
1{Tn−1<∞}

and

N̂t =
N∑

i=1

N
τ

n,i
t

1{XTn−1=xi}.
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Since M ′ stays constant during the excursion intervals, we have that N̂t − N̂t− = 0
for all t such that 	τn

t �= 0. Next we argue that N̂ is adapted to Hn. Let F n
t =

FTn−1+t . Then N̂t is F n
τn
t

-measurable and F n
τn
t

∩ {t < Ln∞} ⊂ Hn
t ∩ {t < Ln∞}. The

latter follows from the fact that F n
t ∩ {Ln

t < Ln∞} ⊂ HLn
t
∩ {Ln

t < L∞} since on
{Ln

t < Ln∞}, one has R(Xt) = R(XTn−1) or R(XTn−1)−1, which can be determined
by the sign of ϕn

Ln
t
. This implies that N̂t1{t<Ln∞} is Hn

t -measurable and N̂Ln∞− is

Hn∞-measurable. Since N̂L∞− = N̂L∞ , N̂ is adapted to Hn.
Adapted to Hn and having no jumps on the support of µn, N̂ must be equal

to N̂0(= 0). Since Nt = E[N̂Ln
t
|F n

t ], N = 0 and therefore, M ′
Tn

− M ′
Tn−1

= 0.
Observing

⋃∞
n=1[Tn−1, Tn] = [0,∞), it follows that M ′ is constant (hence, is equal

to M ′
0 = 0). �

COROLLARY 9.

(i) All local martingales adapted to F are purely discontinuous with jumps
only at the ends of excursions.

(ii) The graph [|T |] of any totally inaccessible stopping time T is contained
in D.

5. Computation of the measures F
j±
i . As we have seen, the compensators

νi of the random measures µi are given in terms of the measures F
j±
i , which are,

therefore, the key quantities that we want to compute.
The measures F

j±
i are related to the Lévy measure of the inverse local time of

X at xi . That is the measure Fi defined on (0,∞] as Fi(A) = ∫
� 1{Hi∈A} dni (see,

e.g., [19], Sections 2.1 and 2.2). Clearly, F
j±
i [x,∞] ≤ Fi[x,∞] ∀x > 0, hence,

each F
j±
i defines a Lévy measure on (0,∞] as well.

We let

ψ
j±
i (λ) =

∫
(0,∞]

(1 − e−λx)F
j±
i (dx) = λ

∫ ∞
0

e−λxF
j±
i [x,∞]dx.

In this section we prove a theorem (which we obtain as a corollary to the results
of [19] on the decomposition of the Laplace exponent of the inverse local time
and last exit times) characterizing ψ

j±
i in terms of the solutions of the equation

A� = λ�.
We let �+

i,λ for i = 1, . . . ,N − 1 (resp. �−
i,λ for i = 2, . . . ,N ) denote the

decreasing (resp. increasing) solution of A� = λ� with boundary condition
�(xi+1) = 0 [resp. �(xi−1) = 0] normalized to have �±

i,λ(xi) = 1. We also let

�̃+
i,λ (resp. �̃−

i,λ) denote the decreasing (resp. increasing) solution of A� = λ�

with boundary condition �(sup(I )) = 0 [resp. �(inf(I )) = 0]. (Here we only deal
with absorbing boundary conditions at the boundary of I .) (For the construction
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of such solutions, see [10], page 128.) For λ > 0, let

ψ±
i (λ) = − ± 1

2

(�±
i,λ)

′(xi)

�±
i,λ(xi)

,

and similarly,

ψ̃±
i (λ) = − ± 1

2

(�̃±
i,λ)

′(xi)

�̃±
i,λ(xi)

.

We put ψ±
i (0) = limλ→0 ψ±

i (λ) and ψ̃±
i (0) = limλ→0 ψ̃±

i (λ). Finally we let

ψi,i+1(λ) = ψ+
i (λ) + ψ̃−

i (λ)

and

ψi,i−1(λ) = ψ−
i (λ) + ψ̃+

i (λ).

THEOREM 10. (i) For i = 1, . . . ,N − 1,

ψ1+
i (λ) = Pxi

(Hi+1 < ∞)ψi,i+1(0) − Pxi
(e−λHi+1)ψi,i+1(λ),

and for i = 2, . . . ,N ,

ψ1−
i (λ) = Pxi

(Hi−1 < ∞)ψi,i−1(0) − Pxi
(e−λHi−1)ψi,i−1(λ).

(ii) For i = 1, . . . ,N − 1,

ψ0+
i (λ) = −ψ+

i (0) + ψ+
i (λ),

and for i = 2, . . . ,N ,

ψ0−
i (λ) = −ψ−

i (0) + ψ−
i (λ).

