UNIQUENESS OF MAXIMAL ENTROPY MEASURE ON ESSENTIAL SPANNING FORESTS ${ }^{1}$

By Scott Sheffield
Microsoft Research and University of California, Berkeley

An essential spanning forest of an infinite graph G is a spanning forest of G in which all trees have infinitely many vertices. Let G_{n} be an increasing sequence of finite connected subgraphs of G for which $\cup G_{n}=G$. Pemantle's arguments imply that the uniform measures on spanning trees of G_{n} converge weakly to an $\operatorname{Aut}(G)$-invariant measure μ_{G} on essential spanning forests of G. We show that if G is a connected, amenable graph and $\Gamma \subset \operatorname{Aut}(G)$ acts quasitransitively on G, then μ_{G} is the unique Γ-invariant measure on essential spanning forests of G for which the specific entropy is maximal. This result originated with Burton and Pemantle, who gave a short but incorrect proof in the case $\Gamma \cong \mathbb{Z}^{d}$. Lyons discovered the error and asked about the more general statement that we prove.

1. Introduction.

1.1. Statement of result. An essential spanning forest of an infinite graph G is a spanning subgraph F of G, each of whose components is a tree with infinitely many vertices. Given any subgraph H of G, we write F_{H} for the set of edges of F contained in H. Let Ω be the set of essential spanning forests of G and let \mathcal{F} be the smallest σ-field in which the functions $F \rightarrow F_{H}$ are measurable.

Let G_{n} be an increasing sequence of finite connected induced subgraphs of G with $\bigcup G_{n}=G$. An $\operatorname{Aut}(G)$-invariant measure μ on (Ω, \mathcal{F}) is $\operatorname{Aut}(G)$-ergodic if it is an extreme point of the set of $\operatorname{Aut}(G)$-invariant measures on (Ω, \mathcal{F}). Results of $[1,8]$ imply that the uniform measures on spanning trees of G_{n} converge weakly to an $\operatorname{Aut}(G)$-invariant and ergodic measure μ_{G} on (Ω, \mathcal{F}).

We say G is amenable if the G_{n} above can be chosen so that

$$
\lim _{n \rightarrow \infty}\left|\partial G_{n}\right| /\left|V\left(G_{n}\right)\right|=0,
$$

where $V\left(G_{n}\right)$ is the vertex set of G_{n} and ∂G_{n} is the set of vertices in G_{n} that are adjacent to a vertex outside of G_{n}. A subgroup $\Gamma \subset \operatorname{Aut}(G)$ acts quasitransitively on G if each vertex of G belongs to one of finitely many Γ orbits. We say G itself is quasitransitive if $\operatorname{Aut}(G)$ acts quasitransitively on G.

[^0]The specific entropy (also known as entropy per site) of μ is

$$
-\lim _{n \rightarrow \infty}\left|V\left(G_{n}\right)\right|^{-1} \sum \mu\left(\left\{F_{G_{n}}=F_{n}\right\}\right) \log \mu\left(\left\{F_{G_{n}}=F_{n}\right\}\right),
$$

where the sum ranges over all spanning subgraphs F_{n} of G_{n} for which $\mu\left(\left\{F_{G_{n}}=\right.\right.$ $\left.\left.F_{n}\right\}\right) \neq 0$. This limit always exists if G is amenable and μ is invariant under a quasitransitive action (see, e.g., [5, 7] for stronger results).

Let ε_{G} be the set of probability measures on (Ω, \mathcal{F}) that are invariant under some subgroup $\Gamma \subset \operatorname{Aut}(G)$ that acts quasitransitively on G and that have maximal specific free entropy. Our main result is the following:

THEOREM 1.1. If G is connected, amenable and quasitransitive, then $\varepsilon_{G}=$ $\left\{\mu_{G}\right\}$.
1.2. Historical overview. As part of a long foundational paper on essential spanning forests published in 1993, Burton and Pemantle gave a short but incorrect proof of Theorem 1.1 in the case that $\Gamma \cong \mathbb{Z}^{d}$ and then used that theorem to prove statements about the dimer model on doubly periodic planar graphs [3]. In 2002, Lyons discovered and announced the error [6]. Lyons also extended part of the result of [3] to quasitransitive amenable graphs (Lemma 2.1 below) and questioned whether the version of Theorem 1.1 that we prove was true [6].

