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NEIGHBORING CLUSTERS IN BERNOULLI PERCOLATION1

BY ADÁM TIMÁR

Indiana University

We consider Bernoulli percolation on a locally finite quasi-transitive uni-
modular graph and prove that two infinite clusters cannot have infinitely many
pairs of vertices at distance 1 from one another or, in other words, that such
graphs exhibit “cluster repulsion.” This partially answers a question of Häg-
gström, Peres and Schonmann.

1. Introduction. We shall consider Bernoulli(p) bond percolation on some
quasi-transitive locally finite unimodular graph G.

Given different infinite clusters C and C′, let τ(C,C′) be the set of vertices in C

that have distance 1 from C′. Call τ(C,C′) the set of touching points for C′ in C.
If two infinite clusters touch each other in infinitely many vertices, we say that they
are infinitely touching; otherwise, they are finitely touching (this includes the case
where they do not touch at all).

Häggström, Peres and Schonmann asked if there exists some quasi-transitive G

and a p such that there are infinitely touching clusters at Bernoulli(p) percolation.
In [6], these authors say that a graph exhibits cluster repulsion at level p if two
clusters always touch finitely for Bernoulli(p) bond percolation. They mention that
for any G, there can be at most countably many such values of p where there is no
cluster repulsion. We shall prove that a quasi-transitive unimodular graph always
exhibits cluster repulsion. Our proof can be adapted to site percolation without any
difficulty. The case of nonunimodular graphs is still open. To avoid meaningless
cases, we assume that p is such that the percolation has infinitely many infinite
clusters.

THEOREM 1.1. Let G be a quasi-transitive unimodular graph and consider
Bernoulli(p) edge percolation on it. Then any two infinite clusters touch each other
in only finitely many vertices almost surely.

Geometric properties of a percolation and how these are related to certain prop-
erties of the underlying graph have been intensively studied. For an overview and
references, see [7]. Some of the fundamental results connected to our subject are
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now outlined. It is conjectured that a transitive graph can have infinitely many
infinite clusters at Bernoulli(p) percolation for some p if and only if the graph is
nonamenable. It is known that infinitely many infinite clusters imply nonamenabil-
ity; the converse was shown for some Cayley graph of an arbitrary group. It is well
known that if there are infinitely many infinite clusters, then each of them has infi-
nitely many ends. Moreover, still assuming infinitely many infinite clusters, there
are infinitely many points having the property that deletion from its cluster results
in at least three infinite components. Such points are called encounter points and
were introduced in [4]. Encounter points with particular properties will play an
important role in our proof.

We note that even for amenable graphs, there are group-invariant random sub-
graphs where any two infinite clusters touch infinitely. An example is the uniform
spanning forest Z

d for 4 < d ≤ 8; see [2]. However, our arguments can be ap-
plied to any insertion and deletion tolerant percolation. (The definitions are given
later in this section; the transfer from Bernoulli to these more general percola-
tions is explained in Remark 2.6.) On the other hand, if we do not assume quasi-
transitivity, then there is an example for a graph with infinitely touching clusters at
some Bernoulli percolation, as claimed in [6].

An essential tool in the study of group-invariant percolations is the so-called
Mass Transport Principle (MTP). A corresponding graph property is unimodular-
ity: we say that a quasi-transitive graph is unimodular if there is a K > 0 such
that for any two x, y ∈ V (G), we have |Sxy|/|Syx| ≤ K . Here, Sx is the stabilizer
of x in the group of automorphisms of G and Sxy denotes the orbit of y by the
stabilizer of x. Every Cayley graph is transitive and unimodular.

The MTP was first used in percolation theory in [5] and was developed more
generally in [3]. We state here a simple corollary of the principle.

PROPOSITION 1.2. Let G be a connected locally finite graph whose group of
automorphisms is unimodular and acts quasi-transitively. If T (x, y) is a nonnega-
tive invariant function [i.e., T (x, y) = T (gx, gy) for every automorphism g], then∑

y T (x, y) is finite for every x ∈ V (G) whenever
∑

y T (y, z) is finite for every
z ∈ V (G).

Usually, we shall define some group-invariant random function in two variables,
determined by the configuration of the percolation. A value t (x, y) = c of such a
function will be defined by saying “let x send mass c to y.” Then T (x, y) will be
the expectation of t (x, y) over all the random configurations; we shall refer to it as
the expected mass sent from x to y. Sometimes, we do not specify t (x, y) for every
pair (x, y) ∈ V (G)2—in these cases, every t (x, y) not defined is automatically 0.

