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Time change is one of the most basic and very useful transformations
for Markov processes. The time changed process can also be regarded as the
trace of the original process on the support of the Revuz measure used in
the time change. In this paper we give a complete characterization of time
changed processes of an arbitrary symmetric Markov process, in terms of
the Beurling–Deny decomposition of their associated Dirichlet forms and
of Feller measures of the process. In particular, we determine the jump-
ing and killing measure (or, equivalently, the Lévy system) for the time-
changed process. We further discuss when the trace Dirichlet form for the
time changed process can be characterized as the space of finite Douglas
integrals defined by Feller measures. Finally, we give a probabilistic charac-
terization of Feller measures in terms of the excursions of the base process.
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1. Introduction. Time change is one of the most basic and very useful trans-
formations for Markov processes, which has been studied by many authors.
However, a precise characterization of the time-changed process of a symmetric
Markov process X on a state space E by a Revuz measure whose quasi-support
F is a proper subset of E has only been started very recently. In [19], Fukushima,
He and Ying derived a characterization for the time-changed process of X when
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X is a conservative m-symmetric diffusion, m(E) < ∞ and F is a closed set which
is negligible by the energy measure of X. The time-changed process has F as its
state space so it can be regarded as the trace process of X on F .

The following is a prototype of the problem that we will study in this paper.
Suppose X is a Lévy process in R

n that is the sum of a Brownian motion in R
n and

an independent spherically symmetric α-symmetric stable process in R
n, where

n ≥ 1 and α ∈ (0,2). Denote by B(x, r) the open ball in R
n centered at x ∈ R

n with
radius r . Its Euclidean closure is denoted by B(x, r). Let F = B(0,1)∪ ∂B(x0,1),
where x0 ∈ R

n with |x0| = 3. What is the trace process of X on the closed set F ?
More precisely, let µ(dx) := 1B(0,1)(x) dx + σ∂B(x0,1), where σ∂B(x0,1) denotes
the Lebesgue surface measure of ∂B(x0,1). It is easy to see that µ is a smooth
measure of X and it uniquely determines a positive continuous additive functional
Aµ = {Aµ

t , t ≥ 0} of X having µ as its Revuz measure. Define its inverse

τt := inf{s > 0 :Aµ
s > t} for t ≥ 0.

Then the time changed process Yt := Xτt is a symmetric Markov process on F ,
which can be regarded as the trace process of X on F . So the more precise question
is the following:

Question: Can we characterize the time changed process Y ?
As a special case of the main results obtained in this paper, we are able to answer

this question by determining its Dirichlet form on L2(F,µ). It is known that the
Dirichlet form (E ,F ) for X on L2(Rn, dx) is given by

F = W 1,2(Rn, dx) := {u ∈ L2(Rn, dx) :∇u ∈ L2(Rn, dx)}

E(u,u) = 1

2

∫
Rn

|∇u(x)|2 dx + A(n,−α)

∫
Rn×Rn

(u(x) − u(y))2

|x − y|n+α
dx dy

for u ∈ F ,

where

A(n,−α) = |α|2α−1�((α + n)/2)

πn/2�(1 − α/2)
(1.1)

is a positive constant that depends only on n and α. Let (Ě , F̌ ) be the symmetric
Dirichlet form of Y on L2(F,µ). The following explicit Beurling–Deny decompo-
sition for Y follows directly from Theorems 2.7, 2.10 and 2.11 below. Let (E ,Fe)

denote the extended Dirichlet space for (E ,F ). Then

F̌ = Fe|F ∩ L2(F,µ),(1.2)

Ě(u,u) = 1

2

∫
F

|∇u(x)|2 dx

+
∫
F×F

(
u(x) − u(y)

)2(1

2
U(dx, dy) + A(n,−α)

|x − y|n+α
dx dy

)
(1.3)

+
∫
F

u(x)2V (dx)
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for u ∈ F̌ . Here U and V are the Feller measure on F × F and the supplementary
Feller measure on F , respectively, defined through the energy functional L for the
subprocess X0 of X killed upon leaving the open set R

n \ F :∫
F×F

f (x)g(y)U(dx, dy) := L(Hf,Hg)

(1.4)

:= lim
t↓0

1

t

∫
Rn\F

(
Hf (x) − P 0

t Hf (x)
)
Hg(x) dx,∫

F
f (x)V (dx) := L(Hf, q)

= lim
t↓0

1

t

∫
Rn\F

(
Hf (x) − P 0

t Hf (x)
)
q(x) dx,(1.5)

q(x) = 1 − H1(x)

for any nonnegative bounded Borel measurable functions f and g on F . Here
{P 0

t , t > 0} is the transition semigroup of the subprocess X0 and

Hf (x) = Ex

[
f
(
XσF

)]
for x ∈ R

n \ F,

is the “harmonic” extension of f in the open set R
n \ F , where σF := inf{t ≥

0 :Xt ∈ F }. The measure U is named after W. Feller, who introduced such measure
for discrete Markov chains when studying their boundary theory.

In fact, in this paper we will study the above type of the problem for a general
irreducible m-symmetric Markov process X on a general state space E which not
only can have discontinuous sample paths but also can have killings inside E or
have finite lifetime, and for any quasi-closed subset F of E. It is important for
F being quasi-closed rather than closed, since the notion of being quasi-closed
is invariant under quasi-homeomorphism, while the notion of being closed is not.
(Quasi-homeomorphism, whose definition can be found in [8] or in the proof of
Theorem A.1 in the Appendix, is an equivalent relation not only at the quadratic
forms level but also at the processes level. So fundament analytic and probabilistic
properties of symmetric Markov processes should be preserved or invariant under
quasi-homeomorphisms.) Since F is only assumed to be quasi-closed in this paper,
we can address both aspects of the problem and can apply results from regular
Dirichlet forms through quasi-homeomorphisms (cf. [8]). If we consider the time-
change problem for the process X, the smooth measure µ for time change is given.
In this case, we take F to be the quasi-support of µ which is quasi-closed. If we
consider the trace problem for the process X, a quasi-closed set F is given. We
point out that any nontrivial quasi-closed subset F is the quasi-support of a smooth
measure µ of X and we can take one of these measures µ to do time change. In this
case, we fix a smooth measure µ of X whose quasi-support is F . We are able to
give a complete characterization of the Dirichlet form for the time-changed process
Y obtained from X through µ and derive its Beurling–Deny decomposition of the
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time changed process similar to the one given in (1.2) and (1.3) (see Theorems 2.7,
2.10 and 2.11 below).

In particular, we determine the jumping and killing measure (or, equivalently,
the Lévy system) for the time-changed process. More precisely, let J and κ be the
jumping measure and the killing measure of X. We show in Section 2 below that

J̌ := 1
2U + J |F×F and κ̌ := V + κ|F(1.6)

are the jumping measure and the killing measure of the time-changed process Y

of X. Note that the jumping measure J̌ and the killing measure κ̌ depend only on
X and the quasi-closed set F ; they do not depend on the selection of the measure µ

that has F as its quasi-support. In fact, if µ1 and µ2 are two smooth measures both
having F as their quasi-support, then by a result due to Silverstein and Fitzsim-
mons (see [13] and [31]), the time-changed process of X by the smooth measure
µ1 is a time-change of the time-changed process of X by the smooth measure µ2.

Our results extend the recent work by Fukushima, He and Ying [19] where only
a conservative symmetric diffusion process X is considered and F is assumed
to be closed. When X is a conservative diffusion (where J = κ = 0) and under
an additional condition for X which is fulfilled when m(E) < ∞, (1.6) has been
proved in [19], Chapter 5, by relating the jumping and killing measures of Y to
expectations of certain homogeneous random measures involving end points of
excursions of X away from the closed set F . Under the further condition that
F is negligible for the energy measure of X, it is shown in [19], Chapter 6, that
the Dirichlet form for the time-changed process Y has no strongly local part and,
therefore, the Beurling–Deny decomposition just has the jumping part.

In this paper, we do not use excursions to derive (1.6). Instead, by sharpening
and extending those computations performed in [19], Chapter 6, to the present
general situation, we make a direct and precise analysis of the value E(Hu,Hu) for
u ∈ F̌ , decomposing it into a sum of terms involving the strongly local part of the
energy measure of Hu, the measures J, κ and the Feller measures U,V, eventually
leading us to the Beurling–Deny decomposition of the trace Dirichlet form Ě . One
of the key steps is to identify the strongly local part Ě c(u,u) in the Beurling–Deny
decomposition of Ě(u,u) with µc〈Hu〉(F ), where µc〈Hu〉 is the strongly local part
of the energy measure of Hu with respect to (E ,F ). The stochastic calculus for
general martingales with possibly discontinuous sample paths plays a key role in
our approach.

When X is the n-dimensional Brownian motion and F is a compact hyper-
surface of class C3, an explicit expression of the Feller measure U is exhibited
in [19], Example 2.1. We shall give an explicit expression of the supplementary
Feller measure V in this example at the end of Section 2.

The identification (1.6) particularly implies that the (generalized) Douglas inte-
gral

1
2

∫
F×F

(
ϕ(ξ) − ϕ(η)

)2
U(dξ, dη) +

∫
F

ϕ(ξ)2V (dξ)(1.7)
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is finite for any function ϕ in the extended trace Dirichlet space F̌e. In Section 3,
we are concerned with conditions to ensure that the space F̌e coincides with the
space of functions with finite Douglas integrals. The conditions will be given in
relation to the reflected Dirichlet space (E ref, (F 0)ref) of the part (E0,F 0) of the
Dirichlet form (E ,F ) on the set E0 = E \ F. (E0,F 0) is associated with the
absorbed process X0 obtained from X by killing upon leaving the set E0.

The notion of the reflected Dirichlet space was introduced by Silverstein
(cf. [31]) and further studied by the first author [6] for a general transient regu-
lar Dirichlet space, while the space of functions of finite Douglas integrals was
studied by Doob and the second author [17] in a different setting for the absorbed
Brownian motion X0 on an Euclidean domain E0 and its Martin boundary F .

Since E0 is only quasi-open, the Dirichlet form (E0,F 0) on L2(E0;m) is no
longer regular in general, but it is quasi-regular, as will be shown in Lemma 2.2.
Based on this fact, we are able to extend the definition of the reflected Dirichlet
space given in [6] to (E0,F 0) by making use of the notion of the energy functional
L of excessive functions for the process X0.

As applications, we present examples of the trace Dirichlet spaces for the re-
flecting Brownian motion X and the reflected symmetric stable process X on
a Euclidean domain at the end of Section 3.

By reversing the argument in [19], we may well derive from the identification
(1.6) expressions of the Feller measures U,V in terms of homogeneous random
measures generated by end points of excursions of X away from F . This is what
will be done in Section 4. A direct derivation of such expressions seems to be hard
in the present generality unless X is conservative as in the case of [19].

In the Appendix we show that a Lévy system exists for any symmetric right
process associated with a quasi-regular Dirichlet form (E ,F ) and that the proba-
bilistic characterization of the Beurling–Deny decomposition (including the jump-
ing measure and killing measure) of (E ,F ) remain true for quasi-regular Dirichlet
forms. This result might be known to the experts, but we are unable to find an exact
reference for it. Since this result is used in the paper, for the reader’s convenience,
we record it in the Appendix. We further show that this probabilistic characteriza-
tion is independent of the choice of a particular process associated with the Dirich-
let form. These results are used in Section 4. Some basic E -quasi notions, such
as E -nest, E -polar, E -quasi-everywhere, E -quasi-closed set, E -quasi-continuous,
quasi-homeomorphism between Dirichlet forms, etc., are also reviewed in this Ap-
pendix.

We point out that under some extra condition, LeJan has obtained in Section 3
of [27] the same results as Section 2 of the present paper for a Hunt process X

associated with a nonsymmetric sectorial regular Dirichlet form and for a closed
set F . Along with [26], nice potential theoretic methods were systematically uti-
lized in [27] under the condition that the Dirichlet space is continuously embed-
ded into L2(E;m). This condition, however, excludes many interesting examples,
such as reflecting Brownian motion in a unit disk while F is the unit circle. In [24]
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Kunita treated Douglas integral representations on the Martin boundary for mul-
tidimensional diffusions in the same spirit as Doob [11] and Fukushima [17]. For
other approaches, such as those using the framework of balayage spaces and har-
monic spaces, to the problems related to the traces of Markov processes and their
potential theory, see [3, 23] and the references therein.

In this paper we use “:=” as a way of definition, which is read as “is defined
to be.” For a real-valued function ϕ(t) on R, ϕ(t−) := lims↑t ϕ(s) denotes its left-
hand limit at t if it exists. For two real numbers a and b, a ∨ b := max{a, b} and
a∧b := min{a, b}. For a locally compact metric space E, Cc(E) denotes the space
of real-valued continuous functions on E with compact support. For a Borel subset
K of E, we will use B(K), B(K)+ and B(K)+b to denote the space of Borel
measurable functions on K , the space of nonnegative Borel measurable functions
on K and the space of nonnegative bounded Borel measurable functions on K ,
respectively.

2. Feller measures and trace of Dirichlet forms. Throughout this paper, let
(E ,F ) be an irreducible quasi-regular symmetric Dirichlet form on L2(E,m),
where E is a Hausdorff metric space and the measure m has supp[m] = E. Let X

be the m-symmetric right process associated with (E ,F ), whose life time will be
denoted as ζ .

In view of the quasi-homeomorphism method in [8], without loss of generality,
we may and do assume that E is a locally compact separable metric space, m is a
positive Radon measure on E with supp[m] = E, (E ,F ) is an irreducible regular
symmetric Dirichlet form in L2(E,m), and X = (Xt ,Px) is an m-symmetric Hunt
process associated with (E ,F ). We will use (E ,Fe) to denote the extended Dirich-
let space of (E ,F ) and E1 := E + (·, ·)L2(E,m). The expectation with respect to the
probability measure Px will be denoted as Ex . Throughout this paper, we use the
convention that any function takes value 0 at the cemetery point ∂ added to E. For
basic notions in Dirichlet forms, such as nest, capacity, quasi-everywhere (abbrevi-
ated q.e.), quasi-continuous, etc., we refer the reader to [20] and [28]. (See also the
Appendix of this paper.) Every element u in Fe admits a quasi-continuous version.
We assume throughout this paper that functions in Fe are always represented by
their quasi-continuous version. In the sequel, the abbreviations CAF, PCAF and
MAF stands for “continuous additive functional,” “positive continuous additive
functional” and “martingale additive functional,” respectively, whose definitions
can be found in [20].

We prove a lemma that will be used later.

LEMMA 2.1. Let µ be a smooth measure with µ(E) < ∞ and let Aµ be the
PCAF of X with Revuz measure µ. Then

lim
t↓0

1

t
Em[Aµ

t ; t ≥ ζ ] = 0.
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PROOF. Let Ptf (x) := Ex[f (Xt)]. For t > 0, by the Markov property of X

and Theorem 5.1.3(iii) of [20],

1

t
Em[Aµ

t ; t ≥ ζ ]

= 1

t
Em[Aµ

t ] − 1

t
Em[Aµ

t ; t < ζ ]

= 1

t
Em[Aµ

t ] − 1

t
Em

[∫ t

0
1{t<ζ } dAµ

s

]
ds

= 1

t
Em[Aµ

t ] − 1

t
Em

[∫ t

0
Pt−s1(Xs) dAµ

s

]
= 1

t
Em[Aµ

t ] − 1

t

∫ t

0

(∫
E

Ps1(x)Pt−s1(x)µ(dx)

)
ds

= 1

t
Em[Aµ

t ] −
∫
E

(
1

t

∫ t

0
Pt−s1(x)Ps1(x) ds

)
µ(dx).

