
The Annals of Probability
2006, Vol. 34, No. 5, 1693–1706
DOI: 10.1214/009117906000000296
© Institute of Mathematical Statistics, 2006

ON LAWS OF LARGE NUMBERS FOR RANDOM WALKS

BY ANDERS KARLSSON1 AND FRANÇOIS LEDRAPPIER2

Royal Institute of Technology and University of Notre Dame

We prove a general noncommutative law of large numbers. This applies
in particular to random walks on any locally finite homogeneous graph, as
well as to Brownian motion on Riemannian manifolds which admit a com-
pact quotient. It also generalizes Oseledec’s multiplicative ergodic theorem.
In addition, we show that ε-shadows of any ballistic random walk with finite
moment on any group eventually intersect. Some related results concerning
Coxeter groups and mapping class groups are recorded in the last section.

1. Introduction. The strong law of large numbers, certainly a fundamental
result in probablility theory, asserts that for a sequence of i.i.d. random variables Xi

taking values in R,

1

n
(X1 + X2 + · · · + Xn) → E(X1)

almost surely, provided E|X1| < ∞. One might wonder, as Bellman [5],
Kesten [22] and Furstenberg [11] did in the 1950’s and 60’s, whether there ex-
ist generalizations of this law when the random variables instead take values in a
more general, noncommutative group G. In other words, what can be said about
the behavior of

Zn := g1g2 · · ·gn

as n → ∞ where gi are i.i.d. in G (cf. the Introduction of [11])? Note that it is
not even clear how to formulate a statement that would generalize the law of large
numbers, let alone how to prove it. The aforementioned three authors studied the
case of free groups and groups of matrices. For example, Furstenberg and Kesten
proved in [10] that for matrices, the limit

lim
n→∞

1

n
log‖Zn‖,

where ‖·‖ denotes a matrix norm, exists almost surely. Later on in that decade, this
was generalized in two very important ways: first, Kingman’s subadditive ergodic
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theorem [23], which showed that the reason for the above convergence has little
to do with matrices, it being instead an immediate consequence of a fundamental
abstract result; second, Oseledec’s multiplicative ergodic theorem [26] (a different
form of this was also proved by Millionshchikov [24]), which asserted in the matrix
case that there moreover exists a random positive symmetric matrix � for which

lim
n→∞

1

n
log‖(Zn�

−n)±1‖ → 0.

(This was not quite the original formulation; see [15].) In words, this says that
there exists an “average” matrix � = �(ω) whose powers approximate the random
product Zn(ω), similar to the classical law of large numbers, except that Zn is
written multiplicatively.

For a general group G, we need a substitute for the matrix norm. In the case
of finitely generated groups, a good candidate is the word metric; see below. Ulti-
mately, we will consider the situation of any G which acts by isometry on a metric
space. This includes the classical law of large numbers (translations are isome-
tries of R), Oseledec’s theorem [invertible matrices are isometries of the space of
symmetric positive definite matrices PosN(R)] and the action of a finitely gener-
ated group on itself (the word metric is left invariant), or, what amounts to the same
thing, random walks on the underlying Cayley graph. Thus, the setting of G acting
by isometry on a metric space X is a very general and natural one for extensions
of the law of large numbers.

We now recall the concepts of Cayley graphs and word metrics. When a group G

is generated by a set S, one can consider the associated Cayley graph X(G,S): the
vertices are the elements of G, and two vertices g and h are adjacent if and only
if they differ by an element of S on the right, so g = hs±1. The action of G on
itself by left translation is an action of graph automorphisms of X and hence an
isometric action with respect to the associated graph distance, which is often called
the word metric.

The most familiar examples of Cayley graphs are the standard graph of ZN

(a lattice) and the free group FN (a 2N -regular tree). Suppose that the set S is
finite and the distribution of gi is uniform on S. Then notice that Zn = g1g2 · · ·gn

is a simple random walk on the graph X(G,S).
In this paper we prove a rather general law of large numbers for random walks

on groups. We actually work in a setting more general than i.i.d., namely the sta-
tionary or ergodic setting. More precisely, let (�,µ) be a standard Borel space
with µ(�) = 1 and L :� → � an ergodic measure-preserving transformation.
Let G be a topological group (e.g., any group with the discrete topology) with
its Borel σ -algebra. Assume that g :� → G is a measurable map and let

Zn(ω) = g(ω)g(Lω) · · ·g(Ln−1ω).