Hereafter, we shall always assume that there is a Bernoulli(p) edge percola-
tion on an underlying locally finite unimodular quasi-transitive graph G, without
always mentioning these assumptions. Let d be the maximal degree in G.
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A process is said to be insertion tolerant if for any edge e and any event A,
P[A] > 0 implies P[{κ ∪ e :κ ∈ A}] > 0. When creating the event {κ ∪ e :κ ∈ A}
from A, we say that e was inserted. Define deletion tolerance analogously. Note
that Bernoulli percolation is insertion and deletion tolerant.

We can typically use insertion tolerance in the following setting. Consider some
property that a finite set of edges may have in a configuration. For a finite subset
X of edges, let A(X) be the event that X has the property and let A be the event
that some finite X has the property. Since A = ⋃

X A(X), and this is a countable
union, we have that P[A] > 0 implies P[A(X)] > 0 for some X. Hence, when we
show that some configuration contains an X with the property and say “insert X,”
that is a shorthand way of saying that we take an X that satisfies the property with
positive probability and insert X on this event. Similar terminology is applied for
deletion.

Say that two vertices (sets of vertices) k-touch each other if their distance in G

is at most k. Two clusters k-touch in infinitely many points if one of them contains
infinitely many points that k-touch the other.

Given clusters C and C′, denote by τ(C,C′) the set of vertices in C that
touch C′. The number of ends in τ(C,C′) is defined to be the supremum of the
number of infinite components of C \ F that contain infinitely many points of
τ(C,C′) as F ranges through finite subsets of C.

In the course of the proof, we shall refer to mass transports according to the fol-
lowing scheme. Suppose that there is some automorphism-equivariant function f

that assigns a finite nonempty set f (C,C ′) of vertices to certain pairs of infinitely
touching clusters C and C′. For each vertex x, consider the cluster C of x and if
x touches C′, then let x send mass 1/|f (C,C′)| to each element of f (C,C ′). The
expected mass sent out is at most d , while the expected mass received is infinite if
some τ(C,C′) is infinite, a contradiction to Proposition 1.2. So, there cannot exist
such a function f if τ(C,C′) is infinite. Using this scheme, we are able to use
standard mass transport arguments that were developed for clusters (and which do
not generally work for pairs of clusters). A general corollary of the Mass Trans-
port Principle (MTP) for unimodular graphs is that one cannot assign a finite set
of vertices to each infinite cluster in some equivariant way. Of course, this is not
generally true for pairs of infinite clusters (consider, e.g., the set of touching points
between pairs of finitely touching clusters). However, we can extend it to pairs
of infinitely touching clusters by means of the above argument, that is, one can-
not assign a finite set of vertices to each pair of infinitely touching clusters in an
equivariant way.

Before proceeding to the proof, we give an overview of it. Suppose that there
exist infinite τ(C,C′)’s. The first step is to show that some τ(C,C′) has infinitely
many ends, as follows. One can use insertion and deletion tolerance to show that
there are τ(C,C′)’s with ≥ 2 ends. The argument is based on the fact that we may
assume G is 2-connected and can then choose two disjoint paths between the ele-
ments of two pairs of infinitely touching clusters. Surprisingly, the proof that there
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are τ(C,C′)’s with ≥ 3 ends is not that straightforward. Now, if τ(C,C′) had only
two ends, then some of these τ(C,C′)’s have infinitely many (“good”) cutedges e

with the property that C \ e has two components with infinitely many elements of
τ(C,C′). (There will be some extra technicalities required of a good edge.) The ex-
istence of good edges will be provided by our construction of 2-ended τ(C,C′)’s.
Fix an o and o′ and let E be the event that for the cluster C of o and the cluster C′
of o′, τ(C,C′) has exactly two ends. Let e1, e2, . . . and e−1, e−2, . . . be the good
cutedges, in the directions of the ends of τ(C,C′) (resp. in the order of their dis-
tances from o in C). We define an event Ei from E by closing the edges ei and e−i

