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ON THE STRUCTURE OF SOLUTIONS OF ERGODIC
TYPE BELLMAN EQUATION RELATED

TO RISK-SENSITIVE CONTROL

BY HIDEHIRO KAISE AND SHUENN-JYI SHEU1

Nagoya University and Academia Sinica

Bellman equations of ergodic type related to risk-sensitive control are
considered. We treat the case that the nonlinear term is positive quadratic
form on first-order partial derivatives of solution, which includes linear ex-
ponential quadratic Gaussian control problem. In this paper we prove that
the equation in general has multiple solutions. We shall specify the set of
all the classical solutions and classify the solutions by a global behavior of
the diffusion process associated with the given solution. The solution associ-
ated with ergodic diffusion process plays particular role. We shall also prove
the uniqueness of such solution. Furthermore, the solution which gives us
ergodicity is stable under perturbation of coefficients. Finally, we have a rep-
resentation result for the solution corresponding to the ergodic diffusion.

1. Introduction. We consider the following nonlinear partial differential
equation:

1
2Di(a

ijDjW) + 1
2 âijDiWDjW + b · ∇W + V = � in R

N,(1.1)

or equivalently

1
2aijDijW + 1

2 âijDiWDjW + b̃ · ∇W + V = �,
(1.2)

b̃i(x) ≡ bi(x) + 1
2Dja

ij (x),

where a(x) = [aij (x)], â(x) = [âij (x)] are symmetric matrices,
b(x) = (b1(x), . . . , bN(x)) is a mapping of R

N into R
N , and V (x) is a func-

tion on R
N . Here we utilize the notation Dij = ∂2/∂xi ∂xj , Di = ∂/∂xi and the

summation convention for multiple indexes. We think of a pair (W,�) of func-
tion W(x) and constant � as a solution of (1.1). Equation (1.1) is called an ergodic
type Bellman equation. Such equations have been treated in ergodic control prob-
lems (cf. [1]). In ergodic control problems, â is negative-definite and more general
forms of (1.1) have been studied under rather general conditions (cf. [2]). On the
other hand, (1.1) also appears in risk-sensitive problems in infinite time horizon
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and has been studied under certain conditions (cf. [10, 13, 14, 20]). One of the
main features of (1.1) in risk-sensitive control is that â might be indefinite. Indeed,
the following equation is studied in a risk-sensitive control problem (see [10]):

1

2
aijDijW + θ

2
aijDiWDjW + inf

z∈Z
{f (x, z) · ∇W + L(x, z)} = �,(1.3)

where f : RN × Z → R
N , L : RN × Z → R, Z is a Borel subset in R

M and θ is
a constant in R\{0} which is called a risk-sensitive parameter. Equation (1.3) is
considered to characterize a logarithm-exponential type criterion per unit time on
infinite time:

� = inf
z.

lim inf
T →∞

1

T θ
logE

[
eθ

∫ T
0 L(Xt ,zt ) dt ],(1.4)

where {Xt } is a controlled diffusion process satisfying

dXt = f (Xt , zt ) dt + σ(Xt) dBt , X0 = x ∈ R
N, aij (x) = (σσT )ij (x),

{Bt } is standard Brownian motion and {zt } is a Z-valued process which is con-
sidered as a control. The infimum in (1.4) is taken over some class of {zt }. In
particular, if we take f (x, z) = b(x) + C(x)z, L(x, z) = V (x) + (1/2)zT S(x)z,
Z = R

M , where C(x), S(x) are matrices with suitable dimension and S(x) is
positive-definite, then (1.3) reads

1
2aijDijW + 1

2(θa − CS−1CT )ijDiWDjW + b · ∇W + V = �.

Note that the sign of nonlinear term â = θa − CS−1CT depends on θ . We also
remark that the infimum in (1.3) is attained at z = −S(x)−1C(x)T ∇W(x). We are
concerned with the case that θa − CS−1CT is positive-definite since in this paper
we shall study the solutions of (1.1) in the case that â is positive-definite. Recently,
it has also become known that this case happens in some investment problems
in mathematical finance (cf. [3, 8, 11, 12, 21]). However, we remark that, unlike
these papers, the verification theorem will not be considered in this paper. The
verification theorem is to show � in (1.4) is equal to �∗ in Theorem 2.6 and

z∗
t = −S(Xt)

−1C(Xt)
T ∇W ∗(Xt)

is a feedback optimal control, W ∗ is a solution corresponding to �∗ [W ∗ is usu-
ally unique if W ∗(0) = 0]. See also [15] for some examples from investment prob-
lems. The relation between the drift term â∇W ∗ in (1.8) for W = W ∗ and z∗

t

as well as its role in the risk-sensitive control problem can be seen from the ar-
guments in [11, 12]. The main merit of our study is to show that multiple solu-
tions exist in general for such equations. We also provide particular solution(s)
that is(are) responsible for the verification theorem. We observe that the case when
θa − CS−1CT is negative-definite can also be treated by considering the equation
for (−W ). Therefore, according to Theorem 2.6, we have the following interesting
observation. Assume c1 ≤ a(x) ≤ c2 and c1 ≤ C(x)S(x)−1C(x)T ≤ c2 for some
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constants c1, c2 > 0. Then for small θ > 0, there is �∗ (depending on θ ) such that
the above equation has solution if and only if � ≤ �∗. For large θ > 0, there is �∗
(depending on θ ) such that the above equation has solution if and only if � ≥ �∗.
In a risk-sensitive control problem, it is more interesting to assume V (x) → ∞ as
|x| → ∞. In this case, it may happen that �∗ = ∞ for large θ . See some discussion
in [20].

