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INFLUENCE AND SHARP-THRESHOLD THEOREMS FOR
MONOTONIC MEASURES

BY B. T. GRAHAM1 AND G. R. GRIMMETT

Cambridge University

The influence theorem for product measures on the discrete space {0,1}N
may be extended to probability measures with the property of monotonicity
(which is equivalent to “strong positive association”). Corresponding results
are valid for probability measures on the cube [0,1]N that are absolutely
continuous with respect to Lebesgue measure. These results lead to a sharp-
threshold theorem for measures of random-cluster type, and this may be ap-
plied to box crossings in the two-dimensional random-cluster model.

1. Introduction. Influence and sharp-threshold theorems have proved useful
in the study of problems in discrete probability. Reliability theory and random
graphs provided early problems of this type, followed by percolation. Important
progress has been made toward a general theory since [2, 16]. The reader is referred
to [10, 11] for a history and bibliography.

Let � = {0,1}N , where N < ∞, and let µp be the product measure on � with
density p. Vectors in � are denoted by ω = (ω(i) : 1 ≤ i ≤ N). For any increasing
subset A of � and any i ∈ {1,2, . . . ,N}, we define the conditional influence IA(i)

as follows:

IA(i) = µp(A|Xi = 1) − µp(A|Xi = 0),(1.1)

where Xi :� → R is given by Xi(ω) = ω(i). It is well known (see [6, 11, 16, 22])
that there exists an absolute positive constant c such that the following holds. For
all N , all p ∈ (0,1) and all increasing A, there exists i ∈ {1,2, . . . ,N} such that

IA(i) ≥ c min{µp(A),1 − µp(A)} logN

N
.(1.2)

The proof uses discrete Fourier analysis and a technique known as “hypercontrac-
tivity.” Inequality (1.2) is usually stated for the case p = 1

2 , but it holds with the
same constant c for all p ∈ (0,1).

There is an important application to the theory of sharp thresholds for prod-
uct measures; see [11]. Let �N be the set of all permutations of the index set
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I = {1,2, . . . ,N}. A subgroup A of �N is said to act transitively on I if, for
all pairs j, k ∈ I , there exists π ∈ A with πj = k. Any π ∈ �N acts on � by
πω = (ω(πi) : 1 ≤ i ≤ N). An event A is called symmetric if there exists a sub-
group A of �N acting transitively on I such that A = πA for all π ∈ A. If A is
symmetric, then IA(j) = IA(k) for all j , k. By summing (1.2) over i, we obtain
for symmetric A that

N∑
i=1

IA(i) ≥ c min{µp(A),1 − µp(A)} logN.(1.3)

It is standard (see the discussion of Russo’s formula in [12]) that

d

dp
µp(A) =

N∑
i=1

IA(i),(1.4)

and it follows, as in [11], that, for 0 < ε < 1
2 , the function f (p) = µp(A) increases

from ε to 1 − ε over an interval of values of p with length smaller in order than
1/ logN .

We refer to such a statement as a “sharp-threshold theorem” and we note that
such results have wide applications to problems of discrete probability. The exam-
ple to be explored later in this paper is the random-cluster model on the square
lattice L

2. In the special case of percolation on L
2, a result of the above type (with

a weaker bound) was used in [20] to (re-)prove the principal duality theorem for
site percolation on L

2. More recently, (1.3) and (1.4) have been used in [5] to ob-
tain a further proof that the critical probability pc of bond percolation on the square
lattice satisfies pc = 1

2 . Using a similar argument in a second paper [4], it has been
proved that the critical probability of site percolation on a certain Poisson–Voronoi
(random) graph in R

2 equals 1
2 almost surely.

The principal purpose of the current article is to extend the results above to prob-
ability measures more general than product measures. We shall prove such results
for measures having a certain condition of “monotonicity,” which is equivalent to
the FKG lattice condition and is described in the next section. There are many situ-
ations in the probabilistic theory of statistical mechanics where such measures are
encountered, including the Ising model and the random-cluster model.

We define monotonic probability measures in Section 2, and we note there that
monotonicity is equivalent to the FKG lattice condition. This is followed by an
influence theorem for monotonic measures.

A monotonic measure µ may be used as the basis of a certain parametric family
of measures on �, indexed by a parameter p ∈ (0,1). The influence theorem for
µ may then be used to obtain a sharp-threshold theorem for this class, as described
in Section 3.

The influence theorem on the discrete space {0,1}N was extended in [6] to prod-
uct measures on the Euclidean cube [0,1]N . Using the methods of Section 2, sim-
ilar results may be proved for general monotonic measures on [0,1]N . Unlike the
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discrete case, such an influence theorem does not appear to imply a corresponding
sharp-threshold theorem. This is discussed in Section 4.

Finally, we turn to the random-cluster model, which may be viewed as an ex-
tension of percolation and a generalization of the Ising–Potts models for ferro-
magnetism; see [13, 14]. The random-cluster measure is defined in Section 5, and
the sharp-threshold theorem is applied to the existence of box crossings in two
dimensions.

2. Influence for monotonic measures. We begin this section with a classifi-
cation, further details of which may be found in [14]. Let 1 ≤ N < ∞, and write
I = {1,2, . . . ,N} and � = {0,1}N . The set of all subsets of � is denoted by F .
A probability measure µ on (�,F ) is said to be positive if µ(ω) > 0 for all ω ∈ �.
It is said to satisfy the FKG lattice condition if

µ(ω1 ∨ ω2)µ(ω1 ∧ ω2) ≥ µ(ω1)µ(ω2) for all ω1,ω2 ∈ �,(2.1)

where ω1 ∨ ω2 and ω1 ∧ ω2 are given by

ω1 ∨ ω2(i) = max{ω1(i),ω2(i)}, i ∈ I,

ω1 ∧ ω2(i) = min{ω1(i),ω2(i)}, i ∈ I.

See [9, 14].
The set � is a partially ordered set with the following partial order: ω ≥ ω′ if

ω(i) ≥ ω′(i) for all i ∈ I . A nonempty event A ∈ F is called increasing if: ω ∈ A

whenever there exists ω′ with ω ≥ ω′ and ω′ ∈ A. It is called decreasing if its
complement is increasing. For probability measures µ1, µ2 on (�,F ), we write
µ1 ≤st µ2, and say that µ1 is dominated stochastically by µ2, if

µ1(A) ≤ µ2(A) for all increasing events A.

The indicator function of an event A is denoted by 1A. For i ∈ I , we define the
random variable Xi by Xi(ω) = ω(i).

A probability measure µ on � is said to be positively associated if

µ(A ∩ B) ≥ µ(A)µ(B) for all increasing events A, B.

