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LARGE DEVIATIONS AND LAWS OF THE ITERATED
LOGARITHM FOR THE LOCAL TIMES OF

ADDITIVE STABLE PROCESSES1

BY XIA CHEN

University of Tennessee

We study the upper tail behaviors of the local times of the additive stable
processes. Let X1(t), . . . ,Xp(t) be independent, d-dimensional symmetric
stable processes with stable index 0 < α ≤ 2 and consider the additive stable
process X(t1, . . . , tp) = X1(t1)+ · · ·+Xp(tp). Under the condition d < αp,
we obtain a precise form of the large deviation principle for the local time

ηx([0, t]p) =
∫ t

0
· · ·

∫ t

0
δx

(
X1(s1) + · · · + Xp(sp)

)
ds1 · · · dsp

of the multiparameter process X(t1, . . . , tp), and for its supremum norm
supx∈Rd ηx([0, t]p). Our results apply to the law of the iterated logarithm
and our approach is based on Fourier analysis, moment computation and time
exponentiation.

1. Introduction. Throughout, X1(t), . . . ,Xp(t) are independent d-dimen-
sional symmetric stable processes with identical distribution. We use the notation
X(t) for a stable process with the same distribution as X1(t), . . . ,Xp(t). In this pa-
per, the stable index α ∈ (0,2]. By our assumptions, there is a continuous function
ψ(λ) ≥ 0 on R

d with

ψ(rλ) = rαψ(λ) and ψ(−λ) = ψ(λ), r > 0, λ ∈ R
d,

such that

Eeiλ·X(t) = e−tψ(λ), t ≥ 0, λ ∈ R
d .(1.1)

Since we only consider nondegenerate stable processes, there is a constant C > 0
such that

C−1|λ|α ≤ ψ(λ) ≤ C|λ|α.

Unless assuming otherwise, X1(0) = · · · = Xp(0) = 0.
The following p-parameter, d-dimensional random field:

X(t1, . . . , tp) = X1(t1) + · · · + Xp(tp), (t1, . . . , tp) ∈ (R+)p,
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is called an additive stable process.
Since they locally resemble stable sheets, and since they are more amenable to

analysis, additive stable processes first arose to simplify the study of stable sheets
(see [9, 10, 17] and [18]). They also arise in the theory of intersection and self-
intersection of stable processes (see [15, 22] and [26]). As pointed out below [see
(1.12)], the local time of additive processes is actually an intersection local time as
p = 2. We refer the reader to [1, 2, 4, 6–8] and [25] for some recent developments
in the large deviations for intersection local times. We also point out the reference
[5] for the study on the small ball probabilities of the additive stable processes.
The study of additive processes also connects to probabilistic potential theory. We
mention [16, 20–22] and refer the reader to the detailed discussion and for further
reference.

In this work, we consider the local times of X(t1, . . . , tp) which are formally
given as

ηx(I ) =
∫
I
δx

(
X1(s1) + · · · + Xp(sp)

)
ds1 · · ·dsp, x ∈ R

d, I ⊂ (R+)p.

We rely on two recent papers by Khoshnevisan, Xiao and Zhong [23, 24] for the
constructions of the local time ηx(I ). In their papers, Khoshnevisan, Xiao and
Zhong [23, 24] consider a more general multiparameter random field named ad-
ditive Lévy process, which is generated by independent Lévy processes. In their
construction, ηx(I ) is defined as the density function of the occupation measure
µI :

µI (A) =
∫
I
δX(s1,...,sp)(A)ds1 · · · dsp, A ⊂ R

d,

in the case when µI is absolutely continuous with respect to the Lebesgue measure
on R

d . Applying Theorem 1.1 in [23] to our setting, the local time ηx(I ) exists for
every super interval I ⊂ (R+)p if and only if

d < αp.(1.2)

Under (1.2), ∫
Rd

[ηx(I )]2 dx < ∞ a.s.(1.3)

for every finite d-dimensional interval I ⊂ (R+)p (Theorem 1.3 of [23]). Further,
(1.2) also implies that almost surely, the local time

ηx([0, t]p), (x, t) ∈ R
d × R

+,

is jointly continuous in (x, t) (Corollary 3.3 of [24]).
We mention that in the stable case, Khoshnevisan, Xiao and Zhong ([24], Theo-

rems 4.3 and 5.3) carried out some tail estimates for the local time η which yields
a sharp rate.
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In this paper, our goal is to establish the large deviations and the laws of the
iterated logarithm for the local times of additive stable processes. In particular, we
shall identify, as much as we can, the constants appearing in these limit forms.

Recall that the characteristic exponent ψ(λ) is defined by (1.1) and write

ρ = sup
‖f ‖2=1

∫
Rd

[∫
Rd

f (λ + γ )f (γ )√
1 + ψ(λ + γ )

√
1 + ψ(γ )

dγ

]p

dλ,(1.4)

where

‖f ‖2 =
(∫

Rd
f 2(λ) dλ

)1/2

.

Clearly, ρ > 0. We now prove that under the condition (1.2), ρ < ∞. Indeed, by
Hölder inequality[∫

Rd

f (λ + γ )f (γ )√
1 + ψ(λ + γ )

√
1 + ψ(γ )

dγ

]p

≤
(∫

Rd
|f (λ + γ )f (γ )|dγ

)p−1 ∫
Rd

|f (λ + γ )f (γ )|
(1 + ψ(λ + γ ))p/2(1 + ψ(γ ))p/2 dγ.

By the Cauchy–Schwarz inequality and shift-invariance,∫
Rd

|f (λ + γ )f (γ )|dγ ≤
∫

Rd
f 2(γ ) dγ = 1.

Hence, ∫
Rd

[∫
Rd

f (λ + γ )f (γ )√
1 + ψ(λ + γ )

√
1 + ψ(γ )

dγ

]p

dλ

≤
∫

Rd

(∫
Rd

|f (λ + γ )f (γ )|
(1 + ψ(λ + γ ))p/2(1 + ψ(γ ))p/2 dγ

)
dλ

=
[∫

Rd

|f (λ)|
(1 + ψ(λ))p/2 dλ

]2

≤
∫

Rd

1

(1 + ψ(λ))p
dλ.

Thus,

ρ ≤
∫

Rd

1

(1 + ψ(λ))p
dλ < ∞(1.5)

where the last step follows from (1.2).
Our first main theorem is the large deviation principle for η0([0, t]p). By the

scaling property of the stable processes X1(·), . . . ,Xp(·), it can be verified that

η0([0, t]p)
d= t (αp−d)/αη0([0,1]p).(1.6)

Without loss of generality, we need only to consider η0([0,1]p) instead in the
following theorem.
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THEOREM 1.1. Under (1.2),

lim
t→∞ t−α/d log P{η0([0,1]p) ≥ t} = −(2π)α

d

α

(
1 − d

αp

)(αp−d)/d

ρ−α/d(1.7)

where ρ is given in (1.4).

We now connect Theorem 1.1 with some known results. As p = 1 and α > 1,
we have that ψ(λ) = c|λ|α and that

ρ = sup
‖f ‖2=1

[∫ ∞
−∞

f (λ)√
1 + c|λ|α dλ

]2

=
∫ ∞
−∞

1

1 + c|λ|α dλ.

Theorem 1.1 becomes a classic large deviation result for the local time of the stable
process X(t) (see, e.g., [27]):

lim
t→∞ t−α log P{η0([0,1]) ≥ t} = −(2π)α

1

α

(
1 − 1

α

)α−1

ρ−α.

We mention the large deviations for the intersection local time formally given
as

α([0, t]p) =
∫

Rd

[ p∏
j=1

∫ t

0
δx(Xj (s)) ds

]
dx

under the condition

p(d − α) < d.(1.8)

We refer the reader to the recent papers [4, 6] and [7] for the details on this subject.
In particular, as p = 2, in which case (1.2) and (1.8) are equivalent to “d < 2α,”
we have (Theorem 1 in [7]) that

lim
t→∞ t−α/d log P{α([0,1]2) ≥ t} = −d

α

(
2 − α

2αMψ

)(2α−d)/d

,(1.9)

where

Mψ = sup
g∈Fψ

{(∫
Rd

|g(x)|4dx

)1/2

−
∫

Rd
ψ(λ)|ĝ(λ)|2 dλ

}
,(1.10)

Fψ =
{
g ∈ L2(Rd); ‖g‖2 = 1 and

∫
Rd

ψ(λ)|ĝ(λ)|2 dλ < ∞
}
,(1.11)

ĝ(λ) =
∫

Rd
g(x)eiλ·x dx, λ ∈ R

d .

On the other hand, by the fact that p = 2 and d < 2α,

α([0,1]2)
d= η0([0,1]2).(1.12)
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Consequently, (1.9) is a direct corollary of Theorem 1.1, in the light of Lemma A.2
given in the Appendix.

By the continuity of ηx([0, t]p) when viewed as a function of x, and by the fact
that ηx([0, t]p) is locally supported, we have that almost surely supx∈Rd ηx([0,

t]p) < ∞. By scaling, we have that for any t > 0,

sup
x∈Rd

ηx([0, t]p)
d= t (αp−d)/α sup

x∈Rd

ηx([0,1]p).(1.13)

It has been known (see, e.g., [13] and [19]) that as p = 1, supx∈Rd ηx([0,1]p) has
a tail behavior same as η0([0,1]p). The following theorem claims that it remains
true for p ≥ 2.

THEOREM 1.2. Under (1.2),

lim
t→∞ t−α/d log P

{
sup
x∈Rd

ηx([0,1]p) ≥ t

}
(1.14)

= −(2π)α
d

α

(
1 − d

αp

)(αp−d)/d

ρ−α/d,

where the constant ρ is given in (1.4).

Theorems 1.1 and 1.2 apply to the following law of the iterated logarithm.

THEOREM 1.3. Assume (1.2). Then for any x ∈ R
d ,

lim sup
t→∞

t−(αp−d)/α(log log t)−d/αηx([0, t]p)

(1.15)

= (2π)−d

(
α

d

)d/α(
1 − d

αp

)−(p−d/α)

ρ a.s.

and

lim sup
t→∞

t−(αp−d)/α(log log t)−d/α sup
x∈Rd

ηx([0, t]p)

(1.16)

= (2π)−d

(
α

d

)d/α(
1 − d

αp

)−(p−d/α)

ρ a.s.

Our approach consists of three tools: time exponentiation, Fourier transforma-
tion and moment estimation. To outline some key ideas used in this paper, we first
cite a lemma given in [25].

LEMMA 1.4 (Lemma 2.3 in [25]). Let Y be any nonnegative random variable
and let θ > 0 be fixed. Assume that

lim
n→∞

1

n
log

1

(n!)θ EYn = −κ(1.17)
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for some κ ∈ R. Then we have

lim
t→∞ t−1/θ log P{Y ≥ t} = −θeκ/θ .(1.18)

In their original statement, König and Mörters assume that θ > 0 is an integer.
By examining their proof, we find that θ can be any positive number.

Lemma 1.4 simply says that in order to have a tail estimate for a nonnegative
random variable with certain precision, one needs to understand its high moment
asymptotics. In Section 2 we first introduce a theorem (Theorem 2.1 below) with-
out proof (which will be given in later sections) in which the high moment asymp-
totics are evaluated for the local time of additive stable process stopped at p in-
dependent exponential times. Then we prove Theorem 1.1 based on Theorem 2.1.
Although the scheme of time exponentiation has become standard in the area of
limit theory since the remarkable work done by Darling and Kac [11], it is not
usual to see such an idea being used in the context of multiparameter processes, at
least not at the level of precision carried out in this work.

In Section 3 we prove the lower bound for Theorem 2.1. By Fourier transforma-
tion the moment of the local time (run up to exponential times) can be represented
as an Lp-norm. Then the lower bound follows from a simple argument via spectral
theory.