As we mentioned in the above, the studies of solutions for Bellman equations
from an analytical point of view are considered to be fundamental to determine an
optimal control. Note that solutions of (1.1) have ambiguity of additive constant,
that is, if (W,�) is a solution of (1.1), W(x) + c still satisfies (1.1) for each con-
stant c. As some examples show, it is known that (1.1) has multiple solutions even
if we identify the solutions up to additive constants. So, it is important to study
how we pick up a particular solution of (1.1) which gives an optimal control for
the problems at hand. A common way to obtain a particular solution for ergodic
type Bellman equations is to study the discounted type equations. The discounted
type Bellman equation corresponding to (1.1) is as follows:

1
2Di(a

ijDjWα) + 1
2 âijDiWαDjWα + b · ∇Wα + V = αWα.

α > 0 is called a discount factor. Under certain conditions, it is shown that
Wα(x) − Wα(x0) normalized at some point x0 ∈ R

N and αWα converge to some
function W(x) and some constant �, respectively. Furthermore (W,�) satis-
fies (1.1) (cf. [10, 13, 14]). Under the conditions including the linear exponential
quadratic Gaussian (LEQG) control problem, we need to consider the case that
b(x) [resp. V (x)] is at most linearly growing (resp. quadratically growing). Un-
der such settings, W is characterized to meet some growth condition and (W,�)

obtained by this procedure is considered to be the right solution (cf. [13, 14]).
In the present paper we directly tackle (1.1) without the procedure using the

discounted type equation under the conditions including the LEQG case. We shall
specify the set of � for which (1.1) has a smooth solution. Furthermore we shall
characterize the set of � by noting the global behavior of diffusion process which
is related to some control problem.

To explain how we relate (1.1) to a control problem, we shall give a control
interpretation to (1.1). Let (�,F ,P , {Ft }) be a probability space with filtration.
Consider the following controlled stochastic differential equation (SDE):

dXt = (
b̃(Xt ) + ut

)
dt + σ(Xt) dBt , X0 = x ∈ R

N,σ(x) ≡ a(x)1/2,

where {Bt } is N -dimensional {Ft }-Brownian motion and {ut } is an
{Ft }-progressively measurable process taking its value in R

N . {ut } is considered
as control process. We define the value function as follows:

v(t, x) = sup
u.

Ex

[∫ T −t

0

(
V (Xs) − 1

2 â−1
ij (Xs)u

i
su

j
s

)
ds

]
,
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where â−1
ij is the (i, j)-component in inverse of â. By using the Bellman principle,

we see that v(t, x) satisfies the following equation formally:

∂v

∂t
+ 1

2
aijDij v + sup

u∈RN

{(
b̃(x) + u

) · ∇xv − 1

2
â−1
ij uiuj

}
+ V = 0

(1.5)
in (0, T ) × R

N,

v(T , x) = 0, x ∈ R
N.(1.6)

Since supu∈RN {(b̃ + u) · ∇xv − (1/2)â−1
ij uiuj } = (1/2)âijDivDjv + b̃ · ∇xv,

(1.5) reduces to the following:

∂v

∂t
+ 1

2
aijDij v + 1

2
âijDivDjv + b̃ · ∇xv + V = 0.

Note that the supremum is attained at ū(t, x) = â(x)∇xv(t, x). If −(∂v/∂t)(0, x)

converges to some constant � and v(0, x) − v(0, x0) normalized at some point
x0 ∈ R

N converges to some function W(x) as T → ∞, we have formally the fol-
lowing equation which we shall discuss in this paper:

1
2aijDijW + 1

2 âijDiWDjW + b̃ · ∇W + V = �.

This is considered to characterize the long-time average cost defined as following:

� = sup
u.

lim sup
T →∞

1

T
Ex

[∫ T

0

(
V (Xs) − 1

2
â−1
ij (Xs)u

i
su

j
s

)
ds

]
.(1.7)

Following the Bellman principle, we can expect that ūt = â(Xt )∇W(Xt) should
be a candidate of optimal control for (1.7), where {Xt } is defined by the controlled
SDE with ut = ūt = â(Xt )∇W(Xt):

dXt = (
b̃(Xt ) + â∇W(Xt)

)
dt + σ(Xt) dBt , X0 = x.(1.8)

We shall study the structure of solutions of (1.1) by relating to (1.8) under condi-
tions which include the LEQG case, that is, b(x) [resp. V (x)] has at most linear
growth (resp. quadratic growth).

The paper is organized as follows.
In Section 2 we shall specify the set of � for which (1.1) has a solution under

rather general conditions on b(x) and V (x). Indeed, it is proved that the set of � is
equal to closed half-line [�∗,∞) for some �∗ ∈ (−∞,∞).

In Section 3 we shall classify � according to the global property of the dif-
fusion process defined by (1.8). We shall prove that for � > �∗, the diffu-
sion process {Xt } in (1.8) corresponding to solution (W,�) is transient and
for � = �∗, {Xt } is ergodic. Moreover, we shall show that solution W(x) cor-
responding to �∗ is unique up to additive constant.