The famous FKG inequality of [9] asserts that a positive probability measure µ is
positively associated if it satisfies the FKG lattice condition. It is well known that
the FKG lattice condition is not necessary for positive association, and we explore
this next.

For simplicity, we shall restrict ourselves henceforth to positive measures. The
FKG lattice condition is equivalent to a stronger property termed “strong positive
association.” For J ⊆ I and ξ ∈ �, let �J = {0,1}J and

�
ξ
J = {ω ∈ � : ω(i) = ξ(i) for i ∈ I \ J }.(2.2)
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The set of all subsets of �J is denoted by FJ . Let µ be a positive probability mea-
sure on (�,F ) and define the conditional probability measure µ

ξ
J on (�J ,FJ )

by

µ
ξ
J (ωJ ) = µ

(
Xj = ωJ (j) for j ∈ J |Xi = ξ(i) for i ∈ I \ J

)
,

(2.3)
ωJ ∈ �J .

We say that µ is strongly positively associated if: for all J ⊆ I and all ξ ∈ �, the
measure µ

ξ
J is positively associated.

We call µ monotonic if: for all J ⊆ I , all increasing subsets A of �J and all
ξ, ζ ∈ �,

µ
ξ
J (A) ≤ µ

ζ
J (A) whenever ξ ≤ ζ.(2.4)

That is, µ is monotonic if: for all J ⊆ I ,

µ
ξ
J ≤st µ

ζ
J whenever ξ ≤ ζ.(2.5)

We call µ 1-monotonic if (2.5) holds for all singleton sets J , which is to say that,
for all j ∈ I ,

µ
(
Xj = 1|Xi = ξ(i) for all i ∈ I \ {j})(2.6)

is nondecreasing in ξ .
The following theorem is fairly standard and its proof may be found in [14]:

THEOREM 2.1. Let µ be a positive probability measure on (�,F ). The fol-
lowing are equivalent:

(i) µ is strongly positively associated;
(ii) µ satisfies the FKG lattice condition;

(iii) µ is monotonic;
(iv) µ is 1-monotonic.

Our principal influence theorem is as follows. For a positive probability measure
µ and an increasing event A, the conditional influence of the index i ∈ I is given
as in (1.1) by

IA(i) = µ(A|Xi = 1) − µ(A|Xi = 0).(2.7)

For a product measure µp , the influence of the index i was defined in [2, 16] as
µp(ωi ∈ A,ωi /∈ A), where ωi (resp., ωi) denotes the configuration obtained from
ω by setting ω(i) equal to 1 (resp., 0). We refer to the latter quantity as the absolute
influence of index i. The absolute and conditional influences are equal for product
measures, but one should note that

IA(i) �= µ(ωi ∈ A,ωi /∈ A)(2.8)

for general probability measures µ. Further discussion of this point is provided
after the next theorem. See also [15].
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THEOREM 2.2 (Influence). There exists a constant c ∈ (0,∞) such that the
following holds. Let N ≥ 1 and let A be an increasing subset of � = {0,1}N . Let
µ be a positive probability measure on (�,F ) that is monotonic. There exists i ∈ I

such that

IA(i) ≥ c min{µ(A),1 − µ(A)} logN

N
.(2.9)

Since product measures are monotonic, this extends the influence theorem
of [16]. In the proof of Theorem 2.2, we shall encode the measure µ in terms of
Lebesgue measure on [0,1]N and we shall appeal to the influence theorem of [6].
Thus, we shall require no further arguments of discrete Fourier analysis than those
already present in [6, 16].

We return briefly to the discussion of absolute and conditional influences. Sup-
pose, for illustration, that P is chosen at random with P(P = 1

3) = P(P = 2
3) = 1

2
and that, conditional on the value of P , we are provided with independent
Bernoulli random variables X1,X2, . . . ,XN with parameter P . It is easily checked
that the law of the vector X1,X2, . . . ,XN satisfies the FKG lattice condition. Con-
sider the increasing event A = {SN > 1

2N}, where SN = X1 + X2 + · · · + XN . By
symmetry, the conditional influence of each index is the same, as is the absolute
influence of each index. It is an easy calculation to show that

IA(1) = 1
3 + o(1) as N → ∞.

On the other hand,

P(ω1 ∈ A,ω1 /∈ A) = P

(
1
2N − 1 <

N∑
i=2

Xi ≤ 1
2N

)

= o(e−γN) as N → ∞,

for some γ > 0. This example indicates not only that the absolute and conditional
influences can be very different, but also that the conclusion of Theorem 2.2 would
be false if restated for absolute influences.

Definition (2.7) is well suited to measures µ that are monotonic. When µ is
nonmonotonic, it can happen that IA(i) = 0 for all i. For example, consider a
circular table with n places, and let µ be the law induced on {0,1}n by picking
two distinct places uniformly at random. Let A be the (increasing) event that at
least two chosen places are adjacent. It is easily seen that µ(A) = 2/(n − 1) and
that IA(i) = 0 for every i. The measure µ is not positive, but a small perturbation
results in a positive measure with influences as small as required.

In the proof of Theorem 2.2 which follows, we see that monotonicity has the
effect of increasing the influence of each coordinate in I .

PROOF OF THEOREM 2.2. Let A ∈ F be an increasing event and let µ be
positive and monotonic. Let λ denote Lebesgue measure on the cube [0,1]N .
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We propose to construct an increasing subset B of [0,1]N with the property that
λ(B) = µ(A), to apply the influence theorem of [6] to the set B and thereby to
deduce the claim. This will be done via a certain function f : [0,1]N → {0,1}N
that we construct next.

Let x = (xi : 1 ≤ i ≤ N) ∈ [0,1]N and let f (x) = (fi(x) : 1 ≤ i ≤ N) be given
recursively as follows. The first coordinate f1(x) is defined as follows:

with a1 = µ(X1 = 1), set f1(x) =
{

1, if x1 > 1 − a1,

0, otherwise.
(2.10)

We note that f1(x) depends on x1 only. Suppose we know fi(x) for 1 ≤ i < k. Let

ak = ak(x1, x2, . . . , xk−1) = µ
(
Xk = 1|Xi = fi(x) for 1 ≤ i < k

)
(2.11)

and define

fk(x) =
{

1, if xk > 1 − ak ,

0, otherwise.
(2.12)

Let x ≤ x′, and write ak = ak(x) and a′
k = ak(x′) for the corresponding values

in (2.10)–(2.11). Clearly a1 = a′
1, so that f1(x) ≤ f1(x′). Since µ is monotonic,

a2 ≤ a′
2, so that f2(x) ≤ f2(x′). Continuing inductively, we find that fk(x) ≤ fk(x′)

for all k, which is to say that f (x) ≤ f (x′). Therefore, f is nondecreasing
on [0,1]N . Let B be the increasing subset of [0,1]N given by B = f −1(A).

