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A MICROSCOPIC MODEL FOR STEFAN’S MELTING AND
FREEZING PROBLEM

BY CLAUDIO LANDIM AND GLAUCO VALLE

IMPA and CNRS, and Ecole Polytechnique Fédérale de Lausanne

We study a class of one-dimensional interacting particle systems with
random boundaries as a microscopic model for Stefan’s melting and freezing
problem. We prove that under diffusive rescaling these particle systems ex-
hibit a hydrodynamic behavior described by the solution of a Cauchy–Stefan
problem.

1. Introduction. In this work we return to the classical Stefan’s freezing on
the ground model [8]. It could be described in the following way: Consider the
real line occupied by a heat-conducting material (heat is transmitted only by con-
duction). This material is initially almost everywhere characterized by a bounded
and measurable temperature function T : R → R. According to the temperature the
material could be in one of two phases, a liquid phase for positive temperatures and
a solid phase for negative temperatures. The temperature T = 0 is that of crystal-
lization at which both phases may occur. The problem consists in determining the
temporal evolution of the temperature profile.

We consider this problem under more restrictive conditions. Suppose that at
initial time the liquid phase fills the domain u > 0 at positive temperatures
and the solid phase fills the domain u < 0 at negative temperatures. Denote by
ρ0−1 : R− → R− and ρ0

1 : R+ → R+ the initial temperature profile. We are able to
determine a function B = B(t) describing the time evolution of the boundary be-
tween the two phases and their temperature functions, respectively ρ−1(t, u) and
ρ1(t, u) for the solid and liquid phases. It is well known that these functions satisfy
a Cauchy–Stefan problem:

∂tρ−1 = a−1∂uuρ−1, ∂tρ1 = a1∂uuρ1,

Ḃ(t) = k
{
a−1∂uρ−1

(
t,B(t)

) − a1∂uρ1
(
t,B(t)

)}
, B(0) = 0,(1.1)

ρi

(
t,B(t)

) = 0, ρi(0, ·) = ρ0
i (·),

where ρ0−1 : R− → R− and ρ0
1 : R+ → R+ are bounded measurable functions,

a−1 ≥ 0 and a1 > 0 are the coefficients of heat conduction of the material with
respect to the solid and liquid phases and k > 0 is a scaling factor for the tempera-
ture.
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In this paper we present a microscopic model for Stefan’s equation through an
appropriated interacting particle system and scaling limit techniques. Such sorts of
descriptions have been proposed previously by Chayes and Swindle [2] in the case
of finite domains with a−1 = 0. Rezakhanlou [6] and Bertini, Buttà and Rüdiger [1]
also derive Stefan’s equation as hydrodynamic limit of interacting particle systems.

We shall denote by Z, N and Z− the sets of integers, positive integers and non-
positive integers respectively, and by R− and R+ the sets of nonpositive and non-
negative real numbers.

For the informal description of the microscopic model, consider the one-
dimensional lattice Z with each site being occupied by a molecular agglomerate of
type −1 for the material in the solid state and of type 1 for the material in the liq-
uid state. According to its internal energy, each agglomerate is classified by a heat
unit of 0 or 1. An interaction between neighboring sites occurs independently in
the following way: If the particles are of the same type, then their heat units are
interchanged after a mean a−1 exponential time for particles type −1 and after
a mean a1 exponential time for particles of type 1. If the particles are of distinct
type and their heat units are also distinct, at rate 1 the heat unit of the agglomer-
ate whose heat value was 1 drops to 0 and simultaneously the other agglomerate
changes type. If the particles are of distinct type and their heat units are equal to 1,
both heat units drop to 0 after a mean 1 exponential time. Moreover, we start with
configurations such that the agglomerates are of type −1 if they are at the left of
the origin; otherwise they are of type 1.

We will show that this system has a hydrodynamic behavior under diffusive scal-
ing described by the solution of a Cauchy–Stefan problem of type (1.1) with scal-
ing factor k = 1, where the temperature is the macroscopic heat density profile. The
general case with an arbitrary k can be obtained from the previous one rescaling the
temperature by k−1. Here the diffusive scaling is expected since the hydrodynamic
behavior of the simple symmetric exclusion process is described in this scale. Ac-
tually, our model could be described as a coupling between two one-dimensional
nearest-neighbor simple symmetric exclusion processes in the semi-infinite lattice.
To make this identification, consider each agglomerate of solid (resp. liquid) phase
as a site in the space of the Z− (resp. N) in such a way that this association pre-
serves the order. At each site whose associated agglomerate has heat unit equal
to 1 we put a particle. In each of the lattices Z−, N particles evolve as in a nearest-
neighbor one-dimensional simple symmetric exclusion process with jump rates
a−1 and a1, respectively. Superposed to this dynamics, a particle at the boundary
of one of the lattices waits a mean 1 exponential time and attempts to leave the sys-
tem. If no particle occupies the boundary of the other lattice, this particle vanishes
triggering a translation of the whole system to the right or left depending whether
the particle was occupying a site in Z− or in N. If the boundary of the other lattice
is occupied, then both particles leave the system.

From the technical point of view, the main difficulty of this problem lies in the
fact that no entropy argument can be used due to the annihilation mechanism. In-
deed, if one fixes the boundary to be at the origin, the unique invariant measure is
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degenerate, and even when estimating the relative entropy with respect to a non-
stationary state as in [3, 5], the translations introduce expressions too large to be
estimated by the sole entropy. Coupling is therefore the unique available tool in
this context.

2. Main result. Let � = {(−1,0), (−1,1), (1,0), (1,1)}Z be the configura-
tion space and denote a typical configuration by (σ, η) = {(σ (x), η(x))}x∈Z ∈ �.
Fix a−1 ≥ 0, a1 > 0 and define the generators G0, G1 by

(G0f )(σ, η) = ∑
x∈Z

1{σ(x) = σ(x + 1)}aσ(x){f (σ, ηx,x+1) − f (σ, η)},

(G1f )(σ, η) = ∑
x∈Z

1{σ(x) �= σ(x + 1)}{f (
T x,x+1(σ, η)

) − f (σ, η)
}
.

In these formulas, f stands for a cylinder function f :� → R, ηx,y for the config-
uration η with spins at x, y interchanged,

ηx,x+1(z) =



η(x + 1), if z = x,

η(x), if z = x + 1,

η(z), otherwise,

(2.1)

and T x,x+1(σ, η) = (σ̃ , η̃) for the configuration defined as follows:

σ̃ (z) =



σ(x), if z = x + 1, η(x + 1) = 0, η(x) = 1,

σ(x + 1), if z = x, η(x) = 0, η(x + 1) = 1,

σ(z), otherwise,

η̃(z) =
{ 0, if z = x, x + 1,

η(z), otherwise.

Hence, two neighboring particles of different type annihilate each other at rate 1:
(−1,1), (1,1) → (−1,0), (1,0); and a particle sitting next to a vacant site of dif-
ferent type dies transforming the neighboring site into a site of its type at rate 1:
(−1,0), (1,1) → (1,0), (1,0).

Denote by (σt , ηt ) the Markov process associated to the generator G = G0 + G1
speeded up by N2. The goal of this article is to show that its macroscopic behavior
is described by solutions of Stefan’s equations.