The upper bound of Theorem 2.1 is much harder than the lower bound and
needs a completely different treatment. In Section 4 we shall establish a discrete
version (Theorem 4.1) of Theorem 2.1. The argument is combinatorial and is par-
tially inspired by the pioneer work of König and Mörters [25] despite some es-
sential differences between the situations faced by them and by us. We shall adopt
a probabilistic approach to handle the moment asymptotics which is no longer a
probabilistic problem. In Section 5 we complete the proof of the upper bound for
Theorem 2.1. In this section we follow an interesting procedure of discretization
by Fourier transform.

We prove Theorem 1.2 in Section 6 and Theorem 1.3 in Section 7. The proof
relies on the exponential integrability of the local time (Lemma 6.1) under the
Hölder norm and on some results established in the previous sections.

In the Appendix, we prove two analytic lemmas.
The central part of this work is Theorem 4.1 which is similar in spirit to Propo-

sition 2.2 in [25] where the high moments of intersection local times are estimated.
Here we compare the present paper with the one by König and Mörters [25]. A key
ingredient in both works is to write the moments in terms of Lp-norms. In the case
of intersection local times (studied by König and Mörters), the Lp-norm is related
to Green’s function; while in the case of the local times of additive processes, the
Lp-norm is related to the Fourier transform of Green’s function. In Proposition 2.2
in [25], the domain of intersection is limited to a compact set; while in our case the
independent stable processes are allowed to interact at everywhere in R

d . Conse-
quently, compactification of the state space is one of several key issues addressed
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in our argument. Finally, both Proposition 2.2 in [25] and Theorem 4.1 are proved
by combinatorial approaches and therefore both treatments contains a certain pro-
cedure of discretization. As to be pointed out at the beginning of Section 5 below,
the classic procedure adapted in [25] is no longer working in our setting. Our way
of discretization is based on some delicate properties of Fourier transformation.

We end this section with the following comment: the moment asymptotics
linked to the weak convergence have been investigated extensively. We refer the
interested reader to the survey paper by Fitzsimmons and Pitman [14] for an
overview. In the study of the weak convergence, the power of the moment is of-
ten fixed. However, much less has been explored on the high moment asymptotics
(where the power tends to infinity) which are usually linked to the large devia-
tions through some general large deviation principles like Lemma 1.4. The study
of high moment asymptotics has great potential in solving some hard problems on
the large deviations, such as the large deviations for the intersection local times of
general Markovian and Gaussian processes, and for the local times of some other
multiparameter processes like stable sheets. It is too early to see a full scale of ap-
plications possibly brought by the research of high moment asymptotics; we leave
it to future study.

2. Time exponentiation. In the rest of the paper, we introduce the nota-
tions τ1, . . . , τp for independent exponential times with parameter 1, and �n for
the set of all permutations on {1, . . . , n}. We assume the independence between
{τ1, . . . , τp} and {X1(t), . . . ,Xp(t)}. At first, we try to represent the nth moment
of the random variable

η0([0, τ1] × · · · × [0, τp])
in a reasonably nice form.

By Fourier transform, for any t1, . . . , tp ≥ 0,

η0([0, t1] × · · · × [0, tp])

= 1

(2π)d

∫
Rd

[∫
Rd

ηx([0, t1] × · · · × [0, tp])eiλ·x dx

]
dλ

= 1

(2π)d

∫
Rd

dλ

∫ t1

0
· · ·

∫ tp

0
exp

{
iλ · (X1(s1) + · · · + Xp(sp)

)}
ds1 · · · dsp

where the second step follows from the definition of the local times as the density
of occupation measures. Hence, for any integer n ≥ 1,

E
[
η0([0, t1] × · · · × [0, tp])n]

= 1

(2π)dn

∫
(Rd )n

dλ1 · · ·dλn

×
p∏

j=1

∫
[0,tj ]n

E exp

{
i

n∑
k=1

λk · X(sk)

}
ds1 · · · dsn.
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Let
∑

n be the permutation group on the set {1, . . . , n}. By time rearrangement and
by independence of the increments,∫

[0,tj ]n
E exp

{
i

n∑
k=1

λk · X(sk)

}
ds1 · · · dsn

= ∑
σ∈�n

∫
{0≤s1≤···≤sn≤tj }

E exp

{
i

n∑
k=1

λσ(k) · X(sk)

}
ds1 · · · dsn

= ∑
σ∈�n

∫
{0≤s1≤···≤sn≤tj }

E exp

{
i

n∑
k=1

(
n∑

j=k

λσ(j)

)

× (
X(sk) − X(sk−1)

)}
ds1 · · · dsn

= ∑
σ∈�n

∫
{0≤s1≤···≤sn≤tj }

n∏
k=1

exp

{
−(sk − sk−1)ψ

(
n∑

j=k

λσ(j)

)}
ds1 · · · dsn,

where we adopt the convention that s0 = 0. Thus

E
[
η0([0, t1] × · · · × [0, tp])n]

= 1

(2π)dn

∫
(Rd )n

dλ1 · · ·dλn

(2.1)

×
p∏

h=1

∑
σ∈�n

∫
{0≤s1≤···≤sn≤th}

n∏
k=1

exp

{
−(sk − sk−1)

× ψ

(
n∑

j=k

λσ(j)

)}
ds1 · · · dsn.

To simplify the above representation, we replace t1, . . . , tp by τ1, . . . , τp:

E
[
η0([0, τ1] × · · · × [0, τp])n]

= 1

(2π)dn

∫
(Rd )n

dλ1 · · · dλn

×
[ ∑

σ∈�n

∫ ∞
0

e−t dt

×
∫
{0≤s1≤···≤sn≤t}

n∏
k=1

exp

{
−(sk − sk−1)

× ψ

(
n∑

j=k

λσ(j)

)}
ds1 · · ·dsn

]p
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= 1

(2π)dn

∫
(Rd )n

dλ1 · · ·dλn

[ ∑
σ∈�n

n∏
k=1

∫ ∞
0

e−t exp

{
−tψ

(
n∑

j=k

λσ(j)

)}
dt

]p

= 1

(2π)dn

∫
(Rd )n

dλ1 · · ·dλn

[ ∑
σ∈�n

n∏
k=1

[
1 + ψ

(
n∑

j=k

λσ(j)

)]−1]p

where the second step follows from the identity ((1.9) in [4]) that∫ ∞
0

e−t dt

∫
{0≤s1≤···≤sn≤t}

n∏
k=1

ϕk(sk − sk−1) ds1 · · · dsn =
n∏

k=1

∫ ∞
0

e−tϕk(t) dt.

Write Q(λ) = [1+ψ(λ)]−1. By the bijection j 	→ n−j and by the permutation
invariance,

E
[
η0([0, τ1] × · · · × [0, τp])n]

(2.2)

= 1

(2π)dn

∫
(Rd )n

dλ1 · · ·dλn

[ ∑
σ∈�n

n∏
k=1

Q

(
k∑

j=1

λσ(j)

)]p

.

We state the following theorem which will be proved in Sections 3–5.

THEOREM 2.1. Under (1.2),

lim
n→∞

1

n
log

1

(n!)p E
[
η0([0, τ1] × · · · × [0, τp])n] = log

ρ

(2π)d
(2.3)

where ρ > 0 is given in (1.4).

As it turns out, the hard part of Theorem 1.2 is on the upper bound. On the other
hand, if the right constant were not part of our concern, we could establish the
upper bound in a much easier way. Indeed, by Jensen’s inequality,∫

(Rd )n
dλ1 · · · dλn

[ ∑
σ∈�n

n∏
k=1

Q

(
k∑

j=1

λσ(j)

)]p

≤ (n!)p−1
∑

σ∈�n

∫
(Rd )n

dλ1 · · · dλn

n∏
k=1

Qp

(
k∑

j=1

λσ(j)

)

= (n!)p
∫
(Rd )n

dλ1 · · · dλn

n∏
k=1

Qp(λk)

= (n!)p
(∫

Rd
Qp(λ)dλ

)n
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where the second step follows from variable substitution. By (2.2), we obtain the
following upper bound:

lim sup
n→∞

1

n
log

1

(n!)p E
[
η0([0, τ1] × · · · × [0, τp])n] ≤ log

(
1

(2π)d

∫
Rd

Qp(λ)dλ

)
.

Unfortunately, by examining the argument we used to derive (1.5), it is not hard
to see that as p ≥ 2, we would miss the right constant by doing that.

PROOF OF THEOREM 1.1. We now prove Theorem 1.1 based on Theo-
rem 2.1. Let t1, . . . , tp ≥ 0. In view of (2.1), by Hölder’s inequality,

E
[
η0([0, t1] × · · · × [0, tp])n]

≤ 1

(2π)dn

×
p∏

h=1

{∫
(Rd )n

dλ1 · · · dλn

×
[ ∑

σ∈�n

∫
{0≤s1≤···≤sn≤th}

n∏
k=1

exp

{
−(sk − sk−1)

× ψ

(
n∑

j=k

λσ(j)

)}
ds1 · · · dsn

]p}1/p

=
p∏

j=1

{
E
[
η0([0, tj ]p)n

]}1/p = (t1 · · · tp)(αp−d)/(αp)n
E
[
η0([0,1]p)n

]
where the last step follows from (1.6). Thus,

E
[
η([0, τ1] × · · · × [0, τp])n]

=
∫ ∞

0
· · ·

∫ ∞
0

e−(t1+···+tp)
E
[
η([0, t1] × · · · × [0, tp])n]dt1 · · · dtp

≤ E
[
η([0,1]p)n

] ∫ ∞
0

· · ·
∫ ∞

0
(t1 · · · tp)((αp−d)/(αp))ne−(t1+···+tp) dt1 · · · dtp

= E
[
η([0,1]p)n

][
�

(
αp − d

αp
n + 1

)]p

.

By Theorem 2.1 and the Stirling formula,

lim inf
n→∞

1

n
log(n!)−d/α

E
[
η([0,1]p)n

]
(2.4)

≥ log
(

αp

αp − d

)(αp−d)/α

+ log
ρ

(2π)d
.
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On the other hand, notice that τ̄ ≡ min{τ1, . . . , τp} has the exponential distribu-
tion with the parameter p. Hence,

E
[
η([0, τ1] × · · · × [0, τp])]n ≥ E

[
η([0, τ̄ ]p)n

] = Eτ̄ ((αp−d)/α)n
E
[
η([0,1]p)n

]
= p−((αp−d)/α)n�

(
1 + αp − d

α
n

)
E
[
η([0,1]p)n

]
where the second step follows from (1.6). By the Stirling formula and Theorem 1.2
we have

lim sup
n→∞

1

n
log(n!)−d/α

E
[
η([0,1]p)n

]
(2.5)

≤ log
(

αp

αp − d

)(αp−d)/α

+ log
ρ

(2π)d
.

Combining (2.4) and (2.5) gives

lim
n→∞

1

n
log(n!)−d/α

E
[
η([0,1]p)n

] = log
(

αp

αp − d

)(αp−d)/α

+ log
ρ

(2π)d
.(2.6)

Finally, Theorem 1.1 follows from Lemma 1.4. �

3. Lower bound for Theorem 2.1. In this section we prove

lim inf
n→∞

1

n
log

1

(n!)p E
[
η0([0, τ1] × · · · × [0, τp])n] ≥ log

ρ

(2π)d
.(3.1)

Our starting point is (2.2). Let q > 1 be the conjugate number of p defined by
p−1 + q−1 = 1 and let f be a positive continuous function on R

d with f (−λ) =
f (λ) and ‖f ‖q = 1. We have(∫

(Rd )n
dλ1 · · · dλn

[ ∑
σ∈�n

n∏
k=1

Q

(
k∑

j=1

λσ(j)

)]p)1/p

≥
∫
(Rd )n

dλ1 · · · dλn

(
n∏

k=1

f (λk)

) ∑
σ∈�n

n∏
k=1

Q

(
k∑

j=1

λσ(j)

)

= n!
∫
(Rd )n

dλ1 · · · dλn

(
n∏

k=1

f (λk)

)
n∏

k=1

Q

(
k∑

j=1

λj

)

= n!
∫
(Rd )n

dλ1 · · · dλn

n∏
k=1

f (λk − λk−1)Q(λk)

where we follow the convention that λ0 = 0.
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Define the linear operator T on L2(Rd) as

T g(λ) = √
Q(λ)

∫
Rd

f (γ − λ)
√

Q(γ )g(γ ) dγ, g ∈ L2(Rd).