Since µ(E) < ∞, by the dominated convergence theorem,

lim
t↓0

1

t
Em[Aµ

t ; t ≥ ζ ]

= µ(E) −
∫
E

(
lim
t↓0

1

t

∫ t

0
Pt−s1(x)Ps1(x) ds

)
µ(dx)

= µ(E) − µ(E) = 0.

The lemma is proved. �

For a closed set F ⊂ E, define

FF := {u ∈ F :u = 0 m-a.e. on E \ F }.
Denote by Cap the E1-capacity defined by the form (E ,F ). The terms such as
quasi-continuous functions, quasi-everywhere (q.e. in abbreviation), quasi-closed
sets and generalized nests will be used exclusively in relation to this capacity. It
is known (e.g., [18], Lemma 2.1, [10], Lemma 2.1) that those classical notions for
the regular Dirichlet form (E ,F ) can be identified with the E -quasi-notions of [28]
(see Appendix for their definitions) as follows: an increasing sequence of closed
subsets of E is a generalized nest if and only if it is an E -nest; a subset of E is of
zero capacity if and only if it is E -exceptional; a numerical function defined q.e.
on E is quasi continuous if and only if it is E -quasi continuous. Moreover, a set
F ⊂ E is quasi-closed if and only if it is E -quasi-closed in the following sense (see
also the Appendix below). A subset F of E is E -quasi-closed if and only if there is
an increasing sequence {Kn,n ≥ 1} of compact subsets of E such that

⋃
n≥1 FKn

is dense in (F ,E1) and F ∩ Kn is closed for every n ≥ 1.
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Let F be a quasi-closed subset F of E such that

Cap(F ) > 0.(2.1)

The notion of being quasi-closed is invariant under the quasi-homeomorphism of
Dirichlet forms (see [8]). Furthermore, a quasi-closed set is q.e. finely closed in
the sense that there is a properly exceptional set N such that F \ N is nearly Borel
measurable and finely closed with respect to X (cf. [20], Chapter 4.6). Since we
are only concerned with assertions holding q.e., we may and do make a convention
that the quasi-closed set F is nearly Borel and finely closed already.

Let E0 = E \ F . Under the present convention, E0 is nearly Borel and finely
open with respect to X. The subprocess of X killed upon leaving E0 will be de-
noted by X0. To be more precise, we let

τ0 := τE0 = inf{t ∈ [0, ζ ] :Xt /∈ E0},(2.2)

so that

τ0 = σF ∧ ζ, Px-a.s. for x ∈ E0,

where σF := inf{t > 0 :Xt ∈ F }. The subprocess X0 is then defined by X0 =
(X0

t , ζ
0, Px)x∈E0 , where

ζ 0 =: τ0 and X0
t =

{
Xt for t < ζ 0,

∂, for t ≥ ζ 0.

The process X0 is an m symmetric standard process on E0 and its Dirichlet
form (E0,F 0) on L2(E0,m) can be identified with the following space (see [20],
Chapter 4.4):

F 0 = {u ∈ F :u = 0 q.e. on F } and E0 = E |F 0×F 0 .(2.3)

We use the terms E0-nest, E0-quasi continuous, E0-exceptional, and so on for
those quasi notions exclusively related to the Dirichlet form (E0,F 0) in the sense
of [8] or [28]. The resolvent of X0 will be denoted by G0

α.

LEMMA 2.2. (i) An increasing sequence {An} of relatively closed subsets of
E0 is an E0-nest if and only if

Px

(
lim

n→∞σE0\An < τ0

)
= 0 for q.e. x ∈ E0.(2.4)

Any E0-exceptional set N ⊂ E0 is X0-exceptional in the sense that there is a nearly
Borel set Ñ containing N such that

Px(σÑ < τ0) = 0 for m-a.e. x ∈ E0.
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(ii) If an increasing sequence of closed subsets {Bn} of E is a generalized nest
(or, equivalently, an E -nest), then {Bn ∩E0} is an E0-nest. The restriction to E0 of
a quasi-continuous function on E is E0-quasi-continuous.

(iii) A set N ⊂ E0 is E0-exceptional if and only if Cap(N) = 0.

(iv) The Dirichlet form (E0,F 0) is transient and its extended Dirichlet space
F 0

e can be described as

F 0
e = {u ∈ Fe :u = 0 q.e. on F }.(2.5)

(v) X0 is a special standard process on E0 and (E0,F 0) is a quasi-regular
Dirichlet form on L2(E0,m).

PROOF. (i) Note that (2.4) is equivalent to

σE\An ↑ σF , Px-a.s. for q.e. x ∈ E0.(2.6)

For a nearly Borel set A ⊂ E, let

FA = {u ∈ F :u = 0 q.e. on E \ A},
GA

1 f (x) = Ex

(∫ σE\A

0
e−t f (Xt) dt

)
, x ∈ E.

Then GA
1 (B+(E) ∩ L2(E;m)) is E1 dense in FA by [20], Chapter 4.4. So (2.6)

implies that G
An

1 f ∈ FAn increases to G0
1f m-a.e. and converges also in the

E1-metric for f ∈ B+(E) ∩ L2(E;m) and, accordingly,⋃
n≥1

FAn is E1-dense in F 0.(2.7)

This proves that {An} is an E0-nest.
Conversely, for σ = limn→∞ σE\An and f ∈ B+(E) ∩ L2(E;m),

v(x) = Ex

(∫ σF

σ
e−t f (Xt) dt

)
is a function in F 0 that is E1-orthogonal to

⋃∞
n=1 FAn according to [20], Chap-

ter 4.4. Hence, (2.7) implies v = 0 q.e. and (2.6) follows.
The second statement of (i) follows immediately from (2.4).
(ii) By [20], Lemma 5.1.6 or [28], {Bn} is a generalized nest (or, equivalently,

an E -nest) if and only if

Px

(
lim

n→∞σE\Bn < ζ

)
= 0 for q.e. x ∈ E.

So (2.4) holds for An = Bn ∩ E0. Since any increasing sequence {An} of closed
sets of E with Cap(E \ An) ↓ 0 is a generalized nest, the second statement of (ii)
now follows.
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(iii) The “if” part is another consequence of (ii). To prove the “only if” part,
suppose a set N ⊂ E0 is E0-exceptional but Cap(N) > 0. Then, in view of [20],
Theorem 2.2.3, there exists a smooth measure µ on E such that µ(N) > 0,µ(E \
N) = 0. Let At be a PCAF of X with Revuz measure µ. Then At is a PCAF in
the strict sense of X|E\N0 with Revuz measure µ|E\N0 for a properly exceptional
set N0.

Since E0 is finely open, we can use [15], Theorem 2.22 to conclude that
t �→ At∧τ0 is then a PCAF in the strict sense of the process X0|E0\N0 with Revuz
measure µ|E0\N0, which charges no X0-exceptional set accordingly. In particular,
µ(N \N0) = 0. Since µ(N0) = 0, we arrive at µ(N) = 0, which is a contradiction.
This proves that any E0-exceptional set N satisfies Cap(N) = 0.

(iv) Since (E ,F ) is assumed to be irreducible, the transience of (E0,F 0) fol-
lows from the assumption (2.1) and [20], Theorem 4.6.6, Lemma 1.6.5. The identi-
fication (2.5) of its extended Dirichlet space is shown in [20], Theorem 4.4.4, when
(E ,F ) is transient. In general, we can show it by reducing the situation to the tran-
sient case. Here we show the inclusion ⊃ in (2.5) since we shall use this inclusion
only. Take any u ∈ Fe vanishing q.e. on F. On account of [20], Lemma 1.6.7,
there exists a function g satisfying condition (1.6.14) of [20] such that u belongs
to the extended Dirichlet space F

g
e of the perturbed Dirichlet form (Eg,F ) which

is transient. Therefore,

u ∈ (F g
e )E0 = (

F
g
E0

)
e ⊂ F 0

e ,

as was to be proved.
(v) Since F is finely closed, XσF

∈ F. Hence, it follows from [4], Chapter IV,
equation (4.33), that X0 is special. The second assertion follows from [28], Theo-
rem 5.1. �

The last statement (v) in the above lemma will be used in the next section.
Recall that, by our convention, every function in the space F 0 and F 0

e is
E0-quasi-continuous by Lemma 2.2(ii). We call a positive Borel measure µ on
E0 E0-smooth if µ charges no E0-exceptional set and there exists an E0-nest {An}
such that µ(An) < ∞ for each n. Let S(0) denote the family of all E0-smooth mea-
sures on E0. The restriction to E0 of any smooth measure on E is a member of S(0)

in view of Lemma 2.2(ii)–(iii). A measure µ in S(0) is said to be of finite 0-order
energy integral if there is a constant C > 0 such that∫

E0

|v(x)|µ(dx) ≤ C
√

E(v, v) for every v ∈ F 0
e ;

or, equivalently, there exists a function G0µ ∈ F 0 such that

E(G0µ,v) =
∫
E0

v(x)µ(dx) for every v ∈ F 0.(2.8)
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Such function G0µ is then unique and called the 0-order potential of µ. The total-
ity of E0-smooth measures on E0 of finite 0-order energy integrals will be denoted
by S

(0)
0 .

With these preparations, let us now consider the notion of the energy functional
L for the process X0. The semigroup and the resolvent of X0 will be denoted
by {P 0

t , t ≥ 0} and {G0
α,α > 0}, respectively. The 0-order potential for X0 will

be denoted as G0. Denote by SE0 the family of m-almost X0-excessive functions
finite m-a.e. on E0. Let

L(f,g) :=↑ lim
t↓0

1

t

∫
E0

(f − P 0
t f )(x)g(x)m(dx)(2.9)

be the energy functional of f,g ∈ SE0 . Here ↑ limt↓0 means that it is an increasing
limit as t ↓ 0. Equivalently,

L(f,g) :=↑ lim
α↑∞α

∫
E0

(f − αG0
αf )(x)g(x)m(dx),(2.10)

where ↑ limα↑∞ means that it is an increasing limit as α ↑ ∞. Note that L(f,g)

can be well defined without assuming the finiteness of g. We shall use this fact
in the next section without an explicit mentioning. Note further that the 0-order
potential G0ν of measure ν ∈ S

(0)
0 is an element not only of F 0

e but also of SE0,

as we can easily see from [20], Theorem 2.2.1, and (2.8).

LEMMA 2.3. Let f,g ∈ SE0 .

(i) If
∫
E0

f (x)g(x)m(dx) < ∞, then L(f,g) = L(g,f ).

(ii) For any ν ∈ S
(0)
0 ,

L(f,G0ν) =
∫
E0

f (x)ν(dx).(2.11)

PROOF. (i) For f,g ∈ SE0 with fg ∈ L1(E0,m), we have, for each t > 0,

1

t

∫
E0

(f − P 0
t f )(x)g(x)m(dx) = 1

t

∫
E0

f (x)(g − P 0
t g)(x)m(dx).

Passing t → 0 yields L(f,g) = L(g,f ).
(ii) By the transience of (E ,F 0), there is a bounded, L1(E0,m)-integrable func-

tion h that is strictly positive m-a.e on E and
∫
E0

h(x)G0h(x)m(dx) < ∞. Put
fn = f ∧ (nh). Then G0fn,G

0G0
αfn ∈ F 0

e and

(fn − αG0
αfn,G

0ν)L2(E0,m) = E(G0fn,G
0ν) − αE(G0G0

αfn,G
0ν)

=
∫
E0

(G0fn − αG0G0
αfn)(x)ν(dx)

=
∫
E0

G0
αfn(x)ν(dx).
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By letting n → ∞, we get

(f − αG0
αf,G0ν)L2(E0,m) =

∫
E0

G0
αg(x)ν(dx).(2.12)

Next, for α > 0, put

fα = g − αG0
αf, fα,n = fα ∧ (nh).

Then ∫
E0

G0fα,nν(dx) = E(G0fα,n,G
0ν) = (fα,n,G

0ν)L2(E0,m).

Passing n → ∞, we get∫
E0

G0fα(x)ν(dx) = (fα,G0ν)L2(E0,m).

Hence, by (2.12),

(f − αG0
αf,G0ν)L2(E0,m) = (fα,G0ν)L2(E0,m).(2.13)

Multiplying both sides of (2.13) by α and then letting α → ∞ establishes (2.11)
for the measure ν that is of finite energy with respect to (E0,F 0). �

For α ≥ 0, let Hα denote the α-order hitting measure of F ; that is,

Hα(x,B) = Ex[e−ατ01B

(
Xτ0

); τ0 < ∞] for x ∈ E0 and B ∈ B(F ).

When α = 0, we will use H to denote H0. Since F is a finely closed set, Hα(x, ·)
is carried by F . For f ∈ B(F )+, define

Hαf (x) := Ex

[
e−ατ0f

(
Xτ0

); τ0 < ∞]
for x ∈ E.

Clearly, for any f ∈ B(F )+ and α ≥ 0, Hαf is α-excessive with respect to the
subprocess X0. Moreover, for every f ∈ B(F )+b and every x ∈ E0,

lim
t→∞P 0

t Hf (x) = lim
t→∞ Ex

[
f
(
Xτ0

); t < τ0 < ∞]= 0.(2.14)

By Theorem 4.6.5 of [20], for u ∈ Fe, H|u| < ∞ q.e. on E and Hu ∈ Fe. Re-
call that, for u ∈ Fe, the following Fukushima’s decomposition holds uniquely
(cf. [20]):

u(Xt) − u(X0) = Mu + Nu for t ≥ 0,

where Mu is a martingale additive functional of X having finite energy and Nu is
a continuous additive functional of X having zero energy. In the sequel, we will
use µ〈u〉 to denote the Revuz measure for the predictable quadratic variation 〈Mu〉
for the square integrable martingale Mu.

Let (N(x, dy),H) denote a Lévy system for the m-symmetric Hunt process X

on E. (See the Appendix below for the definition and properties of a Lévy system
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for symmetric Borel right processes.) The Revuz measure of the PCAF H of X will
be denoted as µH . We define

J (dx, dy) = 1
2N(x, dy)µH (dx) and κ(dx) = N(x, ∂)µH (dx)

as the jumping measure and the killing measure of X [or, equivalently, of (E ,F )].
The following Lemma 2.4 is an extension of Lemma 6.1 in [19]. Note here we do
not assume X being conservative.

Define q(x) := 1 − H1(x) = Px(τ0 ≥ ζ ). For f,g ∈ B(F )+b , define

U(f ⊗ g) := L(Hf,Hg) and V (f ) := L(Hf, q).(2.15)

By Lemma 2.3(i), U is a symmetric measure on F × F , which will be called the
Feller measure for F . The measure V on F will be called the supplementary Feller
measure for F .

We will first assume the following condition:

m(E0) < ∞.(2.16)

We will show in Theorem 2.11 below that this condition (2.16) can be dropped.