We make four notes concerning the definition of f .

(1) Each ak depends only on x1, x2, . . . , xk−1.
(2) Since µ is positive, the ak satisfy 0 < ak < 1 for all x ∈ [0,1]N and k ∈ I .
(3) For x ∈ [0,1]N and k ∈ I , the values fk(x), fk+1(x), . . . , fN(x) depend on

x1, x2, . . . , xk−1 only through the values f1(x), f2(x), . . . , fk−1(x).
(4) The function f and the event B depend on the ordering of the set I .

Let U = (Ui : 1 ≤ i ≤ N) be the identity function on [0,1]N and note that U

has law λ. By the method of construction of the function f , f (U) has law µ. In
particular,

µ(A) = λ
(
f (U) ∈ A

) = λ
(
U ∈ f −1(A)

) = λ(B).(2.13)

Let

JB(i) = λ(B|Ui = 1) − λ(B|Ui = 0),

where the conditional probabilities are to be interpreted as

λ(B|Ui = u) = lim
ε↓0

λ
(
B|Ui ∈ (u − ε,u + ε)

)
.

Since B is an event with a certain simple structure, this is the same as λN−1(B
u
i )

for u = 0,1, where λN−1 is (N − 1)-dimensional Lebesgue measure and Bu
i is the

set of all (N − 1)-vectors (x1, . . . , xi−1, xi+1, . . . , xN) such that (x1, . . . , xi−1, u,

xi+1, . . . , xN) ∈ B .
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By Theorem 1 of [6], we may find a constant c > 0, independent of the choice
of N and A, such that there exists i ∈ I with

JB(i) ≥ c min{λ(B),1 − λ(B)} logN

N
.(2.14)

We choose i accordingly.
We claim that

IA(j) ≥ JB(j) for j ∈ I.(2.15)

Once (2.15) is shown, the claim follows from (2.13) and (2.14). We prove next that

IA(1) = JB(1).(2.16)

We have that

IA(1) = µ(A|X1 = 1) − µ(A|X1 = 0)

= λ
(
B|f1(U) = 1

) − λ
(
B|f1(U) = 0

)
= λ(B|U1 > 1 − a1) − λ(B|U1 ≤ 1 − a1)(2.17)

= λ(B|U1 = 1) − λ(B|U1 = 0)

= JB(1),

where we have used notes (2) and (3) above.
We turn our attention to (2.15) with j ≥ 2, and we reorder the set I to

bring the index j to the front. That is, we let K be the reordered index set
K = (k1, k2, . . . , kN) = (j,1,2, . . . , j − 1, j + 1, . . . ,N). We write g = (gki

: 1 ≤
i ≤ N) for the associated function given by (2.10)–(2.12) subject to the new or-
dering, and C = g−1(A). Thinking of (2.10)–(2.12) as an algorithm for construct-
ing f , we are applying the same algorithm to the reordered set K .

We claim that

JC(k1) ≥ JB(j).(2.18)

By (2.17) with I replaced by K , JC(k1) = IA(j), and (2.15) follows. It remains to
prove (2.18), and we shall again use monotonicity for this.

It suffices for (2.18) to prove that

λ(C|Uj = 1) ≥ λ(B|Uj = 1),(2.19)

together with the reversed inequality given Uj = 0. The conditioning of the left-
hand side of (2.19) refers to the first coordinate encountered by the algorithm
(2.10)–(2.12) when applied to the reordered set K . Let


U = (U1,U2, . . . ,Uj−1,1,Uj+1, . . . ,UN).(2.20)

The 0/1-vector f (
U) = (fi(
U) : 1 ≤ i ≤ N) is constructed sequentially (as above)
by considering the indices 1,2, . . . ,N in turn. At stage k, we declare fk(
U) to
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equal 1 if Uk exceeds a certain function ak of the variables fi(
U), 1 ≤ i < k. By
the monotonicity of µ, this function is nonincreasing in these variables. The index
j plays a special role, in that: (i) fj (
U) = 1, and (ii) given this fact, it is more
likely than before that the variables fk(
U), j < k ≤ N , will take the value 1. The
values fk(
U), 1 ≤ k < j , are unaffected by the value of Uj .

Consider now the 0/1-vector g(
U) = (gkr (

U) : 1 ≤ r ≤ N), constructed in the

same manner as above, but with the new ordering K of the index set I . First we
examine index k1 (= j ), and we automatically declare gk1(


U) = 1 (since Uj = 1).
We then construct gkr (


U), 2 ≤ r ≤ N , in sequence. Since the ak are nondecreasing
in the variables constructed so far,

gkr (

U) ≥ fkr (


U), r = 2,3, . . . ,N.(2.21)

Therefore, g(
U) ≥ f (
U), implying as required that

λ(C|Uj = 1) = λ
(
g(
U) ∈ A

) ≥ λ
(
f (
U) ∈ A

) = λ(B|Uj = 1).(2.22)

Inequality (2.19) follows. The same argument implies the reversed inequality ob-
tained from (2.19) by reversing the conditioning to Uj = 0. This implies (2.18).

A formal proof of (2.21) follows. Suppose that r is such that gks (

U) ≥ fks (


U)

for 2 ≤ s < r . By (2.12), for r ≤ j ,

fkr (

U) = 1 if Ukr > µ

(
Xkr = 0|Xks = fks (


U) for 2 ≤ s < r
)
,

gkr (

U) = 1 if Ukr > µ

(
Xkr = 0|Xks = gks (


U) for 1 ≤ s < r
)
.

Now gk1(

U) = 1 and, by the induction hypothesis and monotonicity,

µ
(
Xkr = 0|Xks = fks (


U) for 2 ≤ s < r
)

≥ µ
(
Xkr = 0|Xks = gks (


U) for 1 ≤ s < r
)
,

whence gkr (

U) ≥ fkr (


U), as required.
Consider finally the case j < r ≤ N . Then

fkr (

U) = 1 if Ukr > µ

(
Xkr = 0|Xks = fks (


U) for 1 ≤ s < r
)
,

gkr (

U) = 1 if Ukr > µ

(
Xkr = 0|Xks = gks (


U) for 1 ≤ s < r
)
,

and the conclusion follows as before. �

3. Sharp-threshold theorem. We consider in this section a family of proba-
bility measures indexed by a parameter p ∈ (0,1) and we prove a sharp-threshold
theorem for this family, subject to a hypothesis of monotonicity. The motivating
example is the random-cluster model, to which we return in Sections 5 and 6.