We show the structure of solutions in Sections 2 and 3. In Section 4 we shall
consider the problem that the structures specified in Sections 2 and 3 are preserved



288 H. KAISE AND S.-J. SHEU

under the perturbation on coefficients in (1.1). More precisely, consider (1.1) with
a = an, â = ân, b = bn, V = Vn:

1
2Di(a

ij
n DjWn) + 1

2 âijDiWnDjWn + b · ∇Wn + Vn = �n.

In similar ways to Sections 2 and 3 we can find [�∗
n,∞) for (1.1) parameterized

by n and solution Wn corresponding to �∗
n is unique. In Section 4 we mainly study

the case that an = a, ân = â, bn = b, independent of n, and shall show that if Vn

converges to V , �∗
n converges to �∗ and unique solution Wn corresponding to �∗

n

converges to unique solution corresponding to �∗.
In Section 5 we shall study the representation for �∗. To obtain the representa-

tion result, we consider perturbation on V and notice the dependence on V for �∗.
By using the representation, we can prove the moment condition for invariant mea-
sure of the ergodic diffusion process in (1.8) corresponding to �∗.

Last, we mention the connection to positive solutions of linear equations. Sup-
pose aij (x) = âij (x), i, j = 1, . . . ,N . If we take the transformation φ(x) ≡ eW(x)

in (1.1), we have

1
2aijDijφ + b̃ · ∇φ + V φ = �φ.(1.9)

Thus, in the case that aij (x) = âij (x), the study of solutions for (1.1) reduces to
that of positive solutions for (1.9). We note that the structure of � specified in
this paper is considered to be a generalization in the theory of positive harmonic
function for linear differential operators (cf. [22]). Some applications of our results
to the evaluation of large time asymptotics of expectations of diffusion processes
will be given in [17].

2. Set of � with solutions. In the present section we shall consider the set
of � for which (1.1) has a classical solution W under rather general conditions.
In the next section we shall classify � by following the global behavior of the
diffusion process related to the solution W corresponding to �.

We define the following set:

A ≡ {� : there exists smooth function W satisfying (1.1) for �}.(2.1)

Under the assumptions given below, we can prove that A has the following form
for some �∗ ∈ (−∞,∞):

A = [�∗,∞).

For simplicity, we always assume aij , âij , b, V are sufficiently smooth. We shall
give the following assumptions:

(A1) There exist 0 < ν1 < ν2 such that

ν1|ξ |2 ≤ aij (x)ξiξj ≤ ν2|ξ |2 ∀x, ξ ∈ R
N.
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(A2) There exist 0 < µ1 < µ2 such that

µ1|ξ |2 ≤ âij (x)ξiξj ≤ µ2|ξ |2 ∀x, ξ ∈ R
N.

(A3) There exists a smooth function W0(x) such that

1
2Di(a

ijDjW0)+ 1
2 âijDiW0DjW0 +b ·∇W0 +V → −∞ as |x| → ∞.

REMARK 2.1. Note that it follows from (A1), (A2) that there exist c, c̄ > 0
such that

ca(x) ≤ â(x) ≤ c̄a(x), x ∈ R
N.(2.2)

REMARK 2.2. In the following, we give some interesting examples for (A3).

(a) Assume aij (x), âij (x) are bounded together with their derivatives. Assume
also that there are c0, r0 > 0 such that

b(x) · x ≤ −c0|x|2, |x| ≥ r0.

(b) Assume aij (x), âij (x) are bounded together with their derivatives. Assume
also that there are c0, r0 > 0 such that

b(x) · x ≥ c0|x|2, |x| ≥ r0.

(c) Assume V (x) → −∞ as |x| → ∞.

For (a), we take W0(x) = c|x|2 for small c > 0. For (b), we take W0(x) = −c|x|2
for small c > 0. For (c), we take W0 = 0.

REMARK 2.3. For the purpose of discussion in the present section, we can
replace (A3) with the existence of a super solution of (1.1) for some � to ensure
that A 
= ∅. We need (A3) to classify � in the next section. In the following, we
show for any � and R̃ > 0, we can construct a subsolution of (1.2) in B

R̃
with

boundary value W0 on ∂B
R̃

, where B
R̃

is open ball with radius R̃ centered at 0.
Indeed, we consider linear partial differential equation with Dirichlet boundary
condition:

1
2Di(a

ijDjW̃0) + b · ∇W̃0 + V = � in B
R̃
,

W̃0(x) = W0(x) on ∂B
R̃
.

Under (A1) and smoothness of coefficients, we have unique solution
W̃0 ∈ C2,α(B

R̃
) ∩ C(B̄

R̃
). By (A2), we have

1
2Di(a

ijDjW̃0) + 1
2 âijDiW̃0DjW̃0 + b · ∇W̃0 + V ≥ � in B

R̃
.
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In order to see A 
= ∅, consider the following Dirichlet problem:

1
2Di(a

ijDjWR) + 1
2 âijDiWRDjWR + b · ∇WR + V = � in BR,(2.3)

WR = W0 on ∂BR,(2.4)

where BR is open ball with radius R centered at 0 and W0 is taken from (A3). Note
that (2.3) is equivalent to

1
2aijDijWR + 1

2 âijDiWRDjWR + b̃ · ∇WR + V = � in BR.(2.5)

By (A3), W0 satisfies the following inequality for some �:

1
2Di(a

ijDjW0) + 1
2 âijDiW0DjW0 + b · ∇W0 + V ≤ � in R

N.

Also, from Remark 2.3, we see that for R̃ > R, there exists a smooth func-
tion W̃0(x) such that

1
2Di(a

ijDjW̃0) + 1
2 âijDiW̃0DjW̃0 + b · ∇W̃0 + V ≥ � in B

R̃
.