LEMMA 2.4. Assume condition (2.16) holds. For any u ∈ Fe,b, let w =
H(u2) − (Hu)2. Then w ∈ F 0

e,b and w = G0ν with ν = µ〈Hu〉|E0 ∈ S
(0)
0 . Further-

more,

µ〈Hu〉(E0) +
∫
E0

(Hu)2(x)κ(dx)

(2.17)
= lim

α→∞α(Hα1,w)L2(E0,m) +
∫
F

u(x)2V (dx).

PROOF. The proof of the first assertion is the same as that for Lemma 6.1
in [19], although we now work with the space S

(0)
0 of measures on the quasi-open

set E0 rather than an open set. So it is omitted here. Note that we only need the
inclusion ⊃ in relation (2.5) in our proof.

Since w is bounded and m(E0) < ∞, we have, by Lemma 2.3,

ν(E0) = L(1,w) = L(w,1)
(2.18)

= L(w,H1) + L(w,q) = L(H1,w) + L(w,q)

and, hence,

µ〈Hu〉(E0) = lim
α→∞α(Hα1,w)L2(E0,m) + L(w,q).(2.19)

On the other hand,

L(w,q) = L
(
H(u2), q

)− lim
t↓0

1

t

∫
E0

(
(Hu)2 − P 0

t (Hu)2)(x)q(x)m(dx)

(2.20)

=
∫
F

u2(x)V (dx) − lim
t↓0

1

t

∫
E0

(
(Hu)2 − P 0

t (Hu)2)(x)q(x)m(dx).
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Since q ∈ L1(E0,m) and u is bounded, we have

1

t

∫
E0

(
(Hu2) − P 0

t (Hu)2)(x)q(x)m(dx)

(2.21)

= 1

t

∫
E0

(Hu)2(x)
(
q(x) − P 0

t q(x)
)
m(dx).

Since q(x) = 1 − H1(x) = Px(τ0 ≥ ζ ),

q(x) − P 0
t q(x) = Px(τ0 ≥ ζ ) − Px(τ0 ≥ ζ, t < τ0)

= Px(t ≥ τ0 ≥ ζ )

= Ex

[ ∑
s≤t∧τ0

1E0(Xs−)1{∂}(Xs)

]

= Ex

[∫ t∧τ0

0
1E0(Xs)N(Xs, ∂) dHs

]
.

Note that At := ∫ t
0 1E0(Xs)N(Xs, ∂) dHs is the PCAF of X with Revuz measure

1E0(x)κ(dx), while t �→ At∧τ0 is the PCAF of X0 with the same Revuz measure
1E0(x)κ(dx). Thus,

1

t

∫
E0

(
(Hu2) − P 0

t (Hu)2)(x)q(x)m(dx)

= 1

t

∫
E0

(Hu)2(x)Ex

[
At∧τ0

]
m(dx)(2.22)

=
∫
E0

(
1

t

∫ t

0
P 0

s ((Hu)2)(x) ds

)
κ(dx),

where the second equality is due to Theorem 5.1.3(iii) of [20]. On the other hand,

P 0
s ((Hu)2)(x) ≤ Ps((Hu)2)(x) for every s > 0 and x ∈ E0

and by Theorem 5.1.3(iii) and (vi) of [20],

lim
t↓0

∫
E

(
1

t

∫ t

0
Ps((Hu)2)(x) ds

)
κ(dx)

= lim
t↓0

1

t

∫
E
(Hu)2(x)Ex[At ]m(dx)

=
∫
E0

(Hu)2(x)κ(dx) < ∞,

since Hu ∈ Fe,b. Therefore, we have, by (2.22) and the dominated convergence
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theorem,

lim
t↓0

1

t

∫
E0

(
(Hu2) − P 0

t (Hu)2)(x)q(x)m(dx)

=
∫
E0

(
lim
t↓0

1

t

∫ t

0
P 0

s ((Hu)2)(x) ds

)
κ(dx)

=
∫
E0

(Hu)2(x)κ(dx).

Hence, by (2.20),

L(w,q) =
∫
F

u(x)2V (dx) −
∫
E0

(Hu)2(x)κ(dx).(2.23)

This combined with (2.19) proves identity (2.17). �

For α > 0, define the α-order Feller measure Uα on F × F by

Uα(f ⊗ g) := α(Hαf,Hg)L2(E0,m) for f,g ∈ B(F )+b .

Since Hαf = Hf − αG0
αHf , it follows that

lim
α→∞Uα(f ⊗ g) = U(f ⊗ g) for f,g ∈ B(F )+b .(2.24)

We will now combine Lemma 2.4 with the next identity involving the α-order
Feller measure which first appeared in [16] in a conservative case. This identifica-
tion will be utilized again in the latter part of the next section.

LEMMA 2.5. For α > 0 and for any bounded measurable function u on F , let
w = H(u2) − (Hu)2. Then

α(Hα1,w)L2(E0,m) + α

∫
E0×F

(
Hu(x) − u(ξ)

)2Hα(x, dξ)m(dx),

=
∫
F×F

(
u(ξ) − u(η)

)2
Uα(dξ, dη) + α

(
q,Hα(u2)

)
L2(E0,m).

PROOF. Take any open set D ⊂ E0 with m(D) < ∞ and put Uα
D(u, v) =

α(Hαu,Hv)L2(D,m). Then

α
(
Hα1,Hu2 − (Hu)2)

L2(D,m) + α

∫
D×F

(
Hu(x) − u(ξ)

)2Hα(x, dξ)m(dx)

= Uα
D(1, u2) − 2Uα

D(u,u) + α(Hαu2,1)L2(D,m)

=
∫
F×F

(
u(ξ) − u(η)

)2
Uα

D(dξ, dη) + α(Hαu2, q)L2(D,m).

It then suffices to let D ↑ E0. �
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The following theorem is an improvement of Theorem 6.1 in [19] in several
respects. First, we do not assume that X is conservative. Second, it gives an identity
rather than an inequality, which is important in Theorem 2.7 and Corollary 2.9
below. Third, the process X is allowed to have killings inside E.

THEOREM 2.6. Assume condition (2.16) holds. For any u ∈ Fe,

µ〈Hu〉(E0) + 2
∫
E0×F

(
Hu(x) − u(ξ)

)2
J (dx, dξ) +

∫
E0

(Hu)2(x)κ(dx)

=
∫
F×F

(
u(ξ) − u(η)

)2
U(dξ, dη) + 2

∫
F

u(ξ)2V (dξ).

PROOF. Without loss of generality, we may assume that u ∈ Fe,b since oth-
erwise we consider un = ((−n) ∨ u) ∧ n and then pass n → ∞. For α > 0, by
Lemma 2.5,

α

∫
F×F

(
u(ξ) − u(η)

)2
Uα(dξ, dη) + α

(
q,Hα(u2)

)
L2(E0,m)

(2.25)
= α(Hα1,w)L2(E0,m) + α

∫
E0×F

(
Hu(x) − u(ξ)

)2Hα(x, dξ)

where w = H(u2) − (Hu)2 and q = 1 − H1. It follows from (2.24) that

lim
α→∞α

∫
F×F

(
u(ξ) − u(η)

)2
Uα(dξ, dη)

(2.26)
=
∫
F×F

(
u(ξ) − u(η)

)2
U(dξ, dη)

and

lim
α→∞α

(
q,Hα(u2)

)
L2(E0,m) =

∫
F

u(ξ)2V (dξ) for every α > 0.(2.27)

The last term in (2.25) can be written as

αEm

[
e−ατ0

(
Hu(X0) − u

(
Xτ0

))21{τ0<ζ }
]
.

Since, with the exception of a set of zero capacity, every point of F is a regular
point of X (cf. [20]) and since u ∈ Fe,b,

Kt := Hu
(
Xt∧τ0

)− Hu(X0)

is a Px -martingale for q.e. x ∈ E. We claim that

lim sup
t→0

1

t
Em[K2

t ] < ∞.(2.28)

This is because, by Fukushima’s decomposition,

Hu(Xt) − Hu(X0) = MHu
t + NHu

t ,
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where MHu is a martingale additive functional of X having finite energy and NHu

is a continuous additive functional of X having zero energy. Thus,

t �→ NHu
t∧τ0

= Kt − MHu
t∧τ0

is a Px-martingale for q.e. x ∈ E. Since NHu has finite energy, we have, for each
fixed t > 0,

E1E0m

[[NHu]t ; t < τ0
]= E1E0m

[
lim

n→∞
n∑

k=1

(
NHu

kt/n − NHu
(k−1)t/n

)2; t < τ0

]

≤ lim
n→∞ Em

[
n∑

k=1

(
NHu

kt/n − NHu
(k−1)t/n

)2]
= 0.

Hence, P1E0m-a.s., for every t > 0, [NHu]t = 0 on {t < τ0}. By the continuity

of [NHu], we have [NHu]τ0 = 0 P1E0m-a.s. Thus, P1E0m-a.s., NHu
t = 0 for every

t ≤ τ0. This implies that P1E0m-a.s., Kt = MHu
t∧τ0

for every t ≤ τ0. In particular,

lim sup
t→0

1

t
Em[K2

t ] = lim sup
t→0

1

t
Em

[(
MHu

t∧τ0

)2]≤ [(MHu
t )2] < ∞.

This proves the claim (2.28). However, K is not a MAF of X since Kt = Kτ0 for
t ≥ τ0. It is not a MAF of X0 either, since

Kτ0 − Kτ0− = Hu
(
Xτ0

)− Hu
(
Xτ0−

)= (
u
(
Xτ0

)− Hu
(
Xτ0−

))
1{Xτ0 �=Xτ0−}

is not a function of Xτ0− on {Xτ0 �= Xτ0−}. However, if we define

Mt =
{

Hu(Xt) − Hu(X0), for 0 ≤ t < τ0,

Hu
(
Xτ0−

)− Hu(X0), for t ≥ τ0,

then M is a MAF of X0 having finite energy. We will use 〈M〉 to denote the dual
predictable projection of the variational process [M] of M . Clearly, 〈M〉 is a PCAF
of X0 and we will use µ〈M〉 to denote the Revuz measure of 〈M〉 with respect to
the subprocess X0. Note that τ0 is the lifetime of X0. By Itô’s formula,

dM2
t = 2Mt− dMt + d[M]t

and so

d(e−αtM2
t ) = −αe−αtM2

t− dt + 2αe−αtMt− dMt + e−αt d[M]t .
Using dual predictable projection, we have

αEm

[
e−ατ0M2

τ0

]
= αE1E0m

[
−α

∫ ∞
0

e−αtM2
t−1{t<τ0} dt +

∫ τ0

0
e−αt d[M]t

]
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= αE1E0m

[
−α

∫ ∞
0

e−αt 〈M〉t1{t<τ0} dt +
∫ ∞

0
e−αt d〈M〉t

]
= αE1E0m

[
−
∫ ∞

0
e−s〈M〉s/α1{s/α<τ0} ds +

∫ ∞
0

e−αt d〈M〉t
]

= αE1E0m

[
−
∫ ∞

0
e−s〈M〉s/α ds +

∫ ∞
0

e−αt d〈M〉t
]

+ αE1E0m

[∫ ∞
0

e−s〈M〉s/α1{s/α≥τ0} ds

]
.

Consequently,

lim
α→∞αEm

[
e−ατ0M2

τ0

]
= −

∫ ∞
0

se−sµ〈M〉(E0) ds + µ〈M〉(E0)

+ lim
α→∞αE1E0m

[∫ ∞
0

e−s〈M〉s/α1{s/α≥τ0} ds

]
(2.29)

=
∫ ∞

0
e−s

(
lim

α→∞αE1E0m

[〈M〉s/α1{s/α≥τ0}
])

ds

= 0,

where in the second to the last equality we used the dominated convergence theo-
rem and in the last equality we applied Lemma 2.1 with X0 in place of X. Next,
note that, by using the Lévy system of X, we have

Em

[
e−ατ0

(
Hu

(
Xτ0−

)− u
(
Xτ0

)
1{τ0<ζ }

)2]
= Em

[
e−ατ0

(
Hu

(
Xτ0−

)− u
(
Xτ0

)
1{Xτ0−�=Xτ0 }

)21{τ0<ζ }
]

= E1E0m

[∫ τ0

0
e−αs

∫
F

(
Hu(x) − u(ξ)

)2
N(Xs, dξ) dHs

]
=
∫
E0

G0
α1(x)

(∫
F

(
Hu(x) − u(ξ)

)2
N(x, dξ)

)
µH(dx).

Hence, by the monotone convergence theorem,

lim
α→∞αEm

[
e−ατ0

(
Hu

(
Xτ0−

)− u
(
Xτ0

))21{τ0<ζ }
]

=
∫
E0

(∫
F

(
Hu(x) − u(ξ)

)2
N(x, dξ)

)
µH(dx)

=
∫
E0×F

(
Hu(x) − u(ξ)

)2
N(x, dξ)µH (dx)

= 2
∫
E0×F

(
Hu(x) − u(ξ)

)2
J (dx, dξ).
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It then follows from (2.29) that

lim
α→∞αEm

[
e−ατ0

(
Hu(X0) − u

(
Xτ0

))21{τ0<ζ }
]

= lim
α→∞αEm

[
e−ατ0

(−Mτ0 + Hu
(
Xτ0−

)− u
(
Xτ0

))21{τ0<ζ }
]

= lim
α→∞αEm

[
e−ατ0

(
Hu

(
Xτ0−

)− u
(
Xτ0

))21{τ0<ζ }
]

= 2
∫
E0×F

(
Hu(x) − u(ξ)

)2
J (dx, dξ).

Passing α → ∞ in identity (2.25), the above calculation together with (2.17) and
(2.26) and (2.27) proves the theorem. �

THEOREM 2.7. Assume condition (2.16) holds. For any u ∈ Fe,

E(Hu,Hu) = 1
2µc〈Hu〉(F ) +

∫
F×F

(
u(x) − u(y)

)2(1
2U(dx, dy) + J (dx, dy)

)
+
∫
F

u(x)2(V (dx) + κ(dx)
)
.

PROOF. It is well known (cf. [20]) that

E(Hu,Hu)

= 1
2µ〈Hu〉(E) + 1

2µk〈Hu〉(E)

= 1
2µ〈Hu〉(E0) + 1

2µ〈Hu〉(F ) + 1
2µk〈Hu〉(E)

= 1
2µ〈Hu〉(E0) + 1

2µk〈Hu〉(E0) + 1
2µc〈Hu〉(F ) + 1

2µ
j
〈Hu〉(F ) + µk〈Hu〉(F ),

where

µ
j
〈Hu〉(dx) =

(∫
E

(
Hu(x) − Hu(y)

)2
N(x, dy)

)
µH(dx)

and

µk〈Hu〉(dx) = (Hu)2(x)κ(dx) = u(x)2κ(dx).

The assertion of the theorem now follows from Theorem 2.6. �

We now study the trace of the process X on the quasi-closed set F . A quasi-
support of a Borel measure is the smallest quasi-closed set outside which the mea-
sure has zero charge. The quasi-support is unique up to quasi-equivalence. Denote

by
◦
S the family of all positive Radon measures on E charging no set of zero ca-

pacity. Put
◦
SF = {µ ∈◦

S : the quasi support of µ = F q.e.}.(2.30)
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LEMMA 2.8. For a quasi-closed subset F ⊂ E with positive capacity,
◦
SF �= ∅.