To fix the terminology, we will refer to Zn as an ergodic cocycle in the general
case, and in the i.i.d. case, Zn is a random walk.
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Let X be a proper metric space (i.e., closed bounded sets are compact) and fix a
basepoint x0 ∈ X. A horofunction h :X → R is a limit function

h(z) = lim
n→∞d(xn, z) − d(xn, x0)

for some sequence of points xn → ∞ in X, where the convergence is uniform
on compact sets. Suppose G acts by isometry on X so that φ :G → Isom(X) is
measurable (we will suppress φ). For example, X could be a Cayley graph of G in
the case where G is finitely generated, or the space of positive definite symmetric
matrices PosN in the case where G is a group of real matrices. Assume that the
cocycle is integrable, that is∫

�
d
(
g(ω)x0, x0

)
dµ < ∞.

In the random walk case, this condition is that of finiteness of the first moment.
By subadditivity, which follows from the triangle inequality and the isometry

property, Kingman’s theorem implies that

A := lim
n→∞

1

n
d(Znx0, x0)

exists almost surely and is independent of ω, by ergodicity. We prove the follow-
ing, general, noncommutative law of large numbers, or in a different terminology,
multiplicative ergodic theorem:

THEOREM 1.1. Let X be a proper metric space and Zn an integrable ergodic
cocycle taking values in Isom(X). Then, for almost every ω, there is a horofunction
h = hω depending measurably on ω such that

lim
n→∞−1

n
h(Znx0) = A,

where A := limn→∞ 1
n
d(Znx0, x0).

This theorem makes a nontrivial statement about the behavior of simple random
walk on any finitely generated nonamenable group (as it is known in this case that
A > 0, see Theorem 1.3 below).

Here is a related result which applies to any group, in the sense that no proper-
ness is assumed:

THEOREM 1.2. Assume that Zn is a ballistic random walk on a group. Then,
for any ε > 0 and almost every trajectory, there is a time after which any finite
collection of ε-shadows of the trajectory intersect.

(See Section 5 for further explanation.) We will note at the end of Section 5
that, in fact, Theorem 1.1 implies Theorem 1.2 in the case where the metric space
is proper. It is relevant to recall here a theorem of Guivarc’h [12]:
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THEOREM 1.3. Let G be a locally compact group generated by compact set V

and denote by δV the corresponding word metric. Assume ν is a probability mea-
sure on G whose support generates G as a semigroup and denote by Zn the cor-
responding random walk. If G is nonamenable and∫

G
δV (g) dν(g) < ∞,

then there is a number A > 0 such that almost surely

lim
n→∞

1

n
δV (Zn) = A.

Guivarc’h wrote in [13] that this theorem does not treat the directional behavior
of Zn and hence often gives very partial information. Our Theorems 1.1 and 1.2 do
indeed provide information on the directional behavior of Zn and they do so even
in the ergodic setting (whenever A > 0).

2. Horofunctions. Horofunctions have their origin in non-Euclidean geome-
try. More general definitions have been considered by Busemann and later by Gro-
mov in [4], which was recalled in the Introduction. Horofunctions have been stud-
ied for spaces of nonpositive curvature, nonnegative curvature, as well as Gromov
hyperbolic spaces; see [6]. More recent investigations on horofunctions include
[28] and [21] for finite-dimensional Banach spaces and [30] for certain finitely
generated groups.

A geodesic ray γ is a map γ : [0,∞) → X which is an isometry onto its im-
age. Busemann associated to any geodesic ray γ : [0,∞) → X with γ (0) = x0,
a horofunction hγ , as follows:

hγ (z) = lim
n→∞d

(
γ (n), z

) − n.

The limit exists by monotonicity coming from the triangle inequality. The conver-
gence is moreover uniform if X is proper, as can be seen from a 3ε-proof using the
compactness of closed balls.

More generally, let X be a proper metric space (i.e., closed bounded sets are
compact), and fix a basepoint x0 ∈ X. Let


 :X → C(X)

be defined by x �→ d(x, ·) − d(x, x0) and where the topology on C(X) is uniform
convergence on compact sets. It can be checked that 
 is a continuous injection
and we identify X with its image. Let H = 
(X). It is easy to verify, since X is
proper and |h(z)| ≤ d(z, x0), that H is a compact metrizable space. By definition,
the points in H \ 
(X) are the horofunctions (based at x0). The space H is a
compactification of X, since X sits (via 
) inside it as an open dense subset.
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The action of Isom(X) on X extends continuously to an action by homeomor-
phisms to the whole of H and is given by

g · h(z) = h(g−1z) − h(g−1x0),

as is straightforward to check.
A complete metric space X is a CAT(0)-space or nonpositively curved if for

any x, y ∈ X, there exists a point z such that

d(x, y)2 + 4d(z,w)2 ≤ 2d(x,w)2 + 2d(y,w)2

holds for every w ∈ X. This inequality is called the semiparallelogram law, mo-
tivated by the fact that in case of equality, it is the usual parallelogram law for
Hilbert spaces. Apart from Euclidean spaces, other main examples are the classi-
cal hyperbolic spaces and PosN(R).

