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ERGODIC PROPERTIES OF POISSONIAN ID PROCESSES

BY EMMANUEL ROY

Université Paris 13

We show that a stationary IDp process (i.e., an infinitely divisible sta-
tionary process without Gaussian part) can be written as the independent sum
of four stationary IDp processes, each of them belonging to a different class
characterized by its Lévy measure. The ergodic properties of each class are,
respectively, nonergodicity, weak mixing, mixing of all order and Bernoullic-
ity. To obtain these results, we use the representation of an IDp process as an
integral with respect to a Poisson measure, which, more generally, has led us
to study basic ergodic properties of these objects.

1. Introduction. A stochastic process is said to be infinitely divisible (ID)
if, for any positive integer k, it equals, in distribution, the sum of k independent
and identically distributed processes. These processes are fundamental objects in
probability theory, the most popular being the intensively studied Lévy processes
(see, e.g., [19]). We will focus here on ID stationary processes {Xn}n∈Z. Station-
ary Gaussian processes have a particular place among stationary ID processes and
have already been the subject of very deep studies (see [7] for recent results). We
will concentrate on non-Gaussian ID processes; Maruyama [8] first started their
study. Since the late eighties many authors are looking for criteria of ergodicity,
weak mixing or mixing of a general ID process, exhibiting examples, studying
particular sub-families [mainly symmetric α-stable (SαS) processes]. We mention
the result of Rosiński and Żak [17] which shows the equivalence of ergodicity
and weak mixing for general ID processes. Some factorizations (for the convolu-
tion product) have been obtained in the SαS case, in particular, Rosiński [13] has
shown that a SαS process can be written in a unique way as the independent sum
of three SαS processes, one being called mixed moving average (which is mixing),
the second harmonizable (nonergodic) and the third not in the aforementioned cat-
egories and which is potentially the most interesting (see [15]) (note that Rosiński
has developed, in [14], a multidimensional version of this factorization). Recently,
this third part has been split by Pipiras and Taqqu (see [12]) and Samorodnitsky
managed to isolate (through a factorization) the “maximal” ergodic component of
a SαS process (see [18]). Factorizations already appeared in [9], where the ID
objects were ID point processes.
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The fundamental tool in the study of a non-Gaussian ID process is its Lévy mea-
sure. In the stationary case, its existence has been shown by Maruyama in [8]: it
is a (shift-)stationary measure on R

Z, which might be infinite, related to the dis-
tribution of the ID process by the characteristic functions of its finite-dimensional
distributions through an extended Lévy–Khintchine formula. A general ID process
is the independent sum of a Gaussian process and a Poissonian (IDp) process, the
latter being uniquely determined by its Lévy measure. Reciprocally, if we are given
a (shift-)stationary measure on R

Z, under some mild conditions, it can be seen as
the Lévy measure of a unique IDp stationary process.

Our main result consists in establishing the following factorization result: every
IDp stationary process can be written in a unique way as the independent sum of
four IDp processes which are, respectively, nonergodic, weakly mixing, mixing (of
all order) and Bernoulli (Theorem 5.5 and Proposition 5.7).

The proof is divided in several steps which have their own interest. The first
step is based on the following remark: if the support of the Lévy measure can be
partitioned into invariant sets, then the restrictions to these sets of the measure
are the Lévy measures of processes that form a factorization of the initial process.
We point out here that it may happen that a stationary ID process can be factor-
izable into infinitely many components, however, we only consider factorizations
that make sense in terms of ergodic behavior of each class. It is remarkable that
those distinct behaviors are naturally linked to those of the corresponding Lévy
measures. Thus, it is essential to get a better understanding of general dynami-
cal systems (particularly with infinite measure) and to study decompositions along
their invariant sets. Section 2 presents some elements of ergodic theory. In partic-
ular, we recall a decomposition, mostly due to Hopf, Krengel and Sucheston (see
[6]), of an invariant measure into the sum four invariant measures which are the
restrictions of the initial measure to as many invariant sets with distinctive proper-
ties (Proposition 2.11). Section 3 presents some basic facts of spectral theory that
will be used later. There are no new results in Sections 2 and 3.

Then, back to Lévy measures, we have to link the different categories to the
corresponding ergodic properties of the underlying ID process. To do so, we use
the representation due to Maruyama [8] of any IDp process as a stochastic integral
with respect to the Poisson measure with the Lévy measure as intensity. In ergodic
terms, we will say that an IDp process is a factor of the Poisson suspension con-
structed above its Lévy measure. We thus are led to a specific study of Poisson
suspensions built above dynamical systems that is the subject of Section 4. This
study is mostly based upon the particular structure of the associated L2-space,
which admits a chaotic decomposition: the Fock factorization of the L2-space as-
sociated to the underlying dynamical system. This preliminary work allows us to
elucidate absence of ergodicity, weak mixing and mixing of all order of a Poisson
suspension. We also give a criterion for the Bernoulli property.

In Section 5 we first recall the basic facts on infinitely divisible processes and
then apply the results of the preceding sections to their Lévy measure. Thanks to
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our factorization, ergodic properties can be easily derived. In Section 6 we give
an explicit form of all stationary IDp processes with a dissipative Lévy measure.
In cases where the process is square integrable, some spectral criteria for ergodic
behaviors can be established (Section 7).

In Section 8 were the α-stable case is treated, we show that our factorization
preserves the distributional properties, that is, each of the four components is
α-stable. We can thus replace in this context the previously obtained factoriza-
tion of Rosiński [13], as well as the refinements of Pipiras and Taqqu [12] and
Samorodnitsky [18].

2. Elements of ergodic theory. Let (�,F ,µ) be a σ -finite Lebesgue space
in the following sense: there exists a probability measure ν, equivalent to µ, such
that (�,F , ν) is a Lebesgue space in its traditional acceptation. Let T be a bijec-
tive bimeasurable transformation that preserves µ. The quadruplet (�,F ,µ,T ) is
called dynamical system, or system for short.

The aim of this section is to introduce basic notions and terminology used in
the study of dynamical systems. We first concentrate on the structure of a general
dynamical system that will lead us to the decomposition in Proposition 2.11 which
is a compilation of known results. The rest of the section is devoted to notions spe-
cific to dynamical systems with a probability measure. The book of Aaronson [1]
covers most of the definitions and results exposed here.

In the following, if φ is a measurable map defined on (�,F ,µ,T ), the image
measure of µ by φ is denoted φ�(µ).

2.1. Factors, isomorphic systems. Consider another dynamical system (�′,
F ′,µ′, T ′).

DEFINITION 2.1. Call (�′,F ′,µ′, T ′) a factor of (�,F ,µ,T ) if there exists
a map ϕ, measurable from (�,F ) to (�′,F ′) such that ϕ�(µ) = µ′ and ϕ ◦ T =
T ′ ◦ ϕ. If ϕ is invertible, then (�,F ,µ,T ) and (�′,F ′,µ′, T ′) are said to be
isomorphic.

2.2. Ergodicity.

DEFINITION 2.2. The invariant σ -field of (�,F ,µ,T ) is the sub-σ -field
I of F that contains the sets A ∈ F such that T −1A = A (A is said to be
T -invariant).

This definition leads to the following one:

DEFINITION 2.3. (�,F ,µ,T ) is said to be ergodic if, for all set A ∈ I,

µ(A) = 0 or µ(Ac) = 0.
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2.3. Dissipative and conservative transformations.

DEFINITION 2.4. A set A ∈ F is called a wandering set if the sets {T −nA}n∈Z

are disjoint.