PROOF. The proof is the same as that for Lemma 4.1 in [19]. But for the
reader’s convenience, we spell out the details here. Let σF := inf{t ≥ 0 :Xt ∈ F }
and g be a strictly positive function in L1(E,m). Define, for B ∈ B(E),

µ(B) :=
∫
E

g(x)Px

(
XσF

∈ B,σF < ∞)
m(dx).

Since F is quasi-closed and has positive capacity, µ(E \ F) = 0 and µ is a non-
trivial finite measure charging no set of zero capacity. If f ∈ F and f = 0 µ-a.e
on E, then ∫

E
g(x)H|f |(x)m(dx) =

∫
E

|f (x)|µ(dx) = 0.

Since H|f | is quasi-continuous, H|f | = 0 q.e. on E and, thus, f = 0 q.e. on F .
It now follows from [20], Theorem 4.6.2, that F is a quasi-support of µ; that is,

µ ∈◦
SF . The lemma is proved. �

Fix a measure µ ∈◦
SF , and let Aµ be the PCAF of X with Revuz measure µ. Let

N be the exceptional set in the definition of Aµ. Then the support of Aµ, which is
defined as (see (5.1.21) of [20]){

x ∈ E \ N : Px(inf{t > 0 :Aµ
t > 0} = 0) = 1

}
,

is nearly Borel, finely closed and equals to F q.e. Therefore, we may and shall
assume that the support of Aµ is just F in accordance with the preceding conven-
tion. Note that Hu with u ∈ Fe remains the same q.e. if F is replaced by another
quasi-closed set that equals to F q.e.

Let Y be the time-changed process of the Hunt process X by the right continu-
ous inverse of Aµ. Then by [30], (65.9), Y is a µ-symmetric right process on F .
The Dirichlet form on (Ě , F̌ ) of Y on L2(F ;µ) admits an expression (cf. Theo-
rem 6.2.1 of [20]):

F̌e = Fe|F ,

F̌ = Fe|F ∩ L2(F,µ),(2.31)

Ě(u, v) = E(Hu,Hv) for u, v ∈ F̌e.

By [14] and [28], the Dirichlet form (Ě , F̌ ) is quasi-regular on F . See the Ap-
pendix of this paper for the existence of a Lévy system for Y and the probabilis-
tic characterization for the Beurling–Deny decomposition of (Ě , F̌ ). Recall our
convention that functions in Fe are always represented by their quasi-continuous
versions. It can also be verified that the extended Dirichlet space F̌e of (F̌ , Ě)

coincides with Fe|F , independent of the choice of µ ∈◦
SF .
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Denote by F̃ the topological support of the measure µ. The trace Dirichlet
form (Ě , F̌ ), which is quasi-regular, is, in general, not a regular Dirichlet form
on F . However, by [20], Theorem 6.2.1, it is regular on F̃ . Here we note that
Cap(F \ F̃ ) = 0, µ(F̃ \ F) = 0 and so L2(F ;µ) = L2(F̃ ;µ). But it is possi-
ble that Cap(F̃ \ F) > 0 (see [20], Example 5.1.2). However, F̃ \ F always has
zero Ě1-capacity by [20], Theorem 6.2.1(iv). Hence, the natural inclusion map
i :F → F̃ gives a quasi-homeomorphism between the quasi-regular Dirichlet form
(Ě , F̌ ) on L2(F ;µ) and the regular Dirichlet form (Ě , F̌ ) on L2(F̃ ;µ). We shall
employ this useful fact in the proof of the next theorem. There are some more
related discussions on this at the end of the next section.

By Theorem 2.7, we have the following:

COROLLARY 2.9. Assume condition (2.16) holds. For u ∈ F̌e,

Ě(u,u) = 1
2µc〈Hu〉(F ) +

∫
F×F

(
u(x) − u(y)

)2(1
2U(dx, dy) + J (dx, dy)

)
(2.32)

+
∫
F

u(x)2(V (dx) + κ(dx)
)
.

We now show that the decomposition in (2.32) is the Beurling–Deny decompo-
sition for (Ě , F̌ ).

THEOREM 2.10. Assume condition (2.16) holds. The bilinear form (u, v) �→
µc〈Hu,Hv〉(F ) has the strong local property on F̌ ; that is, if u, v ∈ F̌ ∩ Cc(F̃ ) and
u is constant in a neighborhood of supp[v], then µc〈Hu,Hv〉(F ) = 0. In other words,

Ě c(u, v) = 1
2µc〈Hu,Hv〉(F ) for u, v ∈ F̌ .

PROOF. As is mentioned above, (Ě , F̌ ) is a regular Dirichlet form on
L2(F̃ ,µ). Let u ∈ F̌b ∩ Cc(F̃ ) such that u = c for some c ∈ R on a relative open
subset I of F̃ . For any relatively compact open subset I1 of I , there are open sub-
sets D1 and D of E such that �D1 ⊂ D, �D is compact, D1 ∩F = I1 and D ∩F = I .
Since (E ,F ) is a regular Dirichlet space on L2(E,m), there is a ϕ ∈ F ∩ Cc(E)

such that ϕ = 1 on D1 and ϕ = 0 on Dc. Let v = cϕ + (1 − ϕ)Hu. Then v ∈ Fe,b

and v is constant on D1. Hence, µc〈v〉(D1) = 0 and, thus, we conclude

µc〈v〉(I1) = 0.(2.33)

Since v = u q.e. on F , we have Hv = Hu q.e. Define v0 = v − Hv, which is
in F 0

e,b. Let {Kn,n ≥ 1} be a generalized nest so that F ∩ Kn is a closed set.
Let (E ,F E\(F∩Kn)) be the Dirichlet space for the subprocess of X killed upon
leaving E \ (F ∩ Kn). Clearly, v0 ∈ F 0

e,b ⊂ F
E\(F∩Kn)
e,b . Since (E ,F E\(F∩Kn)) is

regular on L2(E \ (F ∩ Kn);m), by Theorem 4.4.3 of [20], µc〈ψ〉(F ∩ Kn) = 0 for
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ψ ∈ F ∩ Cc(E \ (F ∩ Kn)) and, hence, for ψ = v0. Thus, µc〈ψ〉(F ∩ Kn) = 0 and
passing n to infinity we have µc〈ψ〉(F ) = 0. In particular, µc〈v0〉(I ∩ F) = 0. On the
other hand,

µc〈v〉(I1 ∩ F) = µc〈Hv+v0〉(I1 ∩ F)

= µc〈Hv〉(I1 ∩ F) + 2µc〈Hv,v0〉(I ∩ F) + µc〈v0〉(I1 ∩ F)

= µc〈Hv〉(I1 ∩ F)

= µc〈Hu〉(I1 ∩ F).

Thus, by (2.33), µc〈Hu〉(I1 ∩ F) = 0. By letting I1 ↑ I, we get

µc〈Hu〉(I ∩ F) = 0.(2.34)

Now for u, v ∈ F̌ ∩ Cc(F̃ ) such that u is constant in a neighborhood of supp[v],
we let F1 = supp[v] and F2 = F̃ \ supp[v]. By (2.34),

µc〈Hu〉(F1 ∩ F) = 0 and µc〈Hv〉(F2 ∩ F) = 0.

Since F ⊂ F̃ q.e. and µc〈Hu,Hv〉 does not charge on sets of zero capacity, it follows
then ∣∣µc〈Hu,Hv〉(F )

∣∣= ∣∣µc〈Hu,Hv〉(F1 ∩ F) + µc〈Hu,Hv〉(F2 ∩ F)
∣∣

≤
√

µc〈Hu〉(F1 ∩ F)µc〈Hv〉(F1 ∩ F)

+
√

µc〈Hu〉(F2 ∩ F)µc〈Hv〉(F2 ∩ F)

= 0.

This proves the theorem. �

It follows from Corollary 2.9 and Theorem 2.10 that

J̌ (dx, dy) := 1
2U(dx, dy) + J (dx, dy)|F×F(2.35)

and

κ̌(dx) := V (dx) + κ(dx)|F(2.36)

are the jumping measure and the killing measure for the time-changed process Y ,
respectively.

We now proceed to remove condition (2.16).

THEOREM 2.11. Theorem 2.7, Corollary 2.9 and Theorem 2.10 remain true
without the assumption (2.16).
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PROOF. The only place where condition (2.16) is used is to ensure that
the symmetry can be applied in (2.18) and in (2.21). By using a time-change
method, the assumption (2.16) can be dropped. Let ϕ > 0 on E0 be such that∫
E0

ϕ(x)m(dx) < ∞. Let

ν(dx) := (
1E0(x)ϕ(x) + 1Ec

0
(x)

)
m(dx).

Let Aν be the PCAF of X with Revuz measure ν and

σt := inf{s ≥ 0 :Aν
s > t}.

Then Zt := Xσt is a ν-symmetric right process on E with Dirichlet form
(EZ,F Z). It is well known (cf. [20]) that F Z

e = Fe, EZ = E on Fe. Clearly,
HZu = Hu for u ∈ Fe. Since ν(E0) < ∞, Theorem 2.7, Corollary 2.9 and The-
orem 2.10 hold for the process Z. Hence, Theorem 2.7 and Corollary 2.9 hold
without the assumption (2.16). Moreover, (2.32) (for Z) gives the Beurling–Deny

decomposition for the Dirichlet form of the time changed process of X by µ ∈◦
SF .

We now show that Feller measures are invariant under time changes. For this,
let UX , UZ and LX , LZ denote the Feller measures and energy functionals for
the processes X and Z, respectively. We will use GX,0 and GZ,0 to denote the
0-resolvent of the part process X0 and Z0 in E0, respectively. Clearly, for f ≥ 0
on E0 and x ∈ E0,

GZ,0f (x) = Ex

[∫ ∞
0

f
(
X0

σt

)
dt

]
= Ex

[∫ ∞
0

f (X0
t )ϕ(Xt ) dt

]
= GX,0(ϕf )(x).

By (2.14) above and Proposition 3.6(ii) in [21], for u, v ∈ B(F )+b ,

UX(u ⊗ v) = LX(Hu,Hv)

= sup
{∫

E0

Hu(x)µ(dx) : (µGX,0)(dx) ≤ Hv(x)m(dx) on E0

}
.

Hence,

UZ(u ⊗ v)

= sup
{∫

E0

Hu(x)µ(dx) : (µGZ,0)(dx) ≤ Hv(x)ν(dx) on E0

}

= sup
{∫

E0

Hu(x)µ(dx) :
∫
E0

GZ,0f (x)µ(dx) ≤
∫
E0

f (x)Hv(x)ν(dx)

for every f ≥ 0 on E0

}
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= sup
{∫

E0

Hu(x)µ(dx) :
∫
E0

GX,0(ϕf )(x)µ(dx)

≤
∫
E0

f (x)Hv(x)ϕ(x)m(dx)

for every f ≥ 0 on E0

}
= sup

{∫
E0

Hu(x)µ(dx) :
∫
E0

GX,0µ(x)(ϕf )(x)m(dx)

≤
∫
E0

(f ϕ)(x)Hv(x)m(dx)

for every f ≥ 0 on E0

}
= sup

{∫
E0

Hu(x)µ(dx) :GX,0µ ≤ Hv on E0

}
= UX(u ⊗ v).

This shows that UX = UZ and, consequently, V X = V Z . In particular, this shows
that UX is a symmetric measure on F ×F . Therefore, Theorem 2.10 holds for the
process X without the assumption (2.16). �

EXAMPLE 2.12. Let X = (Xt ,Px)x∈Rn be the standard Brownian motion on
R

n with n ≥ 3. Let S be a C3 compact hypersurface so that E0 = R
n \ S is the

union of the interior domain Di and exterior domain De. We denote by σ the
surface measure on S. Further, ∂

∂ni
ξ

and ∂
∂ne

ξ
will denote the inward normal and

outward normal derivative at ξ ∈ S from the view of Di , respectively. We consider
the Poisson kernel K(x, ξ), x ∈ E0, ξ ∈ S, and the escape probability of X from S

defined by

q(x) = 1 − H1(x) = Px(σS = ∞), x ∈ E0.

Note that q(x) > 0 only for x ∈ De.
Then the Feller measure U and the supplementary Feller measure V with re-

spect to X and S have densities U(ξ, η) and v(ξ) relative to σ × σ and σ , respec-
tively, which admit the expressions

U(ξ, η) = 1

2

∂K(ξ, η)

∂ni
ξ

+ 1

2

∂K(ξ, η)

∂ne
ξ

, ξ �= η, ξ, η ∈ S,(2.37)

v(ξ) = 1

2

∂q(ξ)

∂ne
ξ

, ξ ∈ S.(2.38)



1076 Z.-Q. CHEN, M. FUKUSHIMA AND J. YING

Formula (2.37) has been established in [19], Example 2.1, where it is also shown
that, in the special case of S = �r , the sphere of radius r > 0 centered at the origin,
(2.37) is reduced to

U(ξ, η) = 2

�n

|ξ − η|−n, ξ, η ∈ �r, ξ �= η,

where �n denotes the area of the unit sphere in R
n. In this special case, (2.38) is

also reduced to a constant function

v(ξ) = 1

2
lim|x|↓r

q(x)

|x| − r
= n − 2

2r
, ξ ∈ �r,

because q(x) = 1 − rn−2

|x|n−2 for |x| > r.

For the proof of (2.37) and (2.38), it suffices to show the formula

1
2

∫
Rn

|∇Hf (x)|2 dx = 1
2

∫
S×S

(
f (ξ) − f (η)

)2
U(ξ, η)σ (dξ)σ (dη)

(2.39)
+
∫
S
f (ξ)2v(ξ)σ (dξ)

holding for any f ∈ C∞
c (Rn).

Take a sufficiently large R such that the ball BR = {x ∈ R
n : |x| < R} contains

the surface S. Let XR be the reflecting Brownian motion on �BR , whose Dirichlet
form (ER,F R) on L2(BR) is given by

ER(u, v) = 1
2

∫
BR

∇u · ∇v dx and F R = H 1(BR).

Here H 1(BR) is the space of L2-integrable functions on BR with L2-integrable
first-order distributional derivatives on BR . Let UR be the Feller measure on the
closed set F = S∪�R(⊂ �BR) relative to XR. The surface measure on F is denoted
by σ again. Let De,R := De ∩ BR. Just as in [20], Example 2.1, we see that UR

admits a density with respect to σ × σ with

UR(ξ, η) = 1

2

∂K(ξ, η)

∂ni
ξ

IS(η) + 1

2

∂KR(ξ, η)

∂ne
ξ

, ξ ∈ S,η ∈ F,(2.40)

where K(x,η), x ∈ Di,η ∈ S, is, as before, the Poisson kernel in Di , while
KR(x,η), x ∈ De,R, η ∈ F, is the Poisson kernel in the region De,R so that, for
x ∈ De,R ,∫

�
KR(x, η)σ (dη) =

{
Px

(
σS < σ�R

,XσS
∈ �

)
, � ⊂ S,

Px

(
σS > σ�R

,Xσ�R
∈ �

)
, � ⊂ �R ,

(2.41)

where X is Brownian motion in R
n.
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Since XR is conservative and BR is of finite Lebesgue measure, Theorem 6.2 of
[19] implies that

1
2

∫
BR

|∇Hf (x)|2 dx = 1
2

∫
F×F

(
f (ξ) − f (η)

)2
UR(dξ, dη), f ∈ C∞

c (Rn).