in each configuration. It will turn out that P[Ei] ≥ cP[E] for some constant c. On
the other hand, any configuration is contained in at most a bounded number of the
Ei ’s, hence infi P[Ei] = 0. This implies P[E] = 0 and we conclude that τ(C,C′)
has ≥ 3 ends with positive probability. Then τ(C,C′) has infinitely many ends,
by the MTP used for infinitely touching clusters. In particular, τ(C,C′) will have
exponential growth in C with positive probability (meaning that its elements inter-
sect the ball of radius r in βr elements for some β > 1 and r sufficiently large).
Finally, we shall define a mass transport. For each vertex x and each of its neigh-
bors y, choose a random minimal path between x and y (in their cluster if they
are in the same cluster) and let x send mass 1,1/22,1/32, . . . to the consecutive
vertices on this path, starting from x. The expected mass sent out is finite, but the
expected mass received is infinite, as shown by the endpoints of an edge inserted
between clusters C and C′ with τ(C,C′) having exponential growth.

2. No infinite touchings. First, we are going to show that there are τ(C,C′)’s
with infinitely many ends. We need two simple graph-theoretic lemmas.

LEMMA 2.1. Let G be some 2-connected quasi-transitive graph. Then any
finite subgraph H of G is contained in some 2-connected finite subgraph H ′ of G.

PROOF. If H does not have any cutvertices, then H ′ := H immediately gives
the claimed assertion. Otherwise, for each cutvertex x ∈ H and each pair A, B

of components of H \ x, choose an arbitrary path P(A,B) in G that joins A and
B and does not contain x. Such a path exists by the 2-connectivity of G. Let H ′
be the union of H and the set of paths P(A,B) over all choices of x,A and B .
If H ′ had a cutvertex x, then only one component of G \ x could contain any
vertex from H [otherwise, there would have been a path not containing x between
vertices of two such components: either a path in H or a P(A,B)]. So, all but at
most one component of G \ x consists only of vertices in P(A,B)’s. Let D be one
such component. The endpoints of every P(A,B) are in H , so at least one of them
differs from x and is in D ∩ H , giving a contradiction. �

A 2-connected component (block) of a graph G is a maximal 2-connected sub-
graph of G.
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LEMMA 2.2. If G is some infinite graph whose automorphism group is uni-
modular and acts quasi-transitively, then for any 2-connected component C of G,
the stabilizer of C in Aut(G) acts quasi-transitively on C.

PROOF. The claim is trivial if the 2-connected components are finite. The in-
finite 2-connected components of G are the infinite components of the graph G′,
constructed as follows. Let the vertex set V (G′) consist of all pairs (x,C), where
x ∈ V (G) and C is the 2-connected component of G that contains x. Two vertices
(x,C) and (x′,C′) are defined to be adjacent in G′ if C = C′ and {x, x′} is an
edge of G.

Another way of constructing G′ from G is as follows. Suppose that G \ v has
components C1(v),C2(v), . . . ,Ck(v) for vertex v ∈ V (G). Replace every vertex v

by vertices v1, . . . , vk and connect vi to uj if v and u are adjacent in G, v ∈ Ci(u)

and u ∈ Cj(v). Now, if G had cutvertices, then we obtain a graph G′ with infinitely
many components. If two edges are contained in a cycle of G (which holds iff
they are in the same 2-connected component), then the corresponding edges in G′
are also contained in a cycle and hence they are in the same component of G′.
It is clear that Aut(G) acts quasi-transitively on G′: the transitivity class of vi is
determined by the transitivity class of v and by i. Hence, the stabilizer in Aut(G)

of any component of G′ is quasi-transitive on the component. �

By Lemma 2.2, we may assume in what follows that G is 2-connected since all
elements of a τ(C,C′) are in the same 2-connected component.

LEMMA 2.3. Suppose that there exist infinitely touching clusters. Then almost
always there are clusters C and C′ such that τ(C,C′) has infinitely many ends.

PROOF. It is enough to show that some τ(C,C′) has at least three ends. It then
follows by deletion tolerance that for some τ(C,C′), there are vertices x ∈ C such
that C \ x has at least three infinite components with infinitely many elements of
τ(C,C′) in each. Then the standard MTP argument can be applied to show the
existence of infinitely many such vertices and hence the existence of infinitely
many ends [since the number of τ(C,C′)’s that a vertex can be contained in is
bounded].