The Cauchy–Stefan problem. Let a(u) = a−11{u ≤ 0} + a11{u > 0}, A(u) =
ua(u). Fix a bounded measurable function ρ0 : R → R and consider the Stefan
problem

∂tρ = a(ρ)�ρ,

u̇i(t) = bi

{
∂uA

(
ρ

(
t, ui(t)−)) − ∂uA

(
ρ

(
t, ui(t)+))}

,(2.2)

ρ(0, ·) = ρ0(·).
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Here � stands for the Laplacian, ui(t) for the curves at which ρ(t, ui(t)) = 0,
bi = 1{ρ(t, ui(t)−) < 0 < ρ(t, ui(t)+)} − 1{ρ(t, ui(t)+) < 0 < ρ(t, ui(t)−)}
and the first equation should be understood throughout [0, T ] × R, except on the
curves ui(t).

Denote by C
1,2
0 ([0, T ) × R) the set of functions G : [0, T ) × R → R with com-

pact support which are continuously differentiable with respect to the first vari-
able and twice continuously differentiable with respect to the second variable.
A bounded measurable function ρ : [0, T ] × R is said to be a weak solution of
the Stefan problem (2.2) if for every function G ∈ C

1,2
0 ([0, T ) × R),∫ +∞

−∞
du

∫ T

0
dt

{
A

(
ρ(t, u)

)
�G(t, u) + ω

(
ρ(t, u)

)
∂tG(t, u)

}
(2.3)

+
∫ +∞
−∞

duω(ρ0(u))G(0, u) = 0,

where

ω(ρ) =



ρ − 1, ρ < 0,

ρ, ρ > 0,

−1, ρ = 0.

(2.4)

The proof of uniqueness of weak solutions for the Stefan equation (2.2) pre-
sented in [7], Theorem 20, page 312, for boundary-valued problems can be easily
adapted to our context. Furthermore, the generalized solution is continuous ac-
cording to Theorem 21 of [7].

The initial states. Let A be the subset of � of all configurations (σ, η) for
which there exists x in Z such that

σ(z) =
{−1, if z ≤ x,

1, if z > x.

Note that A is stable under the dynamics induced by the generator G.
For every (σ, η) ∈ A, let

b = b(σ ) := sup{z :σ(z) = −1}
be the boundary of the configuration (σ, η).

In the proof of the hydrodynamic behavior of the process (σ, η) we impose
some conditions on the initial states. Let {mN,N ≥ 1} be a sequence of probability
measures on �. We assume that:

(H1) For every N ≥ 1, mN is concentrated on configurations of the set A such
that b(σ ) = 0.

(H2) There exists a bounded measurable function ρ0 : R → [−1,1] such that∫ ∞
a

ρ0(u) du > 0,

∫ −a

−∞
ρ0(u) du < 0
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for all a > 0 and such that for each continuous function G : R → R with
compact support and each δ > 0,

lim
N→∞mN

[∣∣∣∣∣N−1
∑
x∈Z

G(x/N)σ(x)η(x) −
∫

R
duG(u)ρ0(u)

∣∣∣∣∣ ≥ δ

]
= 0.

Notice that condition (H1) forces the initial profile to be negative on R− and
positive on R+.

In the case a−1 = 0, we impose one more condition:

(H3) For every N ≥ 1,

mN {(σ, η) ∈ A :η(x) = 0, x ≤ 0} = 1.

The hydrodynamic behavior. For each probability measure m on � concen-
trated on A, denote by P

f,N
m the probability measure on the path space D(R+,�)

induced by the Markov process (σt , ηt ) with generator G speeded up by N2 and
initial measure m.

Denote by M = M(R) the space of signed Radon measures on R endowed with
the vague topology. Integration of a function G with respect to a measure π in M
is denoted by 〈π,G〉. To each configuration (η, σ ) ∈ � we associate the empirical
measure πN = πN(η,σ ) in M by assigning mass σ(x)N−1 to each particle:

πN = 1

N

∑
x∈Z

σ(x)η(x)δx/N .

Let πN
t = πN(σt , ηt ), bN

t = b(σt )/N .

THEOREM 2.1. Fix a sequence of initial measures {mN :N ≥ 1} satisfying
assumptions (H1), (H2) and (H3) if a−1 = 0. For each t ≥ 0, as N ↑ ∞, the em-
pirical measure πN

t converges in probability to an absolutely continuous measure
π(t, du) = ρ(t, u) du, whose density ρ(t, u) is the weak solution of the Stefan
problem (2.2): For every continuous function G : R → R with compact support
and every δ > 0

lim
N→∞ P

f,N

mN

[∣∣∣∣〈πN
t ,G〉 −

∫
duG(u)ρ(t, u)

∣∣∣∣ ≥ δ

]
= 0.

Moreover, for every δ > 0

lim
N→∞ P

f,N

mN [|b(t) − B(t)| > δ] = 0,

where B is the solution of B(0) = 0,

Ḃ(t) = a−1(∂uρ)
(
t,B(t)−) − a1(∂uρ)

(
t,B(t)+)

.(2.5)
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3. The fixed boundary model. Recall the definition of the set A given in the
previous section and of the boundary b = b(σ, η) of a configuration in A. To each
configuration (σ, η) in A let ξ = ξσ,η in � = {0,1}Z be the configuration viewed
from the boundary:

ξ(x) = η(x + b).

It is not difficult to check that ξt is a Markov process with generator L given by

L = a−1L1 + Lb + a1L2.

Here L1 and L2 are the parts of the generator related to the motion of particles in
a simple symmetric exclusion process on Z− and N respectively:

L1 = ∑
x≤0

Lx−1,x, L2 = ∑
x≥1

Lx,x+1,

where, for every local function f :� → R and every integer x,

(Lx,x+1f )(ξ) = f (ξx,x+1) − f (ξ),

and ξx,x+1 is the configuration ξ with spins at x, y interchanged defined in (2.1).
In contrast, Lb is the part of the generator related to the dissipative feature of

the system: For every local function f :� → R

(Lbf )(ξ) = ξ(1)[1 − ξ(0)]{f (
τ−1(ξ − 1)

) − f (ξ)
}

+ ξ(0)[1 − ξ(1)]{f (
τ1(ξ − 0)

) − f (ξ)
}

+ ξ(0)ξ(1){f (ξ − 0 − 1) − f (ξ)},
where x stands for the configuration with no particles but one at x, and {τx :x ∈ Z}
for the group of translation so that (τxξ)(z) = ξ(z + x) for all z in Z.

Fix a bounded measurable function λ0 : R → R such that λ0(u) ≥ 0, λ0(u) ≤ 0
for u ≥ 0, u ≤ 0, respectively. A pair (λ,D), where λ is bounded measurable
function λ : [0, T ] × R → R strictly positive a.e. on (0,∞), strictly negative a.e.
on (−∞,0) and D : [0, T ] → R is a bounded variation continuous function van-
ishing at t = 0, is said to be a weak solution of

∂tλ = a�λ + Ḋ(t)∂uλ,

Ḋ(t) = a−1(∂uλ)(t,0−) − a1(∂uλ)(t,0+),(3.1)

λ(0, ·) = λ0(·),
in the layer [0, T ] × R+, if for every function G ∈ C

1,2
0 ([0, T ) × R),∫ +∞

−∞
du

∫ T

0
dt

{
A

(
λ(t, u)

)
�G(t, u) + λ(t, u)∂tG(t, u)

}

−
∫ T

0
dt

∫ +∞
−∞

{λ(t, u)∂uG(t, u) − G(t,0)}dD(t)(3.2)

+
∫ +∞
−∞

duλ0(u)G(0, u) = 0.
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Notice that we are requiring the solution to be strictly positive, negative on (0,∞),
(−∞,0), respectively.