Therefore, if we take for any f ∈ C∞
c (Rn) a large R such that the support of f is

contained in BR, then we have

1
2

∫
BR

|∇Hf (x)|2 dx = 1
2

∫
S×S

(
f (ξ) − f (η)

)2
UR(ξ, η)σ (dξ)σ (dη)

(2.42)
+
∫
S
f (ξ)2vR(ξ)σ (dξ),

where

vR(ξ) =
∫
�R

UR(ξ, η)σ (dη).

In view of (2.40) and (2.41), we have

vR(ξ) = 1

2

∂qR(ξ)

∂ne
ξ

(2.43)
for ξ ∈ S, where qR(x) = Px

(
σ�R

< σS

)
for x ∈ De,R.

We now prove that

UR(ξ, η) ↑ U(ξ, η) and
∂qR(ξ)

∂ne
ξ

↓ ∂q(ξ)

∂ne
ξ

as R ↑ ∞.(2.44)

Then the desired identity (2.39) follows from (2.42) and (2.43).
For ξ ∈ S, let Kα(x, ξ), x ∈ De, and KR

α (x, ξ), x ∈ De,R, be the α-order
Poisson kernels on De and De,R , respectively. As R ↑ ∞, KR(x, ξ) [respec-
tively, KR

α (x, ξ)] increases to K(x, ξ) [resp. Kα(x, ξ)]. On the other hand, we
see from [19], Theorem 6.2, that, as α ↑ ∞,

α

∫
De,R

KR(x, ξ)KR
α (x, η) dx ↑ 1

2

∂KR(ξ, η)

∂ne
ξ

, ξ, η ∈ S

α

∫
De

K(x, ξ)Kα(x, η) dx ↑ 1

2

∂K(ξ, η)

∂ne
ξ

, ξ, η ∈ S.

Hence, by interchanging the order of taking limits, we get the first part of (2.44).
Finally, we take R1 with S ⊂ BR1 and denote by σ1 the surface measure on �R1 .

Then we have

qR(x) =
∫
�R1

KR1(x, η)qR(η)σ1(dη), R1 < R,
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and

q(x) =
∫
�R1

KR1(x, η)q(η)σ1(dη).

By taking the outward normal derivative in x at S on both sides of each of the above
two equations, we arrive at the second part of (2.44) because qR(η) decreases to
q(η) as R ↑ ∞ for each η ∈ �R1 .

3. Space of functions with finite Douglas integrals. In the preceding sec-
tion we have established a Beurling–Deny decomposition of the trace Dirichlet
form (Ě , F̃ ) with the jumping and killing measures being given by (1.6). This par-
ticularly means that, for any function ϕ in the (extended) trace Dirichlet space F̌e,

the value of the integral (1.7) is finite. We may call this value the (generalized)
Douglas integral of the function ϕ (cf. [19]).

In this section we shall look for conditions to guarantee the coincidence of the
(extended) trace Dirichlet space F̌e with the space of functions on F with finite
Douglas integrals. For this purpose, we shall first study the relationship between
the Dirichlet form (E ,F ) of the given process X on E and the reflected Dirichlet
space (F ref,E ref) for the Dirichlet form (E0,F 0) of the absorbed process X0 on
E0 = E \ F. The notion of the reflected Dirichlet space was introduced by Silver-
stein (see [31]) for a transient regular Dirichlet form and was further studied in
detail by the first author [6].

We continue to work with a regular irreducible Dirichlet form (E ,F ) on
L2(E,m), an associated Hunt process X = {�,Xt, ζ,Px}x∈E on E and a quasi-
closed set F of E satisfying (2.1). As in Section 2, each element of the space
F will be represented by its quasi-continuous version and we will assume, with-
out loss of generality, that F is nearly Borel and finely closed. Then E0 = E \ F

is finely open and we have by Lemma 2.2 that the Dirichlet form (E0,F 0) on
L2(E0;m), defined by (2.3), is transient and quasi-regular. But (E0,F 0) is, in
general, not regular on L2(E0;m). The first part of this section is to generalize
the notion of the reflected Dirichlet space from the regular Dirichlet form setting
(see [6]) to the quasi-regular Dirichlet form (E0,F 0) by using the energy func-
tional L defined by (2.9) for X0.

Recall that τ0 is defined by (2.2), which denotes the first exit time from E0 =
E \ F by X. The process X0 can then be realized as

X0 = {�,M0,X0
t , ζ

0,Px}x∈E0,

where

ζ 0 = τ0 and X0
t =

{
Xt, for 0 ≤ t < ζ 0,

∂, for t ≥ ζ 0,

and M0 is the σ -field generated by X0
t with a usual augmentation by null sets.
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The process X0 is a standard process on E0 and it is convenient to introduce
the following related notions. A nearly Borel set A ⊂ E0 is called X0-invariant if
Px(�A) = 1 for every x ∈ A, where

�A = {ω ∈ � :X0
t ,X

0
t− ∈ A for every t ∈ [0, ζ 0)}.

Then the restriction X0|A defined in a natural way is a standard process on A.

We say a random variable γ on � is X|A-measurable if the restriction γ |�A
is

measurable with respect to the σ -field M0 ∩ A. The random variable γ need not
be defined on � \ �A in this case.

A nearly Borel set N ⊂ E0 is called X0-properly exceptional if E0 \ N is
X0-invariant and m(N) = 0. Such a set N is then X0-exceptional in the sense
of Lemma 2.2(i).

Throughout this section, we shall assume that X0 admits no killings inside E0;
that is,

Px(X
0
ζ 0− ∈ E0, ζ

0 < ∞) = 0 for every x ∈ E0,(3.1)

or, equivalently,

κ0(dx) := κ(dx)|E0 + N(x,F )µH(dx)|E0 = 0.(3.2)

Here we state a variant of [6], Definition 1.4. We call a random variable γ =
γ (ω) on � a terminal random variable if there exists an X0-properly exceptional
set N ⊂ E0 such that γ is X0|E0\N -measurable and

Ex[|γ |] < ∞ for every x ∈ E0 \ N

and

γ (θt (ω)) = γ (ω) for every ω ∈ �E0\N and t < ζ 0(ω).

We call such a set N an X0-properly exceptional set for the terminal random vari-
able γ.

For convenience, let us first make an additional assumption that E0 is an
open subset of E. This additional condition will be removed in Remark 3.2 and
Lemma 3.3.

Then the Dirichlet form (E0,F 0) on L2(E0;m) is not only transient by
Lemma 2.2(iv) but also regular by [20], Theorem 4.4.3. Let Dk be relatively com-
pact open subsets of E0 := E \ F such that �Dk ⊂ Dk+1 and Fk ↑ E0. Let Lk be
the 0-order equilibrium measure of Dk with respect to (E0,F 0), that is,

G0Lk(x) = ek(x) := Px

(
σDk

< ∞)
for x ∈ E0.

Note that, for any nonnegative measurable function f on E0,∫
E0

G0f (x)Lk(dx) =
∫
E0

f (x)ek(x)m(dx).(3.3)
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This is because for f ≥ 0 with
∫
E0

f (x)G0f (x)m(dx) < ∞, G0f ∈ F 0
e and∫

E0

G0f (x)Lk(dx) = E(ek,G
0f ) =

∫
E0

f (x)ek(x)m(dx).

The general case can be proved by approximation in the same way as in the proof
for Lemma 2.3.

LEMMA 3.1. Assume that E0 is an open subset of E.

(i) For any X0-excessive function f on E0,

sup
k≥1

∫
E0

f (x)Lk(dx) = L(1, f ).

(ii) Assume that condition (3.1) holds. For a terminal random variable γ with
an X0-properly exceptional set N ⊂ E0, put

f (x) = Ex[γ 2] − (Ex[γ ])2, x ∈ E0 \ N.(3.4)

Then f is excessive with respect to X0|E0\N.

PROOF. (i) Choose nonnegative hn such that G0hn ↑ f. Then, by (3.3),

sup
k≥1

∫
E0

f (x)Lk(dx) = sup
k≥1

sup
n≥1

∫
E0

G0hn(x)Lk(dx)

= sup
n≥1

sup
k≥1

∫
E0

hn(x)ek(x)m(dx)

= sup
n≥1

∫
E0

hn(x)m(dx).

On the other hand,

L(1, f ) = sup
α>0

sup
n≥1

α(1 − αG0
α1,G0hn)L2(E0,m)

= sup
n≥1

sup
α>0

(hn,αG0
α1)L2(E0,m)

= sup
n≥1

∫
E0

hn(x)m(dx).

Therefore, supk≥1
∫
E0

f (x)Lk(dx) = L(1, f ).
(ii) We put h(x) = Ex(γ ), x ∈ E0 \ N. For any relatively compact open set

D ⊂ E0, we define

HDh(x) := Ex

[
h
(
X0

τD

)]
for x ∈ E0 \ N,
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where τD denotes the first exit time from D by X0. Since X0 admits no killings
inside E0, we have τD < τ0 Px-a.s. on {τ0 < ∞} for every x ∈ E0 \ N and

HDh(x) = h(x) and h(x)2 ≤ HDh2(x), x ∈ E0 \ N.

Hence, for x ∈ E0 \ N having f (x) < ∞,

HDf (x) = Ex[γ 2] − HD(h2)(x) ≤ Ex[γ 2] − h(x)2 = f (x).

Clearly, HDf (x) ≤ f (x) holds for those x ∈ E0 \ N with f (x) = ∞. On the
other hand, according to [12], Lemma 12.2, both functions h(x) and Ex(γ

2) are
excessive and, accordingly, finely continuous with respect to the standard process
X0|E0\N. Therefore, f is superharmonic in the sense of [12] with respect to this
standard process. Using [12], Theorem 12.4, we conclude that f is excessive with
respect to X0|E0\N , namely,

f (x) ≥ 0, P 0
t f (x) ↑ f (x) as t ↓ 0, for every x ∈ E0 \ N.(3.5) �

REMARK 3.2. We may drop the assumption that E0 is open and can replace
the increasing sequence {Dk, k ≥ 1} of relatively compact open subsets of E0 by
an E0-nest {Fk, k ≥ 1} consisting of compact subsets of D0 and replace Lk by the
0-order equilibrium measure of Fk in (E0,F 0). The conclusion of Lemma 3.1(i)
remains valid.

Under the additional assumption that E0 is open, let ((F 0)ref,E ref) be the re-
flected Dirichlet space of the regular transient Dirichlet space (F 0,E0) as defined
in [6], Definitions 1.6 and 3.1. We put

N = {
γ :γ is a terminal variable with L

(
1,E·[γ 2] − (E·[γ ])2)< ∞}

.(3.6)

By Lemma 3.1, it holds that

(F 0)ref = F 0
e + HN,(3.7)

where

HN = {h :h(x) = Ex[γ ] for q.e. x ∈ E0 with γ ∈ N}.(3.8)

For f = f0 + h ∈ (F 0)ref, where f0 ∈ F 0
e and h = E·[γ ] with γ ∈ N ,

E ref(f, f ) = E(f0, f0) + 1
2L
(
1,E·[γ 2] − (E·[γ ])2).(3.9)

Due to the next lemma, however, the above definition of the space ((F 0)ref,E ref)

makes sense without assuming that E0 is open.

LEMMA 3.3. The second statement (ii) of Lemma 3.1 remains valid without
the additional assumption that E0 is open.



1082 Z.-Q. CHEN, M. FUKUSHIMA AND J. YING

PROOF. In the preceding proof, we used the fact that E0 is a locally compact
separable metric space in order to apply Dynkin’s [12], Theorem 12.4 directly.
Without assuming that E0 is open, however, E0 is related to such a nice space
by a quasi-homeomorphism. Indeed, the Dirichlet form (E0,F 0) on L2(E0;m) is
quasi-regular by Lemma 2.2(v) and, accordingly, we can apply [8] to find a regu-
lar Dirichlet space (E′,m′,F ′,E ′) such that E0 and E′ are quasi-homeomorphic:
there exist an E0-nest {Fn} on E0, an E ′-nest {F ′

n} on E′ and a one to one map-
ping q from E00 =⋃∞

n=1 Fn to
⋃∞

n=1 F ′
n with the restriction of q on each Fn being

homeomorphic to F ′
n. Further, m′,F ′,E ′ are the image by q of m,F 0,E0, respec-

tively.
Take any terminal random variable γ. In view of Lemma 2.2(iii), we can find an

(X-)properly exceptional set N ⊂ E0 including both E0 \E00 and the X0-properly
exceptional set for γ. Then N is an X0-properly exceptional set. Let E′

1 = q(E0 \
N), and

X′
t (ω) = q(Xt(ω)), ω ∈ �,

P′
x′(�) = Pq−1x(�), � ∈ M0, x′ ∈ E′

1.

Then we see that

X′ = (�,M0,X′
t , ζ

0,P′
x′)x′∈E′

1

is a standard process on E′
1 and γ can be regarded as a terminal random variable

with respect to X′ with the X′-properly exceptional set N ′ = E′ \ E′
1.

Since E′ is a locally compact separable metric space, we conclude in exactly
the same way as in the proof of Lemma 3.1 that the function

g(x′) = E′
x′(γ 2) − (E′

x′(γ ))2, x′ ∈ E′
1,

is X′-excessive: for the transition function {P ′
t } of X′,

g(x′) ≥ 0, P ′
t g(x′) ↑ g(x′) as t ↓ 0, x′ ∈ E′

1,

which implies the desired property (3.5) of the function f because

f (x) = g(qx), P 0
t f (x) = P ′

t g(qx), x ∈ E0 \ N. �

We now remove the additional assumption that E0 is an open subset of E. Based
on the above lemma, we may and do regard (3.6)–(3.9) as definition of the re-
flected Dirichlet space of the Dirichlet space (F 0,E0). See also [25] for a related
approach. Let us introduce the function space HF by

HF = {
Hϕ|E0 :ϕ is a measurable function on F with H|ϕ|(x) < ∞

for q.e. x ∈ E0 and L
(
1,H(ϕ2) − (Hϕ)2)< ∞}

.
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THEOREM 3.4. Assume condition (3.1) holds.

(i) The following inclusions hold:{
Hu|E0 :u ∈ Fe

}⊂ HF ⊂ HN and Fe|E0 ⊂ (F 0)ref.(3.10)

(ii) For u ∈ Fe,

E(u,u) ≥ E ref(u|E0, u|E0

)
.(3.11)

(iii) Equality holds in (3.11) for every u ∈ Fe if and only if

µ〈Hu〉(F ) = 0 for every u ∈ Fe.(3.12)

PROOF. (i) Since the Dirichlet form (E0,F 0) is quasi-regular on L2(E0;m)

by Lemma 2.2, there exists an E0-nest {Ak, k ≥ 1} consisting of compact subsets
of E0. Under the assumption (3.1) that X0 has no killing inside E0, it holds for
q.e. x ∈ E0 that Px-a.s. on {σE\Ak

< ∞},
σE\Ak

< σF and XσE\Ak
∈ E0 \ Ak.