A common and natural strategy for proving results like Theorem 1.1 is to show first that each $\mu \in \mathcal{E}_{G}$ has a Gibbs property and second that this property characterizes μ. The argument in [3] uses this strategy, but it relies on the incorrect claim that every $\mu \in \mathcal{E}_{G}$ satisfies the following property:

Strong Gibbs property. Fix any finite induced subgraph H of G and write $a \sim_{o} b$ if there is a path from a to b that consists of edges outside of H. Let H^{\prime} be the graph obtained from H by identifying vertices equivalent under \sim_{o}. Let μ^{\prime} be the measure on (Ω, \mathcal{F}) obtained as follows: To sample from μ^{\prime}, first sample $F_{G \backslash H}$ from μ and then sample F_{H} uniformly from the set of all spanning trees of H^{\prime}. (We may view a spanning tree of H^{\prime} as a subgraph of H because H and H^{\prime} have the same edge sets.) Then $\mu^{\prime}=\mu$. In other words, given $F_{G \backslash H}$-which determines the relation \sim_{O} and the graph H^{\prime}-the μ conditional measure on F_{H} is the uniform spanning tree measure on H^{\prime}.

This claim is clearly correct if $\mu=\mu_{G}$ and G is a finite graph. To see a simple counterexample when G is infinite, first recall that the number of topological ends of an infinite tree T is the maximum number of disjoint semi-infinite paths in T (which may be ∞). A k-ended tree is a tree with k topological ends. If $G=\mathbb{Z}^{d}$ with $d>4$, then $\mu_{G} \in \varepsilon_{G}$ and μ_{G}-almost surely F contains infinitely many trees, each of which has only one topological end [1, 8]. Thus, conditioned on $F_{G \backslash H}$, all configurations F_{H} that contain paths joining distinct infinite trees of $F_{G \backslash H}$ have probability 0 .

This example also shows, perhaps surprisingly, that $\mu \in \mathcal{E}_{G}$ does not imply that, conditioned on $F_{G \backslash H}$, all extensions of $F_{G \backslash H}$ to an element of Ω are equally likely. In other words, measures in ε_{G} do not necessarily maximize entropy locally. Nonetheless, we claim that every $\mu \in \mathcal{E}_{G}$ does possess a Gibbs property of a different flavor:

Weak Gibbs property. For each a and b on the boundary of H, write $a \sim_{I} b$ if a and b are connected by a path contained inside H (a relationship that depends only on F_{H}). Then conditioned on this relationship and $F_{G \backslash H}$, all spanning forests F_{H} of H that give the same relationship (and for which each component of F_{H} contains at least one point on the boundary of H) occur with equal probability.

If μ did not have this property, then we could obtain a different measure μ^{\prime} from μ by first sampling a random collection S of nonintersecting translates of H (by elements of the group Γ) in a Γ-invariant way and then resampling $F_{H^{\prime}}$ independently for each $H^{\prime} \in S$ according to the conditional measure described above. It is not hard to see that μ^{\prime} has higher specific entropy than μ and that it is still supported on essential spanning forests.

Unfortunately, the weak Gibbs property is not sufficient to characterize μ_{G}. When $G=\mathbb{Z}^{2}$, for example, for each translation-invariant Gibbs measures on perfect matchings of \mathbb{Z}^{2} there is a corresponding measure on essential spanning forests that has the weak Gibbs property [3]. The former measures have been completely classified and they include a continuous family of nonmaximal-entropy ergodic Gibbs measures [4, 9]. Significantly (see below), each of the corresponding nonmaximal-entropy measures on essential spanning forests almost surely contains infinitely many two-ended trees. The measure in which F a.s. contains all horizontal edges of \mathbb{Z}^{2} is a trivial example.