Lemma 3.1 below shows that weak solutions of (2.2) may be obtained by a
simple change of variables from weak solutions of (3.1). In particular, uniqueness
of weak solutions of (3.1) follows from the uniqueness for (2.2). Indeed, assume
that (λt ,Dt) is a weak solution of (3.1). By Lemma 3.1 and by the uniqueness of
weak solutions of (2.2), ρ(t, u) = λ(t, u−Dt) is the unique weak solution of (2.2).
Since the weak solution of (2.2) is continuous and since λ is a.e. strictly positive,
negative on (0,∞), (−∞,0), respectively, for each t ≥ 0, ρ(t, ·) vanishes at a
unique point. This determines uniquely Dt and therefore λ.

LEMMA 3.1. Let (λt ,Dt) be a weak solution of (3.1) and let ρ(t, u) =
λ(t, u − Dt). Then, ρ is a weak solution of (2.2).

PROOF. Consider a weak solution (λt ,Dt) of (3.1) and write Dt as the differ-
ence of two continuous increasing bounded functions: Dt = D+

t − D−
t . Let D±,ε

be smooth uniform approximations of D± and set Dε
t = D

+,ε
t − D

−,ε
t so that

lim
ε→0

sup
0≤t≤T

|Dε
t − Dt | = 0.(3.3)

Fix a smooth function G : [0, T ] × R → R with compact support and vanishing
at the boundary t = T . Let Hε(t, u) = G(t,u+Dε

t ). Hε is a smooth function with
compact support. Therefore, since (λt ,Dt) is a weak solution of (3.1) and since G

vanishes at the boundary t = T ,

0 = 〈λT ,G(T ,u + Dε
T )〉 = 〈λT ,Hε

T 〉

= 〈λ0,H
ε
0 〉 +

∫ T

0
ds 〈λs, (∂s + a�)Hε

s 〉(3.4)

−
∫ T

0
{〈λs, ∂uH

ε
s 〉 − Hε

s (0)}dDs.

Recall the definition of the function ω given in (2.4) and that weak solutions
of (3.1) are strictly positive in (0,∞) and strictly negative in (−∞,0). The first
two terms on the right-hand side of (3.4) can be rewritten as

〈ω(λ0),H
ε
0 〉 +

∫ T

0
ds 〈λs, a�Hε

s 〉 +
∫ T

0
ds 〈ω(λs), ∂sH

ε
s 〉

+ 〈1{(−∞,0)},Hε
0 〉 +

∫ T

0
ds 〈1{(−∞,0)}, ∂sH

ε
s 〉.

Since G, and therefore Hε , vanish at the boundary t = T , the second line of the
previous expression is equal to 0. On the other hand, the first two terms of the first
line are easily seen to converge to

〈ω(ρ0),G0〉 +
∫ T

0
ds 〈A(ρs),�Gs〉(3.5)
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as ε ↓ 0. The last term of the first line together with the last term on the second
line of (3.4) is equal to∫ T

0
〈ω(λs), (∂sG)(s, u + Dε

s )〉ds +
∫ T

0
〈ω(λs), (∂uG)(s, u + Dε

s )〉dDε
s

−
∫ T

0
{〈λs, (∂uH

ε)(s, u)〉 − Hε
s (0)}dDs.

The first term converges, as ε ↓ 0, to∫ T

0
ds 〈ω(ρs), ∂sGs〉,(3.6)

while, by definition of ω and Hε , the sum of the second and third terms is equal to

−
∫ T

0
G(s,Dε

s ) d(Dε
s − Ds) +

∫ T

0
〈λs, ∂uH

ε
s 〉d(Dε

s − Ds).

It is not difficult to show from (3.3) that this expression vanishes as ε ↓ 0.
It follows from (3.4), (3.5) and (3.6) that

〈ω(ρ0),G0〉 +
∫ T

0
ds 〈A(ρs),�Gs〉 +

∫ T

0
ds 〈ω(ρs), ∂sGs〉 = 0,

which concludes the proof of the lemma. �

Hypotheses on the initial measures. Fix a sequence of probability measures
{µN :N ≥ 1} on �. To prove the hydrodynamic behavior of the system we will
assume that

(H̃1) There exists a bounded measurable initial profile λ0 : R → [−1,1] such that∫ ∞
a

λ0(u) du > 0,

∫ −a

−∞
λ0(u) du < 0

for all a > 0 and such that for each δ > 0 and each continuous function
G : R → R with compact support

lim
N→∞µN

[∣∣∣∣∣ 1

N

∑
x∈Z

G(x/N)1±(x)ξ(x) −
∫ +∞
−∞

duG(u)λ0(u)

∣∣∣∣∣ ≥ δ

]
= 0,

where 1±(u) = −1{u ≤ 0} + 1{u > 0}.
In the case a−1 = 0, we impose one more condition:

(H̃2) For every N ≥ 1,

µN {ξ ∈ � : ξ(x) = 0, x ≤ 0} = 1.
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The hydrodynamic behavior. For each probability measure µ on �, denote
by PN

µ the probability measure on the path space D(R+,�) induced by the Markov
process ξt with generator L speeded up by N2 starting from the initial measure µ.

Let DN+ (t) [resp. DN− (t)] be the total number of particles on N (resp. Z−) which
left the system before time t divided by N and let DN(t) = DN− (t) − DN+ (t). For-
mally DN+ (t) = N−1 ∑

x≥1{ξ0(x) − ξt (x)}.
THEOREM 3.2. Fix a sequence of initial measures {µN,N > 1} satisfying

(H1) and (H2) if a−1 = 0. Then, for any t ≥ 0, any continuous G : R → R with
compact support and any δ > 0

lim
N→∞ PN

µN

[∣∣∣∣∣ 1

N

∑
x∈Z

1±(x/N)G(x/N)ξt (x) −
∫

duG(u)λ(t, u)

∣∣∣∣∣ ≥ δ

]
= 0,

lim
N→∞ PN

µN [|DN(t) − D(t)| ≥ δ] = 0,

where (λ,D) is the unique weak solution of (3.1).

4. Proof of Theorems 2.1 and 3.2. We first show how Theorem 2.1 can be
recovered from Theorem 3.2.

PROOF OF THEOREM 2.1. Notice first that the evolution of the original
process (σt , ηt ) can be derived from the one of ξt since bN

t = DN(t) and ηt =
τ−b(σt )ξt .

By Theorem 3.2, for every t > 0, bN
t converges in probability to D(t). This

proves the second statement of the theorem since D(·) satisfies (2.5) in virtue
of (3.1).

On the other hand, if G : R → R is a continuous function with compact support,
by the previous relations between ξ and (η, σ ),

〈πN
t ,G〉 = 1

N

∑
x∈Z

1±(x/N)G
(
DN(t) + x/N

)
ξt (x).

By Theorem 3.2, this expression converges in probability to
∫

duG(D(t) +
u)λ(t, u) and this integral is equal to

∫
duG(u)ρ(t, u) by Lemma 3.1. This con-

cludes the proof of Theorem 2.1. �

We turn now to the proof of Theorem 3.2. We present the proof in the case
a−1 > 0 which is more difficult. The same arguments apply to the case a−1 = 0.

