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CENTRAL LIMIT THEOREM FOR STATIONARY
LINEAR PROCESSES

BY MAGDA PELIGRAD1 AND SERGEY UTEV

University of Cincinnati and University of Nottingham

We establish the central limit theorem for linear processes with depen-
dent innovations including martingales and mixingale type of assumptions
as defined in McLeish [Ann. Probab. 5 (1977) 616–621] and motivated by
Gordin [Soviet Math. Dokl. 10 (1969) 1174–1176]. In doing so we shall pre-
serve the generality of the coefficients, including the long range dependence
case, and we shall express the variance of partial sums in a form easy to apply.
Ergodicity is not required.

1. Introduction. Let (ξi)i∈Z be a stationary sequence of random variables
with E[ξ2

0 ] < ∞ and E[ξ0] = 0. Let (ai)i∈Z be a sequence of real numbers such
that

∑
i∈Z a2

i = A < ∞ and denote by

Xk =
∞∑

j=−∞
ak+j ξj , Sn =

n∑
k=1

Xk,

(1)

bn,j = aj+1 + · · · + aj+n and b2
n =

∞∑
j=−∞

b2
n,j .

The so-called noncausal linear process (Xk)k∈Z is widely used in a variety of
applied fields. It is properly defined for any square summable sequence (ai)i∈Z if
and only if the stationary sequence of innovations (ξi)i∈Z has a bounded spectral
density. In general, the covariances of (Xk)k∈Z might not be summable so that
the linear process might exhibit long range dependence. An important question is
to describe the asymptotic properties of the variance and the asymptotic behavior
of Sn properly normalized. In this paper we shall address both these questions.
A simple result with very useful consequences is contained in Lemma A.3(iii).
It turns out that, when the innovations have a continuous spectral density f (x),
the variance of Sn is asymptotically proportional to f (0)b2

n, up to a numerical
constant. This fact suggests to further study the asymptotic distribution of Sn/bn.
As we shall see in this paper, if the sequence (ξi)i∈Z is a martingale difference
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sequence or its partial sums can be approximated in a certain way by martingales,
then, despite the long range dependence, Sn/bn satisfies a certain central limit
theorem.

To allow for flexibility in applications, we define a stationary filtration as in [17].
We assume that ξi = g(Yj , j ≤ i), where (Yi)i∈Z is an underlying stationary se-
quence. Denote by I its invariant sigma field and by (Fi )i∈Z an increasing filtration
of sigma fields Fi = σ(Yj , j ≤ i). The pair [(Fi )i∈Z;I] will be called a stationary
filtration. For the case when for every i, ξi = Yj , and g(Yj , j ≤ i) = Yi, then Fi is
simply the sigma algebra generated by ξj , j ≤ i.

In the sequel ‖ · ‖2 denotes the norm in L2,‖X‖2 = (E[X]2)1/2.
We shall establish the following result:

THEOREM 1. Let (ξi)i∈Z be a stationary sequence with E[ξ2
1 ] < ∞,

E[ξ0] = 0 and stationary filtration [(Fi )i∈Z;I]. Define (Xk)k≥1, Sn and bn as
above and assume bn → ∞ as n → ∞. Assume that

�j =
∞∑

k=0

∣∣E[ξkE(ξ0|F−j )]
∣∣ < ∞ for all j and

(2)
1

p

p∑
j=1

�j → 0 as p → ∞.

Then, (ξi)i∈Z has a continuous spectral density f (x) and there is a nonnega-
tive random variable η measurable with respect to I such that n−1E((

∑n
k=0 ξk)

2|
F0) → η in L1 as n → ∞ and E(η) = 2πf (0). In addition,

lim
n→∞

Var(Sn)

b2
n

= 2πf (0) and

(3)
Sn

bn

�⇒ √
ηN in distribution as n → ∞,

where N is a standard normal variable independent of η. Moreover, if the sequence
(ξi)i∈Z is ergodic and condition (2) is satisfied, then the central limit theorem in (3)
holds with η = 2πf (0).