To show that T is well defined and continuous on L2(Rd), we need only to prove
that there is a constant C > 0 such that

〈h,T g〉 ≤ C‖g‖2‖h‖2, g, h ∈ L2(Rd).(3.2)

Indeed,

〈h,T g〉 =
∫ ∫

Rd×Rd
f (γ − λ)

√
Q(λ)h(λ)

√
Q(γ )g(γ ) dλdγ

=
∫

Rd
f (γ ) dγ

∫
Rd

√
Q(λ)h(λ)

√
Q(λ + γ )g(λ + γ )dλ

≤
{∫

Rd

[∫
Rd

√
Q(λ)h(λ)

√
Q(λ + γ )g(λ + γ )dλ

]p

dγ

}1/p

.

Hence, an argument similar to the proof of (1.5) gives that 〈h,T g〉 ≤ ‖Q‖p‖g‖2 ×
‖h‖2.

In addition, one can see that 〈h,T g〉 = 〈g,T h〉 for any g,h ∈ L2(Rd). It means
that T is self-adjoint. We now let g be a bounded and locally supported function on
R

d with ‖g‖2 = 1. Then there is δ > 0 such that f ≥ δ and Q ≥ δ on the support
of g. In addition, notice that Q ≤ 1. Thus,∫

(Rd )n
dλ1 · · · dλn

n∏
k=1

f (λk − λk−1)Q(λk)

≥ δ2‖g‖−2∞
∫
(Rd )n

dλ1 · · · dλn g(λ1)

×
(

n∏
k=2

√
Q(λk−1)f (λk − λk−1)

√
Q(λk)

)
g(λn)

= δ2‖g‖−2∞ 〈g,T n−1g〉.
Consider the spectral representation of the self-adjoint operator T :

〈g,T g〉 =
∫ ∞
−∞

θµg(dθ)

where µg(dθ) is a probability measure on R. By the mapping theorem,

〈g,T n−1g〉 =
∫ ∞
−∞

θn−1µg(dθ) ≥
(∫ ∞

−∞
θµg(dθ)

)n−1

= 〈g,T g〉n−1

where the second step follows from Jensen’s inequality.
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Hence,

lim inf
n→∞

1

n
log

1

n!
(∫

(Rd )n
dλ1 · · · dλn

[ ∑
σ∈�n

n∏
k=1

Q

(
k∑

j=1

λσ(j)

)]p)1/p

≥ log〈g,T g〉 = log
∫ ∫

Rd×Rd
f (γ − λ)

√
Q(λ)

√
Q(γ )g(λ)g(γ ) dλdγ

= log
∫

Rd
f (λ)

[∫
Rd

√
Q(λ + γ )

√
Q(γ )g(λ + γ )g(γ ) dγ

]
dλ.

Notice that the set of all bounded, locally supported g is dense in L2(Rd). Taking
the supremum over g on the right-hand sides gives

lim inf
n→∞

1

n
log

1

n!
(∫

(Rd )n
dλ1 · · · dλn

[ ∑
σ∈�n

n∏
k=1

Q

(
k∑

j=1

λσ(j)

)]p)1/p

(3.3)

≥ log sup
|g|2=1

∫
Rd

f (λ)

[∫
Rd

√
Q(λ + γ )

√
Q(γ )g(λ + γ )g(γ ) dγ

]
dλ

Since for any g, the function

H(λ) =
∫

Rd

√
Q(λ + γ )

√
Q(γ )g(λ + γ )g(γ ) dγ

is even: H(−λ) = H(λ). Hence, taking the supremum over all positive, continuous
and even functions f with ‖f ‖q = 1 on the right-hand side of (3.3) gives

lim inf
n→∞

1

n
log

1

n!
(∫

(Rd )n
dλ1 · · · dλn

[ ∑
σ∈�n

n∏
k=1

Q

(
k∑

j=1

λσ(j)

)]p)1/p

≥ 1

p
log sup

|g|2=1

∫
Rd

[∫
Rd

√
Q(λ + γ )

√
Q(γ )g(λ + γ )g(γ ) dγ

]p

dλ

= 1

p
logρ.

From the relation (2.2), we have proved (3.1). �

4. A discrete version of Theorem 2.1. The approach for the upper bound
of Theorem 2.1 relies heavily on combinatorics and is therefore best suitable for
the discrete structure. In this section we prove the following discrete version of
Theorem 2.1 with an additional localization assumption.

THEOREM 4.1. Let π(x) and Q(x) be two nonnegative functions on Z
d such

that π is locally supported, π(−x) = π(x) for all x ∈ Z
d , and that

lim|x|→∞Q(x) = 0.(4.1)
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Then

lim
n→∞

1

n
log

∑
x1,...,xn∈Zd

(
n∏

k=1

π(xk)

)[
1

n!
∑

σ∈�n

n∏
k=1

Q

(
k∑

j=1

xσ(j)

)]p

(4.2)
= log ρ̃,

where

ρ̃ = sup
|f |2=1

∑
x∈Zd

π(x)

[ ∑
y∈Zd

√
Q(x + y)

√
Q(y)f (x + y)f (y)

]p

and

|f |2 =
( ∑

x∈Zd

f 2(x)

)1/2

.

PROOF. The lower bound follows from an obvious modification of the argu-
ment in the previous section. We now prove the upper bound. By assumption, there
is a finite set A ⊂ Z

d such that π(x) > 0 as x ∈ A and π(x) = 0 as x /∈ A. Without
loss of generality, we may assume that the group generated by A is Z

d . Indeed, if
A does not generate Z

d , one can add finitely many lattice points into A to form
an augmented Ā which generates Z

d . Let ε > 0 be a small number. Assume that
we have proved the upper bound under this extra condition. We apply it to the sys-
tem where π(·) is replaced by π̄(·) defined as: π̄ (x) = π(x) on A ∪ (Zd \ Ā) and
π̄(x) = ε on Ā \ A:

lim sup
n→∞

1

n
log

∑
x1,...,xn∈Zd

(
n∏

k=1

π(xk)

)[
1

n!
∑

σ∈�n

n∏
k=1

Q

(
k∑

j=1

xσ(j)

)]p

≤ lim sup
n→∞

1

n
log

∑
x1,...,xn∈Zd

(
n∏

k=1

π̄ (xk)

)[
1

n!
∑

σ∈�n

n∏
k=1

Q

(
k∑

j=1

xσ(j)

)]p

≤ log sup
‖f ‖2=1

∑
x∈Zd

π̄(x)

[ ∑
y∈Zd

√
Q(x + y)

√
Q(y)f (x + y)f (y)

]p

.

Letting ε → 0+ on the right-hand side gives the desired upper bound.
We may also assume that π is a probability measure on A, for otherwise we use

π(·)/π(A) instead of π(·) in the following proof.
We adopt the notation y = (y1, . . . , yn) for any y1, . . . , yn ∈ Z

d and write

Ly
n = 1

n

n∑
k=1

δyk
.
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Let n and x = (x1, . . . , xn) ∈ An be fixed for a moment and write µ = Lx
n. Then

for each x ∈ A, nµ(x) is an integer, and

∑
σ∈�n

n∏
k=1

Q

(
k∑

j=1

xσ(j)

)

= ∑
y1,...,yn∈A

1{Ly
n=µ}

∑
σ∈�n

1{x◦σ=y}
n∏

k=1

Q

(
k∑

j=1

yj

)

= ∑
y1,...,yn∈A

1{Ly
n=µ}

{
n∏

k=1

Q

(
k∑

j=1

yj

)}
#{σ ∈ �n; x ◦ σ = y}.

Notice that as L
y
n = µ,

#{σ ∈ �n; x ◦ σ = y} = ∏
x∈A

(nµ(x))!.(4.3)

Indeed, for each x ∈ A there are, respectively, exactly nµ(x) of x1, . . . , xn and
exactly nµ(x) of y1, . . . , yn which are equal to x. Therefore, there are (nµ(x))!
ways to match each x-valued component of y to each x-valued component of x.
Thus, (4.3) follows from the multiplication principle.

Hence

∑
σ∈�n

n∏
k=1

Q

(
k∑

j=1

xσ(j)

)
(4.4)

=
(∏

x∈A

(nµ(x))!
) ∑

y1,...,yn∈A

1{Ly
n=µ}

{
n∏

k=1

Q

(
k∑

j=1

yj

)}
.

By the Stirling formula, n! ∼ √
2πnnne−n (n → ∞) and there is C > 0 such that

(nµ(x))! ≤ C
√

nµ(x)(nµ(x))nµ(x)e−nµ(x)

for all x ∈ A and all n ≥ 1. Consequently,∏
x∈A

(nµ(x))! ≤ Cn#(A)/2e−n
∏
x∈A

nnµ(x) exp{nµ(x) logµ(x)}

= Cn#(A)/2e−nnn exp

{
n
∑
x∈A

µ(x) logµ(x)

}

≤ Cn#(A)/2n! exp

{
n
∑
x∈A

µ(x) logµ(x)

}
.



LOCAL TIMES OF ADDITIVE STABLE PROCESSES 617

Therefore,

1

n!
∑

σ∈�n

n∏
k=1

Q

(
k∑

j=1

xσ(j)

)
≤ Cn#(A)/2 exp

{
n
∑
x∈A

µ(x) logµ(x)

}
(4.5)

× ∑
y1,...,yn∈A

1{Ly
n=µ}

{
n∏

k=1

Q

(
k∑

j=1

yj

)}
.

Here and elsewhere below, we follow the convention 00 = 1 or, 0 log 0 = 0.
On the other hand, let q > 1 be the conjugate number of p defined by p−1 +

q−1 = 1. For any probability measure ν on A, write

φν(x) =
{ (

ν(x))1/q(π(x))1/p, x ∈ A,
0, x ∈ Z

d \ A.

Notice that as L
y
n = µ, there are exactly nµ(x) of φµ(y1), . . . , φµ(yn) equal to

φµ(x) for each x ∈ A. Hence,

∑
y1,...,yn∈A

φµ(y1) · · ·φµ(yn)

{
n∏

k=1

Q

(
k∑

j=1

yj

)}

≥ ∑
y1,...,yn∈A

1{Ly
n=µ}φµ(y1) · · ·φµ(yn)

{
n∏

k=1

Q

(
k∑

j=1

yj

)}

= ∑
y1,...,yn∈A

1{Ly
n=µ}

(∏
x∈A

φµ(x)nµ(x)

)
n∏

k=1

Q

(
k∑

j=1

yj

)

= exp

{
n

(
1

q

∑
x∈A

µ(x) logµ(x) + 1

p

∑
x∈A

µ(x) logπ(x)

)}

× ∑
y1,...,yn∈A

1{Ly
n=µ}

{
n∏

k=1

Q

(
k∑

j=1

yj

)}
.

Combining this with (4.5),

1

n!
∑

σ∈�n

n∏
k=1

Q

(
k∑

j=1

xσ(j)

)

≤ Cn#(A)/2 exp

{
n

1

p

∑
x∈A

µ(x) log
µ(x)

π(x)

}

× ∑
y1,...,yn∈Zd

φµ(y1) · · ·φµ(yn)

{
n∏

k=1

Q

(
k∑

j=1

yj

)}
.
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By variable substitution,

∑
y1,...,yn∈Zd

φµ(y1) · · ·φµ(yn)

{
n∏

k=1

Q

(
k∑

j=1

yj

)}

= ∑
z1,...,zn∈Zd

n∏
k=1

φµ(zk − zk−1)Q(zk).