Recall that we denote by M = M(R) the space of signed Radon measures on R

endowed with the vague topology and that we denote integration of a function G

with respect to a measure π in M by 〈π,G〉. For each N ≥ 1 and each configura-
tion ξ of �, let πN be the empirical measure associate to ξ given by

πN = 1

N

∑
x∈Z

1±(x)ξ(x)δx/N .



788 C. LANDIM AND G. VALLE

Note the indicator function 1±(x) in the definition which corresponds to consid-
ering particles on Z− as having negative charge. Let πN

t = πN(ξt ) and recall that
we are speeding up the process by N2.

Recall that DN+ (t) [resp. DN− (t)] stands for the total number of particles on N

(resp. Z−) which left the system before time t divided by N and that DN(t) =
DN− (t) − DN+ (t).

With this notation, Theorem 3.2 states that the sequence QN
µN converges weakly

to the probability measure concentrated on paths (πt ,D(t)) whose first coordi-
nate is absolutely continuous π(t, du) = λ(t, u) du, the density being the solution
of (3.1) (cf. [4]). The proof consists in showing tightness, that all limit points are
concentrated on absolutely continuous paths which are weak solutions of (3.1) and
uniqueness of weak solutions of this equation.

Uniqueness of weak solutions of (3.1) was discussed in the previous section,
while tightness is proved at the end of this section. We show now that all limit
points are concentrated on weak solutions.

Fix a sequence µN of probability measures on � satisfying the assumptions of
the theorem. Note that all limit points of the sequence QN = QN

µN are concentrated
on absolutely continuous measures since in the limit the π -measure of a finite
interval is bounded by its Lebesgue measure.

PROPOSITION 4.1. All limit points Q∗ of the sequence QN
µN are concentrated

on trajectories (πt ,Dt) such that

〈πt ,G〉 − 〈π0,G〉 =
∫ t

0
ds 〈πs, (∂s + a�)Gs〉 −

∫ t

0
{〈πs, ∂uGs〉 − G(s,0)}dDs

for every t > 0 and G in C
1,2
0 ([0, T ) × R).

PROOF. The proof of this proposition is divided in several steps. We start
examining some martingales associated to the empirical measure. Fix G ∈
C

1,2
0 ([0, T ) × R) and δ > 0. Consider the martingale MG,N given by

M
G,N
t = 〈πN

t ,Gt 〉 − 〈πN
0 ,G0〉 −

∫ t

0
(∂s + N2L)〈πN

s ,Gs〉ds.

An elementary computation shows that the quadratic variation 〈MG,N 〉t of this
martingale is equal to the time integral of

1

N2

∑
x �=0

a(x/N)[ξ(x + 1) − ξ(x)]2{(∇NG)(x/N)}2

+ ξ(0)[1 − ξ(1)]{G(−1/N) + 〈πN, (∇NG)(x − 1/N)〉}2

(4.1)
+ ξ(1)[1 − ξ(0)]{G(2/N) − 〈πN,∇NG〉}2

+ ξ(0)ξ(1){G(1/N) − G(0)}2.
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In particular, since G is a smooth function with compact support, by Chebyshev
and Doob inequalities,

PN
µN

[
sup

0≤t≤T

|MG,N
t | ≥ δ

]
≤ 4δ−2EN

µN [〈MG,N 〉T ],

≤ C(a,G)δ−2
{

T

N
+ EN

µN

[∫ T

0
{ξs(0) + ξs(1)}ds

]}

for some finite constant C(a,G) depending only on a(·) and G. Therefore, by
Lemma 5.5,

lim
N→∞ PN

µN

[
sup

0≤t≤T

|MG,N
t | ≥ δ

]
= 0.(4.2)

On the other hand, an elementary computation shows that for every smooth
function H : R → R with compact support,

N2L〈πN,H 〉 = 〈πN,a�NH 〉
+ N[ξ(1) − ξ(0)]〈πN,∇NH 〉 − Nξ(1)H(2/N)

+ Nξ(0)H(−1/N) + [a1ξ(1) + a−1ξ(0)](∇NH)(0)(4.3)

+ ξ(0)〈πN,�NH 〉
− ξ(0)ξ(1){〈πN,�NH 〉 − N−1(�NH)(1/N)},

where �N and ∇N denote respectively the discrete Laplacian and gradient. There-
fore, in view of Lemma 5.5, up to negligible terms, the martingale M

G,N
t can be

written as

〈πN
t ,G〉 − 〈πN

0 ,G〉 −
∫ t

0
ds 〈πN

s , ∂sGs + a�Gs〉
−

∫ t

0
ds N[ξs(1) − ξs(0)]{〈πN

s , ∂uGs〉 − G(s,0)}.
By Lemma 4.3, provided we let ε ↓ 0 after N ↑ ∞, we may replace N[ξs(0) −
ξs(1)] by ε−1[DN(s + ε) − DN(s)]. Therefore, in view of (4.2),

lim
ε→0

lim sup
N→∞

PN
µN

[
sup

0≤t≤T

∣∣∣∣〈πN
t ,G〉 − 〈πN

0 ,G〉

−
∫ t

0
ds 〈πN

s , (∂s + a�)Gs〉

+
∫ t

0
ds

DN(s + ε) − DN(s)

ε

× {〈πN
s , ∂uGs〉 − G(s,0)}

∣∣∣∣ > δ

]
= 0.
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Hence, for any limit point Q∗ of the sequence QN ,

lim
ε→0

Q∗
[

sup
0≤t≤T

∣∣∣∣〈πt ,G〉 − 〈π0,G〉 −
∫ t

0
ds 〈πs, (∂s + a�)Gs〉

+
∫ t

0
ds

D(s + ε) − D(s)

ε
{〈πs, ∂uGs〉 − G(s,0)}

∣∣∣∣ > δ

]
= 0.

By the proof of tightness of the second marginal of QN presented at the end of this
section, Q∗ is concentrated on paths D which are of bounded variation. In particu-
lar, if dε(s) = ε−1{D(s + ε)−D(s)}, for any continuous function H : [0, T ] → R,∫ t

0 ds dε(s)H(s) converges, as ε ↓ 0, to
∫ t

0 H(s) dD(s). Since by Lemma 4.6 Q∗ is
concentrated on paths πt which are continuous for the vague topology, the propo-
sition is proved. �

The second main result of this section states that limit points of the sequence QN

are concentrated on trajectories πt whose density is bounded below by a strictly
positive function.

PROPOSITION 4.2. For each δ > 0, there exists a strictly positive continuous
function Rδ : R → (0,1] with the following property. All limit points Q∗ of the
sequence QN are concentrated on trajectories (πt ,Dt) such that

πt(I ) ≥
∫
I
Rδ(u) du

for all 0 ≤ t ≤ T and all finite intervals I = [c, d] such that c ≥ δ. A similar
statement holds in (−∞,0).

The proof of this proposition is postponed to Section 5.

LEMMA 4.3. Fix a smooth function G in C
1,2
0 ([0, T ] × R) and δ > 0. Then,

lim
ε→0

lim sup
N→∞

PN
µN

[
sup

0≤t≤T

∣∣∣∣
∫ t

0
ds

{
Nξs(1)

− DN+ (s + ε) − DN+ (s)

ε

}
〈πN

s ,Gs〉
∣∣∣∣ > δ

]
= 0.

A similar statement holds if we replace ξs(1), DN+ (s) by ξs(0), DN− (s), respectively,
or 〈πN

s ,Gs〉 by G(s,0).

