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FINITE-DIMENSIONAL APPROXIMATION FOR THE DIFFUSION
COEFFICIENT IN THE SIMPLE EXCLUSION PROCESS

BY MILTON JARA

IMPA

We show that for the mean zero simple exclusion process in Zd and for
the asymmetric simple exclusion process in Zd for d ≥ 3, the self-diffusion
coefficient of a tagged particle is stable when approximated by simple ex-
clusion processes on large periodic lattices. The proof depends on a similar
stability property of the Sobolev inner product associated with the operator.

1. Introduction. In [1], Kipnis and Varadhan proved an invariance principle
for the position of a marked particle in a symmetric simple exclusion process in
equilibrium. Their proof relies on a central limit theorem for additive functionals of
a Markov process. Later, this result was generalized to the mean zero simple exclu-
sion process (see [8]) and the asymmetric simple exclusion process in dimension
d ≥ 3 in [6].

The diffusion matrix of the limiting Brownian process is a function D(α) of the
density of particles and is given by a variational formula.

The method of proof used by Kipnis and Varadhan works directly in infinite sys-
tems and naturally raises the issue of the stability of the diffusion coefficient under
finite-dimensional approximations. More precisely, consider a finite-dimensional
version of the simple exclusion process on the torus {−N, . . . ,0, . . . ,N}d . In or-
der to obtain an ergodic process, fix the total number K of particles. When N

is sufficiently large, the motion of a tagged particle on this finite system has a
unique canonical lifting to Zd . In this manner, we obtain a process XN(t) with
values in Zd . Let DN,K denote the variance of the limiting Brownian motion of
the scaled process εXN(t/ε2) when ε → 0. In this article, we prove that

lim
N→∞

K/(2N)d→α

DN,K = D(α)

for mean zero the simple exclusion process and for asymmetric the simple exclu-
sion process in dimension d ≥ 3.

This limit was first considered in [3] for symmetric the simple exclusion
process. The proof presented there follows from a variational formula for the dif-
fusion coefficient that depends on the Sobolev dual norm associated with the gen-
erator of the process and from a convergence result for the Sobolev dual norms
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of the finite-dimensional approximations. Let h,g be local functions with mean
zero with respect to all the Bernoulli product measures µα that assign den-
sity α to each coordinate. Denote by 〈·, ·〉α the inner product on L2(µα). Let
µN,K be the uniform measure over the configurations with K particles on the
torus {−N, . . . ,0, . . . ,N}d and 〈·, ·〉µN,K

the inner product on L2(µN,K). Let L

(resp. LN ) be the generator of the process in Zd (resp. the torus). Suppose for a
moment that (−L)−1g exists and is local. Then

lim
N→∞

K/(2N)d→α

〈h, (−LN)−1g〉N,K = 〈h, (−L)−1g〉α

because of the equivalence of ensembles and the fact that (−L)−1g is local. The
desired result will be a consequence of a generalization of this result for a larger
class of functions h, g.

The rest of this article is organized as follows. In Section 2, we present the
definition and basic properties of the simple exclusion process. In Section 3, we
introduce the Sobolev spaces associated with the process and prove Theorem 2,
a general perturbative result about the convergence of finite approximations of
a positive operator in Hilbert spaces. In Section 4, we prove the stability of the
diffusion coefficient for the tagged particle using the Sobolev space techniques de-
veloped in Section 3. Finally, in Section 5, we check the hypothesis of Theorem 2
for the simple exclusion process.

2. Notation and results. Consider a probability measure p(·) of finite range
on Zd , that is, p(z) = 0 if |z| is sufficiently large. Suppose that p(0) = 0 and
that the random walk with transition rate p(·) is irreducible, that is, the (finite)
set {z;p(z) > 0} generates the group Zd . The simple exclusion process associ-
ated with p(·) corresponds to the Markov process defined on X = {0,1}Zd

, whose
generator L0 acting on local functions f is given by

L0f (η) = ∑
x,y∈Zd

p(y − x)η(x)
(
1 − η(y)

)[f (σxyη) − f (η)].

Here, η ∈ X denotes a configuration of particles in Zd . In particular, η(x) = 1
if there is a particle at the site x and η(x) = 0 otherwise, and σxyη is the configu-
ration obtained from η by exchanging the occupation numbers at x and y:

σxyη(z) =



η(y), if z = x,
η(x), if z = y,
η(z), otherwise.

If p(z) = p(−z) for all z, then the process will be called symmetric; if∑
zp(z) = 0, it will be called of mean zero and if

∑
z∈Zd zp(z) = m �= 0, the

process will be called asymmetric.
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For each α ∈ [0,1], let να denote the Bernoulli product measure in X, that is,
the product measure such that να[η(x) = 1] = α for each x ∈ Zd . It is not hard to
prove that να is an invariant measure for the process generated by L0.