Let 1 ≤ N < ∞, I = {1,2, . . . ,N}, and let � = {0,1}N and F be given as
before. Let µ be a positive probability measure on (�,F ). For p ∈ (0,1), we
define the probability measure µp by

µp(ω) = 1

Zp

µ(ω)

{∏
i∈I

pω(i)(1 − p)1−ω(i)

}
, ω ∈ �,(3.1)
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where Zp is the normalizing constant

Zp = ∑
ω∈�

µ(ω)

{∏
i∈I

pω(i)(1 − p)1−ω(i)

}
.(3.2)

It is immediate that µp is positive and that µ = µ1/2. It is easy to check that µp

satisfies the FKG lattice condition (2.1) if and only if µ satisfies this condition,
and it follows that µ is monotonic if and only if, for all p ∈ (0,1) [or, equivalently,
for some p ∈ (0,1)], µp is monotonic. In order to prove a sharp-threshold theorem
for the family µp , we present first a Russo-type formula:

THEOREM 3.1 ([3]). For any event A ∈ F ,
d

dp
µp(A) = 1

p(1 − p)

∑
i∈I

covp(Xi,1A),(3.3)

where covp denotes covariance with respect to the measure µp .

PROOF. This may be obtained exactly as in [3], Proposition 4; see also Sec-
tion 2.4 of [14]. The details are omitted. �

Let A be a subgroup of the permutation group �N . A probability measure φ

on (�,F ) is called A-invariant if φ(ω) = φ(αω) for all α ∈ A. An event A ∈ F
is called A-invariant if A = αA for all α ∈ A. It is easily seen that, for any sub-
group A, µ is A-invariant if and only if each µp is A-invariant.

THEOREM 3.2 (Sharp-threshold). There exists a constant c ∈ (0,∞) such that
the following holds. Let N ≥ 1 and let A ∈ F be an increasing event. Let µ be
a positive probability measure on (�,F ) which is monotonic. If there exists a
subgroup A of �N acting transitively on I such that µ and A are A-invariant,
then

d

dp
µp(A) ≥ cξp

p(1 − p)
min{µp(A),1 − µp(A)} logN, p ∈ (0,1),(3.4)

where ξp = µp(X1)(1 − µp(X1)).

PROOF. Let

Ip,A(i) = µp(A|Xi = 1) − µp(A|Xi = 0),

so that

covp(Xi,1A) = µp(Xi1A) − µp(Xi)µp(A)

= µp(Xi)
(
1 − µp(Xi)

)
Ip,A(i).

Under the given conditions, µp(Xi) = µp(Xj ) and Ip,A(i) = Ip,A(j) for all
i, j ∈ I . Summing over the index set I as in (3.3), we deduce (3.4) by applying
Theorem 2.2 to the monotonic measure µp . This is the only place where have used
the assumption of monotonicity. �
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4. Probability measures on the Euclidean cube. We have so far only con-
sidered probability measures on the discrete cube {0,1}N . The method of proof
of the influence theorem, Theorem 2.2, may also be applied to probability mea-
sures on the Euclidean cube [0,1]N that are absolutely continuous with respect to
Lebesgue measure. Any such measure µ has a density function ρ, which is to say
that

µ(A) =
∫
A

ρ(x)λ(dx),

for (Lebesgue) measurable subsets A of [0,1]N , with λ denoting Lebesgue mea-
sure. Since the density function ρ is nonunique, we shall phrase the results of this
section in terms of ρ rather than the associated measure µ. Some may regard this
as not entirely satisfactory, arguing that results for measures should be based on
hypotheses for these measures, rather than for particular versions of their density
functions. One may rewrite the conclusions of this section thus, but at the expense
of greater measure-theoretic detail which obscures the basic argument.

Let N ≥ 1 and write � = [0,1]N . Let ρ :� → [0,∞) be (Lebesgue) measur-
able. We call ρ a density function if∫

�
ρ(x)λ(dx) = 1,

and in this case we denote by µρ the corresponding probability measure,

µρ(A) =
∫
A

ρ(x)λ(dx).

We call ρ positive if it is a strictly positive function on � and we say it satisfies
the (continuous) FKG lattice condition if

ρ(x ∨ y)ρ(x ∧ y) ≥ ρ(x)ρ(y) for all x,y ∈ �,(4.1)

where the operations ∨, ∧ are defined as the coordinate-wise maximum and mini-
mum, respectively.

Let ρ be a density function. We call µρ positively associated if

µρ(A ∩ B) ≥ µρ(A)µρ(B),

for all increasing subsets of �. (It is presumably well known that increasing subsets
of � are Lebesgue-measurable but need not be Borel-measurable; see Theorem 4.4
and the subsequent remark.)

Let I = {1,2, . . . ,N}. For J ⊆ I , let �J = [0,1]J and

�
ξ
J = {x ∈ � :xj = ξj for j ∈ I \ J }, ξ ∈ �.(4.2)

The Lebesgue σ -algebra of �J is denoted by FJ . Let ρ be a positive density
function. We define the conditional probability measure µ

ξ
ρ,J on (�J ,FJ ) by

µ
ξ
ρ,J (E) =

∫
E

ρ
ξ
J (x)λ

(
d(xj : j ∈ J )

)
, E ∈ FJ ,(4.3)
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where ρ
ξ
J is the conditional density function

ρ
ξ
J (x) = 1

Z
ξ
J

ρ(x)1
�

ξ
J
(x), Z

ξ
J =

∫
�

ξ
J

ρ(x)λ
(
d(xj : j ∈ J )

)
.

We sometimes write µρ(E|(ξi : i ∈ I \ J )) for µ
ξ
ρ,J (E) and we recall the standard

fact that µρ(·|(ξi : i ∈ I \ J )) is a version of the conditional expectation given the
σ -field FI\J .

We say that ρ is strongly positively associated if: for all J ⊆ I and all ξ ∈ �,
the measure µ

ξ
ρ,J is positively associated. We call ρ monotonic if: for all J ⊆ I ,

all increasing subsets A of �J and all ξ, ζ ∈ �,

µ
ξ
ρ,J (A) ≤ µ

ζ
ρ,J (A) whenever ξ ≤ ζ,(4.4)

which is to say that, for all J ⊆ I ,

µ
ξ
ρ,J ≤st µ

ζ
ρ,J whenever ξ ≤ ζ.(4.5)

Here is a basic result concerning stochastic ordering:

THEOREM 4.1 ([1, 17]). Let N ≥ 1 and let f and g be density functions on
� = [0,1]N . If

g(x ∨ y)f (x ∧ y) ≥ g(x)f (y) for all x,y ∈ [0,1]N,

then µf ≤st µg .