Summarizing what we have proved,

∑
x1,...,xn∈Zd

(
n∏

k=1

π(xk)

)[
1

n!
∑

σ∈�n

n∏
k=1

Q

(
k∑

j=1

xσ(j)

)]p

≤ Cnp#(A)/2

[
sup

ν∈M(A)

∑
z1,...,zn∈Zd

n∏
k=1

φν(zk − zk−1)Q(zk)

]p

(4.6)

× ∑
x1,...,xn∈A

π(x1) · · ·π(xn) exp

{
n
∑
x∈A

Lx
n(x) log

Lx
n(x)

π(x)

}
,

where M(A) is the space of all probability measures on A equipped with topology
of weak convergence. (In our setting, of course, the weak convergence is equivalent
to the pointwise convergence.) Recall that by Sanov’s theorem (Theorem 2.1.10,
page 16 in [12]), the empirical measure Lx

n satisfies the large deviation principle
governed by the rate function

H(ν|π) = ∑
x∈A

ν(x) log
ν(x)

π(x)
, ν ∈ M(A).

By the fact that A is finite and that π(x) > 0 on A, H(ν|π) is continuous on M(A).
By Varadhan’s integral lemma (Theorem 4.3.1, page 137 in [12]),

lim
n→∞

1

n
log

∑
x1,...,xn∈A

π(x1) · · ·π(xn) exp

{
n
∑
x∈A

Lx
n(x) log

Lx
n(x)

π(x)

}

= sup
ν∈M(A)

{H(ν|π) − H(ν|π)} = 0.

In view of (4.6), the conclusion follows from the following Lemma 4.2. �

LEMMA 4.2. Under the assumptions given above,

lim sup
n→∞

1

n
log sup

ν∈M(A)

∑
x1,...,xn∈Zd

n∏
k=1

φν(xk − xk−1)Q(xk) ≤ 1

p
log ρ̃.
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PROOF. Notice that M(A) is a compact space and that for any µ0 ∈ M(A)

and ε > 0, there is a open neighborhood U of µ0 such that µ(x) ≤ µ0(x) + ε for
all µ ∈ U. Fix µ0 and write

ϕε(x) =
{(

µ0(x) + ε
)1/q

(π(x))1/p, x ∈ A,
0, x ∈ Z

d \ A,

and

�ε(µ0) = lim sup
n→∞

1

n
log

∑
x1,...,xn∈Zd

n∏
k=1

ϕε(xk − xk−1)Q(xk).

We need only to show that

lim sup
ε→0+

�ε(µ0) ≤ 1

p
log ρ̃ uniformly over µ0 ∈ M(A).(4.7)

For any x = (x1, . . . , xd) ∈ Z
d write |x|∞ = max1≤i≤d |xi |. For any integer

a < b we use (a, b]d and [a, b]d below for the d-dimensional boxes of lattice
points. Let N0 = max

{|x|∞; x ∈ A
}
. Let δ > 0 be fixed and take integer N > 2N0

sufficiently large so that Q(x) ≤ δ for all x ∈ Z
d with |x|∞ ≥ N/2. We have

A ⊂ (−N,N]d .

∑
x1,...,xn∈Zd

n∏
k=1

ϕε(xk − xk−1)Q(xk)

= ∑
y1,...,yn∈Zd

∑
z1,...,zn∈(−N,N]d

n∏
k=1

ϕε

(
2(yk − yk−1)N

(4.8)
+ (zk − zk−1)

)
Q(2ykN + zk)

≤ ∑
z1,...,zn∈(−N,N]d

n∏
k=1

ϕ̃ε(zk − zk−1)Q
∗(zk),

where

ϕ̃ε(x) = ∑
y∈Zd

ϕε(2yN + x), Q∗(x) = sup
y∈Zd

Q(2yN + x).

We have

ϕ̃ε(x) = ϕε(x), x ∈ [−(2N − N0), (2N − N0)]d,(4.9) ∑
y∈(−N,N]d

ϕ̃ε(y − x) = ∑
y∈(−N,N]d

ϕ̃ε(y), x ∈ (−N,N]d,(4.10)

Q∗(x) ≤ δ ∨ Q(x), x ∈ Z
d .(4.11)
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By (4.10), the kernel

P(x, y) = ϕ̃ε(y − x)
/ ∑

z∈(−N,N]d
ϕ̃ε(z), x, y ∈ (−N,N]d,

is a transition probability on (−N,N]d . Let {Yk}k≥1 be a Markov chain with the
transition P(x, y). By (4.9), by the definition of ϕε and by the assumption that the
group generated by A is Z

d , {Yk}k≥1 is irreducible. By the large deviation principle
for the empirical measures of finite-state Markov chains (Theorems 3.1.2 and 3.1.6
in [12]), the empirical measure

LY
n = 1

n

n∑
k=1

δYk

satisfies the large deviation principle on M{(−N,N]d} governed by the rate func-
tion

I (µ) = − inf
u>0

∑
x∈(−N,N]d

µ(x) log

(
u(x)−1

∑
y∈(−N,N]d

P (x, y)u(y)

)
,

µ ∈ M{(−N,N]d}.
On the other hand,

∑
z1,...,zn∈(−N,N]d

n∏
k=1

ϕ̃ε(zk − zk−1)Q
∗(zk)

=
( ∑

x∈(−N,N]d
ϕ̃ε(x)

)n

E0 exp{n〈logQ∗,LY
n 〉}.

By Varadhan’s integral lemma (Theorem 4.3.1, page 137 in [12]),

lim
n→∞

1

n
log

∑
z1,...,zn∈(−N,N]d

n∏
k=1

ϕ̃ε(zk − zk−1)Q
∗(zk)

= log

( ∑
x∈(−N,N]d

ϕ̃ε(x)

)

+ sup
µ∈M{(−N,N]d }

{ ∑
x∈(−N,N]d

µ(x) logQ∗(x) − I (µ)

}

= sup
µ∈M{(−N,N]d }

inf
u>0

∑
x∈(−N,N]d

µ(x) log

(
Q∗(x)u(x)−1(4.12)
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× ∑
y∈(−N,N]d

ϕ̃ε(y − x)u(y)

)

≤ sup
µ∈M{(−N,N]d }

inf
u>0

log

( ∑
x,y∈(−N,N]d

µ(x)Q∗(x)u(x)−1ϕ̃ε(y − x)u(y)

)

where the last step follows from Jensen’s inequality.
Let u(x) = √

Q∗(x)µ(x) and

f (x) =
{√

µ(x), x ∈ (−N,N]d ,
0, x ∈ Z

d \ (−N,N]d .

We have |f |2 = 1 and∑
x,y∈(−N,N]d

µ(x)Q∗(x)u(x)−1ϕ̃ε(y − x)u(y)

= ∑
x,y∈(−N,N]d

ϕ̃ε(y − x)
√

Q∗(x)Q∗(y)f (x)f (y).

By (4.9), for any x, y ∈ (−N,N]d , x − y /∈ [−(2N − N0), (2N − N0)]d implies
that |x|∞ ≥ N − N0 and |y|∞ ≥ N − N0. In view of (4.11),∑

x,y∈(−N,N]d
ϕ̃ε(y − x)

√
Q∗(x)Q∗(y)f (x)f (y)

≤ ∑
x,y∈Zd

ϕε(y − x)
√

Qδ(x)Qδ(y)f (x)f (y)

+ ∑
x,y∈B

ϕ̃ε(y − x)
√

Q∗(x)Q∗(y)f (x)f (y),

where Qδ(x) = δ ∨ Q(x) and B = {x ∈ (−N,N]d ; |x|∞ ≥ N − N0}. By the fact
[partially from (4.11)] that Q∗(x) ≤ δ for x ∈ B ,∑

x,y∈B

ϕ̃ε(y − x)
√

Q∗(x)Q∗(y)f (x)f (y) ≤ δ
∑

x,y∈(−N,N]d
ϕ̃ε(y − x)f (x)f (y).

To control the right-hand side, we consider Fourier transformation. For any
function g supported on (−N,N]d , we introduce the complex function F (g) on
Z

d by

F (g)(y) = ∑
x∈(−N,N]d

g(x) exp
{
i
π

N
(x · y)

}
, y ∈ Z

d .

By orthogonality, for any g and h supported on (−N,N]d ,∑
y∈(−N,N]d

F (g)(y)F (h)(y) = (2N)d
∑

x∈(−N,N]d
g(x)h(x).(4.13)
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We now take

h(x) = ∑
z∈(−N,N]d

ϕ̃ε(z − x)f (z).

Then

F (h)(y) = ∑
z∈(−N,N]d

f (z)
∑

x∈(−N,N]d
ϕ̃ε(z − x) exp

{
i
π

N
(x · y)

}

= ∑
z∈(−N,N]d

f (z) exp
{
i
π

N
(z · y)

}

× ∑
x∈(−N,N]d

ϕ̃ε(z − x) exp
{
i
π

N

(
(x − z) · y)}

= F (f )(y)F (ϕ̃ε)(−y),

where the last step partially follows from the fact that ϕ̃ε is periodic:

ϕ̃ε(x + 2Ny) = ϕ̃ε(x), x ∈ (−N,N]d, y ∈ Z
d .

From (4.13), therefore,∑
x,y∈(−N,N]d

ϕ̃ε(y − x)f (x)f (y)

= ∑
x∈(−N,N]d

f (x)h(x)

= (2N)−d
∑

y∈(−N,N]d
F (f )(y)F (h)(y)

= (2N)−d
∑

y∈(−N,N]d
|F (f )(y)|2F (ϕ̃ε)(y).

By the definition of ϕ̃ε ,

F (ϕ̃ε)(y) = ∑
z∈Zd

∑
x∈(−N,N]d

ϕε(2Nz + x) exp
{
i
π

N
(x · y)

}

= ∑
z∈Zd

∑
x∈(−N,N]d

ϕε(2Nz + x) exp
{
i
π

N

(
(2Nz + x) · y)}

= ∑
x∈Zd

ϕε(x) exp
{
i
π

N
(x · y)

}
= ∑

x∈A

ϕε(x) exp
{
i
π

N
(x · y)

}
.

Thus, there is a constant C > 0 independent of N (and therefore δ), such that
|F (ϕ̃ε)(y)| ≤ C for any y ∈ (−N,N]d .



LOCAL TIMES OF ADDITIVE STABLE PROCESSES 623

Therefore, by (4.13) again,∑
x,y∈(−N,N]d

ϕ̃ε(y − x)f (x)f (y) ≤ C(2N)−d
∑

y∈(−N,N]d
|F (f )(y)|2

= C
∑

x∈(−N,N]d
f 2(x) = C.

Summarizing the above discussion, by (4.12) we have

lim
n→∞

1

n
log

∑
z1,...,zn∈(−N,N]d

n∏
k=1

ϕ̃ε(zk − zk−1)Q
∗(zk)

≤ log

(
Cδ + sup

|f |2=1

∑
x,y∈Zd

ϕε(y − x)
√

Qδ(x)Qδ(y)f (x)f (y)

)
.

By (4.8),

lim sup
n→∞

1

n
log

∑
x1,...,xn∈Zd

n∏
k=1

ϕε(xk − xk−1)Q(xk)

≤ log

(
Cδ + sup

|f |2=1

∑
x,y∈Zd

ϕε(y − x)
√

Qδ(x)Qδ(y)f (x)f (y)

)
.

Letting δ → 0+ gives

lim sup
n→∞

1

n
log

∑
x1,...,xn∈Zd

n∏
k=1

ϕε(xk − xk−1)Q(xk)

≤ log

(
sup

|f |2=1

∑
x,y∈Zd

ϕε(y − x)
√

Q(x)Q(y)f (x)f (y)

)
.