To prove Theorem 1.1, we will first show in Section 3.1 that if μ is Γ-invariant, has the weak Gibbs property and μ-almost surely F does not contain more than one two-ended tree, then $\mu=\mu_{G}$. We will complete the proof in Section 3.2 by arguing that if, with positive μ probability, F contains more than one two-ended tree, then μ cannot have maximal specific entropy. Key elements of this proof include the weak Gibbs property, resamplings of F on certain random extensions (denoted \tilde{C} in Section 3.1) of finite subgraphs of G and an entropy bound based on Wilson's algorithm.

We assume throughout the remainder of the paper that G is amenable, connected and quasitransitive, Γ is a quasitransitive subgroup of $\operatorname{Aut}(G)$ and G_{n} is an increasing sequence of finite connected induced subgraphs with $\bigcup G_{n}=G$ and $\lim \left|\partial G_{n}\right| /\left|V\left(G_{n}\right)\right|=0$.
2. Background results. Before we begin our proof, we need to cite several background results. The following lemmas can be found in $[3,6,8],[1,3,8]$ and [1, 2, 8], respectively.

Lemma 2.1. The measure μ_{G} is $\operatorname{Aut}(G)$-invariant and ergodic, and has maximal specific entropy among quasi-invariant measures on the set of essential spanning forests of G. Moreover, this entropy is equal to

$$
-\lim _{n \rightarrow \infty}\left|V\left(G_{n}\right)\right|^{-1} \sum \mu_{G_{n}}\left(F_{G_{n}}\right) \log \mu_{G_{n}}\left(F_{G_{n}}\right),
$$

where $\mu_{G_{n}}$ is the uniform measure on all spanning forests F_{n} of G_{n} with the property that each component of F_{n} contains at least one boundary vertex of G_{n}.

LEMmA 2.2. Let C_{n} be any increasing sequence of finite subgraphs of G whose union is G. For each n, let H_{n} be an arbitrary subset of the boundary of C_{n}. Let C_{n}^{\prime} be the graph obtained from C_{n} by identifying vertices in H_{n}. Then the uniform measures on spanning trees of C_{n}^{\prime} converge weakly to μ_{G}. In particular, this holds for both wired boundary conditions $H_{n}=\partial C_{n}$ and free boundary conditions $H_{n}=\varnothing$.

Lemma 2.3. If G is amenable and μ is quasi-invariant, then μ-almost surely all trees in F contain at most two disjoint semi-infinite paths.

We will also assume the reader is familiar with Wilson's algorithm for constructing uniform spanning trees of finite graphs by using repeated loop-erased random walks [10].

3. Proof of the main result.

3.1. Consequences of the weak Gibbs property.

Lemma 3.1. If μ has the weak Gibbs property and μ-almost surely all trees in F have only one topological end, then $\mu=\mu_{G}$.

Proof. For a fixed finite induced subgraph B, we will show that μ and μ_{G} induce the same law on F_{B}. Consider a large finite set $C \subset V(G)$ that contains B. Then let C_{f} be the set of vertices in C that are starting points for infinite paths in F that do not intersect C after their first point. Then let \tilde{C} be the union of C_{f} and all vertices that lie on finite components of $F \backslash C_{f}$. In other words, \tilde{C} is the set of vertices v for which every infinite path in F that contains v includes an element of C.

Now, let D be an even larger superset of C that in particular contains all vertices that are neighbors of vertices in C. The weak Gibbs property implies that if
we condition on the set $F_{G \backslash D}$ and the relationship \sim_{I} defined using D, then all choices of F_{D} that extend $F_{G \backslash D}$ to an essential spanning forest and preserve the relationship \sim_{I} are equally likely. Now, if we further condition on the event $\tilde{C} \subset D$ and on a particular choice of \tilde{C} and C_{f}, then all spanning forests of \tilde{C} rooted at C_{f} (i.e., spanning trees of the graph induced by \tilde{C} when it is modified by joining the vertices of C_{f} into a single vertex) are equally likely to appear as the restriction of F to \tilde{C}.