PROOF. A simple computation shows that

MN+ (t) = DN+ (t) − N

∫ t

0
ξs(1) ds
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is a martingale with quadratic variation 〈MN+ 〉t given by
∫ t

0 ξs(1) ds. We may there-
fore write ε−1{DN+ (s + ε) − DN+ (s)} as

MN+ (s + ε) − MN+ (s)

ε
+ N

∫ s+ε

s
ξr (1) dr.

The martingale part is easy to estimate because it vanishes in the limit N ↑ ∞.
Indeed, by Chebyshev and Schwarz inequalities and by the explicit formula for the
quadratic variation of the martingale MN+ (t),

QN
µN

[
sup

0≤t≤T

∣∣∣∣
∫ t

0
ds

MN+ (s + ε) − MN+ (s)

ε
〈πN

s ,Gs〉
∣∣∣∣ > δ

]

≤ C(G)

δε
EN

µN

[∫ T +ε

0
ds |MN+ (s)|

]
≤ C(G,T )

δε
EN

µN

[∫ T +ε

0
ds ξs(1)

]1/2

.

Here and below C(G), C(G,T ) are finite constants depending only on G and
G, T , respectively. By Lemma 5.5, this expression vanishes as N ↑ ∞.

It remains to consider the difference Nξs(1)−N
∫ s+ε
s ξr (1) dr , which is slightly

more demanding. We first perform a time integration by parts to obtain that∣∣∣∣
∫ t

0
ds

{
Nξs(1) − N

∫ s+ε

s
ξr (1) dr

}
〈πN

s ,Gs〉
∣∣∣∣

≤ C(G)

{
N

∫ ε

0
ds ξs(1) + N

∫ t+ε

t
ds ξs(1)

}

+
∣∣∣∣
∫ t

ε
ds Nξs(1)

{
〈πN

s ,Gs〉 − 1

ε

∫ s

s−ε
〈πN

r ,Gr〉dr

}∣∣∣∣.
Lemma 5.6 permits to estimate the first term on the right-hand side. To estimate
the second one, write the difference 〈πN

s ,Gs〉 − 〈πN
r ,Gr〉 as

MG,N
s − MG,N

r +
∫ s

r
(∂v + N2L)〈πN

v ,Gv〉dv.

On the one hand,

PN
µN

[
sup

0≤t≤T

∣∣∣∣
∫ t

ε
ds Nξs(1)

1

ε

∫ s

s−ε
dr {MG,N

s − MG,N
r }

∣∣∣∣ > δ

]
(4.4)

≤ PN
µN

[
sup

0≤t≤T +ε

|MG,N
t |

∫ T

0
Nξs(1) ds > δ/2

]
.

Fix γ > 0. By Lemma 5.5, there exists a finite constant A for which

PN
µN

[∫ T

0
Nξs(1) ds > A

]
≤ γ
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for all N ≥ 1. Therefore, the previous probability is less than or equal to

γ + PN
µN

[
sup

0≤t≤T +ε

|MG,N
t | > δ/2A

]
.

It follows from (4.2) that this expression is bounded by γ as N ↑ ∞. This proves
that (4.4) vanishes in the limit N ↑ ∞.

It remains to show that

PN
µN

[
sup

0≤t≤T

∣∣∣∣
∫ t

ε
ds Nξs(1)

1

ε

∫ s

s−ε
dr

∫ s

r
(∂v + N2L)〈πN

v ,Gv〉dv

∣∣∣∣ > δ

]
(4.5)

vanishes as N ↑ ∞, ε ↓ 0.
By the explicit expression for (∂s + N2L)〈πs,Gs〉 given in (4.3), we have that

the absolute value of the integral in this formula is dominated by

C(a,G)

∫ T

0
Nξs(1) ds

{
ε + sup

0≤t≤T

∫ t+ε

t
N[ξs(0) + ξs(1)]ds

}
.

Repeating the argument presented just after (4.4) to eliminate
∫ T

0 Nξs(1) ds and
applying Lemma 5.6 to estimate the second term, we show that (4.5) vanishes as
N ↑ ∞, ε ↓ 0. This concludes the proof of the lemma. �

We conclude this section by proving that the sequence of probability measures
QN is tight, which in our context reduces to showing that the marginal of QN on
each coordinate is tight. We start with the empirical measure. Denote by QN

1 the
marginal of QN on the first coordinate.

Recall that QN
1 is tight if for each smooth function with compact support

G : R → R, 〈πN
t ,G〉 is tight as a random sequence on D(R+,R). Now fix such

a function. To prove tightness for 〈πN
t ,G〉 it is enough to verify the following two

conditions:

(i) The finite-dimensional distributions of 〈πN
t ,G〉 are tight.

(ii) For every δ > 0

lim
ε→0

lim sup
N→∞

PN
µN

[
sup

|s−t |≤ε

|〈πt ,G〉 − 〈πs,G〉| > δ

]
= 0.

Condition (i) is a trivial consequence of the fact that the empirical measure has
finite total mass on any compact interval. In order to prove condition (ii), consider
the martingale with respect to F given by

M
G,N
t = 〈πN

t ,G〉 − 〈πN
0 ,G〉 −

∫ t

0
N2L〈πN

s ,G〉ds.

Here the index N indicates that we are considering the process speeded up by N2.
Therefore,

〈πN
t ,G〉 − 〈πN

s ,G〉 = M
G,N
t − MG,N

s +
∫ t

s
N2L〈πN

r ,G〉dr.
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From the previous expression, condition (ii) is a consequence of the next two lem-
mas.

LEMMA 4.4. For every δ > 0 and every function G in C2(R) with compact
support,

lim
ε→0

lim sup
N→∞

PN
µN

[
sup

|s−t |≤ε

∣∣∣∣
∫ t

s
N2L〈πN

r ,G〉dr

∣∣∣∣ > δ

]
= 0.

PROOF. In view of (4.3), since G is a smooth function with compact support,
the expression inside the absolute value is bounded above by

C(a,G)

{
ε +

∫ t

s
N{ξr(0) + ξr(1)}dr

}

for some finite constant which depends on a, G only. To conclude the proof, it
remains to recall Lemma 5.6. �

LEMMA 4.5. For every function G in C2(R) with compact support and every
δ > 0,

lim
ε→0

lim sup
N→∞

PN
µN

[
sup

|s−t |≤ε

|MG,N
t − MG,N

s | > δ

]
= 0.

PROOF. Denote by 〈MG,N 〉t the quadratic variation of the martingale M
G,N
t .

By the Doob inequality,

PN
µN

[
sup

|s−t |≤ε

|MG,N
t − MG,N

s | > δ

]
≤ PN

µN

[
sup

0≤t≤T

|MG,N
t | > δ/2

]

≤ 4

δ2 EN
µN [〈MG,N 〉T ].

By the explicit expression for 〈MG,N 〉T given in (4.1), the previous expression is
bounded by

C(a,G)

δ2

{
T

N
+ EN

µN

[∫ T

0
{ξs(0) + ξs(1)}ds

]}
.

To conclude the proof of the lemma, it remains to apply Lemma 5.5. �

We turn now to the tightness of the second marginal of QN . Since DN− (0) =
DN+ (0) = 0, we need only to show that

lim sup
ε→0

lim sup
N→∞

PN
µN

[
sup

|s−t |≤ε

|DN+ (t) − DN+ (s)| > δ

]
= 0
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for every δ > 0 and a similar statement for DN− (t) in place of DN+ (t). In fact, we
claim that for every δ > 0, there exists ε > 0 such that

lim sup
N→∞

PN
µN

[
sup

|s−t |≤ε

|DN+ (t) − DN+ (s)| > δ

]
= 0.(4.6)

Since DN+ (t) is increasing, the previous probability is bounded above by

T ε−1∑
j=1

PN
µN

[
DN+ ([j + 1]ε) − DN+ (jε) > δ/2

]
.