In this model, particles are indistinguishable. In order to study the time evolution
of a single particle, we proceed in the following way. Let η ∈ X be an initial state
with a particle at the origin [i.e., η(0) = 1]. Tag this particle and let ηt (resp. Xt )
be the time evolution of the exclusion process starting from η (resp. the tagged
particle starting from x = 0). Let ξt (x) = ηt (x + Xt) be the process as seen by the
tagged particle. We call ξt the environment process.

It is clear that Xt is not a Markov process due to the interaction between the
tagged particle and the environment, but (ηt ,Xt) and ξt are Markov processes,
the latter being defined in the state space X∗ = {0,1}Zd∗ , where Zd∗ = Zd\{0}. The
generator of the process ξt , acting on local functions f , is given by L = L0 + Lτ ,
where

L0f (ξ) = ∑
x,y∈Zd∗

p(y − x)ξ(x)
(
1 − ξ(y)

)[f (σxyξ) − f (ξ)],

Lτf (ξ) = ∑
z∈Zd∗

p(z)
(
1 − ξ(z)

)[f (τzξ) − f (ξ)].

The first part of the generator, L0, takes into account the jumps of the environ-
ment (i.e., all particles but the tagged one), while the second part takes into account
the jumps of the tagged particle.

In this formula, τzξ is the configuration obtained by making the tagged parti-
cle (at the origin) jump to site z and then bringing it back to the origin with a
translation:

τzξ(x) =
{

0, if x = −z,
ξ(x + z), if x �= −z.

For the process ξt , we have a one-parameter family of invariant ergodic mea-
sures {µα}α∈[0,1], where µα is the Bernoulli product measure of density α defined
on X∗: µα[ξ(x) = 1] = α for all x ∈ Zd∗ , independently for each site (see [5]).

Note that the position of the tagged particle can be calculated in terms of jump
processes associated with ξt . Define Nz

t as the number of translations by z of ξt ,
that is, Nz

t = Nz
t− + 1 ⇐⇒ ξt = τzξt−. Then Xt = ∑

z zNz
t .

In this context, Kipnis and Varadhan proved a central limit theorem for the po-
sition of the tagged particle when the environment process is in equilibrium with
distribution µα . They proved that εXt/ε2 converges, when ε goes to zero, to a
Brownian motion with diffusion coefficient D(α), which can be described in terms
of the Sobolev norms associated with the operator L in L(µα).

This result has been generalized by Varadhan to the mean zero case (in any
dimension) and by Sethuraman, Varadhan and Yau for the asymmetric case in di-
mension d ≥ 3, in which case it is proved that ε[Xt/ε2 − mt(1 − α)/ε2] converges
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to a Brownian motion with diffusion coefficient D(α), given by

atD(α)a = (1 − α)
∑
z∈Zd∗

(z · a)2p(z) − 2〈wa, (−L)−1va〉α,(1)

where a ∈ Rd , 〈·, ·〉α is the inner product on L2(µα) and va , wa are local functions
defined by

va = ∑
z∈Zd

(z · a)p(z)[α − η(z)],

wa = ∑
z∈Zd

(z · a)p(z)[α − η(−z)].

In general, L is not an invertible operator and so the meaning of (1) must be
clarified. This will be done in Sections 3 and 4.

Let N be a positive integer and define T d
N = {−N, . . . ,0, . . . ,N}d , the

d-dimensional discrete torus of (2N)d points, with −N and N identified. Us-
ing the same probability measure p(·), we can define a simple exclusion process
evolving in T d

N . The space state will now be XN = {0,1}T d
N and the generator LN

acting on any function f will be given by

LNf (ξ) = ∑
x,y∈T d

N

p(y − x)η(x)
(
1 − η(y)

)[f (σxyη) − f (η)].

In the same way, it is possible to define the environment process in the torus
T d

N,∗ = T d
N\{0}. In this case, the environment, as seen by the tagged particle, is

a Markov process evolving in the space XN,∗ = {0,1}T d
N,∗ and generated by the

operator LN = L0,N + Lτ,N , where

L0,Nf (ξ) = ∑
x,y∈T d

N,∗

p(y − x)ξ(x)
(
1 − ξ(y)

)[f (σxyξ) − f (ξ)],

Lτ,Nf (ξ) = ∑
z∈T d

N,∗

p(z)
(
1 − ξ(z)

)[f (τzξ) − f (ξ)].

It is clear, by the conservation of the number of particles, that for 0 <

K ≤ (2N)d , the probability measure µN,K , uniform over the set XN,K = {ξ ∈
XN,∗;∑

x∈T d
N,∗

ξ(x) = K − 1} of configurations with K particles, is an invariant

ergodic measure for the process generated by LN .
For N sufficiently large, it is possible to lift the motion of the tagged particle

to Zd . Let XN
t denote the position of the tagged particle in Zd . It is not hard to

prove an invariance principle for XN
t : ε[xN

t/ε2 − mt(1 − αN,K)/ε2] converges to a
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Brownian motion of variance DN,K , given by

atDN,Ka = (1 − αN,K)
∑
z∈Zd

(a · z)2p(z)

(2)
− 2

〈
wa − 〈wa〉N,K,L−1

N (va − 〈va〉N,K)
〉
N,K.