We first prove that there exist different components C1,D1,C2,D2 with the
following properties: Ci infinitely touches Di and finitely touches C3−i and D3−i ,
similarly for C and D interchanged. To show this, define a random graph H whose
vertices are the infinite clusters of G and put an edge between two if they infi-
nitely touch. We need there to be four vertices in H that induce two disjoint edges.
Then the clusters corresponding to the endpoints of these edges will supply C1,
C2, D1, D2. Suppose that, on the contrary, for any pair of disjoint edges in H ,
there is some other edge joining the four endpoints. This can be used to show
that H contains vertices x and y such that there are three disjoint paths between
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x and y. Namely, choose an arbitrary (self-avoiding) path of length 8 in H with
consecutive edges e1, . . . , e8. (Note that each vertex in H has the same degree, by
indistinguishability of infinite clusters, as proved in [8]. Hence, a path of length
8 exists in H , or otherwise H would only contain finite components. These finite
components are isomorphic graphs, again by indistinguishability, and they are not
empty, by our assumption. Choosing two edges from different components would
provide us with four vertices that induce two disjoint edges.) Now, we assumed
that the endpoints of e1 and e8 induce some other edge f1 in H and that the end-
points of e3 and e6 also induce some other edge f2 in H . Then the endpoints x

and y of f2 can be connected by three disjoint paths in H : a path containing e4
and e5 (possibly among others) a path containing e2, f1 and e7 (possibly among
others) and, finally, the path consisting of f2. Let the vertices on the first of these
paths be x, q1, . . . , qi, y. The corresponding infinite clusters X,Q1, . . . ,Qi, Y in
G can be used to find a path from X to Qi that only intersects X,Q1, . . . ,Qi .
Insert it. Do this with the other two paths in H too. We get a cluster K such that
τ(K,Y ) has at least three ends, so the claimed assertion is proved. We conclude
that we may assume that there exist clusters C1,C2,D1,D2 with the above prop-
erties with probability 1.

By deletion tolerance, we may also assume that for any X,Y ∈ {C1,C2,D1,

D2}, if X and Y finitely touch, then dist(X,Y ) ≥ 2. (If the distance is 1, delete
the finitely many vertices in X that touch Y . This may break X into finitely many
pieces, but one of them will still infinitely touch the cluster in {C1,C2,D1,D2}
that X infinitely touched and will finitely touch the other two.)

In what follows, we are going to delete finitely many edges and insert two dis-
joint paths between the elements of two disjoint pairs of {C1,C2,D1,D2}. Finally,
we get two clusters C,C′ with a 2-ended τ(C,C′).

Let � be a finite 2-connected subgraph of G that intersects all of C1,C2,D1,D2.
Such a choice exists by Lemma 2.1. (More precisely, � intersects a 4-tuple of such
clusters with positive probability. However, we will continue to use the language
introduced in Section 1, concerning the equivalence of finding a finite subgraph
with a certain property for a particular configuration and finding a finite subgraph
that satisfies this property with positive probability.) Now, let C′

1, C′
2, D′

1, D′
2 be

clusters of G \ � contained in C1, C2, D1, D2, respectively, such that C′
i infinitely

touches D′
i (and finitely touches the other two), similarly for D′

i . Let ci ∈ � (resp.
di ∈ �) be a vertex that is adjacent to C′

i (resp. D′
i ) in G.

Since � is 2-connected, there exist vertex-disjoint paths Q and Q′ in � that
connect c1 and d1, respectively to the set {c2, d2}. (It is well known that such
paths exist in a 2-connected graph. Add extra vertices v and w to �, connect v

to c1 and d1 and connect w to c2 and d2. The resulting graph is still 2-connected,
hence there are two inner-disjoint paths between v and w by Menger’s theorem
and these supply the two paths in � that we need.) If we deleted the edges of �

and then inserted the edges of Q and Q′, we would obtain two clusters C,C′ with
a 2-ended τ(C,C′). However, we shall need C to have cutedges with some extra
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property and in order to have such cutedges, we may need to modify Q a little.
Namely, take a path P as follows. Suppose that Q connects c1 to c2. Let x be the
first vertex on Q (counting from c1) at distance 1 from C′

2. Let e be an arbitrary
edge that connects x to C′

2. Finally, denote by P the subpath of Q from c1 to x,
followed by e. Insert P and Q′. (When Q connects c1 to d2, do the same with c2
and C2 replaced by d2 and D2, resp., in the previous description.)

On the resulting event of positive probability, c1 is in an infinite component C

and d1 is in a component C′ such that τ(C,C′) has at least two ends. Furthermore,
C contains an edge e with the following properties:

(1) the deletion of e from C results in two infinite connected components
X1,X2 that infinitely touch C′;

(2) the only vertex in X1 at distance 1 from X2 is an endpoint x(e) of e.