The following corollary extends the projective CLT theorem of Volny [22]
(which, in turn, was inspired by Heyde [11], Theorem 2) and Corollary 2 (mixin-
gale type CLT) of Maxwell and Woodroofe [17] to dependent sequences generated
by linear processes and, in addition, proves the continuity of the corresponding
spectral density. This corollary also develops a result by Wu and Min [24] who
considered the case of absolute summable weights.
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COROLLARY 2. Let (ξi)i∈Z be a stationary sequence with E(ξ2
1 ) < ∞,

E[ξ0] = 0 and stationary filtration [(Fi )i∈Z;I]. Consider the projection opera-
tor Pi(Y ) = E[Y |Fi] − E[Y |Fi−1] and assume that

E(ξ0|F−∞) = 0 almost surely and
∞∑
i=1

‖P−i(ξ0)‖2 < ∞.(4)

Then, the conclusion of Theorem 1 holds. In particular, (4) is satisfied if

∞∑
n=1

n−1/2‖E(ξn|F0)‖2 < ∞.(5)

To comment on the conditions used in our results, first we mention that as-
sumption (2) implies that the initial sequence (ξi)i∈Z satisfies the Gordin martin-
gale approximation condition (8) defined later. Various conditions are known to
be sufficient for (8), such as the original Gordin condition, supn ‖E(ξ1 + · · · +
ξn|F0)‖2 < ∞ and its modifications introduced in [11], Theorem 1, or in [9], The-
orem 5.2, in [5, 7, 17, 19]. By considering telescoping sums ξn = Qn − Qn−1
with the stationary sequence (Qi)i∈Z having an unbounded spectral density, one
can easily show that those conditions are not enough for (3). On the other hand,
examples similar to those in [22], Theorem 7, show that the Gordin type condi-
tions mentioned above, imposed to partial sums, are not necessary for (3) and (4).
As a matter of fact, we shall construct an example to show that the conditions of
Corollary 2 are optimal.

PROPOSITION 3. Let ψi be a sequence of nonnegative numbers such that
ψn → 0 as n → ∞. Then, there exists a strictly stationary ergodic sequence
(ξi)i∈Z with unbounded spectral density such that

∞∑
n=1

ψn

n1/2 ‖E(ξn|F 0−∞)‖2 < ∞ and
∞∑

n=1

ψn‖P−n(ξ0)‖2 < ∞.

It seems that even for martingales our result is new and extends the CLT of
Ibragimov [13] for linear processes with i.i.d. innovations and also the CLT of
Billingsley [1] and Ibragimov [14] for stationary ergodic martingale differences
to linear processes of stationary martingale differences. It also incorporates corre-
sponding results by Heyde [11] and Hannan [10].

PROPOSITION 4. Let (ξi)i∈Z be a stationary sequence of martingale differ-
ences with finite second moment σ 2. Then (3) holds. Moreover, one can choose
η = E(ξ2

0 |I). In particular, if the martingale difference is ergodic, η = E(ξ2
0 |

I) = σ 2.
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The paper is organized as follows. Proofs are given in Section 2. Various exam-
ples are collected in Section 3. Among them is an application to strongly mixing
structures that provides a sharp result under minimal assumptions. This section
also contains the proof of Proposition 3. Finally, the Appendix gathers some tech-
nical facts about some sequences of numbers and spectral densities of stationary
processes summarized as a few lemmas.

2. Proofs.

PROOF OF PROPOSITION 4. Denoting by bn,j = aj+1 + · · · + aj+n, we ex-
press the sum Sn/bn = (1/bn)

∑∞
j=−∞ bn,j ξj and apply the central limit theorem

for the triangular array of martingale differences (bn,j ξj /bn)j∈Z, as it was done
in [20], pages 448–449, where the Lindeberg condition was established. We have
only to verify the convergence condition

1

b2
n

∞∑
j=−∞

b2
n,j ξ

2
j → η in probability as n → ∞.(6)

We start the proof by fixing a positive integer p and by making small
blocks of normalized sums of consecutive random variables. Define tn,k =
p−1 ∑pk

i=p(k−1)+1 b2
n,i and decompose the sum in (6) in the following way:

1

b2
n

∞∑
j=−∞

b2
n,j ξ

2
j = 1

b2
n

∞∑
k=−∞

ptn,k

(
1

p

pk∑
j=p(k−1)+1

ξ2
j

)

+ 1

b2
n

∞∑
k=−∞

pk∑
j=p(k−1)+1

[b2
n,j − tn,k]ξ2

j

= Jn,1 + Jn,2.