In this formula, 〈·, ·〉N,K (resp. 〈·〉N,K ) stands for the inner product on L(µN,K)

(resp. the mean with respect to µN,K ) and

αN,K = K − 1

(2N)d − 1
.

Note that for f :XN,K → R with 〈f 〉N,K = 0, L−1
N f is well defined. In fact,

for f , we have

DN,K(f ) = 〈f,−LNf 〉N,K

= 1
4

∑
x,y∈T d

N,∗

(
p(y − x) + p(x − y)

) ∫
[f (σx,yη) − f (η)]2 dµN,K.

In particular, LNf = 0 if and only if f is constant. Also, LN is an invertible
operator in C0,N,K = {f ; 〈f 〉N,K = 0}.

For the symmetric simple exclusion process, Landim, Olla and Varadhan [3]
proved that DN,K → D(α) if αN,K → α. In this article, we extend this result to
the asymmetric case, as given by the following theorem:

THEOREM 1. For the mean zero simple exclusion process (in any dimension)
and for the asymmetric simple exclusion process in dimension d ≥ 3, DN,K →
D(α) if αN,K → α.

3. The Sobolev spaces H1, H−1. In this section, we prove the stability of the
H−1 norm under finite approximations. We discuss it in the more general context
of functional analysis because it is a general result that can be applied to many
models of interacting particle systems and we will be used repeatedly in the sequel.

Let H be a real Hilbert space with inner product 〈·, ·〉. An operator (not nec-
essarily bounded) L :D(L) ⊆ H → H is called positive if 〈g,Lg〉 > 0 for all
g ∈ D(L)\{0}.

Given a positive closed operator L, we define, for f ∈ D(L),

‖f ‖2
1 =: 〈f,Lf 〉.

It is easy to see that ‖·‖1 defines a norm on D(L) that satisfies the parallelogram
rule. Therefore, ‖ · ‖1 can be extended to an inner product on D(L). Define H1 =
H1(L), the Sobolev space associated with the operator L, as the completion of
D(L) under ‖ · ‖1.
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In the same way, we see that

‖g‖2−1 =: sup
f ∈D(L)

{2〈g,f 〉 − 〈f,Lf 〉}

defines a norm on the set {g ∈ H ; ‖g‖−1 < ∞} that can be extended to an inner
product. Define H−1 as the completion of this set under ‖ · ‖−1.

In the next proposition, some well-known properties of the spaces H1,H−1 are
listed.

PROPOSITION 1. For f ∈ H ∩ H1, g ∈ H ∩ H−1, we have

(i) ‖g‖−1 = suph∈D(L)\{0}
〈h,g〉
‖h‖1

,
(ii) |〈f,g〉| ≤ ‖f ‖1‖g‖−1,

(iii) ‖f ‖1 ≤ ‖Lf ‖−1.

PROOF. For (i),

sup
h∈D(L)

{2〈g,h〉 − 〈h,Lh〉} = sup
‖h‖1=1

sup
α∈R

{2α〈g,h〉 − α2}

= sup
‖h‖1=1

〈g,h〉2.

For (ii),

‖g‖−1 = sup
h∈D(L)\{0}

|〈g,h〉|
‖h‖1

≥ |〈g,f 〉|
‖f ‖1

.

For (iii),

‖Lf ‖2−1 = sup
h∈D(L)

{2〈Lf,h〉 − 〈h,Lh〉} ≥ 〈f,Lf 〉. �

From property (i), it can be concluded that H−1 is the dual of H1 with respect
to H . Thanks to property (ii), the inner product 〈·, ·〉 can be extended to a contin-
uous bilinear form 〈·, ·〉 :H−1 × H1 → R. Property (iii) ensures that the operator
L−1 : Im(L)∩H−1 → H1 is bounded, from which it can be continuously extended
to an operator defined on the closure of Im(L) ∩ H−1 under ‖ · ‖−1.

If the operator L is symmetric, that is, if 〈f,Lg〉 = 〈Lf,g〉 for f,g ∈ D(L), then
the inequality in (iii) becomes an equality and L can be extended to an isometry
from H1 to H−1 (not necessarily surjective).

Let {Hn}n be an increasing sequence of finite-dimensional subspaces of H and
define Loc = Loc(H) =: ⋃

n Hn. Suppose that Loc is a kernel for L, that is, the
closure of the operator L restricted to Loc is the operator L itself. Suppose also
that Loc is a kernel for the adjoint L∗ of L. Consider on each subspace Hn, an
inner product 〈·, ·〉n such that for all f,g ∈ Loc,

lim
n→∞〈f,g〉n = 〈f,g〉,



STABILITY OF THE DIFFUSION COEFFICIENT 2371

where 〈f,g〉n is well defined for n sufficiently large.
A sequence {Ln}n of operators is called a finite approximation of L if:

(i) Ln :Hn → Hn;
(ii) 〈f,Lnf 〉n > 0 for f ∈ Hn\{0};

(iii) for all f ∈ Loc, there exist n0 ∈ N such that Lnf = Lf for n ≥ n0;
(iv) if L is a symmetric operator, then Ln is also a symmetric operator.