It follows from Lemma 5.4 of the next section that for each δ > 0, there exists
ε > 0 such that

lim sup
N→∞

PN
µN [DN+ (t + ε) − DN+ (t) > δ] = 0

uniformly in 0 ≤ t ≤ T . This proves that the second marginal of QN is tight.
We summarize in the next lemma what we just obtained. Notice that we proved

tightness in the uniform topology.

LEMMA 4.6. The sequence QN is tight in the uniform topology. In particular,
all limit points are concentrated on continuous trajectories for the vague topology.

PROOF OF THEOREM 3.2. By Lemma 4.6, the sequence is tight in the uni-
form topology and by Propositions 4.1 and 4.2, all limit points are concentrated
on weak solutions (λ,D) of (3.1). By uniqueness of weak solutions, presented in
Section 3, the theorem is proved. �

5. Coupling. We prove in this section some important but technical results
which are used in the previous sections. The proofs rely on a coupling between the
process ξt defined in Section 3 and an exclusion process ζt similar to ξt with the
difference that the configuration is not translated when a single particle dies at
the boundary. The generator L′ of this process is therefore a−1L−1 + a1L1 + L′

b,
where L′

b is given by

(L′
bf )(ζ ) = ζ(1)[1 − ζ(0)]{f (ζ − 1) − f (ζ )}

+ ζ(0)[1 − ζ(1)]{f (ζ − 0) − f (ζ )}
+ ζ(0)ζ(1){f (ζ − 0 − 1) − f (ζ )}.

Notice that both marginal processes on Z− and on N behave as an exclusion
process with disappearance at the boundary, whose hydrodynamic behavior is well
known. The leading idea of this section is to show, through appropriate couplings,
that the original process does not differ much in several aspects from the one de-
fined above.
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Denote by {ζt : t ≥ 0} the Markov process with generator L′ speeded up by
N2 and recall that we denote by {ξt : t ≥ 0} the Markov process with generator L
speeded up by N2. Let D+

ξ ([s, t]) be the total number of ξ -particles in N which

died in the time interval [s, t]. D−
ξ ([s, t]), D±

ζ ([s, t]) are defined analogously.

LEMMA 5.1. There exists a coupling (ξt , ζt ) for which

D−
ξ ([0, t]) + D+

ξ ([0, t]) ≤ 2D−
ζ ([0, t]) + 2D+

ζ ([0, t])(5.1)

for all t ≥ 0.

PROOF. The coupling between ξt and ζt can be described as follows. Assume
that the initial configurations are identical at time 0: ζ0 = ξ0. Label all particles
and denote by X

j
t (resp. Y

j
t ) the position at time t of the j th ξ - (resp. ζ -) particle.

We assume that X
j
0 < Xk

0 if j < k, X0
0 ≤ 0 < X1

0, X
j
0 = Y

j
0 for all j .

The ξ - and ζ -particles with the same label jump together preserving the order of
the labels until a particle dies. If two ξ -particles die simultaneously, we couple the
disappearance of the ξ - and ζ -particles. If it is a single ξ -particle which disappears,
assume, without loss of generality, that it has a positive label and denote this time
by T0. Note that due to the translation, X

j
T0

= Y
j
T0

+ 1 for all labels j associated to
alive particles.

Denote by T1 the first time after T0 in which the total number of disappearances
of ξ -particles in N is equal to the total number of disappearances of ξ -particles
in Z−:

T1 = inf{t > T0 :D+
ξ ([T0, t]) = D−

ξ ([T0, t])}.
In the time interval [T0, T1], the coupling forces the ξ - and ζ -particles with the

same label to jump together. It may happen, however, that a ζ -particle on N disap-
pears while its corresponding ξ -particle remains alive. In this case, the ξ -particle
becomes a second-class particle to allow the coupled particles to jump together.
The same phenomenon may occur on Z−, where a ξ -particle may disappear while
its corresponding ζ -particle remains alive. In this case also the ζ -particle becomes
a second-class particle. Notice, in particular, that the difference X

j
t − Y

j
t does not

depend on j for coupled particles.
Due to the translations, for any T0 ≤ t ≤ T1, the total number of ξ -particles

which died on N is bounded by the total number of ζ -particles which died on N:

D+
ξ ([T0, t]) ≤ D+

ζ ([T0, t]).
Also due to our definition of T1, for any T0 ≤ t ≤ T1, the total number of ξ -particles
which died on Z− is bounded by the total number of ξ -particles which died on N:

D−
ξ ([T0, t]) ≤ D+

ξ ([T0, t]).
Therefore, (5.1) holds for any 0 ≤ t ≤ T1.
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To proceed by iteration, let K1 = D+
ζ ([T0, T1]) be the total number of

ζ -particles which died in N in the time interval [T0, T1], and let k1 = D+
ξ ([T0, T1])

be the total number of ξ -particles which died in N in the time interval [T0, T1].
By definition of the coupling, at time T1, there are K1 − k1 uncoupled ξ -particles
on N and K1 − k1 ζ -particles which died on N associated to the K1 − k1 un-
coupled ξ -particles. These K1 − k1 ζ -particles should not be forgotten, since
they will be used to compensate the eventual death of the second-class uncou-
pled ξ -particles. The important fact for the recurrence argument is that the number
of dead ζ -particles which were not used to compensate the death of ξ -particles is
at least equal to the number of second-class uncoupled ξ -particles. Notice also that
there might be second-class uncoupled ζ -particles on Z−. Since they do not play
any role in the argument, we do not refer to them again.

Assume that the first single ξ -particle to die after T1 is in Z−. If it were in N,
we could repeat the arguments presented in the last paragraph to arrive at the same
conclusions obtained there and iterate again the argument.

Denote by T2 the first time after T1 in which the total number of disappearances
of ξ -particles in N is equal to the total number of disappearances in Z−:

T2 = inf{t > T1 :D+
ξ ([T1, t]) = D−

ξ ([T1, t])}.
The coupling in [T1, T2] is the same described before, in which coupled particles
jump together until one of them dies. For T1 < t ≤ T2, let L2(t) = D−

ζ ([T1, t]),
L2 = L2(T2), �2(t) = D−

ξ ([T1, t]), �2 = �2(T2). By definition of the coupling

D+
ξ ([T1, t]) ≤ �2(t) ≤ L2(t), so that (5.1) holds for 0 ≤ t ≤ T2.
On the other hand, at time T2, there are:

(a) at most K1 − k1 uncoupled ξ -particles on N. There might be less since a
second-class ξ -particle might have died, its death being compensated by the death
of a ζ -particle on Z−,

(b) L2 − �2 uncoupled ξ -particles on Z−,
(c) K1 −k1 ζ -particles which died on N (in the time interval [T0, T1]) and which

are associated to the remaining uncoupled ξ -particles on N,
(d) L2 − �2 ζ -particles which died on Z− associated to the remaining uncou-

pled ξ -particles on Z−.

Thus, at time T2, the total number of uncoupled second-class ξ -particles is still
smaller than the total number of dead and disassociated ζ -particles.