On account of (2.6) and the quasi-left continuity of X, we have, for q.e. x ∈ E0,

lim
k→∞XσE\Ak

= XσF
, Px-a.s. on {σF < ∞}

and so it is measurable with respect to M0. Hence, for every h = Hϕ|E0 ∈ HF ,
γ := ϕ(Xτ0) = 1{σF <∞}ϕ(XσF

) is a terminal variable of X0 with

Ex[γ ] = Hϕ(x) and L
(
1,E·[γ 2] − (E·[γ ])2)= L

(
1,H(ϕ2) − (Hϕ)2).

So h ∈ HN , which proves HF ⊂ HN .
To prove that {Hu|E0 :u ∈ Fe} ⊂ HF , take any u ∈ Fe. We see then, by

Lemma 4.6.6 of [20], that H|u|(x) is finite for q.e. x ∈ E. For n ≥ 1, define
un = ((−n) ∨ u) ∧ n, which is in Fe,b. Observe that, in view of Theorem 2.11 and
its proof, without loss of generality, we may and do assume m(E0) < ∞. Then, by
virtue of Lemma 2.3 and the first part of Lemma 2.4,

µ〈Hun〉(E0) = L(1,wn) where wn = H(u2
n) − (Hun)

2,

which particularly implies
1
2α(1 − αG0

α1,wn)L2(E0;m) ≤ E(Hun,Hun) ≤ E(un,un) ≤ E(u,u).

We first let n → ∞ using Fatou’s lemma and then let α → ∞ to get
1
2L
(
1,H(u2) − (Hu)2)≤ E(u,u) < ∞,

proving that Hu|E0 ∈ HF .

That Fe|E0 ⊂ (F 0)ref is now clear from the decomposition of u ∈ Fe:

u = u0 + Hu with u0 = u − Hu ∈ F 0
e .(3.13)
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(ii) We claim

E(u,u) − E ref(u|E0, u|E0

)
(3.14)

= 1
2µ〈Hu〉(F ) + 1

2

∫
F

u(x)2κ(dx) for every u ∈ Fe.

For any u ∈ Fe, we decompose it as in (3.13). By Theorem 4.6.5 of [20],

E(u,u) = E(u0, u0) + E(Hu,Hu).

We know from (i) that u|E0 ∈ (F 0)ref and

E ref(u|E0, u|E0

)= E(u0, u0) + 1
2L(1,w).

Suppose u ∈ Fe,b. Then by Lemma 2.3 and the first part of Lemma 2.4,

µ〈Hu〉(E0) = L(1,w) where w = Hu2 − (Hu)2.

Accordingly,

E(Hu,Hu) = 1
2µ〈Hu〉(E) + 1

2µk〈Hu〉(E)

= 1
2L(1,w) + 1

2µ〈Hu〉(F ) + 1
2

∫
E
(Hu)2(x)κ(dx),

which proves the claim (3.14).
Now for general u ∈ Fe, since un = ((−n) ∨ u) ∧ n is a bounded function in Fe

and so

E(un,un) − E ref(un|E0, un|E0

)= 1
2µ〈Hun〉(F ) + 1

2

∫
F

un(x)2κ(dx).(3.15)

But un is E -convergent to u and, moreover, un|E0 is E ref-convergent to u|E0 by
virtue of [6]. Since∣∣µ〈Hun〉(F )1/2 − µ〈Hu〉(F )1/2∣∣≤ µ〈H(un−u)〉(F )1/2

≤ µ〈H(un−u)〉(E)1/2

≤ E(un − u,un − u)1/2,

we arrive at (3.14) for u by passing n → ∞ in (3.15). (ii) now follows immediately
from (3.15).

(iii) Note that, for u ∈ Fe,

1
2

∫
F

u(x)2κ(dx) = 1
2

∫
F

Hu(x)2κ(dx) ≤ µ〈Hu〉(F )

and so (iii) follows from (3.15). �



TRACES OF SYMMETRIC MARKOV PROCESSES 1085

REMARK 3.5. (i) Condition (3.1) is needed for{
Hu|E0 :u ∈ Fe

}⊂ HN and Fe|E0 ⊂ (F 0)ref

to hold. For example, let X be a spherically symmetric α-stable process in R
d and

D is a bounded smooth domain in R
d . Define τD := inf{t > 0 :Xt /∈ D}. It is well

known that

Px

(
XτD− ∈ D and τD < ∞)= 1 for every x ∈ D,

and so condition (3.1) fails with E = R
d and E0 := D. In this example, it is known

that

(F 0)ref = F 0 = W
α/2,2
0 (D) while Fe|E0 = Wα/2,2(D).

Hence, when α > 1, (F 0)ref is strictly contained in Fe|E0 and, thus, (3.10) fails.
(ii) Under assumption (3.1), condition (3.12) is equivalent to

µ〈u〉(F ) = 0 for every u ∈ Fe.(3.16)

Clearly, (3.16) implies (3.12). Assume (3.12) holds. For every u ∈ Fe, let u0 =
u − Hu, which is in F 0

e . It can be shown just as in the proof of Theorem 2.10 that
µc〈u0〉(F ) = 0. This together with the assumption (3.1) implies that µ〈u0〉(F ) = 0.
Hence,

0 ≤ µ〈u〉(F ) = µ〈u0+Hu〉(F ) ≤ (√
µ〈u0〉(F ) +

√
µ〈Hu〉(F )

)2 = 0.

This proves that (3.12) implies (3.16) and so these two conditions are equivalent.

In the remainder of this section, we consider the space
◦
SF defined by (2.30),

which is the collection of measures charging no set of zero capacity with quasi-

support being equal to F q.e. We fix µ ∈◦
SF and let Y be the time changed process

of X by the PCAF with Revuz measure µ. The process Y is µ-symmetric and its
associated Dirichlet form (Ě , F̌ ) on L2(F ;µ) and the extended Dirichlet space
F̌e are described by (2.31). In Corollary 2.9 and Theorem 2.11, we have derived
an explicit expression of the trace form Ě in terms of the Feller measure U and
supplementary Feller measure V . We will be concerned with an identification of
the trace space F̌e in terms of U and V under condition (3.1).

To this end, let us introduce the space G of functions on F with finite Douglas
integrals by

G =
{
ϕ :ϕ is measurable with H|ϕ|(x) < ∞ for m-a.e. x ∈ E0 and

(3.17) ∫
F×F

(
ϕ(ξ) − ϕ(η)

)2
U(dξ, dη) +

∫
F

ϕ2(ξ)V (dξ) < ∞
}
.
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If we assume both conditions (3.1) and (3.12) hold, then we can well deduce from
Corollary 2.9 that

F̌e ⊂ G(3.18)

and

Ě(ϕ,ϕ) = 1
2

∫
F×F

(
ϕ(ξ) − ϕ(η)

)2
U(dξ, dη) +

∫
F

ϕ2(ξ)V (dξ)

(3.19)
for every ϕ ∈ F̌e.

Two functions ϕ,ψ in G will be regarded to be equivalent if Hϕ = Hψ,m-a.e.
on E0. Owing to the definition of Feller measures U and V given by (2.15)
and (2.10), the values of the integrals appearing in (3.17) do not depend on the
choice of a representative from each equivalence class.

THEOREM 3.6. Assume conditions (3.1) and (3.12) hold. Assume also that{
Hu|E0 :u ∈ Fe

}= HF .(3.20)

Then

F̌e = G,(3.21)

and identity (3.19) holds for every ϕ ∈ F̌e.

PROOF. It suffices to show that (the equivalence classes of) G is contained
in F̌e. Take any ϕ ∈ G. Note first that H|ϕ|(x) is finite q.e. on E0 on account of the
X0-excessiveness of H|ϕ|, [20], Lemma 4.1.5 and Lemma 2.2 (iii).

Next put

ϕn = (−n) ∨ (ϕ ∧ n) and fn = Hϕ2
n − (Hϕn)

2 for n ≥ 1.

As in the proof of the preceding theorem, we assume, without loss of generality,
condition (2.16). We then have, by Lemma 2.3,

α(q − αG0
αq,fn)L2(E0;m) ≤ L(q,fn) = L(fn, q) ≤ L(Hϕ2

n, q) =
∫

ϕ2
n dV

and, accordingly,

α(1 − αG0
α1, fn)L2(E0;m) ≤ α(Hα1, fn)L2(E0;m) +

∫
F

ϕ2
n dV .

We can now use Lemma 2.5 and (2.24) to obtain

α(1−αG0
α1, fn)L2(E0;m) ≤

∫
F×F

(
ϕn(ξ)−ϕn(η)

)2
U(dξ, dη)+ 2

∫
F

ϕ2
n(ξ)V (dξ).

We first let n → ∞ using Fatou’s lemma and then we let α → ∞ to get

L
(
1,H(ϕ2)− (Hϕ)2)≤ ∫

F×F

(
ϕ(ξ)−ϕ(η)

)2
U(dξ, dη)+2

∫
F

ϕ(x)2V (dξ) < ∞,

which means that Hϕ ∈ HF . By the assumption (3.20), Hϕ = Hu m-a.e. on E0
for some u ∈ Fe, namely, ϕ is equivalent to u|F ∈ F̌e, as was to be proved. �
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COROLLARY 3.7. Assume conditions (3.1) and (3.12) hold. Assume also that

Fe|E0 = (F 0)ref.(3.22)

Then the equality (3.21) holds together with the identity (3.19) holding for every
ϕ ∈ F̌e.

PROOF. Condition (3.22) is equivalent to {Hu|E0 :u ∈ Fe} = HN, which im-
plies (3.20) because of the inclusion (3.10) and the decomposition (3.13). �

REMARK 3.8. In Sections 2 and 3 we have fixed a general quasi-closed subset

F of E satisfying condition (2.1) and considered the space
◦
SF defined by (2.30),

the collection of measures charging no set of zero capacity with quasi-support
being equal to F q.e. We have obtained a representation for the trace Dirichlet
form (Ě , F̌ ) and for the extended trace Dirichlet space (Ě , F̌e). In particular, we

see that (Ě , F̌e) is independent of the choice of the measure µ ∈◦
SF.

Take any µ ∈◦
SF and denote by F̃µ the topological support of µ. Although

µ(F̃µ \ F) = 0, Cap(F \ F̃µ) = 0,

and the trace Dirichlet form (Ě , F̌ ) can be regarded as a regular Dirichlet form on
L2(F̃µ;µ), it may happen that Cap(F̃µ \ F) > 0 (see Example 5.1.2 of [20] for
such an example). However, by Theorem 6.2.1(iv) of [20], the set F̃µ \ F always
has zero Ě1-capacity with respect to the Dirichlet form (Ě , F̌ ).

Assume now that F is a closed subset of E rather than a general quasi-closed
set. Then,

F̃µ ⊂ F, Cap(F \ F̃µ) = 0 for every µ ∈◦
SF ,

because the quasi-support of any µ ∈◦
SF is q.e. included in F̃µ ⊂ F.

If for a closed subset F of E,

there exists a measure ν ∈◦
SF with F̃ν = F,(3.23)

then the closed set F enjoys a nicer property, namely,

F̃µ = F for every µ ∈◦
SF ,

and, consequently, (Ě , F̌ ) is a regular Dirichlet form on L2(F ;µ) for every

µ ∈ ◦
SF . Indeed, for any µ ∈◦

SF , the set F \ F̃µ is relatively open in F and ν does
not charge this set of zero capacity, thus, this set must be empty.

EXAMPLE 3.9. Let D be a bounded domain in R
n. Consider the bilinear form

D defined by the Dirichlet integral

D(u, v) =
∫
D

∇u · ∇v dx.
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Let H 1
0 (D), Ĥ 1(D) be the closure of C1

c (D), C1
c (Rn)|D in the Sobolev space

H 1(D), respectively. Here H 1(D) is the space of L2-integrable functions on
D with L2-integrable first-order distributional derivatives, equipped with inner
product D(·, ·) + (·, ·)L2(D,dx). The bilinear form (1

2 D, Ĥ 1(D)) is an irreducible
strongly local regular Dirichlet form on L2(�D;1D(x)dx) and admits an associ-
ated recurrent diffusion process X on �D. With E = �D, F = ∂D, E0 = D and
m(dx) = 1D(x)dx, this Dirichlet form satisfies not only (3.2) [and, consequently,
X satisfies (3.1)], but also (3.12) because

µ〈Hu〉 = 1D(x)|∇u(x)|2 dx, u ∈ Ĥ 1(D)

and m(∂D) = 0. The absorbed process X0 obtained from X by killing upon leav-
ing D coincides with the absorbing Brownian motion whose Dirichlet form is
(1

2D,H 1
0 (D)). Consequently, ∂D satisfies condition (2.1).

Assume that

Ĥ 1(D) = H 1(D),(3.24)

which is satisfied, for instance, when D has continuous boundary (see Theorem 2
on page 14 of [29]). Then condition (3.22) is also satisfied (cf. [6]) and we may
well call X the reflecting Brownian motion on �D. Corollary 3.7 then applies and
we get the description

F̌e =
{
ϕ : H|ϕ|(x) < ∞ a.e. on D

(3.25)

and
∫
∂D×∂D

(
ϕ(ξ) − ϕ(η)

)2
U(dξ, dη) < ∞

}
Ě(ϕ,ϕ) = 1

2D(Hϕ,Hϕ)
(3.26)

= 1
2

∫
∂D×∂D

(
ϕ(ξ) − ϕ(η)

)2
U(dξ, dη), ϕ ∈ F̌e,

of the extended trace Dirichlet space F̌e and the trace Dirichlet form Ě of the

Sobolev space H 1(D) on L2(∂D;µ) for any measure µ ∈◦
S∂D . Since X is con-

servative and the Lebesgue measure of D is finite, the function q(x) = Px(σ∂D =
∞) = 0 for every x ∈ D and, therefore, the supplementary Feller measure V van-
ishes.

The trace Dirichlet form (Ě , F̌e ∩ L2(∂D;µ)) is, in general, not a regular
Dirichlet form on L2(∂D;µ). But, if we impose condition (3.23), then it is regu-

lar on ∂D for any µ ∈◦
S∂D . Let D be a Lipschitz domain. Then condition (3.24)

is satisfied and, since by [1] the reflecting Brownian motion X has a Hölder con-
tinuous transition density function with respect to 1D(x)dx, X can be refined to
start from every point in �D. Moreover, the boundary ∂D satisfies condition (3.23).
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This is because, by a result of Dahlberg [9], each harmonic measure in D is mutu-
ally absolutely continuous with respect to the surface measure σ on ∂D. Clearly,
∂D is the topological support of σ . On the other hand, the surface measure σ is
mutually absolutely continuous with respect to the measure µ constructed in the

proof of Lemma 2.8 with g ≡ 1 and, therefore, σ ∈◦
S∂D . In particular, ∂D is a

quasi-support of σ , which proves that condition (3.23) holds. Consequently, the
Dirichlet form (Ě , F̌e ∩ L2(∂D;σ)) is regular in L2(∂D;σ).

Fix some x0 ∈ D. For x ∈ D, let K(x, ξ) be the density of the harmonic measure
Px(Xσ∂D

∈ dξ) with respect to the base harmonic measure ν(dξ) := Px0(Xσ∂D
∈

dξ). The function K(x, ξ) is called the classical Poisson kernel for 1
2� in D, which

is continuous on D × ∂D and is harmonic in x ∈ D for each fixed ξ ∈ ∂D. So for
any bounded function ϕ on ∂D,

Hϕ(x) = Ex

[
ϕ
(
Xσ∂D

)]= ∫
∂D

K(x, ξ)ϕ(ξ)ν(dξ).