On Hn, define the ‖ · ‖1,n, ‖ · ‖−1,n norms associated with Ln as before:

‖f ‖2
1,n = 〈f,Lnf 〉n,

‖f ‖2−1,n = sup
g∈Hn

{2〈f,g〉n − 〈g,Lng〉n}.

Observe that Ker(Ln) = {0}, from which it follows that Ln is invertible. The
purpose of this section is to establish sufficient conditions to ensure that

lim
n→∞〈h′,L−1

n h〉n = 〈h′,L−1h〉(�)

for h,h′ ∈ Loc∩H−1 with h in the closure of Im(L) ∩ H−1.
While L−1

n h is always well defined, h might not be in the image of L, in which
case the left-hand side of this equality would not be well defined. However, when
h is in the closure of Im(L) ∩ H−1 under ‖ · ‖−1, the product 〈h′,L−1h〉 can be
defined by continuity. Recall that the product 〈h′,L−1

n h〉n is well defined for n

sufficiently large, because h,h′ ∈ Loc; each time a limit like the one appearing
in (�) is considered, this fact must be taken into account.

The next theorem is a perturbative result asserting that if (�) is satisfied for
an operator S0 (and a suitable finite approximation {S0,n}n of S0), then it is also
satisfied for a class of perturbations of S0.

THEOREM 2. Let L be a positive closed operator. Let S0 :D(S0) ⊆ H → H

be a symmetric positive operator such that Loc is a kernel for S0 and 〈g,S0g〉 ≤
〈g,Lg〉. Let {S0,n}n be a finite approximation of S0 such that 〈f,S0,nf 〉n ≤
〈f,Lnf 〉n for all f ∈ Hn. Define the norms ‖ · ‖0,1, ‖ · ‖0,−1 (resp. ‖ · ‖0,1,n,

‖ · ‖0,−1,n) associated to S0 (resp. S0,n) as before. Consider h,h′ ∈ Loc∩H−1,
with h in the closure of Im(L) ∩ H−1.

Assume that

(A) For each ε > 0, there exists gε ∈ Loc such that

‖h − Lgε‖0,−1 < ε.

(B)

lim
n→∞‖h′‖0,−1,n = ‖h′‖0,−1

and for uε = h − Lgε ,

lim
n→∞‖uε‖0,−1,n = ‖uε‖0,−1.
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Then

lim
n→∞〈h′,L−1

n h〉n = 〈h′,L−1h〉.

PROOF. First, we observe that the operator S0 (resp. S0,n) is dominated by L0
(resp. L0,n), from which we have, for all f , the inequalities

‖f ‖−1 ≤ ‖f ‖0,−1,

‖f ‖0,1 ≤ ‖f ‖1,

‖f ‖−1,n ≤ ‖f ‖0,−1,n,

‖f ‖0,1,n ≤ ‖f ‖1,n.

Fix ε > 0 and let uε = h − Lgε be chosen according to assumption (A). Then
Lgε = Lngε for n sufficiently large, from which it follows that Lgε belongs to Hn

and

〈h′,L−1
n h〉n = 〈h′,L−1

n (uε + Lgε)〉n
= 〈h′, gε〉n + 〈h′,L−1

n uε〉n.
Since h′ and gε are in Loc, we have

〈h′, gε〉n −→
n→∞〈h′, gε〉.

We also have that

|〈h′,L−1
n uε〉n| ≤ ‖h′‖0,−1,n · ‖L−1

n uε‖0,1,n

≤ ‖h′‖0,−1,n · ‖L−1
n uε‖1,n

≤ ‖h′‖0,−1,n · ‖uε‖−1,n

≤ ‖h′‖0,−1,n · ‖uε‖0,−1,n.

Therefore,

lim sup
n→∞

|〈h′,L−1
n uε〉n| ≤ ‖h′‖0,−1 · ‖uε‖0,−1 ≤ ε · ‖h′‖0,−1.

On the other hand, 〈h′,L−1h〉 = 〈h′,L−1uε〉 + 〈h′, gε〉 and

|〈h′,L−1uε〉| ≤ ‖h′‖0,−1 · ‖L−1uε‖0,1 ≤ ε · ‖h′‖0,−1.