Since D can be taken large enough so that it contains \tilde{C} with probability arbitrarily close to 1 , we may conclude that, in general, conditioned on \tilde{C} and C_{f}, all spanning forests of \tilde{C} rooted at C_{f} are equally likely to appear as the restriction of F to \tilde{C}. Since we can take C to be arbitrarily large, the result follows from Lemma 2.2.

Lemma 3.2. If μ has the weak Gibbs property and μ-almost surely F consists of a single two-ended tree, then $\mu=\mu_{G}$.

Proof. Define B and C as in the proof of Lemma 3.1. Given a sample F from μ, denote by R the set of points that lie on the doubly infinite path (also called the trunk) of the two-ended tree. Then let c_{1} and c_{2} be the first and last vertices of R that lie in C, and let \tilde{C} be the set of all vertices that lie on the finite component of $F \backslash\left\{c_{1}, c_{2}\right\}$ that contains the trunk segment between c_{1} and c_{2}. The proof is similar to that of Lemma 3.1, using the new definition of \tilde{C} and noting that conditioned on $F_{G \backslash \tilde{C}}$, c_{1} and c_{2}, all spanning trees of \tilde{C} are equally likely to occur as the restriction of F to \tilde{C}. The difference is that \tilde{C} need not be a superset of C; however, we can choose a superset C^{\prime} of C large enough so that the analogously defined \tilde{C}^{\prime} contains C with probability arbitrarily close to 1 .

Lemma 3.3. If μ has the weak Gibbs property and μ-almost surely F contains exactly one two-ended tree, then μ almost surely F consists of a single tree and $\mu=\mu_{G}$.

Proof. As in the previous proof, R is the trunk of the two-ended tree. Clearly, each vertex in at least one of the Γ orbits of G has a positive probability of belonging to R. As in the previous lemmas, let C be a large subset of G. Define C_{f} to be the set of points in C that are the initial points of infinite paths whose edges lie in the complement of C and that belong to one of the single-ended trees of F. Let \tilde{C} be the set of all vertices that lie on finite components of $F \backslash\left(C_{f} \cup \tilde{R}\right)$. Conditioned on the trunk, \tilde{C} and C_{f}, the weak Gibbs property implies that $F_{\tilde{C}}$ has the law of a uniform spanning tree on \tilde{C} rooted at $\tilde{R} \cup C_{f}$ (i.e., vertices of that set are identified when choosing the tree).

Next we claim that if R is chosen using μ as above, then a random walk started at any vertex of G will eventually hit R almost surely. Let $Q_{R}(v)$ be the probability, given R, that a random walk started at v never hits R. Then Q_{R} is harmonic away from R-that is, if $v \notin R$, then $Q_{R}(v)$ is the average value of Q_{R} on the neighbors of v. If $v \in R$, then $Q_{R}(v)=0$, which is at most the average value of Q_{R} on the neighbors of v. Thus $Q(v):=\mathbb{E}_{\mu} Q_{R}(v)$ is subharmonic. Since Q is constant on each Γ orbit, it achieves its maximum, but if Q achieves its maximum at v, it achieves a maximum at all of its neighbors and thus Q is constant. Now, if $Q_{R} \neq 0$, then there must be a vertex v incident to a vertex $w \in R$ for which $Q_{R}(v) \neq 0$, but then $Q_{R}(w)$ is strictly less than the average value at its neighbors: since Q is harmonic, this happens with probability 0 , and we conclude that Q_{R} is μ a.s. identically 0 .