Then, under (A1)–(A3), there exists WR ∈ C2,α(B̄R) satisfying (2.3) and (2.4)
(cf. [18], Chapter 4, Theorem 8.4).

We need a uniform bound for ∇WR on compact sets to obtain a solution W

of (1.1) by sending the radius R to ∞. The following gradient estimate is also
useful in the later discussions.

LEMMA 2.4. Let WR be a smooth function satisfying (2.3) in BR . Under (A1)
and (A2), we have for each r > 0 and R > 2r

sup
Br

|∇WR|2 ≤ Cr + C�,(2.6)

where C is a nonnegative constant independent of r and R, and Cr is a constant
depending only on r .

PROOF. Equation (1.1) has the nonlinear term similar to those treated in
[13, 14] and we can follow the same arguments to obtain the gradient estimate.
However, we shall give a proof to specify the dependence of �.

We set W = WR for simplicity. By differentiating each side of (2.5) on xk , we
have

1
2Dka

ijDijW + 1
2aijDijkW + 1

2Dkâ
ijDiWDjW

(2.7)
+ âijDiWDjkW + Dkb̃

iDiW + b̃iDikW + DkV = 0.
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Let us set G ≡ (1/2)
∑

k(DkW)2. Then, using (2.7)

−1
2aijDijG − âijDiWDjG − b̃iDiG

= −1
2aijDkWDijkW − 1

2aijDkiWDkjW

− âijDiWDkWDjkW − b̃iDkWDikW(2.8)

= 1
2Dka

ijDkWDijW + 1
2Dkâ

ijDiWDjWDkW

+ Dkb̃
iDiWDkW + DkV DkW − 1

2aijDkiWDkjW.

We note the second-order derivative terms. Then, we have

RHS of (2.8) ≤ 1

4δ

(∑
i,j

|Daij |2
)
|DW |2 + δ

4
|D2W |2

+ 1

2
Dkâ

ijDiWDjWDkW + Dkb̃
iDiWDkW

+ DkV DkW − 1

4
aijDkiWDkjW − 1

4
aijDkiWDkjW

≤ 1

4δ

(∑
i,j

|Daij |2
)
|DW |2 + 1

2
Dkâ

ijDiWDjWDkW

+ Dkb̃
iDiWDkW + DkV DkW − 1

4
aijDkiWDkjW,

where δ > 0 is a small constant. Indeed, we can take δ satisfying δ < ν1. From
matrix inequality (trAB)2 ≤ Nν2(trAB2) where A, B are N × N -symmetric ma-
trices, A is nonnegative-definite and ν2 is the maximum eigenvalue of A, we finally
obtain the following inequality:

−1

2
aijDijG − âijDiWDjG − b̃iDiG

(2.9)

≤ Cr |DW | + Cr |DW |2 + Cr |DW |3 − 1

4Nν2
(aijDijW)2 in B2r .

Here and in the proof below, we suppose that Cr is constant depending only on r

and C is nonnegative constant independent of r and R.
Fix arbitrary ξ ∈ Br and take a cut-off function ϕ ∈ C∞

0 (RN) satisfying the
following:

0 ≤ ϕ ≤ 1 in R
N, ϕ(ξ) = 1, ϕ ≡ 0 in Br(ξ)c,

(2.10)
|∇ϕ| ≤ Cϕ1/2, |D2ϕ| ≤ C,

where Br(ξ) is open ball with radius r centered at ξ . Let x0 be a maximum point
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of ϕG in B̄r (ξ). By the maximum principle, we can see

0 ≤ −1
2aijDij (ϕG) − âijDiWDj(ϕG) − b̃iDi(ϕG)

= ϕ
{−1

2aijDijG − âijDiWDjG − b̃iDiG
}

− 1
2aij (Dijϕ)G − aijDiϕDjG − âijDjϕ(DiW)G − b̃i(Diϕ)G(2.11)

≤ ϕ
{−1

2aijDijG − âijDiWDjG − b̃iDiG
}

+ CrG + Cϕ1/2G3/2 at x0,

where we used 0 = D(ϕG) = GDϕ + ϕDG and (2.10). From (2.5) and (2.9), it is
implied that

RHS of (2.11) ≤ ϕ

{
CrG

1/2 + CrG + CrG
3/2 − 1

4Nν2
(aijDijW)2

}

+ CrG + Cϕ1/2G3/2

= ϕ

{
CrG

1/2 + CrG + CrG
3/2(2.12)

− 1

Nν2

(
−1

2
âijDiWDjW − b̃iDiW − V + �

)2}

+ CrG + Cϕ1/2G3/2 at x0.

By (A2), the following inequalities hold for some positive constant κ which de-
pends on µ1,

−1

2
âijDiWDjW − b̃iDiW − V + �

≤ −µ1

2
|DW |2 + Cr |DW | − V + �(2.13)

≤ −κ|DW |2 + Cr − V + �.

In the case that −κ|DW |2 + Cr − V + � ≥ 0 at x0, we have

κ|DW |2(x0) ≤ Cr − V (x0) + � ≤ Cr + �,

where we used x0 ∈ B2r . Since
1
2 |DW |2(ξ) = 1

2 |DW |2(ξ)ϕ(ξ) ≤ G(x0)ϕ(x0),

we obtain the following gradient estimate at ξ :

κ|DW |2(ξ) ≤ Cr + �.