Consequently,

lim sup
n→∞

|〈h′,L−1h〉 − 〈h′,L−1
n h〉n| ≤ 2ε‖h′‖0,−1. �

4. Proof of Theorem 1. This section is organized as follows. First, we show
in which sense the sequence {LN }N is a finite approximation of the operator L.
Once this has been done, the proof of Theorem 1 is reduced to the verification
of the hypothesis of Theorem 2, as we will see. We then verify these hypotheses
separately for the symmetric, mean zero and asymmetric simple exclusion process.
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4.1. Finite approximations for L. Let α ∈ [0,1] be fixed. Let {KN }N be a
sequence such that as N goes to infinity, αN,KN

→ α, KN → ∞ and (2N)d −
KN → ∞. Hereafter, we omit the index KN if there is no risk of confusion. Let
f,g be in L2(µα). First, we deal with irrelevant constants. We say that f ∼ g if∫
(f − g)dµα = 0. Define H = L2(µα)/ ∼. It is easy to see that H is isomorphic

to the set of functions with mean zero in L2(µα). Let Loc = Loc(H) be the set of
local functions in H . We define HN

∼= C0,N,KN
as follows. Consider the canonical

projection πN :X∗ → XN,∗. For f ∈ C0,N,KN
, define π−1

N f ∈ Loc by

π−1
N f (η) =

{
f (πNη), if πNη ∈ XN,KN

,
0, if πNη /∈ XN,KN

.

Then HN = π−1
N (C0,N,KN

)/ ∼. It is not hard to see that Loc = ⋃
N HN . In fact,

for a local function f , denote by supp(f ) the support of f . Then if supp(f ) ⊆
T d

N,∗, # supp(f ) < min{KN, (2N)d − KN }, it follows that f ∈ HN and so, clearly,
HN ⊆ Loc. On HN , we define the inner product 〈·, ·〉N induced by the mea-
sure µN,KN

.
It is clear that for f,g ∈ Loc and N sufficiently large (note that f,g are not

necessarily in C0,N,KN
),

〈f,g〉N =
∫ (

f −
∫

f dµN,KN

)(
g −

∫
g dµN,KN

)
dµN,KN

=
∫

fg dµN,KN
−

∫
f dµN,KN

∫
g dµN,KN

.

We have already seen that the operator −LN is positive and it is clear that
−LNf = Lf for f ∈ Loc and N sufficiently large. From the ergodicity of µα with
respect to the process generated by L and the fact that L is a generator of a Markov
process, we deduce that Dα(f ) = 〈f,−Lf 〉α > 0 if f �= 0, from which we see that
−L is a positive operator. Consequently, {LN }N would be a finite approximation
of −L if it were not for the fact that HN � HN+1 [because KN , (2N)d − KN

are not necessarily increasing sequences]. However, it is true that HN ⊆ HM for
M sufficiently large, where M depends both on the range of the transition prob-
ability p(·) and on the sequence KN [here, we use the fact that KN → ∞ and
(2N)d − KN → ∞]. Of course, Theorem 1 applies in this situation by taking sub-
sequences or slightly modifying it to fit this case. Anyway, we will say that {LN }N
is a finite approximation of L.

Note that the inner product 〈·, ·〉N is exactly the product appearing in equa-
tion (2). Comparing equations (1) and (2), it is clear that Theorem 1 follows from
Theorem 2 applied to the operators −L and −LN . So, it only remains to find
suitable operators S0 and {S0,N }, to compare with L and {LN } and to check the
hypothesis of Theorem 2 for them.
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4.2. Symmetric case. Suppose that the transition probability p(·) is symmet-
ric, that is, p(x) = p(−x) for all x ∈ Zd . This case has been considered in [3], but
in order to make the exposition clear, we here outline the proof in our setting.

Choose S0 = −L0 and S0,N = −L0,N , the part of the generator correspond-
ing to jumps in the environment. It is clear that {S0,N } is a finite approximation
of S0 and that 〈f,S0f 〉α ≤ 〈f,−Lf 〉α , 〈g,S0,Ng〉N ≤ 〈g,−LNg〉N . Conditions
(A) and (B) of Theorem 2 are consequences in this case, of the next results, with
we state as lemmas.

LEMMA 1. wa, va ∈ H0,−1 and for all g ∈ Loc, Lg ∈ H0,−1.

PROOF. Following a criterion of Sethuraman and Xu [7], a sufficient condition
for a local function v to be in H0,−1 is that 〈v〉α = 0 for all α ∈ [0,1]. Therefore,
it is enough to observe that for all α ∈ [0,1], 〈wa〉α = 〈va〉α = 〈Lg〉α = 0. �

LEMMA 2. If g ∈ Loc and 〈g〉α = 0 for all α ∈ [0,1], then

lim
N→∞‖g‖0,−1,N = ‖g‖0,−1.

PROOF. This is just a consequence of Corollaries 2.2 and 2.4 of [3] that are
based on the so-called Liouville-D property of the lattice Zd∗ . �

The following lemma is just Theorem 4.2 of [3]:

LEMMA 3. If v ∈ Loc and 〈v〉α = 0 for all α ∈ [0,1], then for all ε > 0, there
exists gε ∈ Loc such that

‖v − Lgε‖0,−1 < ε.