If ρ satisfies the FKG lattice condition and A is an increasing event, then

1A(x ∨ y)ρ(x ∨ y)ρ(x ∧ y) ≥ 1A(x)ρ(x)ρ(y),

whence, by Theorem 4.1,

µρ(A)µρ(B) ≤ µρ(A ∩ B)

for all increasing A, B . Therefore, µρ is positively associated.
Henceforth, we restrict ourselves to positive density functions. Arguments sim-

ilar to the above are valid with ρ (assumed positive) replaced by the conditional
density function ρ

ξ
J , and one arrives thus at the following:

THEOREM 4.2. Let N ≥ 1, and let ρ be a positive density function on � =
[0,1]N satisfying the FKG lattice condition (4.1). Then ρ is strongly positively
associated and monotonic.

We turn now to a “continuous” version of Theorem 2.2. Let N ≥ 1 and let ρ be
a monotonic positive density function on � = [0,1]N . Let U = (U1,U2, . . . ,UN)

be the identity function on [0,1]N . For an increasing subset A of �, we define the
conditional influences by

IA(i) = µρ(A|Ui = 1) − µρ(A|Ui = 0), i ∈ I.(4.6)
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THEOREM 4.3 (Influence). There exists a constant c ∈ (0,∞) such that the
following holds. Let N ≥ 1 and let A be an increasing subset of � = [0,1]N . Let
ρ be a positive density function on [0,1]N that is monotonic. There exists i ∈ I

such that

IA(i) ≥ c min{µ(A),1 − µ(A)} logN

N
.(4.7)

PROOF. The proof is very similar to that of Theorem 2.2. We propose first
to construct an increasing event B such that λ(B) = µ(A), by way of a func-
tion f : [0,1]N → [0,1]N . Let x = (xi : 1 ≤ i ≤ N) ∈ [0,1]N and write f (x) =
(f1(x), f2(x), . . . , fN(x)). The first coordinate f1(x) depends on x1 only and is
defined by

µρ

(
U1 > f1(x)

) = 1 − x1.

Since the density function ρ is strictly positive, f1(x) is a continuous and strictly
increasing function of x1. It is an elementary exercise to check that the law
of f1(U) under λ is the same as that of U1 under µρ .

Having defined f1(x), we define f2(x) in terms of x1, x2 only by

µρ

(
U2 > f2(x)|U1 = f1(x)

) = 1 − x2.

The left-hand side is defined according to (4.3). It is a standard fact that µρ(·|U1 =
f1) is a version of the conditional expectation µρ(·|σ(U1)), where σ(U1) de-
notes the σ -field generated by U1, and it is an exercise to check that the pair
(f1(U), f2(U)) has the same law under λ as does the pair (U1,U2) under µρ .
For each given x1 ∈ (0,1), f (x) is a continuous and strictly increasing function
of x2. (We here use the assumptions that ρ is positive and monotonic.)

We continue inductively. Suppose we know fi(x) for 1 ≤ i < k. Then fk(x)

depends on x1, x2, . . . , xk and is given by

µρ

(
Uk > fk(x)|Ui = fi(x) for 1 ≤ i < k

) = 1 − xk.

As above, f is strictly increasing (using the assumption of monotonicity), and the
law of f (U) under λ is the same as the law of U under µρ . We set B = f −1(A).

Let

JB(i) = λ(B|Ui = 1) − λ(B|Ui = 0), i ∈ I.

Since f1 is continuous and strictly increasing,

µρ(A|U1 = b) = λ
(
B|f1(U1) = b

) = λ(B|U1 = b), b = 0,1,

implying that IA(1) = JB(1). It remains to show that IA(j) ≥ JB(j) for j ∈ I .
Let j ∈ I , j �= 1. We reorder the coordinate set as K = {j,1,2, . . . , j − 1,

j + 1, . . . ,N} and construct a continuous increasing function g as above, but sub-
ject to the new ordering. Rather than rework the details from the proof of Theo-
rem 2.2, we present only part of the necessary argument. We sketch a proof that
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µρ(A|Uj = 1) ≥ λ(B|Uj = 1), a similar argument being valid with 1 replaced by 0
and the inequality reversed. The main step is to show that f ≤ g under the assump-
tion that Uj = 1. Suppose that 1 ≤ r < j , and assume it has already been proved
that fi(x) ≤ gi(x) for x ∈ � and 1 ≤ i < r . Let x ∈ �. We claim that

µρ

(
Ur > ξ |Ui = fi(x) for 1 ≤ i < r

)
(4.8)

≤ µρ

(
Ur > ξ |Uj = 1,Ui = gi(x) for 1 ≤ i < r

)
, ξ ∈ [0,1].

By monotonicity,

µρ,J

(·|Uj = u,Ui = fi(x) for 1 ≤ i < r
)

(4.9)
≤st µρ,J

(·|Uj = 1,Ui = gi(x) for 1 ≤ i < r
)
, u ∈ [0,1].

The left-hand side of (4.9) is a version of the conditional expectation of the condi-
tional measure µρ,J (·|Ui = fi(x) for 1 ≤ i < r), given σ(Uj ). By averaging over
the value of u in (4.9), we obtain (4.8). The other steps are proved similarly. �

Unlike the discrete setting of Section 3, Theorem 4.3 does not imply a sharp-
threshold theorem of the form of Theorem 3.2. Any density function ρ on [0,1]N
may be used to generate a parametric family (ρp : 0 < p < 1) of densities given by

ρp(x) = 1

Zρ,p

ρ(x)

N∏
i=1

pxi (1 − p)1−xi , x = (x1, x2, . . . , xN) ∈ [0,1]N,

and we write µp = µρp . Let A be an increasing subset of [0,1]N . The proof of
Theorem 3.1 may be adapted to this setting to obtain that

d

dp
µp(A) = 1

p(1 − p)

N∑
i=1

covp(Ui,1A),

where U = (U1,U2, . . . ,UN) is the identity function on [0,1]N , and covp denotes
covariance with respect to µp .

Let ρ be a nonzero constant function, so that µρ is Lebesgue measure. As above,
let p ∈ (0,1) and let Y1, Y2, . . . , YN be independent random variables taking values
in [0,1] with common density function

ρp(x) =




log[p/(1 − p)]
2p − 1

px(1 − p)1−x, if p �= 1

2
, x ∈ (0,1),

1, if p = 1

2
, x ∈ (0,1).