Notice first that
∑

k ptnk = b2
n and, as a consequence, by stationarity and the L1

ergodic theorem, the following convergence holds uniformly in n:

E
∣∣Jn,1 − E(ξ2

0 |I)
∣∣ ≤ E

∣∣∣∣∣
(

1

p

pk∑
j=p(k−1)+1

ξ2
j

)
− E(ξ2

0 |I)

∣∣∣∣∣ → 0 as p → ∞.

It remains to notice that by relation (A.1) in Lemma A.1 from the Appendix it
follows that

E|Jn,2| ≤ E[ξ2
0 ] 1

b2
n

∞∑
k=−∞

pk∑
j=p(k−1)+1

|b2
n,j − tn,k| → 0 as n → ∞.

�

PROOF OF THEOREM 1. In order to prove this theorem, we shall use a block-
ing technique and then we shall approximate the sums of variables in blocks by
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martingale differences. As before, let p be a fixed positive integer and denote by
Ik = {(k − 1)p + 1, . . . , kp}. So Ik’s are blocks of consecutive integers of size p

and Z = ⋃∞
k=−∞ Ik . We start with the following decomposition:

Wn := 1

bn

∞∑
j=−∞

bn,j ξj = 1

bn

∞∑
k=−∞

∑
j∈Ik

bn,j ξj .

With the notation cn,k = 1
p

∑
i∈Ik

bn,i , we further decompose Wn into two terms:

Wn = 1

bn

∞∑
k=−∞

√
pcn,k

(
1√
p

∑
j∈Ik

ξj

)
+ 1

bn

∞∑
k=−∞

∑
j∈Ik

[bn,j − cn,k]ξj

= Bn,1 + Bn,2.

We shall show first that Bn,2 is negligible for the convergence in distribution.
Notice that by condition 2 and Lemma A.3(ii), (ξi)i∈Z has a continuous spectral
density and by the second inequality in part (i) of Lemma A.3, the variance of Bn,2
is bounded by

E(Bn,2)
2 ≤

(
E[ξ2

0 ] + 2
∞∑

k=1

|E(ξ0ξk)|
)

1

b2
n

∞∑
k=−∞

∑
j∈Ik

[bn,j − cn,k]2,

whence, by Lemma A.1 and taking into account condition (2), it follows that

E(Bn,2)
2 → 0 as n → ∞.

To analyze Bn,1, we denote the weighted sum in a block of size p by

Y
(p)
k = 1√

p

∑
j∈Ik

ξj , k ∈ Z and Gk = Fkp.

Then, Y
(p)
k is Gk-measurable and define

Z
(p)
k = E

(
Y

(p)
k |Gk−1

)
and V

(p)
k = Y

(p)
k − Z

(p)
k .

Obviously V
(p)
k is a stationary sequence of martingale differences and Y

(p)
k =

Z
(p)
k + V

(p)
k . It follows that Bn,1 can be decomposed into a linear process with

stationary martingale differences innovations and another one involving Z
(p)
k .