By the definition of ϕε , for any f ∈ L2(Zd) with |f |2 = 1,∑
x,y∈Zd

ϕε(y − x)
√

Q(x)Q(y)f (x)f (y)

= ∑
x∈Zd

ϕε(x)
∑

y∈Zd

√
Q(x + y)Q(y)f (x + y)f (y)

= ∑
x∈A

(
µ0(x) + ε

)1/q
(π(x))1/p

∑
y∈Zd

√
Q(x + y)Q(y)f (x + y)f (y)

≤
{∑

x∈A

(
µ0(x) + ε

)}1/q
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×
{∑

x∈A

π(x)

[ ∑
y∈Zd

√
Q(x + y)Q(y)f (x + y)f (y)

]p}1/p

≤ (1 + ε#{A})1/q ρ̃1/p.

Consequently,

lim sup
n→∞

1

n
log

∑
x1,...,xn∈Zd

n∏
k=1

ϕε(xk − xk−1)Q(xk)

≤ 1

p
log ρ̃ + 1

q
log(1 + ε#{A})

which clearly implies (4.7). �

5. Upper bound for Theorem 2.1. In this section we prove

lim sup
n→∞

1

n
log

1

(n!)p E
[
η0([0, τ1] × · · · × [0, τp])n] ≤ log

ρ

(2π)d
.(5.1)

By comparing (2.2) with Theorem 4.1, we need to do two things—localization
and discretization. In particular, we point out the difficulty in our second task. If
we follow a standard way of discretization, then each of λ1, . . . , λn will generate a
small error. This may lead to a considerable error generated by

k∑
j=1

λσ(j)

as k is large. In view of (2.2), therefore, the standard approach seems not to be
very promising.

Our approach relies on Fourier transformation. Define the probability density h

on R
d as

h(x) = C−1
d∏

k=1

(
2 sinxk

xk

)2

, x = (x1, . . . , xd) ∈ R
d,(5.2)

where C > 0 is the normalizing constant:

C =
∫

Rd

d∏
k=1

(
2 sinxk

xk

)2

dx1 · · · dxd.

Clearly, h is symmetric. One can verify that the Fourier transform ĥ is

ĥ(λ) =
∫

Rd
h(x)eiλ·x dx = C−1(2π)d

(
1[−1,1]d ∗ 1[−1,1]d

)
(λ).

In particular, ĥ is nonnegative and has the compact support set [−2,2]d .
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For each ε > 0, write

hε(x) = ε−dh(ε−1x), x ∈ R
d .(5.3)

Define

ηε([0, t1] × · · · × [0, tp]) =
∫

Rd
hε(x)ηx([0, t1] × · · · × [0, tp]) dx.

By Parseval’s identity we have

ηε([0, t1] × · · · × [0, tp])

= 1

(2π)d

∫
Rd

dλ ĥε(λ)

×
∫ t1

0
· · ·

∫ tp

0
exp

{
iλ · (X1(s1) + · · · + Xp(sp)

)}
ds1 · · · dsp,

where

ĥε(λ) =
∫

Rd
hε(x)eiλ·x dx = ĥ(ελ).

Hence,

E
[
(η0 − ηε)([0, t1] × · · · × [0, tp])n]

= 1

(2π)nd

∫
(Rd )n

dλ1 · · · dλn

(
n∏

k=1

[1 − ĥ(ελk)]
)

×
p∏

j=1

∫
[0,tj ]n

E exp

{
i

n∑
k=1

λk · X(sk)

}
ds1 · · · dsn.

Following the same procedure used for (2.2),

E
[
(η0 − ηε)([0, τ1] × · · · × [0, τp])n]

= 1

(2π)dn

∫
(Rd )n

dλ1 · · · dλn

(
n∏

k=1

[1 − ĥ(ελk)]
)

×
[ ∑

σ∈�n

n∏
k=1

Q

(
k∑

j=1

λσ(j)

)]p

(5.4)

≤ (n!)p
(2π)dn

∫
(Rd )n

dλ1 · · · dλn

n∏
k=1

[1 − ĥ(ελk)]Qp

(
k∑

j=1

λj

)

= (n!)p
(2π)dn

∫
(Rd )n

dλ1 · · · dλn

n∏
k=1

[
1 − ĥ

(
ε(λk − λk−1)

)]
Qp(λk),
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where Q(λ) = [1+ψ(λ)]−1, where the second step follows from Hölder inequality
and from a suitable index rearrangement, and where the third step follows from the
variable substitution λk 	→ λk − λk−1 (recall our convention λ0 = 0).

We now prove that

lim sup
ε→0+

lim sup
n→∞

1

n
log

∫
(Rd )n

dλ1 · · ·dλn

(5.5)

×
n∏

k=1

[
1 − ĥ

(
ε(λk − λk−1)

)]
Qp(λk) = −∞.

First notice that under the assumption d < αp,

C ≡
∫

Rd
Qp(λ)dλ < ∞.

Given δ > 0 there are u > 0 and N > 0 such that 1 − ĥ(λ) < δ as |λ| < u, and that∫
{|λ|≥N}

Qp(λ)dλ < δ.

We take ε < u(2N)−1. For each n, write

Bn =
{
(λ1, . . . , λn) ∈ (Rd)n; #{1 ≤ k ≤ n; |λk| ≥ N} ≥ n

3

}
.

We have ∫
(Rd )n

dλ1 · · · dλn

n∏
k=1

[
1 − ĥ

(
ε(λk − λk−1)

)]
Qp(λk)

≤
∫
Bn

dλ1 · · · dλn

n∏
k=1

Qp(λk)

+
∫
Bc

n

dλ1 · · · dλn

n∏
k=1

[
1 − ĥ

(
ε(λk − λk−1)

)]
Qp(λk).

For the first term on the right-hand side,∫
Bn

dλ1 · · · dλn

n∏
k=1

Qp(λk)

≤
(

n

[n/3]
)[∫

Rd
Qp(λ)dλ

]n−[n/3][∫
{|λ|≥N}

Qp(λ)dλ

][n/3]

≤ 2nCn−[n/3]δ[n/3].
So we have

lim sup
n→∞

1

n
log

∫
Bn

dλ1 · · · dλn

n∏
k=1

Qp(λk) ≤ log 2 + 2

3
logC + 1

3
log δ.
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As for the second term, notice that on Bc
n, there are at least [n/3] pairs (λk−1, λk)

such that |λk−1| ≤ N and |λk| ≤ N . For such pairs we have 0 ≤ 1 − ĥ(ε(λk −
λk−1)) < δ. For any other pairs, we use the general bounds 0 ≤ 1 − ĥ(ε(λk −
λk−1)) ≤ 1. Therefore,∫

Bc
n

dλ1 · · · dλn

n∏
k=1

[
1 − ĥ

(
ε(λk − λk−1)

)]
Qp(λk)

≤ δ[n/3]
∫
(Rd )n

dλ1 · · · dλn

n∏
k=1

Qp(λk) = Cnδ[n/3].

Thus,

lim sup
n→∞

1

n
log

∫
Bc

n

dλ1 · · · dλn

n∏
k=1

[
1 − ĥ

(
ε(λk − λk−1)

)]
Qp(λk)

≤ logC + 1

3
log δ.

In summary,

lim sup
ε→0+

lim sup
n→∞

1

n
log

∫
(Rd )n

dλ1 · · · dλn

n∏
k=1

[
1 − ĥ

(
ε(λk − λk−1)

)]
Qp(λk)

≤ max
{

log 2 + 2

3
logC + 1

3
log δ, logC + 1

3
log δ

}
.

Letting δ → 0+ gives (5.5).
By (5.4),

lim sup
ε→0+

lim sup
n→∞

1

n
log

1

(n!)p E
[
(η0 − ηε)([0, τ1] × · · · × [0, τp])n] = −∞.

We claim that it can be strengthened into

lim sup
ε→0+

lim sup
n→∞

1

n
log

1

(n!)p E|(η0 − ηε)([0, τ1] × · · · × [0, τp])|n = −∞.(5.6)

Indeed, this is automatic if n → ∞ along the even numbers. As for n = 2k+1, it is
easy to see that our assertion follows from the following use of Hölder’s inequality:

E|(η0 − ηε)([0, τ1] × · · · × [0, τp])|2k+1

≤ {E|(η0 − ηε)([0, τ1] × · · · × [0, τp])|2k}1/2

× {
E|(η0 − ηε)([0, τ1] × · · · × [0, τp])|2(k+1)}1/2

.
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We now fix ε > 0 and estimate ηε([0, τ1] × · · · × [0, τp]). Let M > 0 be fixed
but arbitrary. By definition,

ηε([0, t1] × · · · × [0, tp])
= ∑

y∈Zd

∫
[0,M]d

hε(yM + z)ηyM+z([0, t1] × · · · × [0, tp]) dz(5.7)

≤
∫
[0,M]d

h̃ε(z)η̃
z([0, t1] × · · · × [0, tp]) dz,

where

h̃ε(x) = ∑
y∈Zd

hε(yM + z),

η̃z([0, t1] × · · · × [0, tp]) = ∑
y∈Zd

ηyM+z([0, t1] × · · · × [0, tp])

are two periodic functions on R
d with the period M > 0.

By Parseval’s identity,∫
[0,M]d

h̃ε(z)η̃
z([0, t1] × · · · × [0, tp]) dz

= 1

Md

∑
y∈Zd

(∫
[0,M]d

h̃ε(x) exp
{
−i

2π

M
(y · x)

}
dx

)

×
(∫

[0,M]d
η̃x([0, t1] × · · · × [0, tp]) exp

{
i
2π

M
(y · x)

}
dx

)
.

By periodicity,∫
[0,M]d

h̃ε(x) exp
{
−i

2π

M
(y · x)

}
dx

= ∑
z∈Zd

∫
[0,M]d

hε(zM + x) exp
{
−i

2π

M
(y · x)

}
dx

= ∑
z∈Zd

∫
zM+[0,M]d

hε(x) exp
{
−i

2π

M

(
y · (x − zM)

)}
dx

= ∑
z∈Zd

∫
zM+[0,M]d

hε(x) exp
{
−i

2π

M
(y · x)

}
dx

=
∫

Rd
hε(x) exp

{
−i

2π

M
(y · x)

}
dx = ĥ

(
2πε

M
y

)
.
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Similarly,∫
[0,M]d

η̃x([0, t1] × · · · × [0, tp]) exp
{
i
2π

M
(y · x)

}
dx

=
∫

Rd
ηx([0, t1] × · · · × [0, tp]) exp

{
i
2π

M
(y · x)

}
dx

=
∫
[0,t1]×···×[0,tp]

exp
{
i
2π

M
y · (X1(s1) + · · · + Xp(sp)

)}
ds1 · · · dsp.

Hence,∫
[0,M]d

h̃ε(z)η̃
z([0, t1] × · · · × [0, tp]) dz

= 1

Md

∑
y∈Zd

ĥ

(
2πε

M
y

)
(5.8)

×
∫
[0,t1]×···×[0,tp]

exp
{
i
2π

M
y

· (X1(s1) + · · · + Xp(sp)
)}

ds1 · · · dsp.

Following a procedure same as the one used for (2.2),

E

[∫
[0,M]d

h̃ε(z)η̃
z([0, τ1] × · · · × [0, τp]) dz

]n

= 1

Mdn

∑
y1,...,yn∈Zd

(
n∏

k=1

ĥ

(
2πε

M
yk

))[ ∑
σ∈�n

n∏
k=1

Q

(
2π

M

k∑
j=1

yσ(j)

)]p

.

By Theorem 4.1,

lim
n→∞

1

n
log

1

(n!)p E

[∫
[0,M]d

h̃ε(z)η̃
z([0, τ1] × · · · × [0, τp]) dz

]n

= log

(
1

Md
sup

|f |2=1

∑
x∈Zd

ĥ

(
2πε

M
x

)[ ∑
y∈Zd

√
Q

(
2π

M
(x + y)

)
(5.9)

×
√

Q

(
2π

M
y

)
f (x + y)f (y)

]p)

≤ log(M−dρM),

where

ρM = sup
|f |2=1

∑
x∈Zd

[ ∑
y∈Zd

√
Q

(
2π

M
(x + y)

)√
Q

(
2π

M
y

)
f (x + y)f (y)

]p

.(5.10)



630 X. CHEN

In view of (5.7),

lim sup
n→∞

1

n
log

1

(n!)p E
[
ηε([0, τ1] × · · · × [0, τp])]n ≤ log(M−dρM).