For simplicity, we assume in addition that X is proper. There is a standard
boundary ∂X and compactification X ∪ ∂X associated to X where ∂X is the set of
all geodesic rays from x0. The topology is given by shadows of balls (cf. Section 5).
For Euclidean or hyperbolic spaces, ∂X is the sphere at infinity. This compactifi-
cation turns out to be homeomorphic to H above. We refer to [6] for more details
on these topics.

3. A law of large numbers for noncommuting random products. Any
group G clearly acts faithfully by isometry on some metric space, since it, for ex-
ample, acts on l2(G) (with respect to a Haar measure or the counting measure) or
the cone of positive functions on G equipped with Hilbert’s metric. Many impor-
tant groups, for example, every linear group, admit actions on nicer metric spaces
than the ones just mentioned. Moreover, any finitely generated group acts faithfully
on a proper metric space, since it acts by isometry on an associated Cayley graph.
In view of this, we propose the following (already formulated in the Introduction)
as an appropriate generalization of the classical strong law of large numbers to
groups:

THEOREM 3.1. Let X be a proper metric space and Zn an integrable ergodic
cocycle taking values in Isom(X). Then, for almost every ω, there is a horofunc-
tion h (depending on ω) such that

lim
n→∞−1

n
h(Znx0) = A,

where A = limn→∞ d(Znx0, x0)/n.

When specialized to G = GLN(R) and X = PosN(R), this statement is in
fact equivalent to Oseledec’s theorem: h corresponds to � above. This is ex-
plained in [20]. It can be illustrated in the simplest case of R, that is, the law
of large numbers itself (or Birkhoff’s ergodic theorem). Namely, the strong law
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of large numbers not only asserts that |Zn|/n → A = |E(X1)|, but that actually
Zn/n → E(X1). This shows the separateness of the issues of speed (the existence
of A) and direction (the existence of h), in the most simple case.

QUESTIONS. What about random walks on graphs which are not homoge-
neous? What remains true if X is no longer proper? Do limits along trajectories
with respect to other horofunctions also exist? It seems plausible that to each of
these questions, possibly with the exception of extensions to nonproper spaces,
there will be counterexamples to the naïve extensions. What about Conjecture 8.1
in [20] where isometries are replaced by semicontractions?

REMARK 3.2. The theorem also applies to the corresponding statement for
Brownian motion Bt (replace Znx0 by Bt in the statement) on Riemannian man-
ifolds which have a cocompact group of isometries �, since one can then pass
either to a random walk (Furstenberg, Lyons–Sullivan) or a ergodic cocycle on �

as is well known (see, e.g., Section 4 in [20]).

In order to explain which were the previously-known cases of the theorem, we
first need to establish a proposition:

PROPOSITION 3.3. Let xn be a sequence of points in X and A ≥ 0. Assume
that there is a geodesic ray γ such that d(xn, γ (An))/n → 0. Then

lim
n→∞−1

n
hγ (xn) = A.

PROOF. For any horofunction h it is true that |h(xn)| ≤ d(xn, x0), from the
triangle inequality. Since d(xn, x0)/n → A, this implies that

lim inf
n→∞

1

n
hγ (xn) ≥ −A.

On the other hand, note that for t > An, we have d(γ (t), xn) ≤ t − An +
d(γ (An), xn). Hence,

hγ (xn) ≤ −An + d
(
γ (An), xn

)
,

and the proposition follows on dividing by n and taking the limit as n → ∞. �

The notion of {xn} being of sublinear distance from a geodesic ray—ray ap-
proximation—was introduced and studied by Kaimanovich [14], who, in the case
of symmetric spaces of nonpositive curvature (e.g., classical hyperbolic spaces
and PosN ), in fact characterized such sequences [15]. Hence Theorem 3.1 was
known (in view of the proposition) in these cases. For general proper (also non-
proper) CAT(0)-spaces, the theorem was established by Karlsson and Margulis
in [19]. More precisely, an equivalent version of it was established (see [20]). There
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are some works on laws of large numbers in a stronger sense; see [16] concerning
splittable solvable Lie groups. Note also that with the help of an idea of Delzant,
Kaimanovich established ray approximation (and hence also Theorem 3.1 in this
case) for Gromov hyperbolic spaces; see [18]. Some other papers establishing this
type of law of large numbers include [7] and [25].