The edge e of the previous paragraph has these properties: property (2) follows
from the fact that the two clusters connected by Q had distance ≥ 2 and from the
way in which we defined x there. We will call edges satisfying properties (1) and
(2) good in C with respect to C′. Sometimes, we simply say “good edges”—in
these cases, the C′ is clear from the context or is fixed. Since we have at least
one good edge, the MTP ensures that C contains infinitely many good edges with
respect to C′. [Otherwise, let every vertex x for each x ∈ τ(C,C′) send mass 1/2k

to the endpoints of the good edges, where k is the number of edges in C that are
good with respect to C′. The expected mass sent out is ≤ d , while the expected
mass received is infinite.] Note that if a good edge e is deleted from cluster C and
the resulting components are X1 and X2, as above, then there are at most d edges
in G whose insertion would connect X1 and X2. This is so because such an edge
has to be incident to the endpoint x(e) of e, as in property (2).

We have seen that there are vertices o and o′ such that, with positive probability,
the cluster C of o infinitely touches the cluster C′ of o′ and such that C has infi-
nitely many good edges with respect to C′. [Hence, τ(C,C′) has ≥ 2 ends.] Fix
such vertices o and o′ and call the described event E. Hereafter, C and C′ stand
for the clusters of o and o′, respectively. Suppose that a τ(C,C′) has two ends
(otherwise, we are done).

For each i ∈ Z
+, define the following mapping from E onto an event Ei . Con-

sider a configuration ω in E. For any good edge e, there are exactly two good
edges that can be connected to e in C by paths that do not contain any other good
edge [otherwise, τ(C,C′) would have more than two ends]. These two good edges
are separated from each other in C by e. Thus, for any two disjoint paths in C that
contain infinitely many good edges and that start from o, the sequence of good
edges e1, e2, . . . and e−1, e−2, . . . along the paths is unique up to the orders of the
two paths (i.e., the signs of the indices). Let φi(ω) denote the configuration that
results from ω if we close ei and e−i . Note that φi is measurable for every i. Define
the set of resulting configurations to be Ei .
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Denote the component of vertex x in some configuration ω by Cω(x). We claim
that from a configuration ω in

⋃
i∈Z+ Ei , we can recover {xi, x−i}, where xi (resp.

x−i ) is an endpoint of ei (resp. e−i ). This is true because Cω(o) contains only
finitely many touching points to C′ and is adjacent to only two clusters K and
K ′ that infinitely touch C′. [If Cω(o) were adjacent to some third component K ′′
that infinitely touches C′ in ω, then inserting edges between Cω(o) and K , K ′,
K ′′ gives a component Ĉ where τ(Ĉ,C′) has at least three ends, so we are done.]
Moreover, since the edges connecting Cω(o) to K and K ′ were good, there is only
one vertex of Cω(o) that touches K or there is only one vertex of K that touches
Cω(o), similarly for K ′. Let two such vertices be xi and x−i (for K and for K ′,
resp.).

Now, ei is incident to xi , thus there are at most d2 possible pairs of edges for
ei, e−i and, equivalently, at most d2 configurations ω′ with φi(ω

′) = ω for some i.
One consequence of this fact is that any configuration is contained in at most d2

of the Ei ’s and hence

inf
i

P[Ei] = 0.

For any e, e′ ∈ E(G), let Fi(e, e
′) be the set of configurations in E such that

{ei, e−i} = {e, e′}. Thus, e and e′ are open on Fi(e, e
′). Let F̄i(e, e

′) ⊂ Ei be
the set of configurations arising from Fi(e, e

′) if we close e and e′, that is,
φi(Fi(e, e

′)) = F̄i(e, e
′). It is clear that p−2P[Fi(e, e

′)] = (1 − p)−2P[F̄i(e, e
′)].

Since E is the disjoint union of the Fi(e, e
′) [as e, e′ ∈ E(G)], we have

P[E] = ∑
e,e′∈E(G)

P[Fi(e, e
′)]

=
(

p

1 − p

)2 ∑
e,e′∈E(G)

P[F̄i(e, e
′)]

≤
(

p

1 − p

)2

d2P[Ei],

where the last inequality comes from the fact that the multiset
⋃

e,e′∈E(G) F̄i(e, e
′)

contains each element of Ei at most d2 times. This inequality, together with
infi P[Ei] = 0, implies that P[E] = 0.