We denote by D the (measurable) union of all the wandering sets for T , this set
is T -invariant. Its complement is denoted by C.

DEFINITION 2.5. We call (�,F ,µ,T ) dissipative if D = � mod. µ. If C =
� mod. µ, then (�,F ,µ,T ) is said conservative.

LEMMA 2.6. There exists a wandering set W such that D = ⋃
n∈Z T −nW

mod. µ.

PROPOSITION 2.7 (Hopf decomposition). The Hopf decomposition is the par-
tition {D,C}.

(�,F ,µ|D, T ) is dissipative and (�,F ,µ|C, T ) is conservative.

2.4. Type II1 and type II∞. The following proposition is a consequence of the
decomposition found in [1], page 47.

PROPOSITION 2.8. Let (�,F ,µ,T ) be a dynamical system. There exists
a unique partition {P,N } of � in T -invariant sets such that there exists a
T -invariant probability measure equivalent to µ|P and that there does not exist
a nonzero T -invariant probability measure absolutely continuous with respect to
µ|N . We have P ⊂ C and D ⊂ N . (�,F ,µ|P, T ) is said to be of type II1 and
(�,F ,µ|N , T ) of type II∞.

REMARK. We use the notion of type II∞ in an abusive manner since it in-
cludes dissipative transformations. However it is very convenient in our context.

2.5. Zero type and positive type.

DEFINITION 2.9. Let (�,F ,µ,T ) be a dynamical system.
(�,F ,µ,T ) is said to be of zero type if, for all A ∈ F such that 0 < µ(A) <

+∞, µ(A ∩ T −kA) → 0 as k tends to +∞.
(�,F ,µ,T ) is said to be of positive type if, for all A ∈ F such that µ(A) > 0,

limk→∞µ(A ∩ T −kA) > 0.

REMARK. By using similar arguments as in Theorem 5.5, page 58 in [11], it
is easy to see that (�,F ,µ,T ) is of zero type if and only if, for all A,B ∈ F
such that 0 < µ(A) < +∞ and 0 < µ(B) < +∞, µ(A ∩ T −kB) → 0 as k tends
to +∞.
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Krengel and Sucheston obtained the following decomposition (see [6],
page 155):

PROPOSITION 2.10. There exists a partition {N0,N+} of � in T -invariant
sets such that (�,F ,µ|N0, T ) [resp. (�,F ,µ|N+, T )] is of zero type (resp. of
positive type). We have D ⊂ N0 and P ⊂ N+ ⊂ C.

Note that Aaronson in [1] calls positive part, the part of type II1 and null part,
the part of type II∞.

We can group all these decompositions in the following proposition:

PROPOSITION 2.11 (Canonical decomposition). Let (�,F ,µ,T ) be a dy-
namical system. By defining µB := µ|D, µm := µ|N0∩C, µwm := µ|N+∩N and
µne := µ|P (this choice of notation is motivated by Theorem 4.8), we can write, in
a unique way,

µ = µB + µm + µwm + µne,

where:
(�,F ,µB,T ) is dissipative.
(�,F ,µm,T ) is conservative of zero type.
(�,F ,µwm,T ) is of positive and II∞ type.
(�,F ,µne, T ) is of type II1.

REMARK. Note that none of these categories is empty, [5] provides various
examples of conservative type II∞ dynamical systems.

2.6. The case of a probability measure. We assume here that µ(�) = 1.

THEOREM 2.12 (Birkhoff ergodic theorem). Let f ∈ L1(µ), then, µ-a.e. and
in L1(µ)

lim
n→∞

1

n

n∑
k=1

f ◦ T k = µ(f |I),

where µ(f |I) is the conditional expectation of f with respect to the invariant
σ -algebra.

DEFINITION 2.13. (�,F ,µ,T ) is said to be weakly mixing if, for all A,B ∈
F ,

lim
n→∞

1

n

n∑
k=1

|µ(A ∩ T −kB) − µ(A)µ(B)| = 0.
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(�,F ,µ,T ) is said to be mixing of order m if, for all A1, . . . ,Am ∈ F , for all
strictly increasing sequences of integer n1,k, . . . , nm,k ,

lim
k→∞|µ(T n1,kA1 ∩ · · · ∩ T n1,k+···+nm,kAm) − µ(A1) · · ·µ(Am)| = 0.

(�,F ,µ,T ) is said to be mixing if it is mixing of order 2, that is, if for all
A,B ∈ F ,

lim
n→∞|µ(A ∩ T −nB) − µ(A)µ(B)| = 0.

We now introduce a dynamical system that will constantly be used in the paper.
We consider here the space R

Z of Z-indexed sequences. The natural σ -algebra is
the product σ -algebra B⊗Z, where B is the natural Borel σ -algebra on R. The
transformation is the shift T that acts in the following way:

T {xi}i∈Z = {xi+1}i∈Z.

The dynamical system (RZ,B⊗Z,µ,T ) is the canonical space of the stationary
process of distribution µ.

DEFINITION 2.14. The system associated to an i.i.d. process is called a
Bernoulli scheme. A system (�,F ,µ,T ) is said to be Bernoulli if it is isomorphic
to a Bernoulli scheme.

We end this section by the following proposition:

PROPOSITION 2.15. We have the implications:

Bernoulli ⇒ mixing of order n ⇒ mixing ⇒ weakly mixing ⇒ ergodic.

Moreover, these six properties are shared by all the factors.

3. Spectral theory. Here we only give results that will be needed in the rest
of the paper. See [2] and [1] for details and proofs.

3.1. Hilbert space, unitary operator and spectral measure. We consider a
complex Hilbert space (H, 〈·〉) endowed with a unitary operator U . To each vec-
tor f ∈ H , we can associate a finite measure σf on [−π,π [, called the spectral
measure of f by the formula

σ̂f (n) := 〈Unf,f 〉 =
∫
[−π,π [

einxσf (dx).

Let C(f ) be the closure of the linear space generated by the family {Unf }n∈Z,
C(f ) is called the cyclic space of f . We summarize the following properties in
the following proposition:

PROPOSITION 3.1. There exists an isomorphism φ between C(f ) and L2(σf )

with φ(f ) = 1 and such that the unitary operator h �→ ei·h on L2(σf ) is conjugate
to U by φ.
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3.2. Maximal spectral type. On (H, 〈·〉,U) there exists a finite measure σM

such that, for all f ∈ H , σf  σM . The (equivalence class of the) measure σM is
called the maximal spectral type of (H, 〈·〉,U). Moreover, for all finite measures
σ  σM , there exists a vector g such that σg = σ .

3.3. Application to ergodic theory. A dynamical system (�,F ,µ,T ) in-
duces a complex Hilbert space, the space L2(µ) endowed with a unitary operator
U :f �→ f ◦ T .

3.3.1. The case of a probability measure. We restrict the study to the or-
thocomplement of the constant functions in L2(µ). That is, we note L2

0(µ) :=
L2(µ) � C〈1〉 and we call reduced maximal spectral type of (�,F ,µ,T ) the
maximal spectral type of (L2

0(µ),U). We recover the following ergodic properties
on the reduced maximal spectral type σM :

PROPOSITION 3.2. (�,F ,µ,T ) is ergodic if and only if σM{0} = 0.
(�,F ,µ,T ) is weakly mixing if and only if σM is continuous.
(�,F ,µ,T ) is mixing if and only if σM is a Rajchman measure [i.e.,

σ̂f (n) → 0 as |n| tends to +∞].