It is easily checked that the joint density function

ρp(x) =
N∏

i=1

ρp(xi), x = (x1, x2, . . . , xN) ∈ [0,1]N,
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satisfies the FKG lattice condition and is therefore monotonic.
Let A = (N−1,1]N . It is an easy calculation that

µp(A) =




(
1 − π1/N − 1

π − 1

)N

, if p �= 1

2
,

(
1 − 1

N

)N

, if p = 1

2
,

where π = p/(1 − p). Therefore, as N → ∞,

µp(A) →
{

π−1/(π−1), if p �= 1
2 ,

e−1, if p = 1
2 .

In addition,

cov1/2(Ui,1A) = 1

N

(
1 − 1

N

)N−1

∼ e−1

N
.

The influence theorem, Theorem 4.3, may be applied to the event A, but there is no
sharp threshold for µp(A). This situation diverges from that of the discrete setting
at the point where a lower bound for the conditional influence IA(i) is used to
calculate a lower bound for the covariance covp(Ui,1A).

We return briefly to the measurability of an increasing subset of [0,1]N .

THEOREM 4.4. Let N ≥ 1. Every increasing subset of [0,1]N is Lebesgue-
measurable.

Increasing subsets need not be Borel-measurable, as the following example in-
dicates. Let M be a non-Borel-measurable subset of [0,1]. Consider the increasing
subset A of [0,1]2 given by

A = {(x, y) ∈ [0,1]2 :x + y > 1} ∪ {(x,1 − x) :x ∈ M}.
The function h :x �→ (x,1−x) is a continuous, and hence Borel-measurable, func-
tion from R to R

2. If A were Borel-measurable, then so would be

A′ = A ∩ {(x,1 − x) :x ∈ R} = {(x,1 − x) :x ∈ M}.
This would imply that h−1(A′) = M is Borel-measurable, a contradiction.

PROOF OF THEOREM 4.4. The statement is trivially true when N = 1, and
we prove the general case by induction on N . Suppose n is such that the result
holds for N = n. Let A be an increasing subset of [0,1]n+1 and let g : [0,1]n →
[0,1] ∪ {∞} be defined by

g(x) = inf{y : (x, y) ∈ A}, x ∈ [0,1]n.
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The function g is decreasing on [0,1]n and, hence, for all c ∈ R, the sub-
set Hc = {x :g(x) < c} is increasing. By the induction hypothesis, each Hc is
Lebesgue-measurable in [0,1]n and, therefore, g is a measurable function. Its
graph G = {(x, g(x)) : x ∈ [0,1]n} is (by an approximation by simple functions,
or otherwise) a Lebesgue-measurable set and is also (by Fubini’s theorem) a null
subset of [0,1]n+1. Furthermore, the set


A = {(x, y) ∈ [0,1]n+1 :y > g(x)}
is Lebesgue-measurable. Now A differs from 
A only on a subset of the null set G,
and the claim follows. �

5. The random-cluster model. The sharp-threshold theorem of Section 3
may be applied as follows to the random-cluster measure. Let G = (V ,E) be a
finite graph, assumed for simplicity to have neither loops nor multiple edges. We
take as configuration space the set � = {0,1}E and write F for the set of its sub-
sets. For ω ∈ �, we call an edge e open (in ω) if ω(e) = 1, and closed otherwise.
Let η(ω) = {e ∈ E :ω(e) = 1} be the set of open edges and consider the open graph
Gω = (V , η(ω)). The connected components of Gω are termed open clusters and
k(ω) denotes the number of such clusters (including any isolated vertices).

Let q ∈ (0,∞) and let µ be the probability measure on (�,F ) given by

µ(ω) = 1

Z(q)
qk(ω), ω ∈ �,(5.1)

where Z(q) is the appropriate normalizing constant. It is clear that µ is positive,
and it is easily checked that µ satisfies the FKG lattice condition if q ≥ 1; see
[8, 14]. (The FKG lattice condition does not hold when q < 1 and G contains a
circuit.) We assume henceforth that q ≥ 1. By Theorem 2.1, µ is monotonic.

The random-cluster measure φp,q on the graph G with parameters p ∈ (0,1)

and q ∈ [1,∞) is given as in (3.1) by

φp,q(ω) = 1

Z(p,q)

{∏
e∈E

pω(e)(1 − p)1−ω(e)

}
qk(ω), ω ∈ �.(5.2)

It is standard (see [8, 14]) that
p

p + q(1 − p)
≤ φp,q(Xe = 1) ≤ p, e ∈ E.(5.3)

Let A be a subgroup of the automorphism group of G. We call G A-transitive
if A acts transitively on E. We may apply Theorem 3.2 to obtain the following.
There exists an absolute constant c > 0 such that, for all A-transitive graphs G, all
p, q and any increasing A-invariant event A ∈ F ,

d

dp
φp,q(A) ≥ c min

{
q

{p + q(1 − p)}2 ,1
}

min{φp,q(A),1 − φp,q(A)} logN,
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whence

d

dp
φp,q(A) ≥ c

q
min{φp,q(A),1 − φp,q(A)} logN.(5.4)

This differential inequality takes the usual simpler form when q = 1 and may
be integrated as follows for general q ≥ 1. Let p1 ∈ (0,1) be chosen such that
φp1,q(A) ≥ 1

2 and let p1 < p2 < 1. We note that φp,q(A) ≥ 1
2 for p ∈ (p1,p2) and

we integrate (5.4) over this interval to obtain that

φp2,q(A) ≥ 1 − 1
2N−c(p2−p1)/q .(5.5)

For p ≥ √
q/(1 + √

q ), (5.4) may be replaced by

d

dp
φp,q(A) ≥ c min{φp,q(A),1 − φp,q(A)} logN(5.6)

and (5.5) becomes

φp2,q(A) ≥ 1 − 1
2N−c(p2−p1),

√
q

1 + √
q

≤ p1 < p2,(5.7)

under the condition φp1,q(A) ≥ 1
2 . As an application of this inequality, we derive

next a lower bound for the probability of an open crossing of a rectangle of Z
2.

Let Z = {. . . ,−1,0,−1, . . .} be the integers and Z
2 the set of all 2-vectors x =

(x1, x2) of integers. We turn Z
2 into a graph by placing an edge between any two

vertices x, y with |x − y| = 1, where

|z| = |z1| + |z2|, z ∈ Z
2.

We write E
2 for the set of such edges and L

2 = (Z2,E
2) for the ensuing graph.

We shall work on a finite torus of L
2. Let n ≥ 1. Consider the square Sn = [0, n]2

(this is a convenient abbreviation for {0,1,2, . . . , n}2) viewed as a subgraph of L
2.