Hence, the Feller kernel is well defined by

U(ξ, η) = L
(
K(·, ξ),K(·, η)

)
, ξ, η ∈ ∂D,

and U(ξ, η)ν(dξ)ν(dη) gives the Feller measure U(dξ, dη) in (3.25) and (3.26).
Moreover, by the Harnack inequality for positive harmonic functions in D, the
condition that H|ϕ|(x) < ∞ for some (and, hence, for all) x ∈ D is equivalent to
ϕ ∈ L1(∂D;ν). So (3.25) can be rewritten as

F̌e =
{
ϕ ∈ L1(∂D;ν) :

∫
∂D×∂D

(
ϕ(ξ) − ϕ(η)

)2
U(dξ, dη) < ∞

}
.

Dahlberg [9] proved that, for a general bounded Lipschitz domain D, there is an
ε > 0 such that f (ξ) := ν(dξ)

σ (dξ)
is locally in L2+ε(∂D,σ) and showed that this

result cannot be improved in general. However, when D is a bounded C1,1 domain
in R

n, by using the two-sided Green function estimates in D, it can be shown
(cf. the proof of Theorem 3.14 in [22]) that f is bounded between two positive
constants. Hence, when D is a bounded C1,1 domain in R

n,

F̌e =
{
ϕ ∈ L1(∂D;σ) :

∫
∂D×∂D

(
ϕ(ξ) − ϕ(η)

)2
U(dξ, dη) < ∞

}
.

EXAMPLE 3.10. Let D be an open n-set in R
n whose boundary ∂D has lo-

cally finite (n − 1)-dimensional Hausdorff measure. Consider for 1 < α < 2 the
space defined by

F =
{
u ∈ L2(D;dx) :

∫
D×D

(u(x) − u(y))2

|x − y|n+α
dx dy < ∞

}
,(3.27)

E(u, v) = A(n,−α)

∫
D×D

(u(x) − u(y))(v(x) − v(y))

|x − y|n+α
dx dy,

(3.28)
u, v ∈ F ,
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where A(n,−α) is a positive universal constant given by (1.1) that is relevant to
the symmetric α-stable process on R

n. We refer the reader to [5] for the following
facts. (E ,F ) is a regular irreducible Dirichlet form on L2(�D;1D(x)dx) and the
associated Hunt process X on �D may be called a reflected α-stable process. It
is shown in [7] that X has Hölder continuous transition density functions with
respect to the Lebesgue measure dx on �D and, therefore, X can be refined to start
from every point in �D. For this example, E = �D, F = ∂D, E0 = D and m(dx) =
1D(x)dx. Note that since D is an open n-set, ∂D has zero Lebesgue measure. The
process X0 obtained from X by killing upon leaving D is the censored α-stable
process with Dirichlet form (E ,F 0) on L2(D), where F 0 is the closure of C1

0(D)

in F with respect to E1. Let (E ref, (F 0)ref) be the reflected Dirichlet space of
(E ,F 0). Then

(F 0)ref ∩ L2(D;dx) = F and E ref(u, v) = E(u, v) for u, v ∈ F .(3.29)

The process X0 has no killings inside D and so it satisfies condition (3.1). It is easy
to see that the energy measure of any u ∈ F is absolutely continuous with respect
to m and so (E ,F ) satisfies condition (3.12). Suppose D is of finite Lebesgue
measure and 1 < α < 2, then (2.1) holds and we know from (3.29) and [6] that
condition (3.22) is satisfied. Therefore, Corollary 3.7 applies to the Dirichlet form
(E ,F ) given by (3.27) and (3.28). So we have the identification (3.21) and (3.19)
of its trace Dirichlet space (F̌e, Ě) on ∂D in terms of the Feller measure U . Note
that X is recurrent, as D has finite Lebesgue measure. Since ∂D has positive ca-
pacity, q(x) = Px(σ∂D = ∞) = 0 and so the supplementary Feller measure V van-
ishes.

Let us assume additionally that D is a bounded C1,1-domain. By [22], Theo-
rem 3.14, the surface measure σ on ∂D is mutually absolutely continuous with
respect to the X0-harmonic measure Px(Xσ∂D

∈ dξ) for every x ∈ D. Moreover,
for each x ∈ D, the Radon–Nikodym derivative of Px(Xσ∂D

∈ dξ) with respect to
σ(dξ) is bounded between two positive constants. Consequently, just like in Ex-

ample 3.9, σ ∈◦
S∂D . In particular, ∂D is a quasi-support of σ . Since clearly ∂D is

the topological support of the surface measure σ , condition (3.23) holds. There-

fore, the trace Dirichlet form is regular on L2(∂D;µ) for any choice of µ ∈◦
S∂D .

Furthermore, the condition that H|ϕ|(x) < ∞ for some (and, hence, for all) x ∈ D

is equivalent to ϕ ∈ L1(∂D;σ). So in this case, (3.21) can be expressed as

F̌e =
{
ϕ ∈ L1(∂D;σ) :

∫
∂D×∂D

(
ϕ(ξ) − ϕ(η)

)2
U(dξ, dη) < ∞

}
and (3.19) becomes

Ě(ϕ,ϕ) = 1
2

∫
∂D×∂D

(
ϕ(ξ) − ϕ(η)

)2
U(dξ, dη) for ϕ ∈ F̌e.

By a similar argument as in Example 3.9, it can be shown further that there is a
density function U(ξ, η) such that U(dξ, dη) = U(ξ, η)σ (dξ)σ (dη).
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4. Excursions and Feller measures. In this section we shall give a proba-
bilistic characterization of the Feller measure in terms of the trace of endpoints of
excursion of X leaving F . We will use the same notation as in the previous sec-
tions. As before, let (E ,F ) be an irreducible regular Dirichlet form on L2(E;m)

and X be an associated m-symmetric Hunt process on E. The subset F of E is as-
sumed to be quasi-closed and to satisfy condition (2.1). Without loss of generality,
we may further assume that F is nearly Borel and finely closed.

Fix µ ∈◦
SF and let Aµ be the PCAF of X associated with it. As is stated in

Section 2, we may take as F the support of Aµ. Let F r denote the set of all points
that are regular for F ; that is, F r := {x ∈ E : Px(σF = 0) = 1}, where σF is the
hitting time of F by X. Since F r ⊂ F and Cap(F \ F r) = 0 in view of [20],
Theorem 4.3.1, we may choose a properly exceptional set N for the PCAF Aµ

containing F \F r so that, replacing F by F \N , we have (cf. [20], Lemma 5.1.11)

F = F r and Px(σF = inf{t :Aµ
t > 0}) = 1 for every x ∈ E \ N.(4.1)

Let Y = (Yt , Px)x∈F be the time-changed process of X|E\N by the inverse
{τt , t ≥ 0} of Aµ, that is, Yt = Xτt , where τt := inf{s ≥ 0 :Aµ

s > t}. Then ac-
cording to [30], (65.9), Y is a µ-symmetric right process with state space F . The
associated Dirichlet form (Ě , F̌ ) on L2(F ;µ) is specified by (2.31) and is quasi-
regular. Since (Ě , F̌ ) is quasi-homeomorphic to a regular Dirichlet form, we see
by Theorem A.1(ii) that Px-a.s. Yt− := lims↑t Ys exists and takes value in F for
every t ∈ (0, ζ Y ) for Ě -q.e. x ∈ F , and, accordingly, for E -q.e. x ∈ F, in view
of [20], Lemmas 6.2.5 and 6.2.8, where ζ Y := A

µ∞ is the lifetime of Y .
By virtue of Theorem A.1 in the Appendix, a Lévy system of Y exists and

gives a probabilistic characterization for the Beurling–Deny decomposition for the
Dirichlet form (Ě , F̌ ) of Y . On the other hand, it follows from (2.35) and (2.36)
that the jumping measure J̌ of Y is

J̌ = 1
2U + J |F×F(4.2)

and the killing measure κ̌ of Y is

κ̌(dx) = V (dx) + κ(dx)|F ,(4.3)

where U , V , J and κ are the Feller measure and supplementary Feller measure
of F , the jumping measure and the killing measure of X, respectively. In particular,

they are independent of the choice of measure µ ∈◦
SF .

For any ω ∈ �, we define

M(ω) = {t ∈ [0,∞) :Xt(ω) ∈ F }.
Clearly, the relatively open set M(ω)c in [0,∞) consists of all excursion intervals
away from F of the sample path ω. We denote by I the set of left endpoints of
excursion intervals in Mc. M is homogeneous, that is, M ◦ θs + s = M if M ⊂
[s,∞). I is also homogeneous.
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For t > σF , we define

L(t) := sup[0, t] ∩ M

and

R(t) := inf(t,∞) ∩ M = inf{s > t :Xs ∈ F },
with the convention that inf ∅ = ∞. When t > σF , we call (L(t),R(t)) the excur-
sion straddling on t . Clearly, t �→ R(t) is right continuous and increasing and it is
easy to verify that R(t) = σF ◦ θt + t , and that, for any s, t ≥ 0, R(t) ◦ θs + s =
R(t + s). Due to (4.1), XR(t) ∈ F on {R(t) < ∞}. We can also see that, for t > σF ,

R(t−) < R(t) if and only if t ∈ I and in this case t = R(t−) = L(t). We shall fur-
ther verify in the proof of Theorem 4.2 [see (4.7) below] that Px -a.s. XR(t−)− ∈ F

for every t > σF with R(t) < ∞ for E -q.e. x ∈ E.

For any nonnegative measurable function � on E∂ × E∂ , consider a random
measure �(�, ·) defined by

�(�,dt) = ∑
0<s : R(s−)<R(s)

�
(
XR(s−)−,XR(s)

)
εs(dt),(4.4)

where εs is the point mass at s. The random measure � may also be written as

�(�,dt) = ∑
0<s:s∈I

�
(
XL(s)−,XR(s)

)
εs(dt).

Recall that I is the (random) set of left endpoints of excursion intervals in Mc.

LEMMA 4.1. The random measure �(�, ·) is homogeneous for any � ∈
B(E∂ × E∂)

+.

PROOF. Since R(s) ◦ θu + u = R(u + s), we have XR(s) ◦ θu = XR(u+s) and

�(�,dt) ◦ θu = ∑
u<s+u : R(u+s−)<R(u+s)

�
(
XR(u+s−)−,XR(u+s)

)
εs(dt)

= ∑
u<s : R(s−)<R(s)

�
(
XR(s−)−,XR(s)

)
εs(dt + u)

= �(�,dt + u).

This proves the lemma. �

The following is the main result in this section, which asserts that the Feller
measure U(dx, dy) is the Revuz measure of � with respect to the measure m and
is characterized by the end-points of excursions of the process X leaving F .
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THEOREM 4.2. For any nonnegative measurable function � on F × F van-
ishing along the diagonal that is extended to be zero outside F × F ,∫

F×F
�(x, y)U(dx, dy)

(4.5)

=↑ lim
t↓0

1

t
Em

[ ∑
0<s≤t :R(s−)<R(s)<∞

�
(
XR(s−)−,XR(s)

)]
.

PROOF. First note that, due to Lemma 4.1, the limit on the right-hand side is
an increasing limit.

It follows from (2.35) and its relation with the Lévy system of Y (see Theo-
rem A.1 in the Appendix) that

2
∫
F×F

�(ξ, η)J̌ (dξ, dη) = ↑ lim
t↓0

1

t
Eµ

[ ∑
0<s≤t

�(Ys−, Ys)

]

= ↑ lim
α↑∞αEµ

[ ∑
0<t<∞

e−αt�(Yt−, Yt )

]

= ↑ lim
α↑∞αEµ

[ ∑
0<t<∞

e−αt�
(
Xτt−−,Xτt

)]
.

Now we make a change of variable, replacing t with A
µ
t . On account of (4.1),

τA
µ
t

= inf{s :Aµ
s > A

µ
t } = inf{s > t :Aµ

s−t ◦ θt > 0} = σF ◦ θt + t

and, accordingly,

τA
µ
t

= R(t) for every t > 0,Px-a.s. for x ∈ E \ N.(4.6)

This particularly means that t �→ A
µ
t is constant on each excursion interval of

sample paths leaving F . Here we can further notice the following. Write τ−
t :=

τt−. Whenever t > σF and R(t) < ∞, we have from (4.6) τ−
A

µ
t

= R(t−) and so

XR(t−)− = X(τ−
A

µ
t
)− = YA

µ
t − ∈ F, Px-a.s. for E -q.e. x ∈ E,(4.7)

because Yt− ∈ F,0 < t < ζY ,Px-a.s. for E -q.e. x ∈ F , according to the observa-
tion made in the paragraph preceding (4.2).

Hence,

2
∫
F×F

�(ξ, η)J̌ (dξ, dη) = ↑ lim
α↑∞αEµ

[ ∑
t∈M,R(t)<∞

e−αA
µ
t �

(
XR(t−)−,XR(t)

)]

= ↑ lim
α↑∞

∫
F

αEx[�α]µ(dx),
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where

�α := ∑
t∈M,R(t)<∞

e−αA
µ
t �

(
XR(t−)−,XR(t)

)
.

Let us first assume that m(E) < ∞. Since µ is the Revuz measure of the PCAF
Aµ of the m-symmetric process X, we have from the above, [20], Theorem 5.1.3
and [30], (32.6) that

2
∫
F×F

�(ξ, η)J̌ (dξ, dη) = ↑ lim
α↑∞α

∫
F

Ex[�α]µ(dx)

= ↑ lim
α↑∞α

(
↑ lim

s↓0

1

s
Em

[∫ s

0
EXu[�α]dAµ

u

])
(4.8)

= ↑ lim
s↓0

1

s

(
sup
α>0

αEm

[∫ s

0
�α ◦ θu dAµ

u

])
.

Now

αEm

[∫ s

0
�α ◦ θu dAµ

u

]

= αEm

[∫ s

0

∑
t∈M◦θu,R(t+u)<∞

e−α(A
µ
t+u−A

µ
u )�

(
XR(t+u−)−,XR(t+u)

)
dAµ

u

]

= αEm

[∫ s

0
eαA

µ
u dAµ

u

∑
t>u,t∈M,R(t)<∞

e−αA
µ
t �

(
XR(t−)−,XR(t)

)]

= Em

[ ∑
t∈M,R(t)<∞

e−αA
µ
t �

(
XR(t−)−,XR(t)

) ∫ s

0
I{t>u} deαA

µ
u

]

= Em

[ ∑
t∈M,R(t)<∞

e−αA
µ
t �

(
XR(t−)−,XR(t)

) · (eαA
µ
s∧t − 1

)]

= Em

[ ∑
t≤s,t∈M,R(t)<∞

(
1 − e−αA

µ
t
)
�
(
XR(t−)−,XR(t)

)]

+ Em

[(
eαA

µ
s − 1

) ∑
s<t,t∈M,R(t)<∞

e−αA
µ
t �

(
XR(t−)−,XR(t)

)]
.

Choose � for which the integral
∫
F×F\d �(x, y)J̌ (dx, dy) is finite. Then by (4.8),

Eµ(�α) < ∞ for every α > 0.