3.3.2. The infinite measure case. Since constant nonzero functions are not in
L2(µ), we do not impose the restriction made in the preceding section. II∞ and
zero types are spectral properties:

PROPOSITION 3.3. (�,F ,µ,T ) is of type II∞ if and only if σM is continu-
ous and this condition is also equivalent to σM{0} = 0.

(�,F ,µ,T ) is of zero type if and only if σM is Rajchman.

PROOF. The fact that (�,F ,µ,T ) is of type II∞ if and only if σM is contin-
uous can be found in [1], page 74.

We now prove that σM{0} = 0 implies that σM is continuous. Assume that σM

is not continuous, then (�,F ,µ,T ) is not of type II∞, that is, there exists a

T -invariant probability measure ν such that ν  µ. The function
√

dν
dµ

is in L2(µ)

and, since it is T -invariant, its spectral measure is the Dirac mass at 0.
The proof of the last statement on zero type systems is completely similar to

the mixing case for probability preserving systems (see, e.g., pages 57–58 in [11]).
�

4. Poisson suspensions. In this section we will recall basic facts on the in-
tensively studied Poisson measures, which are random discrete measures on an
underlying measure space. The particular case we are interested in, that is, when
the distribution of the Poisson measure is preserved by a well chosen transforma-
tion (and then called Poisson suspension), has received much less attention ([2]
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provides a few pages on Poisson suspensions and references, mainly under the
scope of statistical mechanics). The particular form, in chaos, of the L2-space as-
sociated to the Poisson suspension allows a useful spectral analysis similar to the
Gaussian case.

4.1. Definitions. We consider a σ -finite Lebesgue space (�,F ,µ). Let
{An}n∈N be a countable measurable partition of � such that µ(An) < ∞ for
all n ∈ N and let (M�,MF ) be the space of measures ν on (�,F ) satisfying
ν(An) ∈ N for all n ∈ N. MF is the smallest σ -algebra on M� such that the map-
pings ν → ν(A) are measurable for all A ∈ F of finite µ-measure. We denote by
N the identity on (M�,MF ).

DEFINITION 4.1. We call Poisson measure the triplet (M�,MF ,Pµ), where
Pµ is the unique probability measure such that, for all finite collections {Ai} of
elements belonging to F , disjoint and of finite µ-measure, the {N(Ai)} are inde-
pendent and distributed as the Poisson law of parameter µ(Ai). The underlying
space (�,F ,µ) will be called the base.

Assume now that T is an invertible and measure preserving transformation on
(�,F ,µ); it is easily verified that the map T � defined on M� by T �(ν) = ν ◦T −1

is also a bijective transformation which preserves the probability Pµ.

DEFINITION 4.2. The dynamical system (M�,MF ,Pµ,T �) is called the
Poisson suspension above the base (�,F ,µ,T ).

4.2. Product structure. The independence properties of a Poisson suspension
along invariant subsets imply the following:

LEMMA 4.3. Let (�,F ,µ,T ) be a dynamical system and suppose there ex-
ists a partition {�i}1≤i≤k of � into k T -invariant sets of nonzero µ-measure.

Then (M�,MF ,Pµ,T �) is isomorphic to the direct product(
Mk

�,M⊗k
F ,Pµ|�0

⊗ · · · ⊗ Pµ|�k
, T � × · · · × T �).

4.3. General L2 properties of a Poisson suspension. In this section we recall
the basic facts on the Fock space structure of the L2-space associated to a Poisson
measure (M�,MF ,Pµ). Section 10.4 in [10] is a reference for this section.

4.3.1. Fock factorization.

DEFINITION 4.4. The Fock factorization of the Hilbert space K is the Hilbert
space expK given by

expK := S0K ⊕ S1K ⊕ · · · ⊕ SnK ⊕ · · · ,
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where SnK is the nth symmetric tensor power of K and is called the nth chaos,
with S0K = C.

On expK , the set of exponential vectors is particularly important

Eh := 1 ⊕ h ⊕ 1√
2!(h ⊗ h) ⊕ · · · ⊕ 1√

n!(h ⊗ · · · ⊗ h) ⊕ · · ·

for h ∈ K .
They form a linearly dense part in expK and satisfy the identity

〈Eh,Eg〉expK = exp〈h,g〉K.

Now suppose we are given an operator U on K with norm at most 1, it extends
naturally to an operator Ũ on expK called the exponential of U , by acting on each
chaos via the formula

Ũ (h ⊗ · · · ⊗ h) = (Uh) ⊗ · · · ⊗ (Uh)

leading to the identity,

ŨEh = EUh.

4.3.2. Fock space structure of L2(Pµ). Call 	n the diagonal in �n (the
n-uplets with identical coordinates). Multiple integrals, for f in L1(µ) ∩ L2(µ),
are defined by

J (n)(f )

:=
∫

· · ·
∫
	c

n

f (x1) · · ·f (xn)
(
N(dx1) − µ(dx1)

) · · · (N(dxn) − µ(dxn)
)
.

THEOREM 4.5. There exists an isometry between L2(Pµ) and exp[L2(µ)]
mapping J (n)(f ) to

√
n!f ⊗ · · · ⊗ f︸ ︷︷ ︸

n times

for any n ≥ 1 and f in L1(µ) ∩ L2(µ).

We thus have the isometry formula:〈
J (n)(f ), J (p)(g)

〉
L2(Pµ) = n!(〈f,g〉L2(µ)

)n1n=p.

Call H the set of functions h, finite linear combination of indicator functions of
elements of F with finite µ-measure. Through the natural isometry, the exponen-
tial vectors Eh are

Eh(ν) = exp
(
−

∫
�

hdµ

)∏
x∈ν

(
1 + h(x)

)
.

They form a linearly dense part in L2(Pµ), moreover, EPµ[Eh] = 1.
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4.4. Spectral properties of a Poisson suspension. We now consider the case
of a dynamical system (�,F ,µ,T ) and its associated Poisson suspension
(M�,MF ,Pµ,T �). It is obvious that the unitary operator f �→ f ◦ T � acting
on L2(Pµ) is the exponential of the corresponding unitary operator on L2(µ),
g �→ g ◦ T . From this simple remark, it can be deduced, as in the Gaussian case
(see Chapter 14 in [2] for details), with the following very important properties:

PROPOSITION 4.6. If σM is the maximal spectral type of (�,F ,µ,T ), then
on the nth chaos, the maximal spectral type of U is σ ∗n

M . The (reduced) max-
imal spectral type of the Poisson suspension (M�,MF ,Pµ,T �) is e(σM) :=∑

n≥1
1
n!σ

∗n
M .

4.5. Ergodic properties of a Poisson suspension. In this section we consider a
system (M�,MF ,Pµ,T �), where µ = µB + µm + µwm + µne from the decom-
position in Proposition 2.11. Lemma 4.3 immediately implies the following:

PROPOSITION 4.7. (M�,MF ,Pµ,T �) is isomorphic to(
M4

�,M⊗4
F ,PµB

⊗ Pµm ⊗ Pµwm ⊗ Pµne , T
� × T � × T � × T �).

We now look at the ergodic properties in each class:

THEOREM 4.8. (M�,MF ,Pµne , T
�) is not ergodic.

(M�,MF ,Pµwm,T �) is weakly mixing, not mixing.
(M�,MF ,Pµm,T �) is mixing of all orders.
(M�,MF ,PµB

,T �) is Bernoulli.

