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UNIQUENESS OF MAXIMAL ENTROPY MEASURE ON
ESSENTIAL SPANNING FORESTS1

BY SCOTT SHEFFIELD

Microsoft Research and University of California, Berkeley

An essential spanning forest of an infinite graph G is a spanning forest of
G in which all trees have infinitely many vertices. Let Gn be an increasing se-
quence of finite connected subgraphs of G for which

⋃
Gn = G. Pemantle’s

arguments imply that the uniform measures on spanning trees of Gn converge
weakly to an Aut(G)-invariant measure µG on essential spanning forests
of G. We show that if G is a connected, amenable graph and � ⊂ Aut(G)

acts quasitransitively on G, then µG is the unique �-invariant measure on es-
sential spanning forests of G for which the specific entropy is maximal. This
result originated with Burton and Pemantle, who gave a short but incorrect
proof in the case � ∼= Z

d . Lyons discovered the error and asked about the
more general statement that we prove.

1. Introduction.

1.1. Statement of result. An essential spanning forest of an infinite graph G is
a spanning subgraph F of G, each of whose components is a tree with infinitely
many vertices. Given any subgraph H of G, we write FH for the set of edges of F

contained in H . Let � be the set of essential spanning forests of G and let F be
the smallest σ -field in which the functions F → FH are measurable.

Let Gn be an increasing sequence of finite connected induced subgraphs of G

with
⋃

Gn = G. An Aut(G)-invariant measure µ on (�,F ) is Aut(G)-ergodic if
it is an extreme point of the set of Aut(G)-invariant measures on (�,F ). Results
of [1, 8] imply that the uniform measures on spanning trees of Gn converge weakly
to an Aut(G)-invariant and ergodic measure µG on (�,F ).

We say G is amenable if the Gn above can be chosen so that

lim
n→∞|∂Gn|/|V (Gn)| = 0,

where V (Gn) is the vertex set of Gn and ∂Gn is the set of vertices in Gn that are
adjacent to a vertex outside of Gn. A subgroup � ⊂ Aut(G) acts quasitransitively
on G if each vertex of G belongs to one of finitely many � orbits. We say G itself
is quasitransitive if Aut(G) acts quasitransitively on G.
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The specific entropy (also known as entropy per site) of µ is

− lim
n→∞|V (Gn)|−1

∑
µ

({
FGn = Fn

})
logµ

({
FGn = Fn

})
,

where the sum ranges over all spanning subgraphs Fn of Gn for which µ({FGn =
Fn}) �= 0. This limit always exists if G is amenable and µ is invariant under a
quasitransitive action (see, e.g., [5, 7] for stronger results).

Let EG be the set of probability measures on (�,F ) that are invariant under
some subgroup � ⊂ Aut(G) that acts quasitransitively on G and that have maximal
specific free entropy. Our main result is the following:

THEOREM 1.1. If G is connected, amenable and quasitransitive, then EG =
{µG}.

1.2. Historical overview. As part of a long foundational paper on essential
spanning forests published in 1993, Burton and Pemantle gave a short but incorrect
proof of Theorem 1.1 in the case that � ∼= Z

d and then used that theorem to prove
statements about the dimer model on doubly periodic planar graphs [3]. In 2002,
Lyons discovered and announced the error [6]. Lyons also extended part of the
result of [3] to quasitransitive amenable graphs (Lemma 2.1 below) and questioned
whether the version of Theorem 1.1 that we prove was true [6].

A common and natural strategy for proving results like Theorem 1.1 is to show
first that each µ ∈ EG has a Gibbs property and second that this property charac-
terizes µ. The argument in [3] uses this strategy, but it relies on the incorrect claim
that every µ ∈ EG satisfies the following property:

STRONG GIBBS PROPERTY. Fix any finite induced subgraph H of G and
write a ∼O b if there is a path from a to b that consists of edges outside of H .
Let H ′ be the graph obtained from H by identifying vertices equivalent under ∼O .
Let µ′ be the measure on (�,F ) obtained as follows: To sample from µ′, first sam-
ple FG\H from µ and then sample FH uniformly from the set of all spanning trees
of H ′. (We may view a spanning tree of H ′ as a subgraph of H because H and H ′
have the same edge sets.) Then µ′ = µ. In other words, given FG\H —which de-
termines the relation ∼O and the graph H ′—the µ conditional measure on FH is
the uniform spanning tree measure on H ′.