(iii) ψ0+
N (λ) = ψ̃+

N (λ) and ψ0−
1 (λ) = ψ̃−

1 (λ).

PROOF. (iii) directly follows from [19] (see, in particular, Theorem 1 and Sec-
tion 2.2).

(ii) For each i = 1, . . . ,N − 1, consider the diffusion Xi+1 with state space
I ∩ (−∞, xi+1] obtained by stopping X at Hi+1. The infinitesimal generator of
Xi+1 coincides with A on the interior of I ∩ (−∞, xi+1] and xi+1 becomes an
absorbing boundary point. Let ni

Xi+1 be the characteristic measure of the point
process of excursions of Xi+1 around xi . Then for A ∈ B(0,∞],

F 0+
i (A) =

∫
U+

i

1{Hi∈A}(e)1{Hi<∞}(e) dni
Xi+1(e).
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Let F+
i be the measure on (0,∞] defined by F+

i (A) = ∫
U+

i
1{Hi∈A}(e) dn+

i (e).
According to Pitman and Yor [19] (see also [10], page 128 with regards to the
boundary conditions), we have that

ψ+
i (λ) =

∫
(0,∞]

(1 − e−λx)F+
i (dx).

Therefore, ψ0+
i (λ) = ψ+

i (0) − ψ+
i (λ), for i = 1, . . . ,N − 1. A similar argument

(replacing + with −) yields the result for ψ0−
i , as well, for i = 2, . . . ,N .

(i) For ψ1+
i for i = 1, . . . ,N − 1 (resp. ψ1−

i for i = 2, . . . ,N ), we are again
going to make use of the results of [19]. Following their notation, let

�i,i+1 = sup{t < Hi+1 :Xt = xi}
be the last exit time from xi before the first hit of xi+1. Pitman and Yor [19] finds
the Laplace transform of Hi+1 − �i,i+1 as

Exi
(
e−λ(Hi+1−�i,i+1)

) = Exi (e−λHi+1)
ψi,i+1(λ)

ψi,i+1(0)
.

We observe that

Exi
(
1{Hi+1<∞} − e−λ(Hi+1−�i,i+1)

)
= Exi

∑
s≤L

xi
Hi+1

,τ
xi
s−�=τ

xi
s

(
1 − e−λHi+1(Y

xi (s)))1{Hi+1(Y
xi (s))<∞}

= Exi
(
LHi+1

) ∫ (
1 − e−λHi+1(e)

)
1{Hi+1<∞}ni(de),

where the last equality follows from the excursion formula. We note that the second
term in the right-hand side is ψ1+

i (λ). Since LHi+1 is equal to Li+1∞ where Li+1

is the local time at xi of the stopped diffusion Xi+1, from Theorem 2 of [19], we
have that

Exi
(
LHi+1

) = 1

ψi,i+1(0)
.

Now the result follows by simple algebra for ψ1+
i for i = 1, . . . ,N − 1. By the

same argument replacing + with − we also get the expression for ψ1−
i for i =

2, . . . ,N . �

This theorem can be used to compute the measures F
j±
i , if the coefficients of A

are parameterized, and if one can identify the solutions of A� = λ� for the given
parametrization. However, what remains open is the qualitative understanding of
how these measures react to the changes in the coefficients of the diffusion in a
general setting where the coefficients are nonparameterized.
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5.1. Remarks. In Section 3 we stated that the functions F
0,±
i [x,∞] and

F 1±
i [x,∞) are continuous. Here we justify why this is correct.
Pitman and Yor [19] point out that (with reference to [2]) the measures F 0±

i have
spectral representation, that is, there exist measures µ0±

i on [0,∞) with
∫
[0,∞)(1+

ξ)−1µ±
i (dξ) < ∞ such that

F 0±
i [x,∞] =

∫ ∞
0

e−ξxµ0±
i (dξ).

It follows that F 0±
i [x,∞] is continuous, in fact, F 0±

i has a smooth density with
respect to Lebesgue the measure and the density is given by the function

f 0±
i (x) =

∫ ∞
0

ξe−ξxµ0±
i (dξ).

From the Laplace transform of F 1±
i [x,∞), we see that

F 1±
i [x,∞) = P xi (Hi±1 < ∞)F i±1

i (∞) −
∫ x

0
gi+1

i (x − u)(F i+1
i [u,∞]) du,

where F i+1
i is the Lévy measure of the inverse local time at xi of the stopped

diffusion Xi+1 and gi+1
i is the probability density function of the hitting time of

xi+1 with respect to P xi , which exists and continuous is (see, e.g., [10]). Since
F i+1

i [x,∞] is also continuous by the same comment of [19] as above, we have the
continuity of F 1±

i [x,∞).
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