PROOF. Since (�,F ,µne, T ) is not of type II∞, from Proposition 3.3, its
maximal spectral type has an atom at 0 and this implies that, thanks to Propo-
sition 4.6, this atom at 0 is part of the (reduced) maximal spectral type of
(M�,MF ,Pµne , T

�) and thus prevents ergodicity.
The fact that (M�,MF ,Pµwm,T �) is weakly mixing is a direct consequence

of the successive application of Propositions 3.3, 4.6 and 3.2. Since σM is not
Rajchman, it cannot be mixing.

If now we consider (�,F ,µm,T ), this system is of zero type, that is to say,
for all A ∈ F , B ∈ F of finite µ-measure, µm(A ∩ T −kB) tends to 0 as k tends to
infinity.

We are going to generalize the identity 〈Eh,Eg〉L2(Pµm) = exp〈h,g〉L2(µm):

EPµm

[
Eh1Eh2 · · ·Ehn

]
= exp

∑
1≤i1<i2≤n

∫
hi1hi2 dµm + · · ·

+ ∑
1≤i1<i2<···<in≤n

∫
hi1 · · ·hin dµm.
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We show, more generally, the following formula for functions h1, . . . , hn of H:

Eh1Eh2 · · ·Ehn

= E(1+h1)(1+h2)···(1+hn)−1 exp
∑

1≤i1<i2≤n

∫
hi1hi2 dµm + · · ·

+ ∑
1≤i1<i2<···<in≤n

∫
hi1 · · ·hindµm.

At rank 2, the computation is easy; let n ≥ 2 and suppose that the formula is
true at this rank.

Let h1, . . . , hn, hn+1 be functions in H.
We first evaluate E(1+h1)(1+h2)···(1+hn)−1Ehn+1 . The formula, at rank 2, gives us

E(1+h1)(1+h2)···(1+hn)−1Ehn+1

= exp
∫

hn+1
(
(1 + h1)(1 + h2) · · · (1 + hn) − 1

)
dµm

× E(1+h1)(1+h2)···(1+hn)(1+hn+1)−1.

But exp
∫

hn+1((1 + h1)(1 + h2) · · · (1 + hn) − 1) dµm equals

exp
n∑

i=1

∫
hihn+1 dµm + · · ·

+ ∑
1≤i1<i2<···<in≤n

∫
hi1 · · ·hinhn+1 dµm.

Combining this result with the formula at rank n, we show that the formula is
true at rank n + 1 and this ends the proof by recurrence.

To show mixing of order n with the functions Eh1, . . . ,Ehn with h1, . . . , hn in H,
take n strictly increasing sequences of integers p1,k, . . . , pn,k and denote by ai,k :=
p1,k + · · · + pi,k . We have to show that

EPµm
[Eh1 ◦ T �a1,kEh2 ◦ T �a2,k · · ·Ehn ◦ T �an,k ] tends to

EPµm

[
Eh1

] · · ·EPµm

[
Ehn

] = 1.

But

EPµm

[
Eh1 ◦ T �a1,kEh2 ◦ T �a2,k · · ·Ehn ◦ T �an,k

]
= EPµm

[
Eh1◦T a1,k Eh2◦T a2,k · · ·Ehn◦T an,k

]
and then, from the preceding formula, we have to show that quantities of the kind∫

hi ◦ T ai,k · · ·hj ◦ T aj,k dµm, i < j , tend to 0.
The functions hi are finite linear combinations of indicator functions of sets of

finite µ-measure, then, expanding the integral
∫

hi ◦ T ai,k · · ·hj ◦ T aj,k dµm, we
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obtain a finite linear combination of quantities of the kind µm(T −ai,kAl ∩ · · · ∩
T −aj,kAm). But these quantities tend to 0 since

µm(T −ai,kAl ∩ · · · ∩ T −aj,kAm) ≤ µm(T −ai,kAl ∩ T −aj,kAm)

and

µm(T −ai,kAl ∩ T −aj,kAm) = µm(Al ∩ T pi+1,k+···+pj,kAm).

We thus have the mixing of order n on the exponential vectors Eh1, . . . ,Ehn ,
and, by standard approximation arguments, taking advantage of the properties of
these vectors, we get mixing of order n for the suspension.

(�,F ,µB,T ) is dissipative, so, from Lemma 2.6, there exists a wandering set
W such that � = ⋃

n∈Z T −nW mod. µB . Denote by W the σ -field generated by
A ∈ F such that A ⊂ W . Then MW generates MF (i.e., MF = ∨

n∈Z T �−nMW )
and, thanks to the independence properties of a Poisson measure, the σ -fields
T �−nMW are independent. Hence, (M�,MF ,PµB

,T �) is Bernoulli. �

REMARK. The content of this theorem is apparently due to Marchat in his
Ph.D. dissertation as pointed out by Grabinski in [4], we have heard of Grabinski’s
paper, which is cited nowhere, at the “Galley proofs” stage of the preparation of
this document.

A direct consequence of this theorem is that a Poisson suspension is ergodic
(and weakly mixing) if and only if the base is II∞. This has also been proved in [3]
which contains also results of modern ergodic theory on Poisson suspensions.

5. Infinitely divisible stationary processes. After a few generalities on sta-
tionary processes, we next introduce the notion of infinite divisibility for these
processes which is an immediate generalization of the finite-dimensional case (the
book of K. Sato [19] is a reference on this vast subject). The accompanying tools
such as the Lévy measure find its equivalent notion for processes as shown by
Maruyama in [8]. This measure is the key object that will allow us to connect re-
sults of the preceding sections to prove Theorem 5.5, which was the motivation for
this work, and to deduce their ergodic properties in Theorem 5.7.

5.1. Dynamical system associated to a stationary stochastic process. We con-
sider (RZ,B⊗Z,µ,T ) introduced in Section 2.6, µ may be infinite. When we will
deal with stationary processes, only the measure will change throughout the study
and, to simplify, we will often use it to designate such a system. Affirmations such
as “µ is ergodic” or “µ is dissipative” will be shortening of “(RZ,B⊗Z,µ,T )

is ergodic” or “(RZ,B⊗Z,µ,T ) is dissipative.” We will try to keep the notation
X := {X0 ◦ T n}n∈Z for the identity on (RZ,B⊗Z), X0 being the “coordinate at 0”
map {xi}i∈Z �→ x0. X, {Xn}n∈Z, {X0 ◦T n}n∈Z, µ or (RZ,B⊗Z,µ,T ) is essentially
the same object.
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5.2. Convolution of processes. We consider the mapping “sum” with values in
(RZ,B⊗Z) which associates {xi + yi}i∈Z to ({xi}i∈Z, {yi}i∈Z). Given two distrib-
utions P1 and P2 on (RZ,B⊗Z), we call P1 ∗ P2 the “convolution of P1 with P2.”
P1 ∗P2 is the image distribution of P1 ⊗P2 by the mapping already defined. Since
this operation is clearly associative, we can denote P

∗k to be the convolution of k

identical copies of P.

DEFINITION 5.1. Let P be a distribution on (RZ,B⊗Z), P is infinitely divisi-
ble (ID) if, for all integers k, there exists a distribution Pk on (RZ,B⊗Z) such that
P = P

∗k
k .

We remark that this definition forces the finite-dimensional distributions to be
ID.