Once these three lemmas are stated, by Theorem 2 we have the following result:

THEOREM 3. For all v ∈ Loc such that 〈v〉α = 0 for all α ∈ [0,1], we have

lim
N→∞‖v‖−1,N = ‖v‖−1.

4.3. Mean zero case. Now, suppose that the transition probability has mean
zero, that is,

∑
z zp(z) = 0. Define S = −(L + L∗)/2, SN = −(LN + L∗

N)/2, the
symmetric part of the generator. A simple computation shows that

Sf (ξ) = ∑
x,y∈Zd∗

s(y − x)ξ(x)
(
1 − ξ(y)

)[f (σxyξ) − f (ξ)]

+ ∑
z∈Zd∗

s(z)
(
1 − ξ(z)

)[f (τzξ) − f (ξ)]
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and

SNf (ξ) = ∑
x,y∈T d

N,∗

s(y − x)ξ(x)
(
1 − ξ(y)

)[f (σxyξ) − f (ξ)]

+ ∑
z∈T d

N,∗

s(z)
(
1 − ξ(z)

)[f (τzξ) − f (ξ)],

where s(x) = (p(x) + p(−x))/2, the symmetrization of p(·). It is clear that
s(·) is a symmetric, finite-range, irreducible transition probability, from which S

(resp. SN ) is the generator of a symmetric exclusion process in Zd∗ (resp. T d
N,∗).

We choose S0 = S and S0,N = SN . As in the symmetric case, S0,NN is a finite
approximation of S0 and, by definition, 〈f,S0f 〉 = 〈f,−Lf 〉 and 〈f,S0,Nf 〉N =
〈f,−LNf 〉N . Observe that in this case, S0 and −L generate the same Sobolev
norms.

As in the symmetric case, we need to verify Assumptions (A) and (B) of
Theorem 2. First, we need to prove that wa, va ∈ H−1 and for g ∈ Loc, that
Lg ∈ H−1. But this is true because 〈va〉α = 〈wa〉α = 〈Lg〉α = 0 for all α ∈ [0,1],
H−1 ⊆ H0,−1 (in the notation of the previous subsection) and by the criterion
of [7], va,wa,Lg ∈ H0,−1.

Assumption (B) of Theorem 2 then follows from Theorem 3. Therefore, in order
to apply Theorem 2 to prove Theorem 1, it only remains to prove assumption (A).
We state it as the following lemma:

LEMMA 4. For all v ∈ Loc such that 〈v〉α = 0 for all α ∈ [0,1], and for all
ε > 0, there exists gε ∈ Loc such that

‖v − Lgε‖−1 < ε.

PROOF. In [8], Varadhan proved a sector condition for the mean zero ex-
clusion process, which roughly states that the asymmetric part of the operator
can be bounded by the symmetric part. More precisely, there exists a constant
C = C(p(·)) such that for all f,g ∈ Loc,

〈f,Lg〉2
α ≤ C〈f,−Lf 〉α〈g,−Lg〉α.

In particular, ‖Lg‖2−1 ≤ C‖g‖2
1, from which it follows that L is a bounded and

densely defined operator from H1 to H−1. So, it is enough to prove that v ∈ L(H1).
To this end, we use the resolvent method. Let h be in H−1 ∩ Loc. For each λ > 0,
let uλ be the solution of the resolvent equation

λuλ − Luλ = h.

This is always possible because L is a negative operator in L2(µα) and uλ ∈
D(L), from which it follows that uλ ∈ H1. The idea is to prove that uλ (or at
least a subsequence thereof) converges in some sense to a certain u that satisfies
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Lu = −h. In fact, in [2], it is proven that there exists such u ∈ H1 such that uλ → u

strongly in H1 and Luλ → −h weakly in H−1. Since L is a continuous operator,
by uniqueness of limit, we have −Lu = h. Approximating u by local functions,
the lemma follows. �

4.4. Asymmetric case for d ≥ 3. In dimension d ≥ 3, a necessary and suffi-
cient condition for a local function v to be in H0,−1 is that 〈v〉α = 0 [7]. In par-
ticular, wa, va ∈ H0,−1 and for g ∈ Loc, Lg ∈ H0,−1. As for the mean zero case,
we choose S0 = −(L + L∗)/2, S0,N = −(LN + L∗

N)/2 and apply Theorem 2. The
difference here is that for α′ �= α, we have 〈va〉α′ �= 0 and so we can not invoke
Theorem 3 in order to prove assumption (B). The next lemma says that condition
(B) is true for this case. The proof of this lemma will be presented in the next
section.

LEMMA 5. In dimension d ≥ 3, for a local function h with 〈h〉α = 0,

lim
N→∞

∥∥∥∥h −
∫

hdµN,K

∥∥∥∥−1,N

= ‖h‖−1.

A proof of assumption (A) for this case can be found in [6]. Once Assump-
tions (A) and (B) are verified, Theorem 1 follows from Theorem 2.