REMARK 3.4. In the case where X is Gromov hyperbolic, it is known that for
any two horofunctions h1 and h2 associated to sequences converging to ξ in the
Gromov boundary, there is a constant C such that |h1(z)−h2(z)| < C for all z ∈ X

(see [6]), and for a boundary point ξ , there may indeed be several such associated
horofunctions. This shows that the h in the theorem is not necessarily unique (it is
unique only up to suitable equivalence).

4. The proof of Theorem 1.1. Assume the notation of the previous sections.
In particular, let X be a proper metric space on which G acts by isometry and let H

be the compactification adding horofunctions to X.
Define for g ∈ G and h ∈ H , F(g,h) = −h(g−1x0) and note the following

cocycle relation:

F(g1, g2h) + F(g2, h) = −(g2 · h)(g−1
1 x0) − h(g−1

2 x0)

= −h(g−1
2 g−1

1 x0) + h(g−1
2 x0) − h(g−1

2 x0)

= F(g1g2, h).

Note also that for any g ∈ G,

d(x0, gx0) = max
h∈H

F(g,h),

since F(g,
(g−1x0)) = −d(g−1x0, g
−1x0) + d(g−1x0, x0).

Let Zn(ω) be an integrable cocycle taking values in G, as in the Introduction.
We define the skew product L :� × H → � × H via

L(ω,h) = (
Lω,g(ω)−1h

)
.

Let F(ω,h) = F(g(ω)−1, h). Since |F(g(ω)−1, h)| ≤ d(x0, g(ω)x0) and because
of the basic integrability assumption in the Introduction, F is in L1(�,C(H)). For
detailed information about skew products that we will need here, see [1], Chap-
ter 1.

Using the cocycle relation, we have

Fn(ω,h) :=
n−1∑
i=0

F
(
L

i
(ω,h)

)

= F
(
g(ω)−1, h

) + F
(
g(Lω)−1, g(ω)−1 · h) + · · ·

+ F
(
g(Ln−1ω)−1, g(Ln−2ω)−1 · · ·g(ω)−1 · h)

= F
(
Zn(ω)−1, h

)
.
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By the subadditive ergodic theorem,

A := lim
n→∞

1

n
d
(
Zn(ω)x0, x0

) = inf
n>0

1

n

∫
�

d
(
Zn(ω)x0, x0

)
dµ(ω)

= inf
n>0

1

n

∫
�

max
h∈H

Fn(ω,h)dµ(ω).

Consider the space of probability measures ν on � × H which projects onto µ

on �, that is, ν(B × H) = µ(B) for any measurable set B ⊂ �. The topology is
the weak topology coming from the duality with L1(�,C(H)); see [1], page 27.
For each n, choose a probability measure µn in this set such that

1

n

∫
�×H

Fn(ω,h)dµn(ω,h) ≥ A.

For example, the measures defined by µω = δ
(Zn(ω)) in the terminology of [1],
pages 22–25, would do.

Let

ηn = 1

n

n−1∑
i=0

(L
i
)∗µn

and let η be a weak limit of these measures, which is possible due to the weak
sequential compactness ([1], page 27).

The space of L-invariant probability measures projecting onto µ and satisfying∫
F dν ≥ A is a compact, convex set. It is nonempty because η belongs to this set.

Indeed, it is clearly a probability measure, and the invariance is simple to check.
Moreover, it is set up by construction so that

∫
F dηn ≥ A and, by definition of

weak limits, this property passes to η as well. The Krein–Milman theorem implies
that the set has an extreme point η0 which must be an ergodic measure for L by a
standard argument.

The Birkhoff ergodic theorem implies that for (ω,h) in a set P ⊂ � × H of
η0-measure 1, we have

lim
n→∞

1

n

n−1∑
i=0

F
(
L

i
(ω,h)

) =
∫
�×H

F dη0 ≥ A.

On the other hand, the left-hand side equals

lim
n→∞−1

n
h
(
Zn(ω)x0

) ≤ A.