We shall show first that the term involving Z
(p)
k is negligible for the convergence

in distribution in the sense that

lim
p→∞ lim

n→∞
1

b2
n

∥∥∥∥∥
∞∑

k=−∞

√
pcn,k

(
Z

(p)
k

)∥∥∥∥∥
2

2

= 0.(7)
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By Lemma A.1, we notice that (1/b2
n)

∑∞
k=−∞ pc2

n,k → 1 as n → ∞ and
also that the coefficients dn,k = √

pcn,k satisfy (A.3). Therefore, according to
Lemma A.3(iii), we deduce that

lim
n→∞

1

b2
n

∥∥∥∥∥
∞∑

k=−∞

√
pcn,k

(
Z

(p)
k

)∥∥∥∥∥
2

2

= 2πf (p)(0),

where f (p)(x) denotes the spectral density of Z
(p)
k . On the other hand, since

2πf (p)(0) = lim
n→∞

1

n

∥∥∥∥∥
n∑

k=1

(
Z

(p)
k

)∥∥∥∥∥
2

2

,

in order to establish (7), it is enough to show that

lim
p→∞

∞∑
k=1

∣∣E(
Z

(p)
1 Z

(p)
k

)∣∣ = 0.

First, we observe that

∣∣E(
Z

(p)
1 Z

(p)
k

)∣∣ = 1

p

∣∣∣∣∣E
[
E

( p∑
i=1

ξi |F0

) kp∑
j=[k−1]p+1

ξj

]∣∣∣∣∣.
By the triangle inequality and condition (2), obviously

∞∑
k=1

∣∣E(
Z

(p)
1 Z

(p)
k

)∣∣ ≤ 2
1

p

p∑
i=1

∞∑
n=i

∣∣E[E(ξi |F0)ξn]
∣∣

≤ 2
1

p

p∑
i=1

�i → 0 as p → ∞.

To complete the proof, we have to show that the remaining linear process in-
volving the martingale differences satisfies the desired CLT. We shall denote by

X
(p)
k =

∞∑
j=−∞

√
pcn,kV

(p)
j and S(p)

n =
n∑

k=1

X
(p)
k .

Notice that by Lemma A.1 and Proposition 4 it follows that, for any p fixed,

S(p)
n /bn →

√
E

([
V

(p)
0

]2|I)
N as n → ∞,

where N is a standard normal variable independent of I. In order to complete the
proof, by theorem Theorem 3.2 in [2], we have only to establish that

E
([

V
(p)
0

]2|I) → η as p → ∞.
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With this aim, let Tn = ξ1 + · · · + ξn. By applying the above decomposition and
arguments to partial sums (the case a0 = 1 and aj = 0 for j ≥ 1), we deduce that
we have the following martingale approximation:

lim
m→∞ lim

n→∞

∥∥∥∥∥n−1/2Tn −
[n/m]∑
j=1

(
V

(m)
j

)∥∥∥∥∥
2

= 0,(8)

where [x] denotes the integer part of x, implying that Gordin’s condition [8] is
satisfied. Thus, by Proposition 1 in [4], there exists a nonnegative variable η mea-
surable with respect to I, such that

E
∣∣E(p−1T 2

p |F0) − η
∣∣ → 0 as p → ∞.

It follows that E(p−1T 2
p )|I) → η and also E(p−1T 2

p ) → 2πf (0) = Eη, complet-
ing the proof of the theorem. �

PROOF OF COROLLARY 2. By using a standard representation technique as
in [9], by the first part of condition (4), we can write

ξk =
k∑

i=−∞
Pi(ξk) and E(ξ0|F−j ) =

−j∑
i=−∞

Pi(ξ0).

By stationarity, ‖P−n(ξ0)‖2 = ‖P−n+k(ξk)‖2 for any k. Next, Pi(ξ0) and Pj (ξk)

are uncorrelated for i 
= j , implying that

E[ξkE(ξ0|F−j )] =
−j∑

i=−∞
E[Pi(ξk)Pi(ξ0)].

As a consequence,

∣∣E[ξkE(ξ0|F−j )]
∣∣ ≤

−j∑
i=−∞

‖Pi(ξk)‖2‖Pi(ξ0)‖2

=
−j∑

i=−∞
‖Pi−k(ξ0)‖2‖Pi(ξ0)‖2.