We next consider the case that

−κ|DW |2 + Cr − V + � ≤ 0 at x0.
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By (2.13),

RHS of (2.12)

≤ ϕ

{
CrG

1/2 + CrG + CrG
3/2 − 1

Nν2
(−κ|DW |2 + Cr − V + �)2

}

+ CrG + Cϕ1/2G3/2(2.14)

≤ ϕ

{
CrG

1/2 + CrG + CrG
3/2 − 4κ2

Nν2
G2 + 4κ

Nν2
G(Cr − V + �)

}

+ CrG + Cϕ1/2G3/2.

If Cr − V + � ≥ κG(x0)/4 or Cr ≥ G(x0) we have the bound |DW |2(ξ) ≤
Cr + C� in the same way as the above case. We shall consider the case that
Cr − V + � ≤ κG(x0)/4 and Cr ≤ G(x0). Then, from (2.14), we have

0 ≤ ϕ

{
G3/2 + CrG + CrG

3/2 − 4κ2

Nν2
G2 + 2κ2

Nν2
G2

}

+ CrG + Cϕ1/2G3/2

≤ −C1ϕG2 + C2ϕ
1/2G3/2 + C3CrG

≡ −C1ϕG2 + C2ϕ
1/2G3/2 + C̃3G at x0, C̃3 ≡ C3Cr,

where C1, C2, C3 are positive constants independent of r , R and �. By setting
X ≡ ϕ1/2(x0)G

1/2(x0), we have

0 ≤ −C1X
2 + C2X + C̃3.

Therefore, we have

X2 = ϕG(x0) ≤ C2
2

C2
1

+ 2C̃3

C1
≤ C2

2

C2
1

+ 2C3Cr

C1
.

Since (1/2)|DW |2(ξ) = (1/2)|DW |2(ξ)ϕ2(ξ) ≤ G(x0)ϕ(x0), we obtain the
bound for |DW |(ξ). �

REMARK 2.5. Under some growth conditions for coefficients of (1.2), we
can obtain growth order for gradient of solutions. For instance, besides (A1), (A2),
suppose the following growth conditions: Daij (x),Dâij (x) are bounded and there
exist c1, c2 > 0 and m ≥ 1 such that

|b(x)| ≤ c1(1 + |x|m), |Db(x)| ≤ c1(1 + |x|m−1),

|V (x)| ≤ c2(1 + |x|2m), |DV (x)| ≤ c2(1 + |x|2m−1).

Then, in Lemma 2.4, we can take Cr = C(1 + r2m), that is,

sup
Br

|∇WR|2 ≤ C(1 + r2m + �), 0 < 2r < R.
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We may normalize WR as WR(0) = 0 because (1.1) does not include a zeroth
term on WR . Then, from Lemma 2.4, there exists W ∈ C(RN) such that WR con-
verges to W on each compact set as R → ∞ by taking a subsequence if necessary.
Also, since {WR}R>2r is bounded in H 1(Br) by Lemma 2.4, WR converges to
W L2

loc-strongly and H 1
loc-weakly. Furthermore, we can see that ∇WR converges

L2
loc-strongly in a similar way to Lemma 2.8 in [14] and Section 1.4 in [20].

We rewrite (2.3), (2.4) in integral form:

−1
2

∫
aijDiWRDjϕ dx + 1

2

∫
âijDiWRDjWRϕ dx

+
∫

b · ∇WRϕ dx +
∫

V ϕ dx =
∫

�ϕ dx, ϕ ∈ C∞
0 (BR).

Fix r > 0. Since WR converges to W H 1
loc-strongly, we obtain the following by

sending R to ∞:

−1
2

∫
aijDiWDjϕ dx + 1

2

∫
âijDiWDjWϕ dx

+
∫

b · ∇W ϕ dx +
∫

V ϕ dx =
∫

�ϕ dx, ϕ ∈ C∞
0 (Br), r > 0.

Owing to the regularity theorem of elliptic equations and the imbedding theorem,
we have W as a classical solution of (1.1). Therefore, we have proved that A 
= ∅.

We shall state and prove the form of the set of �.

THEOREM 2.6. Under the assumptions (A1)–(A3), there exists �∗ ∈
(−∞,∞) such that A = [�∗,∞).

PROOF. In order to show infA > −∞, we suppose infA = −∞, that is, there
exists {�n} ⊂ A such that �n tends to −∞ as n → ∞. Let Wn be a solution
of (1.1) corresponding to �n. Then, by the integral form of (1.1), we have

−1
2

∫
aijDiWnDjϕ dx + 1

2

∫
âijDiWnDjWn ϕ dx

(2.15)
+

∫
b · ∇Wn ϕ dx +

∫
V ϕ dx =

∫
�nϕ dx, ϕ ∈ C∞

0 (RN).

Take ϕ ∈ C∞
0 (RN) such that

∫
ϕ dx 
= 0. Since {�n} is bounded from above, it is

implied from Lemma 2.4 that

sup
Br

|∇Wn| ≤ Cr,(2.16)

where Cr is a constant independent of n and r is taken such that supϕ ⊂ Br .
Therefore, the left-hand side of (2.15) is bounded on n. On the other hand, the
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right-hand side of (2.15) is unbounded because of the assumption which we made
above. This leads to a contradiction.