By Lemma A.1 given in the Appendix, letting M → ∞ on the right-hand side
gives

lim sup
n→∞

1

n
log

1

(n!)p E
[
ηε([0, τ1] × · · · × [0, τp])]n ≤ log

ρ

(2π)d
.(5.11)

Finally, (5.1) follows from (5.6), (5.11) and the fact that{
E
[
η0([0, τ1] × · · · × [0, τp])]n}1/n

≤ {
E
[
ηε([0, τ1] × · · · × [0, τp])]n}1/n

+ {E|(η0 − ηε)([0, τ1] × · · · × [0, τp])|n}1/n.

6. Proof of Theorem 1.2. In the light of Theorem 1.1, the nontrivial part of
Theorem 1.2 is the upper bound. Let M > 0 be fixed and recall that

η̃x([0, τ1] × · · · × [0, τp]) = ∑
y∈Zd

ηyM+x([0, τ1] × · · · × [0, τp]).

Notice that

sup
x∈Rd

ηx([0, τ1] × · · · × [0, τp]) ≤ sup
x∈[0,M]d

η̃x([0, τ1] × · · · × [0, τp]).(6.1)

By Fourier expansion,

η̃x([0, τ1] × · · · × [0, τp]) = ∑
y∈Zd

a(y) exp
{
i
2π

M
(x · y)

}
,

where

a(y) = 1

Md

∫
[0,M]d

exp
{
−i

2π

M
(x · y)

}
η̃x([0, τ1] × · · · × [0, τp]) dx

= 1

Md

∫
Rd

exp
{
−i

2π

M
(x · y)

}
ηx([0, τ1] × · · · × [0, τp]) dx

= 1

Md

∫ τ1

0
· · ·

∫ τp

0
exp

{
−i

(
2π

M
y

)
· (X1(s1) + · · · + Xp(sp)

)}
ds1 · · · dsp.

Thus

η̃x([0, τ1] × · · · × [0, τp])

= 1

Md

∑
y∈Zd

exp
{
i
2π

M
(x · y)

}
(6.2)
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×
∫ τ1

0
· · ·

∫ τp

0
exp

{
−i

(
2π

M
y

)
· (X1(s1) + · · · + Xp(sp)

)}
ds1 · · · dsp.

Let the functions h and hε be defined in (5.2) and (5.3), respectively. Recall that

h̃ε(x) = ∑
y∈Zd

hε(yM + x), ĥ(λ) =
∫

Rd
h(x)eiλ·x dx.

Write

η̃ε([0, τ1] × · · · × [0, τp]) =
∫
[0,M]d

h̃ε(x)η̃x([0, τ1] × · · · × [0, τp]) dx.

By (5.8) and (6.2), and by a procedure similar to the one for (2.2), one can prove
that

E
[
η̃x([0, τ1] × · · · × [0, τp])n]

= 1

Mdn

∑
y1,...,yn∈Zd

exp

{
i
2π

M

n∑
k=1

(x · yk)

}
(6.3)

×
[ ∑

σ∈�n

n∏
k=1

Q

(
2π

M

k∑
j=1

yσ(j)

)]p

,

E
[
(η̃x − η̃z)([0, τ1] × · · · × [0, τp])n]

= 1

Mdn

∑
y1,...,yn∈Zd

(
n∏

k=1

[
exp

{
i
2π

M
(x · yk)

}
− exp

{
i
2π

M
(z · yk)

}])
(6.4)

×
[ ∑

σ∈�n

n∏
k=1

Q

(
2π

M

k∑
j=1

yσ(j)

)]p

,

x, z ∈ [0,M]d,

E
[
(η̃0 − η̃ε)([0, τ1] × · · · × [0, τp])n]

= 1

Mdn

∑
y1,...,yn∈Zd

(
n∏

k=1

[
1 − ĥ

(
2πε

M
yk

)])
(6.5)

×
[ ∑

σ∈�n

n∏
k=1

Q

(
2π

M

k∑
j=1

yσ(j)

)]p

.

By (6.5) and by an argument similar to the one used for (5.6),

lim sup
ε→0+

lim sup
n→∞

1

n
log

1

(n!)p E|(η̃0 − η̃ε)([0, τ1] × · · · × [0, τp])|n = −∞.



632 X. CHEN

This, together with (5.9), implies that

lim sup
n→∞

1

n
log

1

(n!)p E
[
η̃ 0([0, τ1] × · · · × [0, τp])n] ≤ log

ρM

Md
.(6.6)

By Lemma 6.1 given below and by Taylor’s expansion one can easily see that

lim sup
δ→0+

lim sup
n→∞

1

n
log

1

(n!)p E sup
|y−x|≤δ

|(η̃y − η̃x)([0, τ1] × · · · × [0, τp])|n
(6.7)

= −∞.

Given δ > 0, let D ⊂ [0,M]d be a finite δ-net of [0,M]d :{
E sup

x∈[0,M]d
η̃x([0, τ1] × · · · × [0, τp])n

}1/n

≤
{
E sup

x∈D

η̃x([0, τ1] × · · · × [0, τp])n
}1/n

+
{
E sup

|y−x|≤δ

|(η̃y − η̃x)([0, τ1] × · · · × [0, τp])|n
}1/n

(6.8)

≤
{

#(D) sup
x∈[0,M]d

Eη̃x([0, τ1] × · · · × [0, τp])n
}1/n

+
{
E sup

|y−x|≤δ

|(η̃y − η̃x)([0, τ1] × · · · × [0, τp])|n
}1/n

.

From (6.3) one can see that for any x ∈ [0,M]d and for any integer n ≥ 0,

E
[
η̃x([0, τ1] × · · · × [0, τp])n] ≤ E

[
η̃0([0, τ1] × · · · × [0, τp])n].

By (6.6), (6.7) and (6.8), therefore,

lim sup
n→∞

1

n
log

1

(n!)p E

[
sup

x∈[0,M]d
η̃x([0, τ1] × · · · × [0, τp])n

]
≤ log

ρM

Md
.

In view of (6.1), we have

lim sup
n→∞

1

n
log

1

(n!)p E

[
sup
x∈Rd

ηx([0, τ1] × · · · × [0, τp])n
]

≤ log
ρM

Md
.

By Lemma A.1 given in the Appendix below, letting M → ∞ on the right-hand
side gives

lim sup
n→∞

1

n
log

1

(n!)p E

[
sup
x∈Rd

ηx([0, τ1] × · · · × [0, τp])n
]

≤ log
ρ

(2π)d
.(6.9)
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We now adopt the argument used for (2.5) here. For this we replace (2.3) by
(6.9), and replace (1.6) by (1.13). We obtain

lim sup
n→∞

1

n
log(n!)−d/α

E

[
sup
x∈Rd

ηx([0,1]p)n
]

≤ log
(

αp

αp − d

)(αp−d)/α

+ log
ρ

(2π)d
.

Comparing this to (2.6) gives

lim
n→∞

1

n
log(n!)−d/α

E

[
sup
x∈Rd

ηx([0,1]p)n
]

(6.10)

= log
(

αp

αp − d

)(αp−d)/α

+ log
ρ

(2π)d
.

Finally, Theorem 1.2 follows from (6.10) and Lemma 1.4.

LEMMA 6.1. For any number ζ with 0 < ζ < min{1, (αp − d)/2}, there is a
positive number c = c(ζ,ψ,p) such that

E exp
{
c sup

x,z∈[0,M]d
x �=z

( |(η̃x − η̃z)([0, τ1] × · · · × [0, τp])|
|x − z|ζ

)1/p}
< ∞.(6.11)

PROOF. By (6.4) and Jensen’s inequality, for any x, z ∈ [0,M]d ,

E
[
(η̃x − η̃z)([0, τ1] × · · · × [0, τp])n]

≤ 1

Mdn

∑
y1,...,yk∈Zd

(
n∏

k=1

∣∣∣∣1 − exp
{
i
2π

M

(
(z − x) · yk

)}∣∣∣∣
)

×
[ ∑

σ∈�n

n∏
k=1

Q

(
2π

M

k∑
j=1

yσ(j)

)]p

≤ (n!)p
Mdn

∑
y1,...,yk∈Zd

(
n∏

k=1

∣∣∣∣1 − exp
{
i
2π

M

(
(z − x) · yk

)}∣∣∣∣
)

n∏
k=1

Qp

(
2π

M

k∑
j=1

yj

)

= (n!)p
Mdn

∑
y1,...,yk∈Zd

(
n∏

k=1

∣∣∣∣1 − exp
{
i
2π

M

(
(z − x) · (yk − yk−1)

)}∣∣∣∣
)

×
n∏

k=1

Qp

(
2π

M
yk

)
.
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Fix ζ ′ with ζ < ζ ′ < min
{
1, (αp − d)/2}. We have∫

Rd
|λ|θQp(λ)dλ < ∞, θ ≤ 2ζ ′.(6.12)

Notice that ∣∣∣∣1 − exp
{
i
2π

M

(
(z − x) · (yk − yk−1)

)}∣∣∣∣ ≤ 1.

Hence,

1

2

∣∣∣∣1 − exp
{
i
2π

M

(
(z − x) · (yk − yk−1)

)}∣∣∣∣
≤ 2−ζ ′

∣∣∣∣1 − exp
{
i
2π

M

(
(z − x) · (yk − yk−1)

)}∣∣∣∣ζ ′

≤ 2−ζ ′
(

2π

M

)ζ ′
|z − x|ζ ′ |yk − yk−1|ζ ′

.

Therefore,

E
[
(η̃x − η̃z)([0, τ1] × · · · × [0, τp])n]

(6.13)

≤ 2n (n!)p
Mnd

(
2π

M
|x − z|

)ζ ′n ∑
y1,...,yk∈Zd

n∏
k=1

|yk − yk−1|ζ ′
Qp

(
2π

M
yk

)
.

By the triangular inequality,

n∏
k=1

|yk − yk−1|ζ ′ ≤
n∏

k=1

(|yk|ζ ′ + |yk−1|ζ ′) = ∑
δ1,...,δn

n∏
k=1

|yk|δkζ
′
,

where for each 1 ≤ k ≤ n, δk has three possible values: 0, 1, or 2, and δ1 + · · · +
δn = n. The total number of the terms is at most 2n. Thus,(

2π

M

)nd(2π

M

)ζ ′n ∑
y1,...,yk∈Zd

n∏
k=1

|yk − yk−1|ζ ′
Qp

(
2π

M
yk

)

≤ ∑
δ1,...,δn

n∏
k=1

(
2π

M

)d ∑
y∈Zd

∣∣∣∣2π

M
y

∣∣∣∣δkζ
′
Qp

(
2π

M
y

)
.

From (6.12) there is a C = C(ζ,ψ,p) > 0 such that(
2π

M

)d ∑
y∈Zd

∣∣∣∣2π

M
y

∣∣∣∣δkζ
′
Qp

(
2π

M
y

)
≤ C.
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So we have (
2π

M

)nd(2π

M

)ζ ′n ∑
y1,...,yk∈Zd

n∏
k=1

|yk − yk−1|ζ ′
Qp

(
2π

M
yk

)

≤ ∑
δ1,...,δn

n∏
k=1

C ≤ (2C)n.

By (6.13),

sup
x,z∈[0,M]d

x �=z

E

[
(η̃x − η̃z)([0, τ1] × · · · × [0, τp])

|x − z|ζ ′

]n

≤ (n!)p(4C)n,

n = 0,1,2, . . . .

Following a standard way of using Hölder inequality, we conclude that there is a
C0 = C0(ζ,ψ,p) > 0 such that

sup
x,z∈[0,M]d

x �=z

E

∣∣∣∣(η̃x − η̃z)([0, τ1] × · · · × [0, τp])
|x − z|ζ ′

∣∣∣∣n ≤ (n!)pCn
0 ,

(6.14)
n = 0,1,2, . . . .