This claim is clearly correct if µ = µG and G is a finite graph. To see a simple
counterexample when G is infinite, first recall that the number of topological ends
of an infinite tree T is the maximum number of disjoint semi-infinite paths in T

(which may be ∞). A k-ended tree is a tree with k topological ends. If G = Z
d

with d > 4, then µG ∈ EG and µG-almost surely F contains infinitely many trees,
each of which has only one topological end [1, 8]. Thus, conditioned on FG\H , all
configurations FH that contain paths joining distinct infinite trees of FG\H have
probability 0.
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This example also shows, perhaps surprisingly, that µ ∈ EG does not imply that,
conditioned on FG\H , all extensions of FG\H to an element of � are equally
likely. In other words, measures in EG do not necessarily maximize entropy lo-
cally. Nonetheless, we claim that every µ ∈ EG does possess a Gibbs property of a
different flavor:

WEAK GIBBS PROPERTY. For each a and b on the boundary of H , write
a ∼I b if a and b are connected by a path contained inside H (a relationship
that depends only on FH ). Then conditioned on this relationship and FG\H , all
spanning forests FH of H that give the same relationship (and for which each
component of FH contains at least one point on the boundary of H ) occur with
equal probability.

If µ did not have this property, then we could obtain a different measure µ′
from µ by first sampling a random collection S of nonintersecting translates of H

(by elements of the group �) in a �-invariant way and then resampling FH ′ inde-
pendently for each H ′ ∈ S according to the conditional measure described above.
It is not hard to see that µ′ has higher specific entropy than µ and that it is still
supported on essential spanning forests.

Unfortunately, the weak Gibbs property is not sufficient to characterize µG.
When G = Z

2, for example, for each translation-invariant Gibbs measures on
perfect matchings of Z

2 there is a corresponding measure on essential spanning
forests that has the weak Gibbs property [3]. The former measures have been com-
pletely classified and they include a continuous family of nonmaximal-entropy er-
godic Gibbs measures [4, 9]. Significantly (see below), each of the corresponding
nonmaximal-entropy measures on essential spanning forests almost surely con-
tains infinitely many two-ended trees. The measure in which F a.s. contains all
horizontal edges of Z

2 is a trivial example.
To prove Theorem 1.1, we will first show in Section 3.1 that if µ is �-invariant,

has the weak Gibbs property and µ-almost surely F does not contain more than
one two-ended tree, then µ = µG. We will complete the proof in Section 3.2 by
arguing that if, with positive µ probability, F contains more than one two-ended
tree, then µ cannot have maximal specific entropy. Key elements of this proof
include the weak Gibbs property, resamplings of F on certain random extensions
(denoted C̃ in Section 3.1) of finite subgraphs of G and an entropy bound based
on Wilson’s algorithm.

We assume throughout the remainder of the paper that G is amenable, con-
nected and quasitransitive, � is a quasitransitive subgroup of Aut(G) and Gn is
an increasing sequence of finite connected induced subgraphs with

⋃
Gn = G and

lim |∂Gn|/|V (Gn)| = 0.
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2. Background results. Before we begin our proof, we need to cite several
background results. The following lemmas can be found in [3, 6, 8], [1, 3, 8] and
[1, 2, 8], respectively.

LEMMA 2.1. The measure µG is Aut(G)-invariant and ergodic, and has max-
imal specific entropy among quasi-invariant measures on the set of essential span-
ning forests of G. Moreover, this entropy is equal to

− lim
n→∞|V (Gn)|−1

∑
µGn

(
FGn

)
logµGn

(
FGn

)
,

where µGn is the uniform measure on all spanning forests Fn of Gn with the prop-
erty that each component of Fn contains at least one boundary vertex of Gn.

LEMMA 2.2. Let Cn be any increasing sequence of finite subgraphs of G

whose union is G. For each n, let Hn be an arbitrary subset of the boundary of Cn.
Let C′

n be the graph obtained from Cn by identifying vertices in Hn. Then the uni-
form measures on spanning trees of C′

n converge weakly to µG. In particular, this
holds for both wired boundary conditions Hn = ∂Cn and free boundary conditions
Hn = ∅.

LEMMA 2.3. If G is amenable and µ is quasi-invariant, then µ-almost surely
all trees in F contain at most two disjoint semi-infinite paths.

We will also assume the reader is familiar with Wilson’s algorithm for construct-
ing uniform spanning trees of finite graphs by using repeated loop-erased random
walks [10].