It follows that if C is a large enough superset of a fixed set B, then any random walk started at a point in B will hit R before it hits a point on the boundary of C with probability arbitrarily close to 1 . Letting C get large (and choosing C^{\prime}, as in the proof of the previous lemmma, large enough so that \tilde{C}^{\prime} contains C with probability close to 1) and using Wilson's algorithm, we conclude that μ-almost surely every point in G belongs to the two-ended tree.

3.2. Multiple two-ended trees.

Lemma 3.4. If μ is quasi-invariant and with positive μ probability F contains more than one two-ended tree, then the specific entropy of μ is strictly less than the specific entropy of μ_{G}.

Proof. Let k be the smallest integer such that for some $v \in V(G)$, there is a positive μ probability δ that v lies on the trunk R_{1} of a two-ended tree T_{1} of F and is distance k from the trunk R_{2} of another two-ended tree of F. We call a vertex with this property a near intersection of the ordered pair $\left(R_{1}, R_{2}\right)$. Let Θ be the Γ orbit of a vertex with this property. Every $v \in \Theta$ is a near intersection with probability δ.

Flip a fair coin independently to determine an orientation for each of the trunks. Fix a large connected subset C of G. Let C_{f} be the set containing the last element of each component of the intersection of C with a trunk and let C_{b} be the set of all of the first elements of these trunk segments. Let \bar{C}_{f} be the union of C_{f} and one vertex of ∂C from each tree of F_{C} that does not contain a segment of a trunk. We may then think of F_{C} as a spanning forest of the graph induced by C rooted at the set \bar{C}_{f}.

Let v be the uniform measure on all spanning forests of C rooted at \bar{C}_{f}. Denote by C^{k} the set of vertices in $C \cap \Theta$ of distance at least k from ∂C. Let $A=A\left(C, C_{b}, \bar{C}_{f}, m\right)$ be the event that the paths from C_{b} to \bar{C}_{f} are disjoint paths that end at the C_{f} and have at least m near intersections in C^{k}. We will now give an upper bound on $\nu(A)$ (which is zero if either C_{b} or \bar{C}_{f} is empty).

We can sample from v using Wilson's algorithm, beginning by running looperased random walks starting from each of the points in C_{b} to generate a set of paths from the points in C_{b} to the set \bar{C}_{f} (which may or may not join up before hitting \bar{C}_{f}). Order the points in C_{b} and let P_{1}, P_{2}, \ldots be the paths beginning at those points. For any $r, s \geq 1$, Wilson's algorithm implies that conditioned on P_{i} with $i<r$ and on the first s points P_{r}, the v distribution of the next step of P_{r} is that of the first step of a random walk in C beginning at $P_{r}(s)$ and conditioned not to return to $P_{r}(1), \ldots, P_{r}(s)$ before hitting either \bar{C}_{f} or some P_{i} with $i<r$.

For each $r>1$, we define the first fresh near collision point (FNCP) of P_{r} to be the first point in P_{r} that lies in C^{k} and is distance k or less from a P_{i} with $i<r$. The j th FNCP is the first point in P_{r} that lies in C^{k}, is distance k or less from a P_{i} with $i<r$ and is distance at least k from the $(j-1)$ st FNCP in P_{r}. If we condition on the $P_{1}, P_{2}, \ldots, P_{r-1}$ and on the path P_{r} up to an FNCP, then there is some ε (independent of details of the paths P_{i}) such that with ν probability at least ε, after at most k more steps, the path P_{r} collides with one of the other P_{i}. Let K be the total number of vertices of G within distance k of a vertex $v \in \Theta$. Since on the event A, we encounter at least m / K FNCP's (as every near intersection lies within k units of an FNCP) and the collision described above fails to occur after each of them, we have $v(A) \leq(1-\varepsilon)^{m / K}$.