5.2.1. Lévy measure of an ID stationary process. We have, as in the finite-
dimensional case, a representation, due to Maruyama (see [8]), of characteristic
functions of the finite-dimensional distributions of an ID stationary process of dis-
tribution P (we denote by a a sequence {ai}i∈Z where only a finite number of
coordinates are nonzero and call A their union in R

Z):

E[exp i〈a,X〉]
(5.1)

= exp
[
−1

2〈Ra,a〉 + i〈a, b∞〉 +
∫

RZ

(
ei〈a,x〉 − 1 − i〈c(x), a〉)Q(dx)

]
,

where R is the covariance function of a centered stationary Gaussian process,
b∞ ∈ R

Z is a sequence identically equal to b and Q is a σ -finite measure on
(RZ,B⊗Z) invariant with respect to the shift and such that Q{0} = 0 (where
{0} is the identically zero sequence),

∫
RZ(x2

0 ∧ 1)Q(dx) < +∞ and c(x)i =
−1]−∞,−1[ + xi1[−1,1] + 1]1,∞[.

〈R,b,Q〉 is called the generating triplet of P.
The dynamical system (RZ,B⊗Z,Q,T ) will be our main concern in the sequel.
When the process is integrable and centered, we have the following representa-

tion, where R and Q are unchanged:

E[exp i〈a,X〉] = exp
[
−1

2〈Ra,a〉 +
∫

RZ

(
ei〈a,x〉 − 1 − i〈a, x〉)Q(dx)

]
.(5.2)

Finally, if the process only takes positive values (and then without Gaussian
part), we can write down its finite-dimensional distribution through their Laplace
transforms, with a ∈ A ∩ R

Z+:

E[exp−〈a,X〉] = exp
[
−〈a, b∞〉 −

∫
RZ

(
1 − e−〈a,x〉)Q(dx)

]
.(5.3)

If, moreover, it is integrable, under this representation, we have

E[X0] = b +
∫

RZ

x0Q(dx).
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REMARK 5.2. If we are given a covariance function R, a drift b and a measure
Q satisfying the hypothesis specified above, it determines the distribution of an ID
process of generating triplet 〈R,b,Q〉 by defining its finite-dimensional distrib-
ution through the representation (5.1). Then we can apprehend the extraordinary
variety of the process at our disposal.

DEFINITION 5.3. An ID process is said to be Poissonian (IDp) if its generat-
ing triplet does not possess a Gaussian part.

In the sequel, when we will speak of IDp process with Lévy measure Q, we
will consider a process whose generating triplet is 〈0,0,Q〉 under the representa-
tion (5.1). Of course, the drift has no impact in our study.

5.3. First examples and representation.

5.3.1. Canonical example. Maruyama in [8] has given the canonical example
of an IDp stationary process:

We consider a Poisson suspension (M�,MF ,Pµ,T �) above (�,F ,µ,T ) and

a real function f defined on (�,F ,µ,T ) such that
∫
�

f 2

1+f 2 dµ < +∞. We define
the stochastic integral I (f ) by the limit in probability, as n tends toward infinity,
of ∫

|f |>1/n
f dN −

∫
|f |>1/n

c(f ) dµ.

Then the process X = {I (f ) ◦ T �n}n∈Z is IDp and its distribution is given by

E[exp i〈a,X〉] = exp

[∫
�

exp

(
i
∑
n∈Z

anf ◦ T n

)
− 1 − i

∑
n∈Z

anc(f ◦ T n) dµ

]

for a ∈ A.
Maruyama has also shown in [8] that all the IDp processes can be repre-

sented this way: consider Q, the Lévy measure of an IDp process of generating
triplet 〈0,0,Q〉, let (MRZ,MB⊗Z,PQ,T �) be the Poisson suspension with base
(RZ,B⊗Z,Q,T ) and f the mapping X0 : {xi}i∈Z �→ x0.

THEOREM 5.4 (Maruyama). The process {I (X0) ◦ T �n}n∈Z admits 〈0,0,Q〉
as generating triplet.

This theorem is crucial since it allows us to consider an IDp process as a factor
of a Poisson suspension, precisely the Poisson suspension constructed above its
Lévy measure. The factor map is ν → {I (x0) ◦ T �n}n∈Z, defined on MRZ with
values in R

Z.
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5.4. First factorization. It is obvious that the convolution of two ID distribu-
tions is still ID, the class of this type of distributions being closed under convo-
lution. Given a stationary ID distribution, we ask when it is factorizable, that is,
can it be written as the convolution of two or more ID distributions? An immediate
factorization comes from the representation (5.1):

Suppose that P admits the triplet 〈R,b,Q〉. If Ps admits the triplet 〈sR, sb, sQ〉
and P1−s admits the triplet 〈(1 − s)R, (1 − s)b, (1 − s)Q〉 with 0 < s < 1, then
P = Ps ∗ P1−s .

The representation (5.1) allows another more interesting factorization. Letting
PR of triplet 〈R,0,0〉, Pb of triplet 〈0, b,0〉 and PQ of triplet 〈0,0,Q〉, we have

P = PR ∗ Pb ∗ PQ,

where PR is the distribution of a stationary centered Gaussian process, Pb is the
distribution of a constant process and PQ the distribution of an IDp process.

5.5. Factorization through invariant components of the Lévy measure. We can
apply to Q the decomposition Q = QB + Qm + Qwm + Qne along the four dis-
joint shift-invariant subsets as in Proposition 2.11. By considering (5.1), we get the
following factorization result:

THEOREM 5.5 (Factorization of a stationary IDp process). Let P be the dis-
tribution of a stationary IDp process. P can be written in the unique way:

P = PQB
∗ PQm ∗ PQwm ∗ PQne,

where:
(RZ,B⊗Z,QB,T ) is dissipative,
(RZ,B⊗Z,Qm,T ) is conservative of zero type,
(RZ,B⊗Z,Qwm,T ) is of type II∞ and of positive type,
(RZ,B⊗Z,Qne, T ) is of type II1.

Since these classes are not empty for the corresponding Poisson suspensions,
we deduce they are not empty for the IDp processes by considering stochastic
integrals with respect to these Poisson suspensions.

5.6. Ergodic properties of stationary IDp processes. Before enunciating the
properties of each class, we will need the following lemma which is the inter-
pretation, in our framework, of a computation done by Rosiński and Żak in [17].
Their computation led to show that, if X is an IDp process, the spectral measure
of eiX0 − E[eiX0] has the form |E[eiX0]|2e(m) (we still use the notation

e(m) :=
+∞∑
k=1

1

k!m
∗k,

where m is a finite measure on [−π,π [). We will see that m is indeed itself a
spectral measure, but for the system associated to the Lévy measure of X.
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LEMMA 5.6. Let X be an IDp process of Lévy measure Q. The spectral
measure of eiX0 − E[eiX0] is |E[eiX0]|2e(σ ), where σ is the spectral measure of
eiX0 − 1 under Q.

PROOF. In [17], the following formula is established:

E
[
eiX0eiXk

] = |E[eiX0]|2
(

exp
[∫

R2
(eix − 1)

(
eiy − 1

)
Q0,k(dx, dy)

])
,

where Q0,k is the Lévy measure of the ID vector (X0,Xk). But, since we make
use of the Lévy measure of processes, this formula can be written into

E
[
eiX0eiXk

] = |E[eiX0]|2
(

exp
[∫

RZ

(eix0 − 1)
(
eixk − 1

)
Q(dx)

])
,

which equals

|E[eiX0]|2(exp σ̂ (k)) = |E[eiX0]|2
(+∞∑

n=0

1

n!(σ̂ (k))n

)
,

where σ is the spectral measure of eiX0 − 1 under Q. The conclusion follows. �

THEOREM 5.7. (RZ,B⊗Z,PQne, T ) is not ergodic.
(RZ,B⊗Z,PQwm,T ) is weakly mixing.
(RZ,B⊗Z,PQm,T ) is mixing of all order.
(RZ,B⊗Z,PQB

,T ) has the Bernoulli property.