We therefore have equality everywhere. Since η0 projects onto µ, we have that for
µ-almost every ω, there is a nonempty set of h with the desired property. Finally,
we will appeal to a measurable section theorem:

There is a Polish topology on � compatible with the standard Borel structure
and such that the projection f :� × H �→ � maps open sets to Borel set, and the
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inverse image of each point in � is a closed subset. By regularity of η0, we can find
closed subsets of P with arbitrarily large measure. These subsets are Polish spaces
for the induced topology and the restriction of f still satisfies the hypotheses of
Theorem 3.4.1 in [2], which then gives a (partially-defined) cross section. Putting
them together yields a measurable, a.e. defined cross section ω �→ (ω,hω) with hω

having the desired property.

5. Shadows of ballistic walks intersect. Let X be a metric space and fix a
base point x0. The ε-shadow of a point y is

Uε(y) := {z :d(x0, y) + d(y, z) ≤ d(x0, z) + εd(x0, y)}.
In words, it is the set of points which almost lie on a geodesic ray passing

through x0 and y. More precisely, if γ is a geodesic connecting x0 and y, then
U0(y) consists of all the points belonging to a geodesic extension of γ beyond y.
For CAT(0)-spaces, the sets Uε(z) constitute a basis of open sets for X ∪ ∂X.

We will use a subadditive ergodic lemma from [19]. Note, however, that a
lemma of similar type was proved by Pliss in [27] and that this has been very use-
ful in smooth dynamics. Suppose a(n,ω) is a sequence of measurable functions
satisfying

a(n + m,ω) ≤ a(n,ω) + a(m,Lnω),

for every n,m ≥ 1 and every ω. Assume that∫
�

|a(1,ω)|dµ(ω) < ∞
and

A := inf
1

n

∫
�

a(n,ω)dµ(ω) > −∞.

One can then prove (see [19], or [20] for an alternate proof ):

LEMMA 5.1. For almost every ω, we have that for any ε > 0, there exists K

and infinitely many n such that

a(n,ω) − a(n − k,Lkω) ≥ (A − ε)k(1)

for all K ≤ k ≤ n.

Now let G be a group. Assume that G acts on a metric space (X,d)—for ex-
ample, X could be G itself with an invariant metric d , such as a word metric. Let
g1 :� → G → Isom(X) be a measurable map such that∫

�
d
(
g1(ω)x0, x0

)
dµ(ω) < ∞.
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Now, as usual, let Zn(ω) = g1(ω)g1(Lω) · · ·g1(L
nω) and assume that the cocycle

or walk is ballistic, that is,

A := inf
n>0

1

n

∫
�

d
(
Zn(ω)x0, x0

)
dµ(ω) > 0.

We can then prove the following:

THEOREM 5.2. For almost every trajectory {Zn(ω)x0} and ε > 0, there is an
integer N = N(ω, ε) such that for any M > N ,

M⋂
k=N

Uε(Zkx0) �= ∅.

PROOF. Let ε > 0 be given and let δ > 0 be small so that 2δ/(A + δ) < ε.
Choose N larger than K in Lemma 5.1 applied to a(n,ω) := d(Zn(ω)x0, x0)

with “ε” = δ, and sufficiently large that a(k,ω) < (A + δ)k for all k ≥ N . By
Lemma 5.1, there is an n larger than M such that

a(n,ω) − a(n − k,Lkω) ≥ (A − δ)k

for all N ≤ k ≤ n. From this inequality, and in view of the invariance of d , we have

d(Znx0, x0) − d(Znx0,Zkx0) ≥ (A + δ)k − 2δk

≥
(

1 − 2δ

A + δ

)
(A + δ)k

≥ (1 − ε)d(Zkx0, x0).

Rearranging the terms yields

d(x0,Zkx0) + d(Zkx0,Znx0) ≤ d(Znx0, x0) + εd(x0,Zkx0),

or, in other words, that Znx0 ∈ Uε(Zkx0) for all N ≤ k ≤ M , and hence the inter-
section in the theorem is nonempty. �

REMARK 5.3. Note that the appearance of ε is natural; ε = 0 would give very
thin sets and the theorem would be false. The set U0(y) can be just a geodesic
ray or even equal {y} in general. One could use the shadows to contruct a bound-
ary such that ballistic random walks would converge to points in this boundary.
This is consistent with the fact that a simple, symmetric random walk on a finitely
generated group where A > 0 has a nontrivial Poisson boundary, as proved by
Varopoulos in [29].