Recall that a function � : R+ −→ R
+ is a Young function if it is con-

vex, increasing and satisfies �(0) = 0, limx→∞ �(x) = ∞. The Orlicz space
L�(�,A,P) is defined as the linear space of all random variables X on the prob-
ability space (�,A,P) such that

‖X‖� = inf{c > 0; E�(c−1|X|) ≤ 1} < ∞.

It has been known that ‖·‖� defines a norm (called Orlicz norm) and L�(�,A,P)

becomes a Banach space under ‖·‖� .
We now choose the Young function � such that �(x) ∼ exp{x1/p} as x → ∞.

By (6.14) there is c = c(ζ, d,p) > 0 such that

‖(η̃x − η̃z)([0, τ1] × · · · × [0, τp])‖� ≤ c|x − z|ζ ′
, x, z ∈ [0,M]d .

By a standard chaining argument (see, e.g., Lemma 9 in [7]),∥∥∥∥ sup
x,z∈[0,M]d

x �=z

|(η̃x − η̃z)([0, τ1] × · · · × [0, τp])|
|x − z|ζ

∥∥∥∥
�

< ∞,

which leads to the desired conclusion. �
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7. Proof of Theorem 1.3. The upper bound in (1.16) and therefore the upper
bound in (1.15) follow from Theorem 1.2, the scaling property given in (1.13) and
a standard procedure via the Borel–Cantelli lemma. It remains to prove that for
any fix x ∈ R

d ,

lim sup
t→∞

t−(αp−d)/α(log log t)−d/αηx([0, t]p)

(7.1)

≥ (2π)−d

(
α

d

)d/α(
1 − d

αp

)−(p−d/α)

ρ a.s.

We first prove that

lim
δ→0+ lim inf

t→∞ t−1 log P

{
inf|y|≤δ

ηy([0, t]p) ≥ tp
}

(7.2)

≥ −(2π)α
d

α

(
1 − d

αp

)(αp−d)/d

ρ−α/d .

Indeed, similarly to Lemma 6.1, for any bounded neighborhood D of 0 and any
0 < ζ < min{1, (αp − d)/2} there is a c = c(D, ζ,ψ,p) > 0 such that

E exp
{
c sup

y,z∈D

y �=z

( |(ηy − ηz)([0, τ1] × · · · × [0, τp])|
|y − z|ζ

)1/p}
< ∞.(7.3)

By the Chebyshev inequality we have that for any ε > 0,

lim sup
δ→0+

lim sup
t→∞

t−1 log P

{
sup
|y|≤δ

|(η0 − ηy)([0, τ1] × · · · × [0, τp])| ≥ εtp
}

= −∞.

On the other hand,

P

{
sup
|y|≤δ

|(η0 − ηy)([0, τ1] × · · · × [0, τp])| ≥ εtp
}

=
∫ ∞

0
· · ·

∫ ∞
0

e−(t1+···+tp)

× P

{
sup
|y|≤δ

|(η0 − ηy)([0, t1] × · · · × [0, tp])| ≥ εtp
}

dt1 · · · dtp

≥
∫ t

(1−ε)t
· · ·

∫ t

(1−ε)t
e−(t1+···+tp)

× P

{
sup
|y|≤δ

|(η0 − ηy)([0, t1]

× · · · × [0, tp])| ≥ εtp
}

dt1 · · · dtp
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≥ (
e−(1−ε)t − e−t )p

× inf
(1−ε)t≤t1,...,tp≤t

P

{
sup
|y|≤δ

|(η0 − ηy)([0, t1] × · · · × [0, tp])| ≥ εtp
}
.

So we have

lim sup
δ→0+

lim sup
t→∞

t−1 log inf
(1−ε)t≤t1,...,tp≤t

(7.4)

P

{
sup
|y|≤δ

|(η0 − ηy)([0, t1] × · · · × [0, tp])| ≥ εtp
}

= −∞.

For any t and (1 − ε)t ≤ t1, . . . , tp ≤ t ,

inf|y|≤δ
ηy([0, t]p)

≥ inf|y|≤δ
ηy([0, t1] × · · · × [0, tp])

≥ η0([0, t1] × · · · × [0, tp]) − inf|y|≤δ
|(η0 − ηy)([0, t1] × · · · × [0, tp])|

≥ η0([0, (1 − ε)t]p) − inf|y|≤δ
|(η0 − ηy)([0, t1] × · · · × [0, tp])|.

Hence,

P

{
inf|x|≤δ

ηx([0, t]p) ≥ tp
}

+ inf
(1−ε)t≤t1,...,tp≤t

P

{
sup
|x|≤δ

|(η0 − ηx)([0, t1] × · · · × [0, tp])| ≥ εtp
}

≥ P
{
η0([0, (1 − ε)t]p) ≥ (1 + ε)tp

}
.

Consequently,

max
{

lim inf
t→∞ t−1 log P

{
inf|y|≤δ

ηy([0, t]p) ≥ tp
}
,

lim sup
t→∞

t−1/p log inf
(1−ε)t≤t1,...,tp≤t

(7.5)

P

{
sup
|y|≤δ

|(η0 − ηy)([0, t1] × · · · × [0, tp])| ≥ εt

}}
≥ lim

t→∞ t−1 log P
{
η0([0, (1 − ε)t]p) ≥ (1 + ε)tp

}
.

Notice that

P
{
η0([0, (1 − ε)t]p) ≥ (1 + ε)tp

}
= P

{
η0([0,1]p) ≥ (1 + ε)(1 − ε)−(αp−d)/αtd/α}.
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By Theorem 1.1,

lim
t→∞ t−1 log P

{
η0([0, (1 − ε)t]p) ≥ (1 − ε)tp

}
(7.6)

= −(1 + ε)α/d(1 − ε)−(αp−d)−d(2π)α
d

α

(
1 − d

αp

)(αp−d)/d

ρ−α/d .

Let δ → 0+ in (7.5). By (7.4) and (7.6) we obtain

lim
δ→0+ lim inf

t→∞ t−1 log P

{
inf|y|≤δ

ηy([0, t]p) ≥ tp
}

≥ −(1 + ε)α/d(1 − ε)−(αp−d)/d(2π)α
d

α

(
1 − d

αp

)(αp−d)/d

ρ−α/d .

Letting ε → 0+ on the right-hand side leads to (7.2).
We come to the proof of (7.1). For each k ≥ 1, write tk = kk and define

Xj,k(t) = Xj(tk + t) − Xj(tk), t ≥ 0, j = 1, . . . , p, k = 1,2, . . . .

Let ηx
k (I ) be the local time of the additive stable process

Xk(s1, . . . , sp) = X1,k(s1) + · · · + Xp,k(sp).

Then for each k, ηk
d= η.

Let δ > 0 be a small number which will be specified later. Write Yk = X1(tk) +
· · · + Xp(tk). A rough estimate gives that with probability 1, the inequality

|Yk| ≤ 2−1δ

(
tk+1

log log tk+1

)1/α

eventually holds. Therefore, with probability 1,

ηx([tk, tk+1]p) = η
x+Yk

k ([0, tk+1 − tk]p)
(7.7)

≥ inf
|y|≤δ(tk+1/ log log tk+1)

1/α
η

y
k ([0, tk+1 − tk]p)

eventually holds.
For each k, by the scaling property of the stable processes,

inf
|y|≤δ(tk+1/ log log tk+1)

1/α
η

y
k ([0, tk+1 − tk]p)

d= inf
|y|≤δ(tk+1/ log log tk+1)

1/α
ηy([0, tk+1 − tk]p)

d=
(

tk+1

log log tk+1

)(αp−d)/α

inf|y|≤δ
ηy([0, t−1

k+1(tk+1 − tk) log log tk+1]p).
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Let θ > 0 satisfy

θ < (2π)−d

(
α

d

)d/α(
1 − d

αp

)−(p−d/α)

ρ.

We have

P

{
inf

|y|≤δ(tk+1/ log log tk+1)
1/α

η
y
k ([0, tk+1 − tk]p) ≥ θt

(αp−d)/α
k+1 (log log tk+1)

d/α

}

= P

{
inf|y|≤δ

ηy([0, t−1
k+1(tk+1 − tk) log log tk+1]p) ≥ θ(log log tk+1)

p

}
.

By (7.2), therefore, one can take δ > 0 sufficiently small so that

lim inf
k→∞

1

log log tk+1
log P

{
inf

|y|≤δ(tk+1/ log log tk+1)
1/α

η
y
k ([0, tk+1 − tk]p)

≥ θt
(αp−d)/α
k+1 (log log tk+1)

d/α

}
> −1.

Consequently,∑
k

P

{
inf

|y|≤δ(tk+1/ log log tk+1)
1/α

η
y
k ([0, tk+1 − tk]p)

≥ θt
(αp−d)/α
k+1 (log log tk+1)

d/α

}
= ∞.

Notice that

inf
|y|≤δ(tk+1/ log log tk+1)

1/α
η

y
k ([0, tk+1 − tk]p), k = 1,2, . . .

is an independent sequence. By the Borel–Cantelli lemma,

lim sup
k→∞

t
−(αp−d)/α
k+1 (log log tk+1)

−d/α

× inf
|y|≤δ(tk+1/ log log tk+1)

1/α
η

y
k ([0, tk+1 − tk]p) ≥ θ a.s.

By (7.7),

lim sup
k→∞

t
−(αp−d)/α
k+1 (log log tk+1)

−d/αηx([tk, tk+1]p) ≥ θ a.s.

Consequently,

lim sup
t→∞

t−(αp−d)/α(log log t)−d/αηx([0, t]p) ≥ θ a.s.

Letting

θ −→ (2π)−d

(
α

d

)d/α(
1 − d

αp

)−(p−d/α)

ρ−

proves (7.1).
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APPENDIX

LEMMA A.1. Let ρ be defined in (1.4) and let ρM be defined in (5.10). We
have

lim sup
M→∞

M−dρM ≤ (2π)−dρ.(A.1)

PROOF. Given a > 0 and f ∈ L2(Zd) with |f |2 = 1, by Hölder inequality

∑
|x|≥(2π)−1Ma

[ ∑
y∈Zd

√
Q

(
2π

M
(x + y)

)√
Q

(
2π

M
y

)
f (x + y)f (y)

]p

≤ ∑
|x|≥(2π)−1Ma

( ∑
y∈Zd

|f (x + y)f (y)|
)p−1

× ∑
y∈Zd

Qp/2
(

2π

M
(x + y)

)
Qp/2

(
2π

M
y

)
|f (x + y)f (y)|.

Notice that for any x ∈ Z
d ,∑

y∈Zd

|f (x + y)f (y)| ≤ ∑
y∈Zd

f 2(y) = 1.