We identify certain pairs of vertices on the boundary of Sn in order to make it
symmetric. More specifically, we identify any pair of the form (0,m), (n,m) and of
the form (m,0), (m,n), for 0 ≤ m ≤ n, and we merge any parallel edges that ensue.
Let Tn = (Vn,En) denote the resulting toroidal graph. Let An be the automorphism
group of the graph Tn and note that An acts transitively on En. The configuration
space of the random-cluster model on Tn is denoted by �(n) = {0,1}En .

Let p ∈ (0,1) and q ∈ [1,∞). Write φn,p for the random-cluster measure on Tn

with parameters p and q and note that φn,p is An-invariant. Let

psd = psd(q) =
√

q

1 + √
q

,

the self-dual point of the random-cluster model on L
2; see [13, 14]. We note that

the (Whitney) dual of Tn is isomorphic to Tn, and the random-cluster measure on
Tn is self-dual when p = psd.
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Let ω ∈ �(n). Any translate in Tn of a rectangle of the form [0, r] × [0, s] is
said to be of size r × s. When r �= s, such a translate is said to be traversed long-
ways (resp., traversed short-ways) if the two shorter sides (resp., longer sides) of
the rectangle are joined within the rectangle by an open path of ω.

Let α ∈ (1,∞) and let SWn,α denote the event that the rectangle Hn,α =
[0, �nα�] × [0, �n/α�] is crossed short-ways. One would normally take α − 1 to
be small and n to be large in the next theorem.

THEOREM 5.1. Let α ∈ (1,∞), k,n ≥ 2, q ∈ [1,∞) and psd < p < 1. Sup-
pose that n/(n − 1) ≤ α < min{k,n}. We have that

φkn,p(SWn,α) ≥ 1 − e−g(p−psd),(5.8)

where

g = g(k,n,α) = 2c

M
log(kn)

and

M = 2
(

1 + k

α − 1

)(
1 + kα

α − 1

)
.

Note that M is of order 2k2α/(α−1)2 for large k, n. For p > psd, one may make
φkn,p(SWn,α) large by holding k fixed and sending n → ∞. It does not seem to be
easy to deduce an estimate for φp,q(SWn,α) for a random-cluster measure φp,q on
the infinite lattice L

2. Neither do we know how to use the existence of crossings
short-ways to build crossings long-ways. This is in contrast to the case of product
measure; see [5, 7, 12, 18, 19, 21].

PROOF OF THEOREM 5.1. Assume the given conditions. Let Rn =
[0, n + 1] × [0, n], viewed as a subgraph of Tkn, and let LWn be the event that
Rn is traversed long-ways. By a standard duality argument,

φkn,psd(LWn) = 1
2 , k ≥ 2, n ≥ 1.(5.9)

Let An be the event that there exists in Tkn some translate of the square Sn =
[0, n] × [0, n] that possesses either an open top-bottom crossing or an open left-
right crossing. The event An is An-invariant, and

φkn,psd(An) ≥ φkn,psd(LWn) = 1
2 .(5.10)

We apply (5.7) to the event An, with p1 = psd and with N = 2(kn)2 being the
number of edges in Tkn. This yields that

φkn,p(An) ≥ 1 − 1
2 [2(kn)2]−c(p−psd)

(5.11)
≥ 1 − (kn)−2c(p−psd), psd < p < 1.
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The event An is defined on the whole of the torus. We next use an argument
taken from [4, 5] to obtain a more locally defined event. Let a = �nα�, b = �n/α�,
and let Hn,α = [0, a] × [0, b] and Vn,α = [0, b] × [0, a]. Let hn,α , vn,α be the sets
of vertices in Tkn given by

hn,α =
{(

l1(a − n), l2(n − b)
) ∈ Vkn : 0 ≤ l1 <

kn

a − n
,0 ≤ l2 <

kn

n − b

}
,

vn,α =
{(

l1(n − b), l2(a − n)
) ∈ Vkn : 0 ≤ l1 <

kn

n − b
,0 ≤ l2 <

kn

a − n

}
,

where the li are integers. That n−b ≥ 1 follows by the assumption α ≥ n/(n− 1).
Consider the set H = Hn,α +hn,α of translates of Hn,α by vectors in hn,α , and also
the set V = Vn,α + vn,α . If An occurs, then some rectangle in H ∪ V is traversed
short-ways. By positive association and symmetry,

φkn,p(An) ≥ φkn,p(no member of H ∪ V is traversed short-ways)
(5.12)

≥ {1 − φkn,p(SWn,α)}R,

where SWn,α is the event that Hn is traversed short-ways, and

R = |hn,α| + |vn,α| ≤ 2
⌈

kn

a − n

⌉
·
⌈

kn

n − b

⌉
.(5.13)

After taking into account rounding effects, we find that R ≤ M . Inequality (5.8)
follows from (5.11)–(5.13). �

6. The critical point. There is a famous conjecture that the critical point
pc(q) of the random-cluster model on L

2 equals psd(q). We do not spell out the
details necessary to state this conjecture properly, referring the reader instead to
[13, 14]. The conjecture is known to be valid for q = 1 (percolation), q = 2 (a case
corresponding to the Ising model) and for sufficiently large q (namely, q ≥ 25.72).
The conjecture would follow if one could prove a strengthening of Theorem 5.1 in
which short-ways is replaced by long-ways, and with the toroidal measure replaced
by the wired measure on the full lattice. We finish by explaining this.

The so-called “wired random-cluster measure” on L
2 is denoted by φ1

p,q , and
the reader is referred to the references above for a definition of φ1

p,q .

THEOREM 6.1. Let q ≥ 1. Let pk be the φ1
p,q -probability that a 2k × 2k+1

rectangle is crossed long-ways. Suppose that

∞∏
k=1

pk > 0, p > psd(q).(6.1)

Then the critical point of the random-cluster model on L
2 equals psd(q).
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PROOF. We use a construction that appeared in [7]. For odd k, let Ak be the
event that [0,2k] × [0,2k+1] is traversed long-ways. For even k, let Ak be the
event that [0,2k+1] × [0,2k] is traversed long-ways. By the positive association
and automorphism-invariance of φ1

p,q , under (6.1),

φ1
p,q

(⋂
k

Ak

)
≥

∞∏
k=1

φ1
p,q(Ak) > 0, p > psd(q).

On the intersection of the Ak , there exists an infinite open cluster and, therefore,
pc(q) ≤ psd(q). It is standard (see [13, 14]) that psd(q) ≤ pc(q) and, therefore,
equality holds as claimed. �

Let φ0
p,q denote the “free random-cluster measure” on the square lattice L

2.