Assume, without loss of generality, that the first single particle to die after T2 is
in N. Denote by T3 the first time after T2 in which the total number of disappear-
ances of ξ -particles on N is equal to the total number of disappearances in Z−:

T3 = inf{t > T2 :D+
ξ ([T2, t]) = D−

ξ ([T2, t])}.
The coupling remains the same. The next argument, though elementary, requires
much notation. For T2 < t ≤ T3, let:
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(a) j3(t) be the total number of second-class ξ -particles which die on N in the
time interval [T2, t],

(b) k3(t)− j3(t) be the total number of first-class ξ -particles which die on N in
the time interval [T2, t],

(c) K3(t) − j3(t) be the total number of ζ -particles which die on N in the time
interval [T2, t],

(d) �3(t) be the total number of ξ -particles which die on Z− in the time interval
[T2, t].

By the definition of the coupling, �3(t) ≤ k3(t) ≤ K3(t). The j3(t) second-class
ξ -particles which died on N were associated to ζ -particles which died before.
Since there is a factor 2 in (5.1), we also associate to these ζ -particles, j3(t)∧�3(t)

ξ -particles which died on Z−. The k3(t) − j3(t) first-class ξ -particles which died
on N are taken care of by k3(t) − j3(t) ζ -particles which died on N. The factor 2
in (5.1) allows to include (�3(t) − j3(t))

+ ≤ k3(t) − j3(t) ξ -particles which died
on Z−. Up to this point we showed that all disappearances of ξ -particles in [T2, t]
can be compensated by disappearance of ζ -particles in [T2, t] and by disassoci-
ated ζ -particles which died before T2. Therefore, (5.1) holds in the time interval
[T2, T3].

To be able to iterate this argument notice that there are K3(T3)− k3(T3) second-
class ξ -particles created on N in the time interval [T2, T3] and K3(T3) − k3(T3)

ζ -particles which died in this interval and whose deaths were not used to compen-
sate ξ deaths. We may therefore associate these new second-class ξ -particles to
these newly dead ζ -particles and iterate the argument. This concludes the proof of
the lemma. �

Denote by ζ−
t , ζ+

t the marginals of the process ζt on Z−, N, respectively. Notice
that both marginals evolve as an exclusion process in which particles leave the
system at the boundary. This system plays an important role in the sequel and
deserves a notation. For b > 0, denote by βt the Markov process on {0,1}Z+ with
generator L = Lb given by

(Lf )(β) = b
∑
x≥0

{f (βx,x+1) − f (β)} + β(0){f (β − 0) − f (β)}.

For T > 0 and a measure µ on {0,1}Z+ , denote by P̃N
µ the probability on

D([0, T ], {0,1}Z+) induced by the Markov process βt speeded up by N2 starting
from µ. Expectation with respect to P̃N

µ is denoted by ẼN
µ .

It is well known that the process βt has a hydrodynamic description. Let π̃N
t be

the empirical measure associated to βt : π̃N
t = N−1 ∑

x≥0 βt (x)δx/N .

PROPOSITION 5.2. Consider a sequence of probability measures µ̃N on
{0,1}Z+ such that

lim
N→∞ µ̃N

[∣∣∣∣〈πN,G〉 −
∫ ∞

0
ρ0(u)G(u)du

∣∣∣∣ > δ

]
= 0
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for some measurable function ρ0 : R+ → [0,1], every δ > 0 and every continuous
function with compact support G. Then,

lim
N→∞ P̃µ̃N

[∣∣∣∣〈πN
t ,G〉 −

∫ ∞
0

ρ(t, u)G(u)du

∣∣∣∣ > δ

]
= 0

for every δ > 0 and continuous function with compact support G, where ρ is the
solution of the linear equation

∂tρ = b�ρ on R+,
(5.2)

ρ(t,0) = 0, ρ(0, ·) = ρ0(·).

The proof of this result is similar to the one of Theorem 2.1 in [5]. Moreover,
the solution of (5.2) can be represented in terms of a standard Brownian motion
Wt with absorption at the boundary u = 0:

ρ(t, u) = Eu

[
ρ0

(√
bWt

)]
.(5.3)

The coupling presented in Lemma 5.1 together with the hydrodynamic behavior
stated in Proposition 5.2 permit to estimate the total number of particles which left
the system in the original process ξt . This is the content of the next two lemmas.
Recall the definition of DN+ (t), DN− (t) introduced in Section 4. Denote by 1 the
probability measure on {0,1}Z+ concentrated on the configuration with all sites
occupied and by Dβ(t) the total number of β-particles which left the system before
time t .

LEMMA 5.3. There exists a finite constant C0 depending only on a1, a−1 such
that

lim sup
N→∞

EN
µ [DN+ (t)] ≤ C0

√
t

for all t ≥ 0 and all probability measures µ. The lemma remains in force if DN+ is
replaced by DN− .

PROOF. By Lemma 5.1, the expectation in the statement of the lemma
is bounded above by 2EN

µ [Dζ (t)], where Dζ (t) stands for the total num-
ber of particles which left the system in the time interval [0, t] for the ζ

process. Since both marginals of ζ evolve as an exclusion process with dis-
appearance at the boundary, the previous expectation is bounded above by
4 maxb=a1,a−1 ẼN

µ [DN
β (t)]. By monotonicity, this latter expectation is less than or

equal to 4 maxb=a1,a−1 ẼN
1 [DN

β (t)]. By the hydrodynamic limit of β , this expecta-
tion converges, as N ↑ ∞, to

4 max
b=a1,a−1

∫ ∞
0

{1 − ρb(t, u)}du,



STEFAN’S MELTING AND FREEZING PROBLEM 799

where ρb is the solution of (5.2) with initial condition ρ0 constant equal to 1. With
this initial condition, the solution of this equation can be written as ρb(t, u) =
1 − 2P [Bt ≥ u/

√
2b ], where Bt is a standard Brownian motion. In particular, the

previous displayed equation is equal to

4
√

2t max
{√

a−1,
√

a1
}
E[|B1|].

This concludes the proof of the lemma. �

LEMMA 5.4. For every δ > 0, T > 0, there exists ε > 0 such that

lim sup
N→∞

PN
µN [DN+ (t + ε) − DN+ (t) > δ] = 0

uniformly for 0 ≤ t ≤ T . The statement remains in force if we replace DN+ by DN− .

PROOF. Fix 0 ≤ t ≤ T . Denote by µN(t) the state of the process at time t .
With this notation the probability appearing in the statement can be written as

PN
µN(t)

[DN+ (ε) > δ].
By Lemma 5.1 and by attractiveness of the β-process, the previous expression is
less than or equal to

2 max
b=a1,a−1

P̃N
1 [DN

β (ε) > δ/4].

By the hydrodynamic limit of β and the proof of the previous lemma, DN
β (ε)

converges in probability to∫ ∞
0

{1 − ρb(ε, u)}du = √
2bεE[|B1|].

In particular, if ε is chosen small enough for the last expression to be less than δ/4,
the previous probability vanishes as N ↑ ∞. This concludes the proof of the
lemma. �

LEMMA 5.5. For every t ≥ 0,

sup
N

EN
µN

[∫ t

0
N{ξs(0) + ξs(1)}ds

]
< ∞.