3. Proof of the main result.

3.1. Consequences of the weak Gibbs property.

LEMMA 3.1. If µ has the weak Gibbs property and µ-almost surely all trees
in F have only one topological end, then µ = µG.

PROOF. For a fixed finite induced subgraph B , we will show that µ and µG

induce the same law on FB . Consider a large finite set C ⊂ V (G) that contains B .
Then let Cf be the set of vertices in C that are starting points for infinite paths
in F that do not intersect C after their first point. Then let C̃ be the union of Cf

and all vertices that lie on finite components of F\Cf . In other words, C̃ is the set
of vertices v for which every infinite path in F that contains v includes an element
of C.

Now, let D be an even larger superset of C that in particular contains all ver-
tices that are neighbors of vertices in C. The weak Gibbs property implies that if
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we condition on the set FG\D and the relationship ∼I defined using D, then all
choices of FD that extend FG\D to an essential spanning forest and preserve the
relationship ∼I are equally likely. Now, if we further condition on the event C̃ ⊂ D

and on a particular choice of C̃ and Cf , then all spanning forests of C̃ rooted at Cf

(i.e., spanning trees of the graph induced by C̃ when it is modified by joining the
vertices of Cf into a single vertex) are equally likely to appear as the restriction
of F to C̃.

Since D can be taken large enough so that it contains C̃ with probability arbi-
trarily close to 1, we may conclude that, in general, conditioned on C̃ and Cf , all
spanning forests of C̃ rooted at Cf are equally likely to appear as the restriction
of F to C̃. Since we can take C to be arbitrarily large, the result follows from
Lemma 2.2. �

LEMMA 3.2. If µ has the weak Gibbs property and µ-almost surely F con-
sists of a single two-ended tree, then µ = µG.

PROOF. Define B and C as in the proof of Lemma 3.1. Given a sample F

from µ, denote by R the set of points that lie on the doubly infinite path (also
called the trunk) of the two-ended tree. Then let c1 and c2 be the first and last
vertices of R that lie in C, and let C̃ be the set of all vertices that lie on the finite
component of F\{c1, c2} that contains the trunk segment between c1 and c2. The
proof is similar to that of Lemma 3.1, using the new definition of C̃ and noting that
conditioned on F

G\C̃ , c1 and c2, all spanning trees of C̃ are equally likely to occur

as the restriction of F to C̃. The difference is that C̃ need not be a superset of C;
however, we can choose a superset C′ of C large enough so that the analogously
defined C̃′ contains C with probability arbitrarily close to 1. �

LEMMA 3.3. If µ has the weak Gibbs property and µ-almost surely F con-
tains exactly one two-ended tree, then µ almost surely F consists of a single tree
and µ = µG.

PROOF. As in the previous proof, R is the trunk of the two-ended tree. Clearly,
each vertex in at least one of the � orbits of G has a positive probability of belong-
ing to R. As in the previous lemmas, let C be a large subset of G. Define Cf to be
the set of points in C that are the initial points of infinite paths whose edges lie in
the complement of C and that belong to one of the single-ended trees of F . Let C̃

be the set of all vertices that lie on finite components of F\(Cf ∪ R̃). Conditioned
on the trunk, C̃ and Cf , the weak Gibbs property implies that F

C̃
has the law of a

uniform spanning tree on C̃ rooted at R̃ ∪Cf (i.e., vertices of that set are identified
when choosing the tree).
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Next we claim that if R is chosen using µ as above, then a random walk started
at any vertex of G will eventually hit R almost surely. Let QR(v) be the probabil-
ity, given R, that a random walk started at v never hits R. Then QR is harmonic
away from R—that is, if v /∈ R, then QR(v) is the average value of QR on the
neighbors of v. If v ∈ R, then QR(v) = 0, which is at most the average value
of QR on the neighbors of v. Thus Q(v) := EµQR(v) is subharmonic. Since Q is
constant on each � orbit, it achieves its maximum, but if Q achieves its maximum
at v, it achieves a maximum at all of its neighbors and thus Q is constant. Now,
if QR �= 0, then there must be a vertex v incident to a vertex w ∈ R for which
QR(v) �= 0, but then QR(w) is strictly less than the average value at its neighbors:
since Q is harmonic, this happens with probability 0, and we conclude that QR

is µ a.s. identically 0.
It follows that if C is a large enough superset of a fixed set B , then any random

walk started at a point in B will hit R before it hits a point on the boundary of C

with probability arbitrarily close to 1. Letting C get large (and choosing C′, as
in the proof of the previous lemmma, large enough so that C̃′ contains C with
probability close to 1) and using Wilson’s algorithm, we conclude that µ-almost
surely every point in G belongs to the two-ended tree. �

3.2. Multiple two-ended trees.

LEMMA 3.4. If µ is quasi-invariant and with positive µ probability F con-
tains more than one two-ended tree, then the specific entropy of µ is strictly less
than the specific entropy of µG.