Thus

∑
|x|≥(2π)−1Ma

[ ∑
y∈Zd

√
Q

(
2π

M
(x + y)

)√
Q

(
2π

M
y

)
f (x + y)f (y)

]p

≤ ∑
|x|≥(2π)−1Ma

∑
y∈Zd

Qp/2
(

2π

M
(x + y)

)

× Qp/2
(

2π

M
y

)
|f (x + y)f (y)|

≤
( ∑

|x|≥(2π)−1Ma

∑
y∈Zd

Qp

(
2π

M
(x + y)

)
Qp

(
2π

M
y

))1/2

×
( ∑

x,y∈Zd

f 2(x + y)f 2(y)

)1/2

=
( ∑

|x−y|≥(2π)−1Ma

Qp

(
2π

M
x

)
Qp

(
2π

M
y

))1/2

.
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Notice that
1

M2d

∑
|x−y|≥(2π)−1Ma

Qp

(
2π

M
x

)
Qp

(
2π

M
y

)

−→ (2π)2d
∫ ∫

{|λ−γ |≥a}
Qp(λ)Qp(γ ) dλdγ

as M → ∞.
For any given δ > 0, therefore, one can find a > 0 such that

1

Md
sup

|f |2=1

∑
|x|≥(2π)−1Ma

[ ∑
y∈Zd

√
Q

(
2π

M
(x + y)

)
(A.2)

×
√

Q

(
2π

M
y

)
f (x + y)f (y)

]p

≤ δ

for sufficiently large M .
For any x = (x1, . . . , xd) ∈ R

d , we write [x] = ([x1], . . . , [xd ]) for the lattice
part of x. (We also use the notation [· · ·] for parenthesis without causing any con-
fusion.) For any f ∈ L2(Zd) with |f |2 = 1,∑

|x|≤(2π)−1Ma

[ ∑
y∈Zd

√
Q

(
2π

M
(x + y)

)√
Q

(
2π

M
y

)
f (x + y)f (y)

]p

=
∫
{|λ|≤(2π)−1Ma}

dλ

×
[∫

Rd

√
Q

(
2π

M
([λ] + [γ ])

)√
Q

(
2π

M
[γ ]

)
f ([λ] + [γ ])f ([γ ]) dγ

]p

=
(

M

2π

)d ∫
{|λ|≤a}

dλ

×
[(

M

2π

)d ∫
Rd

√
QM

(
γ + 2π

M

[
M

2π
λ

])√
QM(γ )

×f

([
M

2π
λ

]
+

[
M

π
γ

])
f

([
M

2π
γ

])
dγ

]p

,

where

QM(λ) = Q

(
2π

M

[
M

π
λ

])
, λ ∈ R

d .

Write

g0(λ) =
(

M

2π

)d/2

f

([
M

2π
λ

])
, λ ∈ R

d .
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We have ∫
Rd

g2
0(λ) dλ =

(
M

2π

)d ∫
Rd

f 2
([

M

2π
λ

])
dλ

=
∫

Rd
f 2([λ]) dλ = ∑

x∈Zd

f 2(x) = 1.

We can also see that under this correspondence,(
M

2π

)d/2

f

([
M

2π
λ

]
+

[
M

2π
γ

])
= g0

(
γ + 2π

M

[
M

2π
λ

])
, λ, γ ∈ R

d .

In view of (A.2), therefore, we need only to show that for any fixed a > 0

lim sup
M→∞

sup
‖g‖2=1

∫
{|λ|≤a}

dλ

[∫
Rd

√
QM

(
γ + 2π

M

[
M

2π
λ

])√
QM(γ )

×g

(
γ + 2π

M

[
M

2π
λ

])
g(γ ) dγ

]p

(A.3)

≤ sup
‖g‖2=1

∫
{|λ|≤a}

dλ

[∫
Rd

√
Q(λ + γ )

√
Q(γ )g(λ + γ )g(γ ) dγ

]p

.

Indeed, by the inverse Fourier transformation the function

UM(λ) =
∫

Rd

√
QM(γ + λ)

√
QM(γ )g(γ + λ)g(γ ) dγ

is the Fourier transform of the function

VM(x) = 1

(2π)d

∫
Rd

UM(λ)e−iλ·x dλ

= 1

(2π)d

∫
Rd

e−iλ·x dλ

∫
Rd

√
QM(γ + λ)

√
QM(γ )g(γ + λ)g(γ ) dγ

(A.4)

= 1

(2π)d

∫ ∫
Rd×Rd

e−i(λ−γ )·x√Q(λ)g(λ)
√

Q(γ )g(γ ) dλdγ

= 1

(2π)d

∣∣∣∣ ∫
Rd

eix·γ√QM(γ )g(γ ) dγ

∣∣∣∣2.
Therefore∫

Rd

√
QM

(
γ + 2π

M

[
M

2π
λ

])√
QM(γ )g

(
γ + 2π

M

[
M

2π
λ

])
g(γ ) dγ

= UM

(
2π

M

[
M

2π
λ

])
(A.5)
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= 1

(2π)d

∫
Rd

exp
{
ix · 2π

M

[
M

2π
λ

]}∣∣∣∣ ∫
Rd

eix·γ √QM(γ )g(γ )dγ

∣∣∣∣2 dx

≤ 1

(2π)d

∫
Rd

∣∣∣∣1 − exp
{
ix ·

(
λ − 2π

M

[
M

2π
λ

])}∣∣∣∣
×

∣∣∣∣ ∫
Rd

eix·γ √QM(γ )g(γ ) dγ

∣∣∣∣2 dx

+ 1

(2π)d

∫
Rd

eix·λ
∣∣∣∣ ∫

Rd
eix·γ √QM(γ )g(γ ) dγ

∣∣∣∣2 dx.

By Parseval’s identity and by the fact that QM ≤ 1,

1

(2π)d

∫
Rd

∣∣∣∣ ∫
Rd

eix·γ√QM(γ )g(γ ) dλ

∣∣∣∣2 dx

=
∫

Rd
QM(γ )g2(γ ) dγ ≤

∫
Rd

g2(γ ) dγ = 1.

Hence, the first term on the right-hand side of (A.5) tends to 0 uniformly over
λ ∈ R

d and over all g ∈ L2(Rd) with ‖g‖2 = 1 as M → ∞. The second term on
the right-hand side of (A.5) is equal to∫

Rd
eix·λVM(x)dx = UM(λ) =

∫
Rd

√
QM(λ + γ )

√
QM(γ )g(λ + γ )g(γ ) dγ.

Consequently, we will have (A.3) if we can prove

lim sup
M→∞

sup
‖g‖2=1

∫
{|λ|≤a}

dλ

[∫
Rd

√
QM(λ + γ )

√
QM(γ )g(λ + γ )g(γ ) dγ

]p

(A.6)

≤ sup
‖g‖2=1

∫
{|λ|≤a}

dλ

[∫
Rd

√
Q(λ + γ )

√
Q(γ )g(λ + γ )g(γ ) dγ

]p

.

By uniform continuity of the function Q we have that QM(·) → Q(·) uniformly
on R

d . Thus, given ε > 0 we have

sup
λ,γ∈Rd

∣∣√QM(λ + γ )
√

QM(γ ) −
√

Q(λ + γ )
√

Q(γ )
∣∣ < ε

for sufficiently large M . Therefore,{∫
{|λ|≤a}

dλ

[∫
Rd

√
QM(λ + γ )

√
QM(γ )g(λ + γ )g(γ ) dγ

]p}1/p

≤ ε

{∫
{|λ|≤a}

dλ

[∫
Rd

g(λ + γ )g(γ ) dγ

]p}1/p

+
{∫

{|λ|≤a}
dλ

[∫
Rd

√
Q(λ + γ )

√
Q(γ )g(λ + γ )g(γ ) dγ

]p}1/p

.
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Finally, (A.6) follows from the fact that∫
{|λ|≤a}

dλ

[∫
Rd

g(λ + γ )g(γ ) dγ

]p

≤ Cdad,

where Cd is the volume of a d-dimensional unit ball. �

LEMMA A.2. Assume d < 2α. Let Mψ be defined in (1.10) and let ρ be de-
fined in (1.4) with p = 2. Then

Mψ = (2π)−dα/(2α−d)ρα/(2α−d).(A.7)

PROOF. Replace f (λ) by
√

Q(λ)f (λ) in (1.4). Then

ρ = sup
‖f ‖L2(Q)

=1

∫
Rd

[∫
Rd

Q(λ + γ )f (λ + γ )Q(γ )f (γ ) dγ

]2

dλ,

where

‖f ‖L2(Q) =
(∫

Rd
f 2(λ)Q(λ)dλ

)1/2

.

By the inverse Fourier transformation and by a computation similar to the one
given in (A.4), the function

U(λ) =
∫

Rd
Q(λ + γ )f (λ + γ )Q(γ )f (γ ) dγ

is the Fourier transform of the function

V (x) = 1

(2π)d

∣∣∣∣ ∫
Rd

e−ix·γ Q(γ )f (γ ) dγ

∣∣∣∣2.
By Parseval’s identity∫

Rd

[∫
Rd

Q(λ + γ )f (λ + γ )Q(γ )f (γ ) dγ

]2

dλ

= (2π)d
∫

Rd
V 2(x) dx

= 1

(2π)d

∫
Rd

∣∣∣∣ ∫
Rd

eix·γ Q(γ )f (γ ) dγ

∣∣∣∣4 dx.

Let pt(x) be the density of X(t) and write

G(x) =
∫ ∞

0
pt(x)e−t dt, x ∈ R

d .

Notice that ∫
Rd

eiλ·xG(x)dx = Q(λ).
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If we consider f (λ) as the Fourier transform of the function g(x) on R
d , then∫

Rd
e−ix·γ Q(γ )f (γ ) dγ = (2π)d

∫
Rd

G(y − x)g(y) dy = (2π)dGg(x),

‖f ‖2
L2(Q)

= (2π)d
∫

Rd×Rd
G(y − x)g(x)g(y) dx dy = (2π)d〈g,Gg〉.

Summarizing the above steps, we obtain

ρ = (2π)3d sup
〈g,Gg〉=(2π)−d

∫
Rd

|Gg(x)|4 dx.(A.8)

Write h(x) = Gg(x) and recall the resolvent identity

I = G − A ◦ G,

where I is identity operator and where A is the infinitesimal generator of the
Markov process X(t). Then

〈g,Gg〉 = 〈h − Ah,h〉 = ‖h‖2 +
∫

Rd
ψ(λ)|ĥ(λ)|2 dλ = ‖h‖2 + ‖ĥ‖2

L2(ψ)
,

where

‖f ‖2
L2(ψ)

=
∫

Rd
ψ(λ)|f (λ)|2 dλ

and where the second step follows from the fact (page 24 in [3]) that

〈Ah,h〉 = −
∫

Rd
ψ(λ)|ĥ(λ)|2 dλ.

Hence, from (A.8) we have

ρ = (2π)3d sup
‖h‖2+‖ĥ‖2

L2(ψ)
=(2π)−d

∫
Rd

|h(x)|4 dx.(A.9)

Write

Mψ(θ) = sup
g∈Fψ

{
θ

(∫
Rd

|g(x)|4 dx

)1/2

−
∫

Rd
ψ(λ)|ĝ(λ)|2 dλ

}
, θ > 0,

where Fψ is defined in (1.11). By (2.10) in [8] (with p = 2),

Mψ(θ) = θ2α/(2α−d)Mψ, θ > 0.(A.10)

Therefore, we will have (A.7) if we can prove that

Mψ

(
(2π)d/2

√
ρ

)
= 1.(A.11)
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Indeed, for any 0 < ε < ρ, by (A.9) there is an h0 such that ‖h0‖2 + ‖ĥ0‖2
L2(ψ)

=
(2π)−d and that ∫

Rd
|h0(x)|4 dx > (2π)−3d(ρ − ε).

Consequently,

Mψ

(
(2π)d/2

√
ρ

)
≥ (2π)d/2/

√
ρ − ε(

∫
Rd |h0(x)|4 dx)1/2 − ∫

Rd ψ(λ)|ĥ0(λ)|2 dλ∫
Rd |h0(x)|2 dx

≥ (2π)−d − ∫
Rd ψ(λ)|ĥ0(λ)|2 dλ∫

Rd |h0(x)|2 dx
= 1.

Let ε → 0+ on the left-hand side. By (A.10), M(θ) is continuous. So we have

Mψ

(
(2π)d/2

√
ρ

)
≥ 1.(A.12)

On the other hand, by (A.9) again

Mψ

(
(2π)d/2

√
ρ

)

= sup
g∈Fψ

{
(2π)d/2

√
ρ

(∫
Rd

|g(x)|4 dx

)1/2

−
∫

Rd
ψ(λ)|ĝ(λ)|2 dλ

}

≤ sup
g∈Fψ

{
(2π)d/2

√
ρ

(2π)−d/2√ρ

[
1 +

∫
Rd

ψ(λ)|ĝ(λ)|2 dλ

]

−
∫

Rd
ψ(λ)|ĝ(λ)|2 dλ

}
= 1. �
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