We shall next prove if �̃ ∈ A, then [�̃,∞) ⊂ A. Let W̃ be a solution corre-
sponding to �̃. For arbitrary � ≥ �̃, we have

1
2Di(a

ijDjW̃ ) + 1
2 âijDiW̃DjW̃ + b · ∇W̃ + V = �̃ ≤ � in R

N.(2.17)

By Remark 2.3, for R̃ > R, there exists W̃0 such that

1
2Di(a

ijDjW̃0) + 1
2 âijDiW̃0DjW̃0 + b · ∇W̃0 + V ≥ � in B

R̃
.(2.18)

Consider the Dirichlet problem (2.3) with boundary condition WR = W̃0 on ∂BR .
From (2.17), (2.18), the existence of a classical solution for this Dirichlet problem
is guaranteed by Theorem 8.4, Chapter 4 in [18]. In the same manner as that right
after the proof of Lemma 2.4, we can see that there exists a smooth function W

satisfying (1.1) for �.
We shall prove that �∗ ≡ infA actually belongs to A. {�n} is a sequence in A

such that �n → �∗ and Wn is a solution of (1.1) corresponding to �n normalized
as Wn(0) = 0. Then, Wn satisfies (2.15). Since {�n} is bounded, it follows from
Lemma 2.4 that (2.16) holds for some constant Cr independent of n. Following
the same way as the discussion after Lemma 2.4, we can see that a sequence of Wn

converges to W ∗ ∈ C(RN) uniformly on compact sets and H 1
loc-strongly. By taking

a limit in (2.15) as n → ∞, we have

−1
2

∫
aijDiW

∗Djϕ dx + 1
2

∫
âDiW

∗DjW
∗ ϕ dx

+
∫

b · ∇W ∗ϕ dx +
∫

V ϕ dx =
∫

�∗ϕ dx ∀ϕ ∈ C∞
0 (RN).

Therefore, the existence of a classical solution W ∗ of (1.1) for �∗ follows from
the regularity theorem of elliptic equations (see Theorems 5.1, 6.3, Chapter 4
in [18]). �

3. Classification of solutions.

3.1. Transience and ergodicity of diffusion processes. In the last section we
proved that the set of � for which (1.1) has a smooth solution is A = [�∗,∞) for
some �∗ ∈ (−∞,∞). In the present section we shall study the classification of �

by global behavior of {Xt } defined by (1.8).
Let (�,F ,P , {Ft }) be a filtered probability space on which N -dimensional

Brownian motion {Bt } is defined. For given � ∈ [�∗,∞), consider the SDE:

dXt = (
b̃(Xt ) + â∇W(Xt)

)
dt + σ(Xt) dBt , X0 = x,(3.1)

where W(x) is a solution of (1.1) corresponding to �. We shall classify � ac-
cording to the global properties of {Xt }. More precisely, we shall prove that for
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� > �∗, {Xt } is transient and for � = �∗, {Xt } is ergodic. Note that solution of
(3.1) might explode in finite time.

We shall next discuss transience of {Xt } for � ∈ (�∗,∞). We introduce the
operator associated to solution (W,�) of (1.1):

T
W,�
t f (x) ≡ Ex[f (Xt); t < τ∞], f ∈ C0(R

N),

τn ≡ inf{t;Xt /∈ Bn(0)}, τ∞ ≡ lim
n→∞ τn,

where {Xt } is a solution of (3.1) up to t < τ∞ corresponding to (W,�).

LEMMA 3.1. Under (A1)–(A3), the following inequality holds for each solu-
tion (W,�) of (1.1):

T
W,�
t f (x) ≤ k(x)e−c(�−�∗)t , f ∈ C0(R

N), f ≥ 0,

where c is in Remark 2.1 and k(x) is a constant depending only on x.

PROOF. Let W ∗ be a solution of (1.1) corresponding to �∗. We set Wc ≡ cW ,
W ∗

c ≡ cW ∗, where c > 0 is taken from Remark 2.1. Then, we have from (1.2)

1

2
aijDijWc + 1

2c
âijDiWcDjWc + b̃ · ∇Wc + cV = c�,(3.2)

1

2
aijDijW

∗
c + 1

2c
âijDiW

∗
c DjW

∗
c + b̃ · ∇W ∗

c + cV = c�∗.(3.3)

Subtracting (3.3) from (3.2),

1

2
aijDij (Wc − W ∗

c ) + (b̃ + â∇W ∗) · ∇(Wc − W ∗
c )

+ 1

2c
â∇(Wc − W ∗

c ) · ∇(Wc − W ∗
c ) = c(� − �∗).

Setting W̄ ≡ Wc − W ∗
c , we have

1

2
aijDij W̄ + (b̃ + â∇W ∗) · ∇W̄ + 1

2c
â∇W̄ · ∇W̄ = c(� − �∗).(3.4)

We consider (3.1) and rewrite this as follows:

dXt = (
b̃(Xt ) + â∇W(Xt)

)
dt + σ(Xt) dBt

= (
b̃(Xt ) + â∇W(Xt)

)
dt − a∇W̄ (Xt) dt + σ(Xt) dBt + a∇W̄ (Xt) dt

= (
b̃(Xt ) + â∇W ∗(Xt)

)
dt +

(
1

c
â∇W̄ (Xt) − a∇W̄ (Xt)

)
dt + σ(Xt) dB̃t ,

where

B̃s = Bs +
∫ s

0
σ∇W̄ (Xr) dr, s < τ∞.(3.5)
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Define measure P̃ on F (n)
t = Ft∧τn :

dP̃

dP

∣∣∣∣
F (n)

t

= exp
[
−

∫ t

0
σ∇W̄ (Xs)1{s≤τn} dBs − 1

2

∫ t

0
a∇W̄ · ∇W̄ (Xs)1{s≤τn} ds

]
.