Therefore,

tj =
∞∑

k=0

∣∣E[ξkE(ξ0|F−j )]
∣∣ ≤

−j∑
i=−∞

‖Pi(ξ0)‖2

∞∑
k=1

‖P−k(ξ0)‖2,

whence, by (4), we derive that limj→∞ tj = 0, that proves the validity of condi-
tion (2).

Now, we assume that (5) holds. Obviously, by the martingale convergence theo-
rem and stationarity, ‖E(ξn|F0)‖2 is decreasing to ‖E(ξ0|F−∞)‖2 as n → ∞ and
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by (5), we deduce that ‖E(ξ0|F−∞)‖2 = 0, so that the first part, of condition (4)
follows. To verify its second part, we denote by ai := ‖P−i(ξ0)‖2 = ‖P−i+k(ξk)‖2

for all k ∈ Z, and notice that

‖E(ξn|F0)‖2
2 =

0∑
i=−∞

‖Pi(ξn)‖2
2 =

∞∑
i=n

a2
i .

Therefore, condition (5) and Lemma A.2 from the Appendix imply

∞∑
i=1

‖P−i(ξ0)‖2 ≤ 3
∞∑

n=1

n−1/2

( ∞∑
i=n

a2
i

)1/2

= 3
∞∑

n=1

n−1/2‖E(ξn|F0)‖2 < ∞

and the proof is now complete. �

3. Examples.

Functionals of i.i.d. sequences. We shall start this section by applying Corol-
lary 2 to functionals of i.i.d. sequences. We shall see later that condition (9) re-
quired by this corollary is sharp.

COROLLARY 5. For an i.i.d. sequence of random (Yi)i∈Z, denote by F b
a the

σ -field generated by Yk with a ≤ k ≤ b and define

ξk = f (. . . , Yk−1, Yk), k ∈ Z.

Assume that E(ξ2
1 ) < ∞, E(ξ1) = 0 and

∞∑
n=1

1√
n
‖ξ0 − E(ξ0|F 0−n)‖2 < ∞.(9)

Then, (5) is satisfied and the conclusion of Theorem 1 holds.

PROOF. Observe that E(ξ0|F −n−∞) = E((ξ0 − E(ξ0|F 0
1−n))|F −n−∞) +

E(E(ξ0|F 0
1−n)|F −n−∞). Now, the sigma-fields F 0

1−n and F −n−∞ are independent and
so, the second term is equal almost surely to E[E(ξ0|F 0

1−n)] = 0. Therefore,

‖E(ξ0|F −n−∞)‖2 = ‖E[ξ0(ξ0 − E(ξ0|F 0
1−n)]‖2

(10)
≤ ‖ξ0‖2‖ξ0 − E(ξ0|F 0

1−n)‖2,
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implying that

∞∑
n=1

1√
n
‖E(ξn|F 0−∞)‖2 =

∞∑
n=1

1√
n
‖E(ξ0|F −n−∞)‖2

≤ ‖ξ0‖2

∞∑
n=1

1√
n
‖ξ0 − E(ξ0|F 0

1−n)‖2 < ∞.
�

The following result extends Proposition 3 in [17] in the context of Bernoulli
shifts (also called Raikov or Riesz–Raikov sums) and follows as an application of
Corollary 2.

Let (εk)k∈Z be an i.i.d. sequence with P(ε1 = 0) = P(ε1 = 1) = 1/2 and let

Yn =
∞∑

k=0

2−k−1εn−k and ξn = g(Yn) −
∫ 1

0
g(x) dx,

where g ∈ L2(0,1), (0,1) being equipped with the Lebesgue measure.

COROLLARY 6. For the Bernoulli shift process, if g ∈ L2(0,1) and
∫ 1

0

∫ 1

0
[g(x) − g(y)]2 1

|x − y|
(

log
[
log

1

|x − y|
])t

dx dy < ∞(11)

for some t > 1, then (5) is satisfied and the conclusion of Theorem 1 holds with
η = 2πf (0).