5. Proof of Lemma 5. First, note that Lemma 5 is just the generalization, in
dimension d ≥ 3, of Theorem 3 to the case in which 〈v〉α = 0 only for the fixed
α ∈ [0,1]. Consequently, in order to prove Lemma 5, it is enough to prove the
corresponding generalizations of Lemmas 1, 2 and 3 to this case. Note that the
‖ · ‖−1 norm depends only on the symmetric part S of the generator L. Define the
operators S0 = (L0 + L∗

0)/2 and S0,N = (L0,N + L∗
0,N )/2, the symmetric part of

the jumps of the environment, as follows:

S0f (ξ) = ∑
x,y∈Zd∗

s(y − x)ξ(x)
(
1 − ξ(y)

)[f (σxyξ) − f (ξ)],

S0,Nf (ξ) = ∑
x,y∈T d

N,∗

s(y − x)ξ(x)
(
1 − ξ(y)

)[f (σxyξ) − f (ξ)].

The generalizations of Lemmas 1 and 3 are proven in [7] and [3].

LEMMA 6. In dimension d ≥ 3, if v ∈ Loc satisfies 〈v〉α = 0, then v ∈ H0,−1.

LEMMA 7. In dimension d ≥ 3, if v ∈ Loc and 〈v〉α = 0, then for all ε > 0,
there exists gε ∈ Loc such that

‖v − Sgε‖0,−1 < ε.
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So, it only remains to prove the generalization of Lemma 2 to this case.

LEMMA 8. Let v be a local function such that 〈v〉α = 0. Define 〈v〉N =∫
v dµN,KN

. In dimension d ≥ 3,

lim
N→∞‖v − 〈v〉N‖0,−1,N = ‖v‖0,−1.

PROOF. Using the variational formula for ‖v‖0,−1, it is not hard to prove that

lim inf
N→∞ ‖v − 〈v〉N‖0,−1,N ≥ ‖v‖0,−1.

In fact, by definition, for all ε > 0, there exists a local function fε such that

‖v‖2
0,−1 ≤ 2〈v,fε〉α − 〈fε,−S0fε〉α + ε

= lim
N→∞

{
2
〈
v − 〈v〉N,fε

〉
N − 〈fε,−S0,Nfε〉N} + ε

≤ lim inf
N→∞ sup

f

{
2
〈
v − 〈v〉N,f

〉
N − 〈f,−S0,Nf 〉N} + ε

= lim inf
N→∞ ‖v − 〈v〉N‖2

0,−1,N + ε.

The converse inequality is harder to prove. The idea is to approximate v in
H0,−1 by local functions with mean zero for all densities α ∈ [0,1]. The proof
requires two auxiliary lemmas. The first is just a version of Lemma 3.6 of [3].

LEMMA 9. Let w be a local function with 〈w〉α = 0 for all α ∈ [0,1]. Let
{fN }N be a sequence of functions defined in H0,1,N such that

〈fN,−S0,NfN 〉N ≤ 1,

lim
N→∞〈w,fN 〉N = A.

Then there exist f ∈ H0,1 and subsequence N ′ such that 〈w,f 〉α = A, 〈f,

−S0f 〉α ≤ 1 and for all local functions h with 〈h〉α = 0, for each α ∈ [0,1],
lim

N ′→∞〈fN ′, h〉N = 〈f,h〉α.

Before stating the second auxiliary lemma, we need to introduce some notation.
Let �N = {−N + 1, . . . ,N}d \ {0} be the cube of radius N . Note that �N �= T d

N,∗
because �N has no periodic boundary conditions. For each x ∈ Zd∗ , define θx(ξ) =:
ξ(x) and for each l > 0, define ϕl(ξ) = ∑

x∈�l
ξ(x). Let F�N

be the σ -algebra
generated by ϕl and {θx;x ∈ �c

N }. For l > 0 such that supp(v) ⊆ �l , define vl =
E[v|F�l

]. Note that there is a natural way to define vl that does not depend on
the particular value of α. The following lemma is an easy consequence of the
equivalence of ensembles:
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LEMMA 10. Fix positive integers l, q such that supp(v) ⊆ �l and q > 2. De-
fine gn = vlqn . Then there is a finite constant κ such that:

(i) 〈(gn − gn−1)
2〉α ≤ κ(lqn)−d ,

(ii) 〈(gn − gn−1)
2〉N ≤ κ(lqn)−d .

The proof is as follows. For each N , there exists a function fN ∈ H1,N such that

〈fN,−S0,NfN 〉N ≤ 1 and ‖v − 〈v〉N‖0,−1,N = 〈
fN, v − 〈v〉N 〉

N.

Consider a subsequence Ñ such that

lim
Ñ→∞

‖v − 〈v〉
Ñ

‖0,−1,Ñ
= lim sup

N→∞
‖v − 〈v〉N‖0,−1,N =: A.

By Lemma 9, there exists a function f ∈ H1 and a subsubsequence N ′ such
that 〈fN ′, h〉N ′ → 〈f,h〉α for all local functions h with mean zero for each µα . In
particular,

lim
N ′→∞〈fN ′, v − vl〉N ′ = 〈f, v − vl〉α.