PROOF. There exists a probability measure ν which is T -invariant and equiv-

alent to Qne. Let f :=
√

dQne

dν
[note that dQne

dν
is just ( dν

dQne
)−1] and λ ∈ R.

The spectral measure of eiλX0 − 1 under Qne is the spectral measure of
f eiλX0 − f under ν. The set {f < a} is T -invariant since f is T -invariant, more-
over, this set is of nonzero measure if a is large enough. Thus, the spectral measure
of f eiλX0 − f under ν is the sum of the spectral measures of (f eiλX0 − f )1{f <a}
and (f eiλX0 − f )1{f ≥a} under ν.

If (f eiλX0 − f )1{f <a} is centered, we have∫
RZ∩{f <a}

f (x)eiλx0ν(dx) =
∫

RZ∩{f <a}
f (x)ν(dx) ∈ R.

This implies ∫
RZ∩{f <a}

f (x)[1 − cos(λx0)]ν(dx) = 0.

Since f is nonnegative on {f < a} ν-a.e., this implies that cos(λX0) = 1 on
{f < a} ν-a.e. or that λX0 = 0 mod. π . But this is impossible for all λ ∈ R simul-
taneously.
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That is, there exists λ ∈ R such that (f eiλX0 −f )1{f <a} is not centered and this
implies that the spectral measure of eiλX0 − 1 under Qne possesses an atom at 0.
This atom is also in the spectral measure of eiλX0 − E[eiλX0] by Lemma 5.6 and
then in the maximal spectral type, which prevents ergodicity.

(RZ,B⊗Z,PQwm,T ) is a factor of (MRZ,MB⊗Z,PQwm,T �), which is weakly
mixing.

The rest of the properties are proved in the same way by considering the system
as a factor of the corresponding Poisson suspension whose properties, such as mix-
ing of all order and Bernoullicity, are inherited by its factors (see Proposition 2.15).

�

We are now able to give a new proof of the important theorem of Rosiński and
Żak (see [17]).

THEOREM 5.8. If P is IDp and ergodic, then P is weakly mixing.

PROOF. Let P = PQB
∗ PQm ∗ PQwm ∗ PQne be the factorization of P from

Theorem 5.5 with PQne nontrivial. Thus, {Xn}n∈Z of distribution P can be seen
as the independent sum of {X1

n}n∈Z of distribution PQB
∗ PQm ∗ PQmm ∗ PQwm

and {X2
n}n∈Z of distribution PQne . From the first part of the proof of Theo-

rem 5.7, there exists λ ∈ R such that the spectral measure of eiλX2
0 − E[eiλX2

0 ]
is of the form |E[eiλX2

0 ]|2e(σ 2), with σ 2 possessing an atom at 0. The spectral
measure of eiλX1

0 − E[eiλX1
0 ] is |E[eiλX1

0 ]|2e(σ 1) for a measure σ 1. An easy com-
putation shows that the spectral measure of eiλX0 − E[eiλX0] = ei(λX1

0+λX2
0) −

E[ei(λX1
0+λX2

0)] is |E[eiλX0]|2e(σ 1 + σ 2) but since σ 1 has an atom at 0, so has
|E[eiλX0]|2e(σ 1 + σ 2) and the process is not ergodic. Then, if P is ergodic, PQne

is trivial and P writes PQB
∗ PQm ∗ PQwm which implies that P is weakly mixing

as a factor of the direct product of weakly mixing systems. �

From Theorem 5.7, the hierarchy of “mixing” properties among ergodic IDp
processes is explicit. Those process with a dissipative Lévy measure possess the
strongest mixing behavior.

6. Generalized moving averages IDp processes.

DEFINITION 6.1. A stationary process {Xn}n∈Z is called generalized moving
average if there exists an i.i.d. collection of processes {{ξn

k }k∈Z}n∈Z such that, in
distribution,

{Xn}n∈Z =
{∑

k∈Z

ξn−k
k

}
n∈Z

.

The process {ξ0
k }k∈Z is a generator of {Xn}n∈Z.
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THEOREM 6.2. A stationary IDp process is generalized moving average with
ID generator if and only if its Lévy measure is dissipative.

PROOF. Consider the distribution P of a generalized moving average IDp
process of Lévy measure Q, the distribution Pg of an ID generator for it and Qg

its Lévy measure. Since the process is the sum of the translates of independent
process of distribution Pg , we have

P = ∏
k∈Z

Pg ◦ T −k

(the product is the convolution) and thus,

Q = ∑
k∈Z

Qg ◦ T −k.

We will show Q is dissipative. Form the space (Z × R
Z,P (Z) ⊗ B⊗Z,mc ⊗

Qg, T̃ ) where mc is the counting measure on Z and T̃ is defined by T̃ (n, {xi}i∈Z) =
(n+1, {xi}i∈Z), this system is clearly dissipative. Consider the map ϕ from Z×R

Z

to R
Z defined by ϕ(n, {xi}i∈Z) = T n{xi}i∈Z. We have

ϕ ◦ T̃ (n, {xi}i∈Z) = ϕ(n + 1, {xi}i∈Z)

= T n+1{xi}i∈Z = T (T n{xi}i∈Z) = T ◦ ϕ(n, {xi}i∈Z)

and

(mc ⊗ Qg) ◦ ϕ−1 = ∑
k∈Z

Qg ◦ T −k.

Thus, the map ϕ is a factor map from (Z × R
Z,P (Z) ⊗ B⊗Z,mc ⊗ Qg, T̃ ) to

(RZ,B⊗Z,Q,T ), this implies that Q is dissipative.
Now assume that Q is the dissipative Lévy measure of a stationary IDp process

of distribution P. From Lemma 2.6, there exists a wandering set A such that R
Z =⋃

n∈Z T −nA mod. Q. If we denote by Qg := Q|A and Pg the distribution of the ID
process with Lévy measure Qg , then, since

Q = ∑
k∈Z

Qg ◦ T −k,

we obtain that

P = ∏
k∈Z

Pg ◦ T −k

and we can deduce that Pg is the distribution of an IDp process, generator for P.
�
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7. Square integrable IDp processes. Here we consider (with the exception
of Proposition 7.2) square integrable IDp processes. To motivate this section, note
that if Q is a (shift)-stationary measure on (RZ,B⊗Z) such that

∫
RZx2

0Q(dx) <

+∞ satisfies Q{0} = 0, Q can be considered as the Lévy measure of an IDp
process which will prove to be square integrable. The family of Lévy measures
of this type is hence quite large.

7.1. Fundamental isometry. We assume that the process is centered and we
denote by U (resp. V ) the unitary operator associated to T in L2(P) [resp. L2(Q)]
and CX0(P) [resp. CX0(Q)] the cyclic subspace associated to X0 in L2(P) [resp.
L2(Q)]. We establish the following result:

PROPOSITION 7.1. CX0(P) is unitary isometric to CX0(Q), the unitary oper-
ators U and V being conjugate.