Let $B=B(n, m) \in \mathcal{F}$ be the event that when $C=G_{n}, F_{C} \in A\left(C, C_{b}, \bar{C}_{f}, m\right)$ for some choice of C_{b} and \bar{C}_{f}. Summing over all the choices of \bar{C}_{f} and C_{b} (the number of which is only exponential in $\left.\left|\partial G_{n}\right|\right)$, we see that if m grows linearly in $\left|V\left(G_{n}\right)\right|$, then $\mu_{G_{n}}(B(n, m))$ (where $\mu_{G_{n}}$ is defined as in Lemma 2.1) decays exponentially in $\left|V\left(G_{n}\right)\right|$. [Note that since v is the uniform measure on a subset of the support of $\mu_{G_{n}}$, any X in the support of v has $\mu_{G_{n}}(X) \leq v(X)$.]

Because the expected number of near collisions is linear in $\left|V\left(G_{n}\right)\right|$, there exist constants ε_{0} and δ_{0} such that for large enough n, there are at least $\delta_{0}\left|V\left(G_{n}\right)\right|$ near intersections in G_{n}^{k} with μ probability at least ε_{0}. However, the $\mu_{G_{n}}$ probability that this occurs decays exponentially in $\left|V\left(G_{n}\right)\right|$. From this, it is not hard to see that the specific entropy of the restriction of μ to G_{n} [i.e., $\left.-\left|V\left(G_{n}\right)\right|^{-1} \sum \mu\left(F_{G_{n}}\right) \log \mu\left(F_{G_{n}}\right)\right]$ is less than the specific entropy of $\mu_{G_{n}}$ [i.e., $\left|V\left(G_{n}\right)\right|^{-1} \log N$, where N is the size of the support of $\mu_{G_{n}}$] by a constant independent of n. By Lemma 2.1, the specific entropy of $\mu_{G_{n}}$ converges to that of μ_{G}, so the specific entropy of μ must be strictly less than that of μ_{G}.

Acknowledgments. We thank Russell Lyons for suggesting the problem, for helpful conversations, and for reviewing early drafts of the paper. We also thank Oded Schramm and David Wilson for helpful conversations.

REFERENCES

[1] Benjamini, I., Lyons, R., Peres, Y. and Schramm, O. (2001). Uniform spanning forests. Ann. Probab. 29 1-65. MR1825141
[2] Burton, R. and Keane, M. (1989). Density and uniqueness in percolation. Comm. Math. Phys. 121 501-505. MR0990777
[3] Burton, R. and Pemantle, R. (1993). Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances. Ann. Probab. 21 1329-1371. MR1235419
[4] Kenyon, R., Okounkov, A. and Sheffield, S. (2006). Dimers and amoebas. Ann. Math. To appear. arXiv:math-ph/0311005.
[5] Lindenstrauss, E. (1999). Pointwise theorems for amenable groups. Electron. Res. Announc. Amer. Math. Soc. 5 82-80. MR1696824
[6] Lyons, R. (2005). Asymptotic enumeration of spanning trees. Combin. Probab. Comput. 14 491-522. MR2160416
[7] Ornstein, D. and Weiss, B. (1987). Entropy and isomorphism theorems for actions of amenable groups. J. Analyse Math. 48 1-142. MR0910005
[8] Pemantle, R. (1991). Choosing a spanning tree for the integer lattice uniformly. Ann. Probab. 19 1559-1574. MR1127715
[9] Sheffield, S. (2003). Random surfaces: Large deviations and Gibbs measure classifications. Ph.D. dissertation, Stanford. arxiv:math.PR/0304049.
[10] Wilson, D. (1996). Generating random spanning trees more quickly than the cover time. Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing 296-303. ACM, New York. MR1427525

Mathematics Department University of California Berkeley, California 94720-3860 USA
E-MAIL: sheff@math.berkeley.edu

[^0]: Received July 2004; revised May 2005.
 ${ }^{1}$ Supported in part by NSF Grant DMS-04-03182.
 AMS 2000 subject classification. 60D05.
 Key words and phrases. Amenable, essential spanning forest, ergodic, specific entropy.