By duality, 1 − pk = φ0
p′,q(SW(k)), where SW(k) is the event that the rectangle

[0,2k+1 − 1] × [0,2k + 1] is traversed short-ways, and p′ is the dual value of p,

p′

1 − p′ = q(1 − p)

p
.

Therefore,
∞∑

k=1

(1 − pk) ≤
∞∑

k=1

2k+1φ0
p′,q

(
rad(C) ≥ 2k + 1

)

≤ 4
∞∑

n=1

φ0
p′,q

(
rad(C) ≥ n

)

= 4φ0
p′,q(rad(C)),

where rad(C) is the radius of the open cluster C at the origin, that is, the maximum
value of n such that 0 is joined by an open path to the boundary of the box [−n,n]2.
It follows by Theorem 6.1 that

φ0
p′,q(rad(C)) < ∞, p′ < psd(q),

is sufficient for pc(q) = psd(q).

REFERENCES

[1] BATTY, C. J. K. and BOLLMANN, H. W. (1980). Generalised Holley–Preston inequalities on
measure spaces and their products. Z. Wahrsch. Verw. Gebiete 53 157–173. MR0580910

[2] BEN-OR, M. and LINIAL, N. (1990). Collective coin flipping. In Randomness and Computa-
tion 91–115. Academic Press, New York.

[3] BEZUIDENHOUT, C. E., GRIMMETT, G. R. and KESTEN, H. (1993). Strict inequality for
critical values of Potts models and random-cluster processes. Comm. Math. Phys. 158
1–16. MR1243713

[4] BOLLOBÁS, B. and RIORDAN, O. (2006). The critical probability for random Voronoi perco-
lation in the plane is 1

2 . Probab. Theory Related Fields 136 417–468.

http://www.ams.org/mathscinet-getitem?mr=0580910
http://www.ams.org/mathscinet-getitem?mr=1243713


INFLUENCE FOR MONOTONIC MEASURES 1745

[5] BOLLOBÁS, B. and RIORDAN, O. (2006). A short proof of the Harris–Kesten theorem. Bull.
London Math. Soc. 38 470–484.

[6] BOURGAIN, J., KAHN, J., KALAI, G., KATZNELSON, Y. and LINIAL, N. (1992). The influ-
ence of variables in product spaces. Israel J. Math. 77 55–64. MR1194785

[7] CHAYES, J. T. and CHAYES, L. (1986). Percolation and random media. In Critical Phenomena,
Random Systems and Gauge Theories (K. Osterwalder and R. Stora, eds.) 1001–1142.
North-Holland, Amsterdam. MR0880545

[8] FORTUIN, C. M. (1972). On the random-cluster model. III. The simple random-cluster process.
Physica 59 545–570. MR0432137

[9] FORTUIN, C. M., KASTELEYN, P. W. and GINIBRE, J. (1971). Correlation inequalities on
some partially ordered sets. Comm. Math. Phys. 22 89–103. MR0309498

[10] FRIEDGUT, E. (2004). Influences in product spaces: KKL and BKKKL revisited. Combin.
Probab. Comput. 13 17–29. MR2034300

[11] FRIEDGUT, E. and KALAI, G. (1996). Every monotone graph property has a sharp threshold.
Proc. Amer. Math. Soc. 124 2993–3002. MR1371123

[12] GRIMMETT, G. R. (1999). Percolation. Springer, Berlin. MR1707339
[13] GRIMMETT, G. R. (2003). The random-cluster model. In Probability on Discrete Structures.

Encyclopedia of Mathematical Sciences (H. Kesten, ed.) 110 73–123. Springer, Berlin.
MR2023651

[14] GRIMMETT, G. R. (2006). The Random-Cluster Model. Springer, Berlin.
[15] HÄGGSTRÖM, O., KALAI, G. and MOSSEL, E. (2005). A law of large numbers for weighted

majority. Adv. in Appl. Math. 37 112–123. MR2232083
[16] KAHN, J., KALAI, G. and LINIAL, N. (1988). The influence of variables on Boolean func-

tions. In Proceedings of 29th Symposium on the Foundations of Computer Science 68–80.
Computer Science Press.

[17] PRESTON, C. J. (1974). A generalization of the FKG inequalities. Comm. Math. Phys. 36
233–241. MR0341553

[18] RUSSO, L. (1978). A note on percolation. Z. Wahrsch.Verw. Gebiete 43 39–48. MR0488383
[19] RUSSO, L. (1981). On the critical percolation probabilities. Z. Wahrsch. Verw. Gebiete 56

229–237. MR0618273
[20] RUSSO, L. (1982). An approximate zero–one law. Z. Wahrsch. Verw. Gebiete 61 129–139.

MR0671248
[21] SEYMOUR, P. D. and WELSH, D. J. A. (1978). Percolation probabilities on the square lattice.

In Advances in Graph Theory (B. Bollobás, ed.) 227–245. North-Holland, Amsterdam.
MR0494572

[22] TALAGRAND, M. (1994). On Russo’s approximate zero–one law. Ann. Probab. 22 1576–1587.
MR1303654

STATISTICAL LABORATORY

UNIVERSITY OF CAMBRIDGE

WILBERFORCE ROAD

CAMBRIDGE CB3 0WB
UNITED KINGDOM

E-MAIL: b.t.graham@statslab.cam.ac.uk
g.r.grimmett@statslab.cam.ac.uk

URL: http://www.statslab.cam.ac.uk/~grg

http://www.ams.org/mathscinet-getitem?mr=1194785
http://www.ams.org/mathscinet-getitem?mr=0880545
http://www.ams.org/mathscinet-getitem?mr=0432137
http://www.ams.org/mathscinet-getitem?mr=0309498
http://www.ams.org/mathscinet-getitem?mr=2034300
http://www.ams.org/mathscinet-getitem?mr=1371123
http://www.ams.org/mathscinet-getitem?mr=1707339
http://www.ams.org/mathscinet-getitem?mr=2023651
http://www.ams.org/mathscinet-getitem?mr=2232083
http://www.ams.org/mathscinet-getitem?mr=0341553
http://www.ams.org/mathscinet-getitem?mr=0488383
http://www.ams.org/mathscinet-getitem?mr=0618273
http://www.ams.org/mathscinet-getitem?mr=0671248
http://www.ams.org/mathscinet-getitem?mr=0494572
http://www.ams.org/mathscinet-getitem?mr=1303654
mailto:b.t.graham@statslab.cam.ac.uk
mailto:g.r.grimmett@statslab.cam.ac.uk
http://www.statslab.cam.ac.uk/~grg

	Introduction
	Influence for monotonic measures
	Sharp-threshold theorem
	Probability measures on the Euclidean cube
	The random-cluster model
	The critical point
	References
	Author's Addresses