As a concrete example of a map we can take g(x) = x−p[1 + log(2/x)]−a ×
sin(1/x), 0 < x < 1, where either 0 ≤ p < 1/2 or p = 1/2 and a > 4. The con-
vergence of the integral (11) is established in the same way as it was indicated
in [17].

We notice that the above Corollary 5, when specified to the Bernoulli shifts,
improves Theorem 19.3.1 in [15], originally established in [12, 13] and motivated
by Kac [16].

PROOF OF PROPOSITION 3. We shall construct now an example to show that
the conditions of Corollaries 2 and 5 are optimal. Let (Yi)i∈Z be a sequence of
i.i.d. random variables and assume that Y1 has a standard normal distribution. As
before, denote by F b

a the sigma-field generated by variables Yk with a ≤ k ≤ b.
Define the innovations (ξi)i∈Z as a linear process

ξk =
k∑

j=−∞
uk−jYj ,
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where {ui; i ≥ 0} is a sequence of nonnegative numbers to be specified. For i < 0,
let ui = 0. First, we notice that P−k(ξ0) = ukY−k and ‖P−k(ξ0)‖2 = uk . Therefore,

∞∑
k=0

‖P−k(ξ0)‖2 < ∞ if and only if
∞∑

k=0

uk < ∞.(12)

Notice that E[ξ0ξk] = ∑∞
j=0 uk+juj and for any positive integer j0, we have

∞∑
k=0

E[ξ0ξk] =
∞∑

k=0

∞∑
j=0

uk+juj > uj0

∞∑
k=0

uk+j0 .

So by Lemma A.3(ii), the spectral density is bounded if and only if
∑∞

j=0 uj < ∞.
In particular, combining this remark with relation (12) along with the conclusion
of Corollary 2, it follows that Theorem 1 holds in this example if and only if
condition (2) is satisfied.

To construct ui’s, without loss of generality, assume that ψn ↓ 0. Let n1 = 1
and nk ↑ ∞ be such that for k ≥ 1, nk+1 − nk > nk+1/2 and ψj ≤ 1/k2 when
j ≥ nk . Now, for nonnegative integers j , let uj = 1/nk+1 when nk ≤ j < nk+1.
By construction,

∞∑
i=1

ui =
∞∑

k=1

nk+1−1∑
nk

1/nk+1 ≥ 1
2

∞∑
k=1

1 = ∞

and, therefore, by the above considerations, the stationary sequence (ξk)k∈Z has
unbounded spectral density. By (10), it remains to show that

I :=
∞∑

j=1

ψj√
j

∥∥(
ξ0 − E(ξ0|F 0−1−j )

)∥∥
2 < ∞.

Notice that since ξ0 − E(ξ0|F 0−n) = ∑−n−1
i=−∞ u−iYi , and also, since, for j ≥ nk ,

∞∑
i=j

u2
i ≤

∞∑
i=k

ni+1−1∑
j=ni

u2
j ≤

∞∑
i=k

(1/n2
i+1)ni+1 ≤ c1

1

nk+1
,

we derive the following estimate:

I =
∞∑

k=1

nk+1−1∑
j=nk

ψj√
j

[ ∞∑
i=j

u2
i

]1/2

≤
∞∑

k=1

1

k2

nk+1−1∑
j=nk

[
1

j

∞∑
i=j

u2
i

]1/2

≤
∞∑

k=1

1

k2

c1√
nk+1

nk+1∑
j=1

1√
j

< ∞.
�



1618 M. PELIGRAD AND S. UTEV

Mixingales. We are going to apply Theorem 1 to mixingales and strongly
mixing sequences. For a stationary sequence of random variables (ξk)k∈Z, we de-
fine F n

m the sigma-field generated by ξi with indices m ≤ i ≤ n and the sequences
of coefficients α(n):

α(n) = α(F 0−∞,F ∞
n ) = sup{|P(A ∩ B) − P(A)P(B)|;A ∈ F 0−∞,B ∈ F ∞

n }.
We say that the strictly stationary sequence is strongly mixing if α(n) → 0

as n → ∞. Various examples of mixing sequences can be found in books by
Rio [21] and Bradley [3], along with counterexamples showing that the conditions
we use in the next corollary are sharp for central limit theorem even for partial sum
processes. In the next corollary we shall use a weaker form of the strongly mixing
coefficient, a mixingale type condition, where F ∞

n is replaced by the sigma-field
generated by ξn, namely, ᾱ(n) = α(F 0−∞,F n

n ).