Then, P̃ is probability measure and 〈B̃·∧τn〉s = 〈B·∧τn〉s = s ∧ τn. By (3.5), we
have

Ex[f (Xt); t < τn]
= Ẽx

[
f (Xt)e

∫ t
0 σ∇W̄ (Xs)1{s≤τn} dBs+(1/2)

∫ t
0 a∇W̄ ·∇W̄ (Xs)1{s≤τn} ds; t < τn

]
(3.6)

= Ẽx

[
f (Xt)e

∫ t
0 σ∇W̄ (Xs)1{s≤τn} dB̃s−(1/2)

∫ t
0 a∇W̄ ·∇W̄ (Xs)1{s≤τn} ds; t < τn

]
,

where Ẽx denotes expectation with respect to P̃ . Applying the Itô formula
to W̄ (Xt),

dW̄ (Xt) = ∇W̄ ·
(
b̃ + â∇W ∗ + 1

c
â∇W̄ − a∇W̄

)
(Xt) dt

+ 1

2
aijDij W̄ (Xt) dt + σ∇W̄ (Xt) dB̃t

=
(

1

2
aijDij W̄ + (b̃ + â∇W ∗) · ∇W̄

)
(Xt) dt

+
(

1

c
â∇W̄ · ∇W̄ − a∇W̄ · ∇W̄

)
(Xt) dt + σ∇W̄ (Xt) dB̃t

(3.7)

=
(
− 1

2c
â∇W̄ · ∇W̄ + c(� − �∗)

)
(Xt) dt

+
(

1

c
â∇W̄ · ∇W̄ − a∇W̄ · ∇W̄

)
(Xt) dt + σ∇W̄ (Xt) dB̃t

= σ∇W̄ (Xt) dB̃t − 1

2
a∇W̄ · ∇W̄ (Xt) dt

+ 1

2

(
1

c
â − a

)
∇W̄ · ∇W̄ (Xt) dt + c(� − �∗) dt.

Here we used (3.4). Then, by (3.6) and (3.7), we have

Ex[f (Xt); t < τn]
= Ẽx

[
f (Xt)e

−c(�−�∗)t+W̄ (Xt )−W̄ (x)+(1/2)
∫ t

0 (a−(1/c)â)∇W̄ ·∇W̄ (Xs)1{s≤τn} ds;
t < τn

]
≤ ‖f ‖∞esup{W̄ (y)−W̄ (x);y∈suppf }

× e−c(�−�∗)t Ẽx

[
e(1/2)

∫ t
0 (a−(1/c)â)∇W̄ ·∇W̄ (Xs)1{s≤τn} ds; t < τn

]
.
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Since ca(x) ≤ â(x), we have

Ex[f (Xt); t < τn] ≤ k(x)e−c(�−�∗)t ,

k(x) = ‖f ‖∞ exp
(

sup
y∈suppf

(
W̄ (y) − W̄ (x)

))
.

Taking the limit as n → ∞, we obtain

Ex[f (Xt); t < τ∞] ≤ k(x)e−c(�−�∗)t . �

Now we have the result on transience.

THEOREM 3.2. Let (W,�) be a solution of (1.1) and {Xt } be a solution of
(3.1) corresponding to (W,�). If (A1)–(A3) hold, then for � > �∗, {Xt } is tran-
sient.

PROOF. Let f ∈ C0(R
N) and f ≥ 0. Since � > �∗, we can see that by

Lemma 3.1, ∫ ∞
0

T
W,�
t f (x) dt < ∞.

Therefore, {Xt } is transient. �

We proved that for � > �∗, {Xt } defined by (3.1) is transient. We next show that
if � = �∗, the corresponding diffusion process {X∗

t } satisfying (3.1) is ergodic.
We have to show the following proposition.

PROPOSITION 3.3. Let (W,�) be a solution of (1.1) and let {Xt } be the cor-
responding diffusion process defined by (3.1). Assume (A1)–(A3). If {Xt } is tran-
sient, then there exists α > 0 such that

T
W,�
t f (x) ≤ C(x)e−αt , f ∈ C0(R

N), f ≥ 0, x ∈ R
N,

where C(x) is a constant independent of t , but depending on x.

We prepare several lemmas to prove the above proposition.
Let (W,�) be a solution of (1.1) and {Xt } be a solution of (3.1). We define

occupation measure for {Xt } on {t < τ∞} as follows:

µt(B) ≡ 1

t

∫ t

0
1B(Xs) ds, B ∈ B(RN), t < τ∞,

where B(RN) is the Borel σ -field on R
N . Let M1(R

N) be the set of probability
measures on B(RN). We think of M1(R

N) as the topological vector space with
topology compatible to weak convergence. Note that µt ∈ M1(R

N) on {t < τ∞}.
The following lemma on large deviation type estimate is useful.
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LEMMA 3.4. Let {Xt } be a solution of (3.1). Then, the following estimate
holds:

lim sup
t→∞

1

t
logP [µt ∈ K, t < τ∞] ≤ − inf

µ∈K
IW (µ)

(3.8)
K is compact set in M1(R

N).

IW (µ) is defined as follows:

IW (µ) ≡ − inf
u∈U

∫
Lu

u
(x)µ(dx), L ≡ 1

2aijDij + (b̃ + â∇W) · ∇,

U ≡ {u ∈ C2(RN) :u(x) > 0 for all x,Lu/u is bounded above}.