PROOF. Recall the definition of the martingale MN+ (t) introduced in the begin-
ning of the proof of Lemma 4.3. In particular, EN

µN [∫ t
0 Nξs(1) ds] = EN

µN [DN+ (t)].
It remains to recall Lemma 5.3 to estimate the expectation appearing in the state-
ment of the lemma for large N . For small N , it is enough to bound DN+ (t) by
a Poisson point process. �
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LEMMA 5.6. For every T > 0 and δ > 0,

lim
ε→0

lim sup
N→∞

PN
µN

[
sup

0≤t≤T

∫ t+ε

t
N{ξs(0) + ξs(1)}ds > δ

]
= 0.

PROOF. Recall the definition of the martingale MN+ (t) introduced in the be-
ginning of the proof of Lemma 4.3. With this notation, in order to prove the lemma
we need to show that

lim
ε→0

lim sup
N→∞

PN
µN

[
sup

0≤t≤T

{MN+ (t + ε) − MN+ (t)} > δ

]
= 0,

lim
ε→0

lim sup
N→∞

PN
µN

[
sup

0≤t≤T

{DN+ (t + ε) − DN+ (t)} > δ

]
= 0,

and a similar statement with MN− (t), DN− (t) in place of MN+ (t), DN+ (t).
The martingale part is easy. By Doob’s inequality and the explicit formula for

the quadratic variation of MN+ (t) given at the beginning of the proof of Lemma 4.3,
the probability which needs to be estimated is less than or equal to

PN
µN

[
sup

0≤t≤T +ε

|MN+ (t)| > δ/2
]

≤ 4

δ2 EN
µN

[∫ T +ε

0
ξs(1) ds

]
.

By the previous lemma, this expression vanishes as N ↑ ∞ for any ε > 0, δ > 0.
On the other hand, the jump part has been estimated just after the proof of

Lemma 4.5. �

We conclude this section with the proof of Proposition 4.2 which relies on the
following lemma. For a subset I of R, denote by 1{I } the indicator function of I .

LEMMA 5.7. Fix T > 0 and let µN be a probability measure satisfying as-
sumption (H̃1). There exist a finite constant A0 and a strictly positive continuous
function RT : (−∞,−A0] ∪ [A0,∞) → R+ such that

lim sup
N→∞

PN
µN

[
|〈πN

t ,1{[a, b]}〉| <
∫ b

a
RT (u)du

]
= 0

for all 0 ≤ t ≤ T and all intervals [a, b] such that a > A0 or b < −A0.

PROOF. Fix T > 0, 0 ≤ t ≤ T and let |DN |(t) = DN+ (t) + DN− (t) be the to-
tal number of particles which left the system before time t divided by N . By
Lemma 5.4, there exists A1 > 0 such that

lim sup
N→∞

PN
µN [|DN |(T ) > A1] = 0.

Fix such A1 > 0 and couple the ξ process with a ζ process as in Lemma 5.1 with
the additional property that ζ -particles which jump to the interval {−A1N, . . . ,
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A1N} are removed. In particular, all ξ -particles initially in this interval become
instantaneously second-class particles.

On the set |DN |(T ) ≤ A1, we have that a particle Y
j
t is alive only if the particle

X
j
t is alive and that the distance |Xj

t − Y
j
t |, which does not depend on j for alive

particles, is bounded by N |DN |(T ). Therefore, if we fix an interval I = [a, b] with
a > 3A1 or b < −3A1, on the set |DN |(T ) ≤ A1,

〈πN(ξt ),1{I }〉 = N−1
∑

x/N∈I

ξt (x) = N−1
∑
j

1{Xj
t ∈ NI },

where the last summation is performed over all indices j corresponding to alive
particles, and is bounded below by

inf|v|≤A1
N−1

∑
j

1{Y j
t ∈ N(v + I )} = inf|v|≤A1

〈πN(ζt ),1{v + I }〉.

In these formulas, v + I = {u + v :u ∈ I } and NJ = {Nu :u ∈ J }.
Since inf|v|≤A1〈π,1{v + I }〉 is a continuous function for the vague topology

because all measures have density bounded by 1, by the hydrodynamic limit for ζ ,
the last expression converges in probability to

inf|v|≤A1
〈ρt ,1{v + I }〉 ≥

∫ b

a
inf|v−u|≤A1

ρ(t, v) du,

where ρ is the solution of the linear equation (5.2) with initial condition ρ0 and
boundary condition ρ(t,±A1) = 0. By the explicit formula (5.3) for the solution
of (5.2), ρ(t, u) is smooth. Moreover, since ρ0 satisfies condition (H̃1), ρ(t, u) is
strictly positive. Therefore, for each u > 3A1,

R(T ,u) = inf
0≤t≤T

inf|v−u|≤A1
ρ(t, v) > 0.

This concludes the proof of the lemma. �

PROOF OF PROPOSITION 4.2. In Lemma 5.7 we proved the proposition for
intervals far from the origin. We estimate now the density on intervals close to the
origin repeating the same argument presented in the proof of Lemma 5.7 and using
the fact that the total number of particles which leave the system in a small time
interval cannot be too large.

Fix T > 0 and recall from (4.6) that for each δ > 0 there exists ε = ε(δ) > 0
such that

lim sup
N→∞

PN
µN

[
sup

0≤t≤T

|DN |(t + ε) − |DN |(t) > δ

]
= 0.

We shall estimate without loss of generality the density on R+. Fix a > 0. Let
δ = a/3, s = t − ε(δ) and denote by µN(s) the state of the ξ process at time s. By
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Lemma 5.7, at time s, the particles’ density is bounded below by a strictly positive
function RT :

lim sup
N→∞

µN(s)[〈πN,1{I }〉 < RT (I)] = lim sup
N→∞

PN
µN [〈πN

s ,1{I }〉 < RT (I)] = 0

for all intervals I = [c, d] with c > A0. Here, RT (I) = ∫
I RT (u)du.

Starting from µN(s), we couple the ξ process with a ζ process as in the
proof of Lemma 5.1 with the additional feature that ζ -particles which reach
the set {1, . . . , δN} are killed. Following the argument presented in the proof of
Lemma 5.7, on the set |DN |(t) − |DN |(s) ≤ δ we obtain that

〈πN(ξt ),1{J }〉 ≥ inf|v|≤δ
〈πN(ζt ),1{v + J }〉,

for every interval J = [c, d] with c ≥ a. The asymptotic behavior of the right-hand
side of this inequality is given by the hydrodynamic limit of the ζ process in the
time interval [s, t]. The fact that we do not know the law of large number for the
empirical measure at time s is not a problem. In fact, it is not difficult to show
that πN(ζr) is a tight sequence and that all limit points are concentrated on weak
solutions of (5.2) with boundary condition ρ(r, δ) = 0 for s ≤ r ≤ t and on tra-
jectories π which at time s are bounded below by RT on the interval [A0,∞). By
monotonicity of weak solutions of (5.2), at time t the empirical measure has a den-
sity bounded below by the solution of (5.2) with initial condition RT 1{[A0,∞)}.
Therefore, in the limit N ↑ ∞, the right-hand side of the previous equation is
bounded below by ∫ d

c
inf|v−u|≤δ

ρ(ε, v) du,

where ρ is the solution of (5.2) with initial condition ρ0 = RT 1{[A0,∞)} and
boundary condition ρ(r, δ) = 0 for 0 ≤ r ≤ ε. Here again, the explicit formula (5.3)
for the solution of (5.2) shows that the continuous function inf|v−u|≤δ ρ(ε, v) is
strictly positive on [a,∞). This concludes the proof of the proposition. �
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