PROOF. The property comes from the following identities:

〈Xk,Xp〉L2(P) =
∫

RZ

xkxpP(dx)

=
∫

R2
uvP(Xk,Xp)(du, dv)

=
∫

R2
uvQ(Xk,Xp)(du, dv)

=
∫

RZ

xkxpQ(dx) = 〈Xk,Xp〉L2(Q)

(the equality between
∫
R2uvP(Xk,Xp)(du, dv) and

∫
R2uvQ(Xk,Xp)(du, dv), where

Q(Xk,Xp) denotes the Lévy measure of (Xk,Xp), can be found in [19] page 163).
That is, if we denote by � the mapping that associates Xk in L2(P) to Xk in

L2(Q) for all k ∈ Z, then � can be extended linearly to an isometry between
CX0(P) and CX0(Q). The fact that �U = V � is obvious.

Thus, X0 has the same spectral measure under P or under Q. �

7.2. Ergodic and mixing criteria. We recall the Gaussian case (see [2]), where
ergodicity and mixing of the system is determined by the spectral measure of X0:

• The system is ergodic if and only if σ is continuous.
• The system is mixing if and only if σ is Rajchman.

We then observe that, thanks to Proposition 7.1, such criteria no longer apply for
square integrable IDp processes. Indeed, taking the distribution Q of a centered
square integrable mixing process, the IDp process with Lévy measure Q is not
ergodic by Theorem 5.7, but the spectral measure σ of X0 satisfies σ̂ (k) → 0 as
|k| tends toward infinity. We must then assume some restrictions on the trajectories
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of the process to draw conclusions on ergodicity and mixing by only looking at the
spectral measure of X0 − E[X0].

We start by a result where integrability suffices.

PROPOSITION 7.2. Let X be an IDp process of distribution P such that, up to
a possible translation or a change of sign, X0 is nonnegative. Then P is ergodic if
and only if 1

n

∑n
k=1Xk → E[X0] P-a.s. [or in L1(P)] as n tends to infinity.

PROOF. We suppose that X0 is nonnegative and that we have the representa-
tion (5.3) through the Laplace transform, a ∈ A ∩ R

Z+:

E[exp−〈a,X〉] = exp−
[∫

RZ

1 − e−〈a,x〉Q(dx)

]
.

If one knows that P is ergodic, then the convergence holds thanks to the Birkhoff
ergodic theorem.

Suppose now that 1
n

∑n
k=1Xk → E[X0] as n tends to infinity P-a.s. without er-

godicity of P. The decomposition of P is of the type Pe ∗PQne , where Pe is ergodic.
Let Xne be of distribution PQne and Xe be of distribution Pe, assumed independent,
such that Xne + Xe is of distribution P.

The fact that 1
n

∑n
k=1[(Xne + Xe)n] → E[Xne

0 ] + E[Xe
0] implies

1

n

n∑
k=1

Xne
n → E[Xne

0 ].

Hence, using

EQne

[
exp−1

n

n∑
k=1

Xk

]
= exp−

[∫
RZ

1 − exp

[
−1

n

n∑
k=1

xk

]
Qne(dx)

]
,

we note that the term of the left-hand side tends to exp−EQne [X0] by dominated
convergence and, by continuity of the exponential, we then have∫

RZ

1 − exp

[
−1

n

n∑
k=1

xk

]
Qne(dx) → EQne [X0].(7.1)

Under this representation, we also know, by (5.3), that

EQne [X0] =
∫

RZ

x0Qne(dx).

Now consider the probability ν which is T -invariant and equivalent to Qne and
let f := dQne

dν
(f is T -invariant).

f x0 is ν-integrable and we can apply the Birkhoff ergodic theorem to deduce
that

1

n

n∑
k=1

f ◦ T kxk = f

(
1

n

n∑
k=1

xk

)
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converges ν-a.e. and in L1(ν) to the conditional expectation of f x0 with respect to
the invariant σ -field which we denote by ν(f x0|I). But, since f is T -invariant and
nonnegative, ν(f x0|I) = f ν(x0|I), that is, by dividing by f , 1

n

∑n
k=1xk converges

ν-a.e. to ν(x0|I).
Since (

1 − exp

[
−1

n

n∑
k=1

xk

])
f ≤ f

(
1

n

n∑
k=1

xk

)

and by using the fact that f ( 1
n

∑n
k=1xk) converges in L1(ν), the sequence (1 −

exp[− 1
n

∑n
k=1xk])f is uniformly integrable and, since it tends ν-a.e. to (1 −

exp[−ν(x0|I)]), we observe that∫
RZ

1 − exp

[
−1

n

n∑
k=1

xk

]
Qne(dx) =

∫
RZ

(
1 − exp

[
−1

n

n∑
k=1

xk

])
f ν(dx)

tends, as n tends to infinity, to∫
RZ

(
1 − exp[−ν(x0|I)])f ν(dx).

But since x0 ≥ 0 and Qne{0} = 0 (and then ν{0} = 0), we have ν(x0|I) > 0
ν-a.e., thus,∫

RZ

(
1 − exp[−ν(x0|I)])f ν(dx) <

∫
RZ

ν(x0|I)f ν(dx) =
∫

RZ

x0f ν(dx),

that is, the limit, as n tends to infinity of
∫
RZ1 − exp[− 1

n

∑n
k=1xk]Qne(dx), is

strictly less than
∫
RZx0Qne(dx). This contradicts (7.1), there is no term of the

form PQne in the factorization of P and P is thus ergodic. �

We can now prove a proposition for square integrable processes:

PROPOSITION 7.3. Let X be an IDp process of distribution P such that, up to
a possible translation or a change of sign, X0 is nonnegative. Let σ be the spectral
measure of X0 − E[X0].

P is ergodic if and only if σ {0} = 0.
P is mixing if and only if σ is Rajchman.

PROOF. We know that σ {0} equals the variance of E[X0|I]. Moreover, the
Birkhoff ergodic theorem tells us that 1

n

∑n
k=1Xk → E[X0|I] P-a.s. Thus, if

σ {0} = 0, E[X0|I] is constant and equals E[X0], so we can apply Proposition 7.2
to conclude. Now if σ is Rajchman, by the isometry, σ is also the spectral measure
of X0 under Q and we get

∫
RZx0xnQ(dx) → 0 as n tends to infinity and we can

apply the mixing criterion established by Rosiński and Żak in [16] (Corollary 3,
page 282).

Both converse implications follow from Proposition 3.2. �
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8. α-semi-stable and α-stable processes. We recall the definition of an
α-semi-stable (resp. α-stable) distribution on (R,B). Denote by Db the appli-
cation which associates x ∈ R to bx ∈ R. Assume that 0 < α < 2.

DEFINITION 8.1. An α-semi-stable distribution of span b (b > 0) is an IDp
distribution on (R,B) whose Lévy measure ν satisfies

ν = b−αD�
b(ν).

A distribution is said to be α-stable if it is α-semi-stable of span b for all b > 0.

We will now discuss α-semi-stable and α-stable processes by introducing the
application Sb which associates {xn}n∈Z ∈ R

Z to {bxn}n∈Z.

DEFINITION 8.2. A stationary process is said to be α-semi-stable of span b if
it is IDp and its Lévy measure Q satisfies

Q = b−αS�
b(Q).(8.1)

A stationary process is said to be α-stable if it is α-semi-stable of span b for all
b > 0.

In particular, Sb is nonsingular and commutes with the shift T . Remark that an
α-semi-stable distribution of span b or an α-semi-stable process of span b is also
α-semi-stable of span 1

b
.

PROPOSITION 8.3. The canonical factorization of Theorem 5.5 of an α-semi-
stable process of span b is exclusively made of α-semi-stable processes of span b.

PROOF. It suffices to show that the T -invariant subsets of the partition given
in the canonical decomposition of Proposition 2.11 are also Sb-invariant.