COROLLARY 7. Assume that the innovations (ξk , k ∈ Z) form a stationary
sequence of centered random variables with finite second moment and such that

∞∑
k=1

∫ ᾱ(k)

0
Q2(u) du < ∞,(13)

where Q denotes the cadlag inverse of the function t → P(|ξ0| > t).
Then the conclusion of Theorem 1 holds. Moreover, with ᾱ(k) being replaced

by α(k), the sequence ξk is ergodic and η is a constant η = 2πf (0), where f (x) is
the continuous spectral density of the innovations.

PROOF. According to Theorem 1, it is enough to establish the validity of the
condition (2). We notice that, by Rio’s (1993) covariance inequality (see also [21],
Chapter 4), we have

∣∣E(
ξkE(ξ0|F−j )

)∣∣ ≤
∫ ᾱ(k+j)

0
Q2(u) du,

that proves that condition (2) of Theorem 1 holds, since
∞∑

k=0

∣∣E(
ξkE(ξ0|F−j )

)∣∣ ≤
∞∑
i=j

∫ ᾱ(i)

0
Q2(u) du → 0 as j → ∞.

�

In comparison with Peligrad and Utev [20], Corollary 7 provides explicit nor-
malizing constants.

To make condition (13) more transparent, we mention that it is implied by the
couple of conditions (as it was derived in [6])

E|X0|t < ∞ and
∞∑

k=1

k2/(t−2)α̃(k) < ∞ where t > 2.
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APPENDIX

Facts about sequences.

LEMMA A.1. Let bn,j = aj+1 +· · ·+aj+n, for j ∈ Z and n ∈ N. Assume that

b2
n =

∞∑
j=−∞

b2
n,j → ∞ and

∑
j∈Z

a2
j < ∞.

Then,

1

b2
n

∞∑
j=−∞

|bn,j − bn,j−1|2 → 0 and
1

b2
n

∞∑
j=−∞

|b2
n,j − b2

n,j−1| → 0.(A.1)

More generally, let p be a positive integer. Starting with zero (in two directions), we
denote blocks of consecutive integers of size p by Ik . For each k, define averages
of the bn,i in Ik by cn,k = 1

p

∑
i∈Ik

bn,i . Then, as n → ∞,

1

b2
n

∑
k∈Z

∑
j∈Ik

|bn,j − cn,k|2 → 0 and
1

b2
n

∑
k∈Z

∑
j∈Ik

|b2
n,j − c2

n,k| → 0.(A.2)

PROOF. To simplify the writing, let us denote by (b′
n)

2 = ∑∞
j=−∞ |bn,j −

bn,j−1|2. The validity of the first part of relation (A.1) is straightforward from
the following observation:

(b′
n)

2 ≤
∞∑

j=−∞
|aj − an+j+1|2 ≤ 4

∞∑
j=−∞

a2
j ,

implying that limn→∞(b′
n/bn)

2 = 0. The second part easily follows by applying
Hölder inequality:

∞∑
j=−∞

|b2
n,j − b2

n,j−1| =
∞∑

j=−∞
|bn,j − bn,j−1| ∗ |bn,j + bn,j−1| ≤ Cb′

nbn.