Since m(E) < ∞, mH is in
◦
SF (see the proof of Lemma 2.8). Since the measure

J̌ is independent of the choice of µ ∈◦
SF , we may choose µ = mH. It follows from
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the fact A
µ
σF = 0 that

�α = ∑
t>σF ,t∈M,R(t)<∞

e−αA
µ
t �

(
XR(t−)−,XR(t)

)= �α ◦ θσF
.

Hence, Em(�α) = Eµ(�α) < ∞. Then we have

αEm

[∫ s

0
�α ◦ θu dAµ

u

]

= Em

[ ∑
0<t≤s,t∈M,R(t)<∞

�
(
XR(t−)−,XR(t)

)]
(4.9)

+ Em

[ ∑
0<s<t,t∈M,R(t)<∞

e−α(At−As)�
(
XR(t−)−,XR(t)

)]− Em[�α]

= Em

[ ∑
0<t≤s,t∈M,R(t)<∞

�
(
XR(t−)−,XR(t)

)]+ Em[�α ◦ θs] − Em[�α].

From the dominated convergence theorem and the fact that we can insert condi-
tion A

µ
t > 0 or, equivalently, condition t > σF into the summand of �α , it follows

that

Em[�α ◦ θs] ≤ Em[�α] and lim
α→∞ Em[�α] = 0.

Thus, by (4.8) and (4.9),

2
∫
F×F

�(x, y)J̌ (dx, dy) =↑ lim
s↓0

1

s
Em

[ ∑
t≤s,t∈M,R(t)<∞

�
(
XR(t−)−,XR(t)

)]
.

The sum on the right-hand side can be divided into two parts: t ∈ I , where
t = R(t−) < R(t), and t ∈ M \ I , where t = R(t−) = R(t). Note that it follows
from (4.7) that Pm-a.s. XR(t−)− ∈ F for every t > σF with R(t) < ∞. Therefore,
we have

lim
s→0

1

s
Em

[ ∑
t≤s,t∈M\I,R(t)<∞

�
(
XR(t−)−,XR(t)

)]

= lim
s→0

1

s
Em

[ ∑
t≤s,Xt−,Xt∈F

�(Xt−,Xt)

]
= 2

∫
F×F

�(ξ, η)J (dξ, dη).

Finally, using (4.2), we arrive at (4.5).
Now for a general positive Radon measure m on E, let {Dn,n ≥ 1} be a se-

quence of relatively compact open sets increasing to E. For each n ≥ 1, let X(n) be
the subprocess of X killed upon leaving Dn. Then by Theorems 4.4.3 and A.2.10
of [20], X(n) is a symmetric Hunt process on Dn with finite symmetrizing measure
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1Dn · m and its associated Dirichlet form is regular on L2(D;1Dn · m). So for-
mula (4.5) is applicable to each subprocess X(n). Let Un be the Feller measure for
F ∩Dn under the subprocess X(n). By definition (2.15) for the Feller measure Un,
we have for

Un(f ⊗ g)

=↑ lim
t↓0

1

t

∫
Dn\F

Ex

[
f
(
X(n)

τ0

)] · Ex

[
g
(
X(n)

τ0

); τ0 ≤ t
]
m(dx)

=↑ lim
t↓0

1

t

∫
Dn\F

Ex

[
f
(
Xτ0

); τ0 < Tn

] · Ex

[
g
(
Xτ0

); τ0 ≤ t, τ0 < Tn

]
m(dx),

where Tn is the first exit time of Dn. It is obvious that Tn increases a.s. to ζ .
Then the above limit is increasing both in t ↓ 0 and in n ↑ +∞. Taking n ↑ ∞
and switching limits, it follows that Un increases to U . On the other hand, since
m(Dn) < ∞, (4.5) holds for X(n), that is,∫

(F∩Dn)×(F∩Dn)
�(x, y)Un(dx, dy)

=↑ lim
t↓0

1

t
E1Dn ·m

[ ∑
0<s≤t : R(s−)<R(s)<∞

�
(
X

(n)
R(s−)−,X

(n)
R(s)

)]

=↑ lim
t↓0

1

t
Em

[ ∑
0<s≤t : R(s−)<R(s)<Tn

�
(
XR(s−)−,XR(s)

)]
.

Note that since Tn increases to ζ , the last expectation above is increasing in n.
Again, letting n ↑ ∞ and switching two increasing limits on the right-hand side,
we have by the monotone convergence theorem identity (4.5). This completes the
proof of the theorem. �

We have a similar result for the supplementary Feller measure V . For any non-
negative measurable function f on F that is extended to be zero off F ,

κ(f ⊗ 1∂ , dt) := ∑
0<s<∞

1{R(s−)<R(s)=∞}f
(
XR(s−)−

)
εs(dt) = f (Xγ−)εγ (dt)

is also a homogeneous random measure, where γ denotes the last exit time from
F by X. Using (4.3), it can be shown that∫

F
f (ξ)V (dξ) = ↑ lim

t↓0

1

t
Em

[∑
s≤t

f
(
XR(s−)−

)
1{R(s−)<R(s)=∞}

]
(4.10)

=↑ lim
t↓0

1

t
Em[f (Xγ−);γ ≤ t].

The proof is similar and we omit the details here.
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APPENDIX: LÉVY SYSTEM AND BEURLING–DENY DECOMPOSITION
FOR SYMMETRIC RIGHT PROCESSES

In this Appendix we show that a Lévy system exists for any symmetric right
process associated with a quasi-regular Dirichlet form (E ,F ) and that the prob-
abilistic characterizations of the Beurling–Deny decomposition (including the
jumping measure and killing measure) of (E ,F ) remains true for quasi-regular
Dirichlet forms and are independent of the choice of a particular process associated
with the Dirichlet form. We derive the result by using a quasi-homeomorphism that
relates a quasi-regular Dirichlet form to a regular Dirichlet form.

We start with some basic definitions and facts. Suppose that (E ,F ) is an
m-symmetric quasi-regular Dirichlet form on a Hausdorff topological space E,
where m is a σ -finite measure with full support on E. For a closed subset F of E,
let

FF = {f ∈ F :f = 0 m-a.e. on E \ F }.
The following definitions are from [28]:

(1) An increasing sequence of closed sets {Fn}n≥1 of E is an E -nest if and only if⋃
n≥1 FFn is E1-dense in F , where E1 = E + (·, ·)L2(X,m).

(2) A subset N ⊂ E is E -polar if and only if there is an E -nest {Fn}n≥1 such that
N ⊂ E \⋂n≥1 Fn.

(3) A function f on E is said E -quasi-continuous if there is an an E -nest {Fn}n≥1

such that f |Fn is continuous on Fn for each n ≥ 1.
(4) A statement depending on x ∈ A is said to hold E -quasi-everywhere (E -q.e. in

abbreviation) on A if there is an E -polar set N ⊂ A such that the statement is
true for every x ∈ A \ N .

A subset K of E is called E -quasi-open (or, E -quasi-closed) if there is an E -nest
{Fn,n ≥ 1} such that K ∩Fn is a relatively open subset (resp. closed subset) of Fn

for every n ≥ 1. This definition is consistent with the one given in Section 2.1 of
[20]. For simplicity, we often say quasi-open (or, quasi-closed) instead of E -quasi-
open (resp. E -quasi-closed). Clearly, the notions of quasi-open and quasi-closed, in
contrast to open and closed, are invariant under quasi-homeomorphisms (cf. [8]).

For a right process X on a state space E with lifetime ζ , let ∂ be a cemetery
point added to E and define E∂ := E ∪ {∂}. Define

Xζ−(ω) =


limt↑ζ(ω) Xt (ω), if ζ(ω) < ∞ and the limit exists in E,

∂, if either ζ(ω) = ∞ or the

limit does not exists in E.

A Lévy system for X is a pair (N,H), where N(x, dy) is a kernel on (E∂,B(E∂))

and H is a PCAF of X with bounded 1-potential such that, for any nonnegative
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Borel function f on E × E∂ that vanishes on the diagonal and is extended to be
zero elsewhere,

Ex

(∑
s≤t

f (Xs−,Xs)

)
= Ex

(∫ t

0

∫
E∂

f (Xs, y)N(Xs, dy) dHs

)
(A.1)

for every x ∈ E and t ≥ 0.

THEOREM A.1. Suppose that (E ,F ) is an irreducible quasi-regular Dirichlet
form on a Hausdorff topological space E. Let X be any symmetric Borel right
process associated with (E ,F ), whose lifetime is denoted by ζ .

(i) (Beurling–Deny decomposition). There is a σ -finite measure J on E ×
E \ d and a smooth measure κ on E such that, for every u, v ∈ F ,

E(u, v) = E c(u, v) +
∫
E×E\d

(
u(x) − u(y)

)(
v(x) − v(y)

)
J (dx, dy)

(A.2)
+
∫
E

u(x)v(x)κ(dx),

where E c is a symmetric form defined on F satisfying the following strong local
property:

E c(u, v) = 0

for any u, v ∈ F with u being constant in a quasi-open neighborhood of the quasi-
support of v · m. Such a decomposition is unique, which is called the Beurling–
Deny decomposition of (E ,F ). The measures J and κ are called the jumping and
killing measures, respectively, of (E ,F ).

(ii) There is � ⊂ E such that m(�) = 0 and E \ � is X-invariant in the sense
that

Px

(
Xt− exists and takes value in E \ � for t ∈ (0, ζ ) ∪ {ζi}

and Xt ∈ E∂ \ � for every t ≥ 0
)= 1

for every x ∈ E \�, and the symmetric right process X|E\� with state space E \�

is quasi-left continuous on the random time interval [0, ζ ) and has a Lévy system
(N,H). Here ζi denotes the finite inaccessible part of ζ . The properly exceptional
set is E -polar. So the pair (N,H) will also be called the Lévy system of X.

(iii) Let µH denote the Revuz measure of the PCAF H of X. Then

J (dx, dy) = 1
2N(x, dy)µH (dx) and κ(dx) = N(x, ∂)µH (dx).(A.3)

(iv) For u ∈ Fe, there is a MAF Mu of X of finite energy and a CAF Nu of X

having zero energy such that

u(Xt) − u(X0) = Mu
t + Nu for t ≥ 0.
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Let Mu,c and Mu,d be the continuous and purely discontinuous martingale parts
of Mu, respectively. Define

M
u,k
t := (

u(Xζ−)1{ζ≤t}
)p − u(Xζ−)1{ζ≤t},

where the superscript p stands for the predictable dual projection, and define
Mu,j = Mu,d − Mu,k . Let 〈Mu,c〉, 〈Mu,j 〉 and {Mu,k〉 denote the sharp bracket
variational processes of the square integrable martingales Mu,c, Mu,j and Mu,k ,
respectively. Their corresponding Revuz measures will be denoted as µc〈u〉, µ

j
〈u〉

and µk〈u〉, respectively. Then for u ∈ Fe,

µc〈u〉(E) = 2E c(u,u),

µ
j
〈u〉(E) = 2

∫
E×E\d

(
u(x) − u(y)

)2
J (dx, dy),

µk〈u〉(E) =
∫
E

u(x)2κ(dx).

PROOF. The theorem is known to be true when (E ,F ) is a regular Dirichlet
form on a locally compact separable metric space and X is a Hunt process asso-
ciated with (E ,F ). See Theorem 4.5.2, Theorem 4.6.1, Lemmas 5.3.1–5.3.3 and
Theorem A.3.21 in [20]. (See also [2].)

We can then use the quasi-homeomorphism technique from [8] to extend
these results to quasi-regular Dirichlet form (E ,F ) and its associated symmet-
ric process X. This technique has now become more or less standard, at least to
experts in the field. Nevertheless, for the reader’s convenience, we spell out the
details below.

For a quasi-regular Dirichlet form (E ,F ), it is proved in [8] that (E ,F ) is
quasi-homeomorphic to a regular Dirichlet form (Ê , F̂ ) on a locally compact sep-
arable metric space Ê with symmetrizing measure m̂. That is, there are E -nests
{Fk, k ≥ 1} and Ê -nest {F̂k, k ≥ 1} consisting of compact sets and a one-to-one
map φ from

⋃∞
k=1 Fk onto

⋃∞
k=1 F̂k such that:

(a) φ is a topological homeomorphism between Fk and F̂k for every k ≥ 1,
(b) m̂ and (Ê , F̂ ) are the images of m and (E ,F ) under φ, respectively. That

is, m̂ = m ◦ φ−1 and F̂ = {u ◦ φ−1 :u ∈ F } and

Ê(u ◦ φ−1, v ◦ φ−1) = E(u, v), u, v ∈ F .

Let X̂ be a Hunt process associated with the regular Dirichlet form (Ê , F̂ ) and
let (N̂, Ĥ ) be its Lévy system. Without loss of generality (cf. [20]), we may and
do assume that

⋃
k≥1 F̂k is X̂-invariant. Note that by [20] and [28], Ê \⋃k≥1 F̂k

and E \ ⋃k≥1 Fk are E -polar and Ê-polar, respectively. Because the notion of
being quasi-open is invariant under quasi-homeomorphism, conclusion (i) holds
immediately for (E ,F ) by its quasi-homeomorphism to (Ê , F̂ ). Let X̃ = φ−1(X̂)
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and � := E \⋃k≥1 Fk . Clearly, E \ � is X̃-invariant and m(�) = 0. By (a)–(b),
X̃ is a symmetric right process associated with Dirichlet form (E ,F ) and it has
Lévy system (N,H), where

N(x,A) := N̂
(
φ(x),φ(A)

)
and H = Ĥ .

Clearly, X̃|E\� is quasi-left continuous on the random time interval [0, ζ ) and the
left-limit of X̃t exists and takes value in E \ �. Moreover, X̃ζi− exists and takes
value in E \ �. This establishes (ii) for X̃. Since (iii) and (iv) hold for the Hunt
process X̂ and its regular Dirichlet form (Ê , F̂ ), it clearly holds for the process
X̃ through the map φ. So we have established (ii)–(iv) for a particular symmetric
right process X̃ associated with the quasi-regular Dirichlet form (E ,F ).

Now suppose that X is any other symmetric right process associated with
(E ,F ). It is known (see [28]) that X and X̃ are m-equivalent; that is, there is a
nearly Borel measurable set S ⊂ E such that:

(c) m(E \ S) = 0,
(d) S is both X-invariant and X̃-invariant,
(e) When restricted on S, the marginal distribution of X is the same as that

of X̃.

From (d)–(e), when restricted to S, the process X has the same law as X̃. So, when
restricted to S, they have the same Lévy system and, in particular, give the same
jumping and killing measures by using the MAF characterization. But from the
very definition, E \ S does not contribute to the energy measure of µ〈u〉 of Mu

(it is defined as a limit under Em). This shows that (ii)–(iv) hold for the process X.
This proves the theorem. �

REMARK A.2. Part (i) of Theorem A.1 has been proved in [10]. The main
point of our theorem is that a Lévy system exists for any symmetric right process
associated with a quasi-regular Dirichlet form and its probabilistic characterization
of the Beurling–Deny decomposition (including the jumping measure and killing
measure) is independent of the choice of a particular process associated with the
Dirichlet form. This is important in Section 4 when we compute excursion laws.

Acknowledgments. We thank the referees for their careful reading of this pa-
per.
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