REMARK 5.4. The same proof as above works if one replaces isometries by
semicontractions, which, by definition, are self-maps X → X with Lipschitz con-
stant 1.
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Here is a corollary to illustrate the above phenomenon (a stronger result was
proven in [19], with more elaborate geometric arguments, and in Theorem 1.1
above):

COROLLARY 5.5. Assume that X is a proper CAT(0)-space. Then, for almost
every ω, Zn(ω)x0 converges to a point in ∂X.

PROOF. Suppose there were two limit points γ1 and γ2 in ∂X. Then the
ε-shadows, for some fixed ε > 0, of points in the subsequence approaching γ1
versus the ones approaching γ2, will eventually stop to intersect (in view of the
fact that shadows generate the topology of ∂X). This contradicts the theorem. �

Apart from the symmetric spaces of nonpositive curvature, such as PosN ,
and spaces of pinched negative curvature, the corollary was first proved by
Ballmann [3] in the case of random walks on G acting cocompactly (or just satisfy-
ing the duality condition) and X having rank 1. Note also that, in general, A > 0 is
necessary, since the corollary is false for symmetric random walks on ZN and RN .

Finally, we compare the theorems we obtain. Note that z ∈ Uε if and only if

(z)(y) ≤ (ε − 1)d(x0, y). Therefore, Vε(y), the closure of 
(Uε(y)) in H , is the
set of horofunctions h such that h(y) ≤ (ε − 1)d(x0, y). Theorem 1.1 says that for
almost every ω, the intersection over all sufficiently large n of the sets Vε(Zn(ω))

is not empty in H . This gives Theorem 5.2 (in the proper case) since the finite
intersections have open interiors; if they are nonempty, they have to contain points
from 
(X).

6. Comments on two special cases. We wish to end this paper by recording
a couple of related results which have not appeared in the literature.

6.1. Coxeter groups. Let (W,S) be a finitely generated Coxeter group. These
groups arise in several areas of mathematics. Moussong showed that there is an
associated CAT(0)-space X on which W acts properly and cocompactly by isome-
tries; see [6]. It follows that the number of orbit points grows at most exponentially
with the radius. This is a case where Corollary 6.2 in [19] applies and we can state
the following:

THEOREM 6.1. Let (W,S) be a finitely generated Coxeter group and (X,d)

its associated Moussong complex. Assume ν is a probability measure on W such
that ∫

W
d(gx0, x0) dν(g) < ∞

for some (and hence any) x0 ∈ X. Then the Poisson boundary of (W,ν) is either
trivial or isomorphic to ∂X with the induced hitting measure.
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6.2. Mapping class groups. The mapping class groups of surfaces play an im-
portant role in low-dimensional topology. They act by isometry on the associated
Teichmüller space equipped with the Weil–Petersson metric. This metric is nega-
tively curved but not complete. The main theorem in [19], however, assumes com-
pleteness of the space. But in view of recent works on the Weil–Petersson metric
and a proof analysis, we can now formulate the following new theorem:

THEOREM 6.2. Let Zn be an integrable ergodic cocycle taking values in the
mapping class group Mg and let x0 be a point in Teichg . Then almost every tra-
jectory Znx0 lies on sublinear distance from a Weil–Petersson geodesic ray γ , or
equivalently,

lim
n→∞−1

n
hγ (Znx0) = A,

where A = limn→∞ d(Znx0, x0)/n and d is the Weil–Petersson metric.

PROOF. The Weil–Petersson metric on Teichmüller space Teichg is known to
have everywhere negative sectional curvature, but it is not complete. It is, however,
geodesically convex and moreover, recent investigations (see [8]) on the metric
space closure have shown that geodesics which meet the boundary (at finite dis-
tance) terminate and cannot be extended. In the proof of [19], it is only used that
any two points can be joined by a geodesic segment in X. The limiting geodesic
constructed there is the limit γ (R) of Cauchy sequences γi(R) of points on geo-
desics. The limit belongs to the completion. But now, in view of the above facts
about Weil–Petersson geodesics, it is clear that all the points in γ must actually lie
inside the space Teichg (as opposed to merely in the completion). So the statement
of the main theorem in [19] holds also in the current situation, which in turn is
equivalent to the horofunction statement as proven in [20]. �

Note here that an identification of the Poisson boundary for random walks on
the mapping class groups was obtained by Kaimanovich and Masur in [17]. Quite
recently, Duchin [9] proved a multiplicative ergodic theorem (geodesic ray ap-
proximation) for the mapping class groups acting on the Teichmüller space with
the Teichmüller metric.
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