Thus, there are τ(C,C′)’s with infinitely many ends. �

LEMMA 2.4. With the assumptions of the previous lemma, there exist clusters
C and C′ and a positive number α such that τ(C,C′) has infinitely many ends
and, further, it has infinitely many points x that α-touch C′ and have the property
that at least three infinite components of C \ x contain infinitely many elements of
τ(C,C′).
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PROOF. By Lemma 2.3, there are finite sets F such that at least three compo-
nents of C \F contain infinitely many elements of τ(C,C′). By deletion tolerance,
there also exists such an F = {x}. If α is chosen to be sufficiently large, then some
x with this property will α-touch C′. There are infinitely many such x’s by the
MTP. �

Fix an α as in Lemma 2.4. We shall call points with the property of x in
Lemma 2.4 strong encounter points with respect to C′.

Suppose that T is a tree with edges labeled by some positive integers (lengths).
We say that T has exponential labeled growth if there exists some constant c > 1
such that the number of points at distance n from a fixed vertex is at least cn for
every sufficiently large n, where the distance of two adjacent vertices is understood
to equal the integer labeling the edge between them. Note that if the labels are
bounded, then exponential labeled growth is equivalent to exponential growth of
the underlying graph.

LEMMA 2.5. Suppose that there exist infinite clusters C and C′ that touch in
infinitely many points. Then there exists a forest φ(C,C′), defined on the strong
encounter points of C with respect to C′, with the following properties. The union
� := ⋃

φ(C,C′) is also a forest, with automorphism-invariant law. If the length
of each edge in φ(C,C′) is defined to be the distance in C between its endpoints,
then some tree in � has exponential labeled growth.

PROOF. By Lemma 2.4, we have strong encounter points. If τ(C,C′) has
strong encounter points, then for any such point x and any infinite component
Y of C \ x such that |Y ∩ τ(C,C′)| is infinite, Y will contain strong encounter
points by the MTP [otherwise, let each element of Y ∩ τ(C,C′) send mass 1 to x].
For an arbitrary x, let (C,C1), . . . , (C,Ck) be the pairs of clusters such that x is
a strong encounter point in C with respect to Ci . (So k is at most the size of a
ball of radius α.) Choose an element j ∈ {1, . . . , k} uniformly at random and let
f (x) := τ(C,Cj ). We do this independently for each x that is a strong encounter
point for some pair of clusters. For each pair of clusters C and C′, we shall define
a forest on ν(C,C′) := {x :f (x) = τ(C,C′)}. Note that the ν(C,C′) are all dis-
joint, by definition. If there were to exist a strong encounter point in C with respect
to C′, then there would be infinitely many, so ν(C,C′) is nonempty. Then by our
opening remark, for any x ∈ ν(C,C′) and any infinite component Y of C \ x with
Y ∩ τ(C,C′) �= ∅, Y contains infinitely many strong encounter points with respect
to C′ and hence ν(C,C′) ∩ Y is nonempty a.a.

For any v ∈ ν(C,C′) and each of the (at least three) components of C \ v that
contain some element of ν(C,C′), choose uniformly an element of ν(C,C′) that
has minimal distance from v in this component. Put a directed edge from v to this
vertex. Doing this for every v ∈ ν(C,C′), we obtain a digraph 	H(C,C′) =: 	H .
Denote by H the graph that results from ignoring the directions of the edges in 	H .
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There may be cycles in H , but any two cycles share at most one vertex. [Suppose,
on the contrary, that there are two cycles that can share more than one vertex and
take their union J . Since J is 2-connected, it is in the same component of C \v for
any v ∈ V (C), hence the outdegree of each vertex in the restriction of 	H to J is at
most 1. Hence, the average degree in J is ≤ 2. On the other hand, since J is the
union of two intersecting cycles, the average degree is > 2, a contradiction.] So,
we can delete a uniformly chosen edge from each of the possibly arising, pairwise
edge-disjoint cycles in H to obtain a forest F(C,C′). Now, let the label of each
edge in F(C,C′) be the distance of its two endpoints (as vertices in C) in C.