The proof of (A.2) is similar by taking into account that p is a fixed positive
integer and for any pair of indexes i, l ∈ Ik , we have

|bn,i − bn,l|2 ≤ p
∑
j∈Ik

|bn,j − bn,j−1|2.
�

LEMMA A.2. Suppose that (aj )j∈N is a sequence of nonnegative numbers
and ψn is a nonincreasing sequence of nonnegative numbers. Then,

∞∑
n=1

anψn ≤ 3
∞∑

n=1

n−1/2ψn

( ∞∑
k=n

a2
k

)1/2

.
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PROOF. The proof involves an application of the inequality in [23], contained
in his Lemma 1 to gn = anψn, n = 1,2, . . . . We obtain

∞∑
n=1

anψn ≤ 3
∞∑

n=1

n−1/2

( ∞∑
k=n

ψ2
k a2

k

)1/2

≤ 3
∞∑

n=1

n−1/2ψn

( ∞∑
k=n

a2
k

)1/2

,

where at the last step we have used the fact that the sequence ψn is nondecreasing.
�

Facts about spectral densities. In the following lemma we combine a few facts
about spectral densities, covariances, behavior of variances of sums and their rela-
tionships. The first two points are known and can be found in books by Bradley [3].

LEMMA A.3. Let (ξi)i∈Z be a stationary sequence of real valued variables
with E[ξ0] = 0 and finite second moment. Let F denotes the spectral measure and
f denotes its spectral density (if exists), that is,

E[ξ0ξk] =
∫ π

−π
e−ikt dF (t) =

∫ π

−π
e−iktf (t) dt.

(i) For any positive integer n and any real numbers a1, . . . , an,

E

(
n∑

k=1

akξk

)2

=
∫ π

−π

∣∣∣∣∣
n∑

k=1

ake
ikt

∣∣∣∣∣
2

f (t) dt ≤ 2π‖f ‖∞
n∑

k=1

a2
k

≤
(
E[ξ2

0 ] + 2
∞∑

k=1

|E(ξ0ξk)|
)

n∑
k=1

a2
k .

(ii) Assume (B):
∑∞

k=1 |E(ξ0ξk)| < ∞. Then, f is continuous. Moreover, if
E[ξkξ0] ≥ 0 for all k, then the spectral density is bounded if and only if relation (B)
is satisfied.

(iii) Assume that the spectral density f is continuous, and let d(n) = (dn,j )j∈Z

be a double array of real numbers with d2
n = ∑

j∈Z d2
n,j < ∞ that satisfies the

condition

1

d2
n

∞∑
j=−∞

|dn,j − dn,j−1|2 → 0.(A.3)

Then,

lim
n→∞

1

d2
n

E

(
n∑

j=1

dn,j ξj

)2

= 2πf (0).(A.4)
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PROOF. (iii) Fix ε > 0. By the Stone–Weierstrass theorem, there exists a
trigonometric polynomial Pm(t) = ∑m

k=−m cke
itk such that supt∈[−π,π ] |f (t) −

Pm(t)| ≤ ε. In particular, ∣∣∣∣∣f (0) −
m∑

k=−m

ck

∣∣∣∣∣ ≤ ε.(A.5)

Whence, by (i),

1

d2
n

E

(∑
j∈Z

dn,j ξj

)2

= 1

d2
n

∫ π

−π

∣∣∣∣∣
∑
j∈Z

dn,j e
itj

∣∣∣∣∣
2

f (t) dt

(A.6)

= O(ε) + 1

d2
n

∫ π

−π

∣∣∣∣∣
∑
j∈Z

dn,j e
itj

∣∣∣∣∣
2

Pm(t) dt.

With the notation An,k := d−2
n

∑
j∈Z dn,j dn,j+k , we have

1

d2
n

∫ π

−π

∣∣∣∣∣
∑
j∈Z

dn,j e
itj

∣∣∣∣∣
2

Pm(t) dt = 2π

m∑
k=−m

ckAn,k.(A.7)

By (A.3) and similar arguments as in the proof of Lemma A.1, we can see that An,k

can be easily approximated by d−2
n

∑
j∈Z d2

n,j and, as a consequence, for any k

fixed, An,k approaches 1 as n → ∞, implying that limn→∞ 2π
∑m

k=−m ckAn,k =
2π

∑m
k=−m ck . We have now only to combine this convergence with (A.5)

and (A.6) to complete the proof of the statement. �
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