Let l, q > 2 be fixed. Define, as in Lemma 9, gn = vlqn . In order to make nota-
tion simpler, suppose that N ′ = lqn and denote N ′ simply by N . If this is not the
case, then the required changes are straightforward. We then have that

〈
fN, v − 〈v〉N 〉

N = 〈fN, v − vl〉N + 〈
fN, vl − 〈v〉N 〉

N

=
n∑

k=1

〈fN,gk−1 − gk〉N + 〈fN, v − vl〉N.

Define Lk as the generator of an exclusion process in �lqk . Note that due to the
boundary effects, Llqk �= S0,lqk . We see that 〈v−vl〉α = 0, 〈gk−1 −gk〉α = 0 for all

α ∈ [0,1]. By linear algebra, there exists a local function Gk defined in {0,1}�lqk

such that gk−1 − gk = LkGk . Therefore,

n∑
k=1

〈fN,gk−1 − gk〉N =
n∑

k=1

〈fN,LkGk〉N

=
n∑

k=1

∑
b∈�k

〈∇bfN,∇bGk〉N,

where
∑

b∈�k
indicates a sum over all bonds b = 〈xy〉 such that x, y ∈ �lqk and

∇bg = s(y − x)1/2[g(σxyη) − g(η)].
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Choose ak = ε2k . By Cauchy’s inequality with weights ak , we have

∣∣∣∣∣
n∑

k=1

〈fN,gk−1 − gk〉N
∣∣∣∣∣

≤
n∑

k=1

∑
b∈�k

1

ak

〈(∇bfN)2〉N + ak〈(∇bGk)
2〉N

≤ ∑
b∈�n

∑
k : b∈�k

1

ak

〈(∇bfN)2〉N +
n∑

k=1

∑
b∈�k

ak〈(∇bGk)
2〉N

≤ 1

ε

∑
b∈�n

〈(∇bfN)2〉N +
n∑

k=1

ak〈gk − gk−1,−L−1
k (gk − gk−1)〉N

≤ 1

ε
〈fN,−LnfN 〉N + ε

n∑
k=1

2k〈gk − gk−1,−L−1
k (gk − gk−1)〉N

≤ 1

ε
〈fN,−S0,lqnfN 〉N + ε

n∑
k=1

2kC · 2k(lqk)2〈(gk−1 − gk)
2〉N,

where, in the last line, we have used the spectral gap inequality for the exclusion
process [4].

Using Lemma 10 and minimizing in ε, we have

∣∣∣∣∣
n∑

k=1

〈fN,gk−1 − gk〉N
∣∣∣∣∣ ≤ 1

ε
+ ε

n∑
k=1

Cκ · 2k(lqk)2−d

≤ 1

ε
+ ε

[
Cκl2−d

1 − 2q2−d

]

≤ 2

√
Cκl2−d

1 − 2q2−d
≤ C1l

(2−d)/2.

By the law of large numbers, as l → ∞, vl → 0 µα-a.s. and in L2(µα). We also
have that

‖gk − gk−1‖2
0,−1 = 〈gk − gk−1, (−S0)

−1(gk − gk−1)〉α
≤ 〈gk − gk−1, (−Lk+1)

−1(gk − gk−1)〉α
≤ C(lqk+1)2〈(gk − gk−1)

2〉α
≤ Cκq2(lqk)2−d .
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Therefore, the sequence {gk − gk−1}k is absolutely summable and there exists g ∈
H0,−1 such that

lim
n→∞(vl − vlqn) =

∞∑
k=1

gk − gk−1 = g.

On the other hand, we know that vlqn → 0 in L2(µα), from which it follows
that 〈F,vlqn〉α goes to zero for all F ∈ L2(µα) and vlqn → vl − g in H0,−1. From
this, 〈F,vlqn〉α → 〈F,vl − g〉α for all F ∈ H0,1. Since D(S0) ⊆ L2(µα) ∩ H0,−1
and D(S0) is dense in H0,−1, we have g = vl .

As before, by using part (i) of Lemma 10, we can prove that there exists a
constant C2 such that

|〈f, vl〉α| ≤ C2 · l(2−d)/2.

Combining both inequalities, we see that

lim sup
N→∞

‖v − 〈v〉N‖0,−1,N = lim sup
N→∞

〈
fN, v − 〈v〉N 〉

N

= lim sup
N→∞

{〈fN, v − vl〉N + 〈
fN, vl − 〈v〉N 〉

N

}
≤ 〈f, v − vl〉α + C1 · l(2−d)/2

≤ (C1 + C2)l
(2−d)/2 + 〈f, v〉α.

Since d ≥ 3 and l is arbitrary, we have

lim sup
N→∞

‖v − 〈v〉N‖0,−1,N ≤ 〈f, v〉α ≤ ‖f ‖0,1 · ‖v‖0,−1 ≤ ‖v‖0,−1. �
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