The family of forests F(C,C′) (as C and C′ range through all infinite clus-
ters) was constructed in an automorphism-invariant way. The vertex sets of the
F(C,C′)’s are disjoint because the ν(C,C′)’s were disjoint. So

⋃
F(C,C′) is

an invariant forest. Every point in every F(C,C′) has degree ≥ 3. Hence, there
is some number k such that the subforest of

⋃
F(C,C′) consisting of the edges

that have label ≤ k also has expected degree >2. Denote the restriction of this
forest to F(C,C′) by φ̂(C,C′). By Theorem 7.2 in [3], this is equivalent to
pc({⋃ φ̂(C,C′)}) < 1. Those φ̂(C,C′)’s with pc < 1 have exponential growth by
an easy and well-known counting argument. We conclude that F(C,C′) also has
exponential labeled growth for certain pairs C,C′. Choose φ(C,C′) := F(C,C′)
and their family as �. �

PROOF OF THEOREM 1.1. Define the following mass transport. (Here α is
defined as in the previous lemma.) If x and y are in the same infinite cluster and
their distance in G is at most α, take uniformly at random a path x1, x2, . . . , xm of
minimal length in the cluster between them (x1 = x). Let x send mass 1/k2 to xk .
The expected mass sent out by x is at most the size of its α-neighborhood times∑

1/k2, which is finite.
We are now going to show that the expected mass received is infinite. Let E

be the event of positive probability that vertex o is in an infinite cluster C, it has
a neighbor o′ that is in another infinite cluster C′ and some tree in φ(C,C′) has
exponential growth (with lengths on its edges the same as the distances in C). Let
c > 1 be a number such that |V (φ(C,C′)) ∩ Sn(C)| ≥ cn for every sufficiently
large n, where Sn(C) is the set of points at distance n from o within C. Insert the
edge between o and o′. In the resulting event of positive probability, o receives
mass ≥ γ

∑
n cnn−2 with some constant γ because every vertex of V (φ(C,C′)) ∩

Sn(C) sends mass 1/n2 to o. So, the expected mass received is indeed infinite.
This contradiction completes the proof. �

REMARK 2.6. The proof remains valid, with small modifications, if we as-
sume only that the percolation is insertion and deletion tolerant. The only property
of Bernoulli percolation that we have used is strong insertion and deletion toler-
ance. This means that there is exists a constant c > 0 such that for any event A
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and edge e, the inequality P[{κ ∪ e :κ ∈ A}] ≥ cP[A] holds, similarly for dele-
tion. However, simple insertion and deletion tolerance is enough (with some extra
care), by an argument similar to one suggested by Häggström in [8]. The only part
of our proof that does not immediately generalize is in Lemma 2.3, where we de-
fined the mappings from E onto the Ei ’s. A uniform lower bound there such as

P[Ei] ≥ (p−1)2

d2p2 P[E] no longer necessarily exists. We therefore make the following
changes in the proof. As before, P will denote the measure corresponding to the
percolation. For an edge e ∈ E(G), let F(e) = F be the event that e is good in its
cluster with respect to some other cluster. Define the following measure µ on F :
for every measurable set A ⊂ F , µ(A) := P[{κ \e :κ ∈ A}]. By insertion tolerance,
µ is absolutely continuous with respect to P because if some B := {κ \ e :κ ∈ A}
has positive P-measure (A ⊂ F ), then A also has positive P-measure (since a sub-
set of A arises from B by inserting e). Consider the Radon–Nikodým derivative
f of µ over P. By deletion tolerance, f is P-almost everywhere positive, hence
the set Fδ(e) = {κ ∈ F : f (κ) > δ} has positive measure if δ > 0 is sufficiently
small. If a configuration is in Fδ(e), we say that e is δ-good in that configuration.
Note that there are finitely many possible values for P[Fδ(e)] over e ∈ E(G) be-
cause G is quasi-transitive. Thus, there are also infinitely many δ-good edges with
positive probability. By the MTP, there are also infinitely many δ-good edges for
some pair of clusters. Let E be the event that the cluster of o has infinitely many
δ-good edges with respect to the cluster of o′. We can continue with the proof of
Lemma 2.3, since now P[E] > δ2

d2 P[Ei] for every i.

QUESTION 2.7. Consider some supercritical Bernoulli percolation on some
transitive graph and consider adjacent vertices x and y. Conditioned on x and y

being in the same cluster, we conjecture that their expected distace within the clus-
ter is finite. The distance within the cluster, also called chemical distance, was
proved to have an exponential decay in case of supercritical percolation on Zd [1],
hence the conjecture is true in that setting. If our conjecture were true for nona-
menable graphs and pc < p < pu, then the result of the present paper would follow
from a much simpler argument similar to the final proof of Theorem 1.1.
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