PROOF. Let k be the smallest integer such that for some v ∈ V (G), there is a
positive µ probability δ that v lies on the trunk R1 of a two-ended tree T1 of F

and is distance k from the trunk R2 of another two-ended tree of F . We call a
vertex with this property a near intersection of the ordered pair (R1,R2). Let � be
the � orbit of a vertex with this property. Every v ∈ � is a near intersection with
probability δ.

Flip a fair coin independently to determine an orientation for each of the trunks.
Fix a large connected subset C of G. Let Cf be the set containing the last element
of each component of the intersection of C with a trunk and let Cb be the set of all
of the first elements of these trunk segments. Let Cf be the union of Cf and one
vertex of ∂C from each tree of FC that does not contain a segment of a trunk. We
may then think of FC as a spanning forest of the graph induced by C rooted at the
set Cf .

Let ν be the uniform measure on all spanning forests of C rooted at Cf . De-
note by Ck the set of vertices in C ∩ � of distance at least k from ∂C. Let
A = A(C,Cb,Cf ,m) be the event that the paths from Cb to Cf are disjoint paths
that end at the Cf and have at least m near intersections in Ck . We will now give
an upper bound on ν(A) (which is zero if either Cb or Cf is empty).
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We can sample from ν using Wilson’s algorithm, beginning by running loop-
erased random walks starting from each of the points in Cb to generate a set of
paths from the points in Cb to the set Cf (which may or may not join up before
hitting Cf ). Order the points in Cb and let P1,P2, . . . be the paths beginning at
those points. For any r, s ≥ 1, Wilson’s algorithm implies that conditioned on Pi

with i < r and on the first s points Pr , the ν distribution of the next step of Pr is
that of the first step of a random walk in C beginning at Pr(s) and conditioned not
to return to Pr(1), . . . ,Pr(s) before hitting either Cf or some Pi with i < r .

For each r > 1, we define the first fresh near collision point (FNCP) of Pr to be
the first point in Pr that lies in Ck and is distance k or less from a Pi with i < r .
The j th FNCP is the first point in Pr that lies in Ck , is distance k or less from
a Pi with i < r and is distance at least k from the (j − 1)st FNCP in Pr . If we
condition on the P1,P2, . . . ,Pr−1 and on the path Pr up to an FNCP, then there
is some ε (independent of details of the paths Pi ) such that with ν probability at
least ε, after at most k more steps, the path Pr collides with one of the other Pi . Let
K be the total number of vertices of G within distance k of a vertex v ∈ �. Since
on the event A, we encounter at least m/K FNCP’s (as every near intersection lies
within k units of an FNCP) and the collision described above fails to occur after
each of them, we have ν(A) ≤ (1 − ε)m/K .

Let B = B(n,m) ∈ F be the event that when C = Gn, FC ∈ A(C,Cb,Cf ,m)

for some choice of Cb and Cf . Summing over all the choices of Cf and Cb (the
number of which is only exponential in |∂Gn|), we see that if m grows linearly
in |V (Gn)|, then µGn(B(n,m)) (where µGn is defined as in Lemma 2.1) decays
exponentially in |V (Gn)|. [Note that since ν is the uniform measure on a subset of
the support of µGn , any X in the support of ν has µGn(X) ≤ ν(X).]

Because the expected number of near collisions is linear in |V (Gn)|, there exist
constants ε0 and δ0 such that for large enough n, there are at least δ0|V (Gn)|
near intersections in Gk

n with µ probability at least ε0. However, the µGn

probability that this occurs decays exponentially in |V (Gn)|. From this, it is
not hard to see that the specific entropy of the restriction of µ to Gn [i.e.,
−|V (Gn)|−1 ∑

µ(FGn) logµ(FGn)] is less than the specific entropy of µGn [i.e.,
|V (Gn)|−1 logN , where N is the size of the support of µGn ] by a constant inde-
pendent of n. By Lemma 2.1, the specific entropy of µGn converges to that of µG,
so the specific entropy of µ must be strictly less than that of µG. �
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