Consider (RZ,B⊗Z,Q,T ), where Q satisfies (8.1). Let P be the part of type
II1 of the system, then there exists a T -invariant function f such that P = {f > 0}
and

∫
RZ f dQ = 1. Let b > 0. The function f ◦ Sb is T -invariant since f ◦ Sb ◦

T = f ◦ T ◦ Sb = f ◦ Sb. Thus, from (8.1),
∫
RZ f ◦ Sb dQ = ∫

RZ f dS�
b(Q) =

bα
∫
RZ f dQ = bα , so the probability measure with density b−αf ◦Sb with respect

to Q is T -invariant. Thus, S−1
b P = {f ◦ Sb > 0} ⊂ P. By the same arguments,

S−1
1/bP ⊂ P and thus, S−1

b (S−1
1/bP) ⊂ S−1

b P and this shows S−1
b P = P.

Now consider the T -invariant set N+ of Proposition 2.10. Let A ⊂ N+ be such
that 0 < Q(A) < +∞. Then

Q
(
(S−1

b A) ∩ T −k(S−1
b A)

) = Q
(
(S−1

b A) ∩ S−1
b (T −kA)

)
= Q

(
S−1

b (A ∩ T −kA)
)

= b−αQ(A ∩ T −kA)
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and thus, limk→∞Q((S−1
b A) ∩ T −k(S−1

b A)) = limk→∞b−αQ(A ∩ T −kA) > 0.
Then, S−1

b A ⊂ N+ so we have S−1
b N+ ⊂ N+, and, by symmetric arguments,

S−1
b N+ = N+.

Consider D, the dissipative part of the system. From Lemma 2.6, there ex-
ists a wandering set W such that D = ⋃

n∈Z T −nW . Let b > 0 and consider
the set S−1

b W [which is of nonzero Q-measure from (8.1)]. We have, if n �= m,
T −n(S−1

b W) ∩ T −m(S−1
b W) = ∅; indeed, using the nonsingularity of Sb,

T −n(S−1
b W) ∩ T −m(S−1

b W)

= S−1
b (T −nW) ∩ S−1

b (T −mW)

= S−1
b (T −nW ∩ T −mW) = ∅.

Thus, S−1
b W is a wandering set, so S−1

b D ⊂ D since

S−1
b D = S−1

b

(⋃
n∈Z

T −nW

)

= ⋃
n∈Z

S−1
b (T −nW)

= ⋃
n∈Z

T −n(S−1
b W)

and D is, by definition, the union of all the wandering sets. We conclude
S−1

b D = D.
It is now easy to finish the proof by looking at the invariance of complements,

intersections, and so on, and show the invariance of each set in the partition:

D ∪ (C ∩ N0) ∪ (N+ ∩ N ) ∪ P. �

COROLLARY 8.4. The canonical factorization of an α-stable process is ex-
clusively made of α-stable processes.

8.1. SαS-processes and factorizations. The most frequently studied station-
ary α-stable processes are the so-called SαS-processes, where the distribution is
preserved under the change of sign. In our framework, this means that the invo-
lution S commutes with the shift T and preserves the Lévy measure (note that S

commutes also with Sb). It is easy to see that the canonical factorization of an SαS

process is only made of SαS processes.
We now show some connections existing between the decomposition of Theo-

rem 5.5 and decompositions of an SαS process previously established respectively
by Rosiński [13], Pipiras and Taqqu [12] and Samorodnitsky [18]. We first recall
their results (we refer to these papers for precise definitions), the symbol “=”
means “equality in distribution.”
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THEOREM 8.5. A stationary SαS process X admits the unique following de-
composition, where the sum is made of independent SαS processes:

(Rosiński)

X = X1
r + X2

r + X3
r .

X1
r is a mixed moving average process, X2

r is harmonizable, X3
r cannot be de-

composed as the sum of a mixed moving average (or harmonizable) process and
an independent SαS process:

(Pipiras and Taqqu)

X = X1
pt + X2

pt + X3
pt + X4

pt .

X1
pt is a mixed moving average process, X2

pt is harmonizable, X3
pt is associ-

ated to a cyclic flow without harmonizable component, X4
pt cannot be decomposed

as the sum of a mixed moving average, or a harmonizable process or a process
associated to a cyclic flow, and an independent SαS process.

(Samorodnitsky)

X = X1
s + X2

s + X3
s .

X1
s is a mixed moving average process, X2

s is associated to a conservative null
flow, X3

s is associated to a positive flow.

These authors study both discrete and continuous time in the same framework
and, to avoid unnecessary different terminology, use “flow” to designate both an
action of R and of Z. There is a confusing terminology in the literature about null
and positive flows (see the remark after Proposition 2.10) and here, Samorodnitsky
uses the one found in Aaronson’s book [1].

Here we recall that, in general, there can be an infinity of components in the de-
composition, our criteria were mostly chosen with respect to the ergodic properties
of the components. In that way, our decomposition is closer to Samorodnitsky’s:

PROPOSITION 8.6. X1
s has a dissipative Lévy measure, X1

s + X2
s has a II∞

Lévy measure and X3
s has a II1 Lévy measure.

PROOF. Note that X1
s , X1

r and X1
pt have the same distribution. Rosiński has

shown it is a mixed moving average process which implies that it is a generalized
moving average (with a SαS generator). By Theorem 6.2, its Lévy measure is
dissipative. X1

s was proved to be mixing but, thanks to Theorem 5.7, it has indeed
the Bernoulli property.

Samorodnitsky has shown that X1
s + X2

s is ergodic, thus, by Theorem 5.7, its
Lévy measure is of type II∞. The same author has also proved that there do not
exist two independent SαS processes Z1 and Z2, one of them being ergodic and
such that X3

s = Z1 + Z2 and this proves, in our framework, that the Lévy measure
of X3

s is of type II1. Indeed, if we write the decomposition of Theorem 5.5 X =
XB +Xm +Xwm +Xne, Xne has the same distribution as X3

s and XB +Xm +Xwm

has the same distribution as X1
s + X2

s . �



ERGODIC PROPERTIES OF IDP PROCESSES 575

9. Conclusion. For the sake of simplicity, we have dealt with a single trans-
formation, but many of the techniques used here can be applied more generally to
the study of infinitely divisible objects whose Lévy measure is preserved by any
kind of group actions, for example, the continuous time versions of our results are
mostly straightforward, as are the multidimensional or the complex valued ones.
The use of Poisson suspensions seems “natural” in some way.

For the interested reader, more ergodic oriented results can be found in the Ph.D.
thesis of the author and, we hope, will be published soon.
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[7] LEMAŃCZYK, M., PARREAU, F. and THOUVENOT, J.-P. (2000). Gaussian automorphisms
whose ergodic self-joinings are Gaussian. Fund. Math. 164 253–293. MR1784644

[8] MARUYAMA, G. (1970). Infinitely divisible processes. Theory Probab. Appl. 15 1–22.
MR0285046

[9] MATTHES, K., KERSTAN, J. and MECKE, J. (1978). Infinitely Divisible Point Processes. Wi-
ley, New York. MR0517931

[10] NERETIN, YU. A. (1996). Categories of Symmetries and Infinite-Dimensional Groups. Oxford
Univ. Press. MR1418863

[11] PETERSEN, K. (1983). Ergodic Theory. Cambridge Univ. Press. MR0833286
[12] PIPIRAS, V. and TAQQU, M. S. (2004). Stable stationary processes related to cyclic flows.

Ann. Probab. 32 2222–2260. MR2073190
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