Note that IW (µ) takes values on [0,∞] and is convex, lower semi-continuous
on M1(R

N). This type of estimate is well known in large deviation theory. As
noted in [5], even if the state space of {Xt } is not compact, (3.8) holds for compact
set K (cf. comments in Section 7, page 440 of [5] and see the proof in Section 2.2
of [4] for Brownian motion).

LEMMA 3.5. If IW (µ∗) = 0 for some µ∗ ∈ M1(R
N), then diffusion process

{Xt } defined in (3.1) does not explode in finite time.

PROOF. From assumption IW (µ∗) = 0, it is implied that∫
Lu

u
dµ∗ ≥ 0 ∀u ∈ U.(3.9)

For u ∈ C∞
0 (RN), u ≥ 0, and constant c > 0,

d

dt

∫
log

T
W,�
t u + c

u + c
dµ∗ =

∫
T

W,�
t Lu

T
W,�
t u + c

dµ∗

=
∫

LT
W,�
t u

T
W,�
t u + c

dµ∗ =
∫

L(T
W,�
t u + c)

T
W,�
t u + c

dµ∗.

Since T W,�u + c ∈ U, we have

d

dt

∫
log

T
W,�
t u + c

u + c
dµ∗ ≥ 0 ∀ t.

Thus, we can see that∫
log

T
W,�
t u + c

u + c
dµ∗ ≥

∫
log

T
W,�
0 u + c

u + c
dµ∗

(3.10)
=

∫
log

u + c

u + c
dµ∗ = 0.
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Let {φn(x)}∞n=1 be a sequence in C∞
0 (RN) such that 0 ≤ φn(x) ≤ 1 and φn(x) ↑ 1

as n → ∞. If we take u = φn in (3.10), then we have∫
log

T
W,�
t φn + c

φn + c
dµ∗ ≥ 0.

Since T
W,�
t φn ≤ T

W,�
t 1, ∫

log
T

W,�
t 1 + c

φn + c
dµ∗ ≥ 0.

By taking the limit as n → ∞, we obtain∫
log

T
W,�
t 1 + c

1 + c
dµ∗ ≥ 0.

Noting that (T
W,�
t 1 + c)/(1 + c) ≤ 1, we can see that

T
W,�
t 1 = 1, µ∗-a.s.

Since the diffusion process is nondegenerate [see (A1)],

T
W,�
t 1(x) = 1 ∀x ∈ R

N,∀ t ≥ 0.

Finally, as t → ∞, we have

Px[τ∞ = ∞] = lim
t→∞Px[t < τ∞] = lim

t→∞T
W,�
t 1(x) = 1. �

LEMMA 3.6. Let {Xt } be a solution of (3.1). If IW (µ∗) = 0, then µ∗ is an
invariant measure for {Xt }.

PROOF. Since IW (µ∗) = − infu∈U
∫
(Lu/u)(x)µ∗(dx) = 0,∫

Lu

u
(x)µ∗(dx) ≥ 0 ∀u ∈ U.

Setting w = logu, we have∫ (
Lw(x) + 1

2a∇w · ∇w(x)
)
µ∗(dx) ≥ 0, u = ew ∈ U.(3.11)

Denote Ũ by

Ũ = {u ∈ C2(RN); ∃R > r > 0 s.t. r ≤ u(x) ≤ R,

Du,D2u have compact support}.
Note that Ũ ⊂ U. It is easy to see that if u = ew ∈ Ũ, then uλ ≡ eλw ∈ Ũ for
λ ∈ R. Therefore, applying λw in (3.11) instead of w,∫ (

Lw(x) + λ

2
a∇w · ∇w(x)

)
µ∗(dx) ≥ 0, u = ew ∈ Ũ, λ > 0.
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Taking the limit as λ → 0, we have∫
Lw(x)µ∗(dx) ≥ 0, u = ew ∈ Ũ.

Since u = ew ∈ Ũ implies u−1 ≡ e−w ∈ Ũ, we obtain the following equation:∫
Lw(x)µ∗(dx) = 0, u = ew ∈ Ũ.

Noting that C∞
0 (RN) is included in {w : u = ew ∈ Ũ}, µ∗ satisfies the following

partial differential equation in distributional sense:

L∗µ∗ = 0 in R
N,

where L∗ is a formal adjoint of L. Since we assumed the coefficients of L are
sufficiently smooth, µ∗ has a density p∗(x) and p∗ satisfies

L∗p∗ = 0 in R
N.

Here we recall that diffusion process {Xt } does not explode in finite time because
of Lemma 3.5. Then, by slight modifications of the Theorem in page 243 of [24]
to the case that the second-order term of L is divergence form, µ∗(dx) = p∗(x) dx

is actually an invariant measure. �

PROOF OF PROPOSITION 3.3. Let us define U0 as follows:

U0(x) = −(1
2aijDijW0 + 1

2 â∇W0 · ∇W0 + b̃ · ∇W0 + V
)
,

where we take W0 from (A3). By setting W0,c ≡ cW0 and Wc ≡ cW , we have

1

2
aijDijW0,c + 1

2c
â∇W0,c · ∇W0,c + b̃ · ∇W0,c + cV = −cU0,

(3.12)
1

2
aijDijWc + 1

2c
â∇Wc · ∇Wc + b̃ · ∇Wc + cV = c�,

where c is in Remark 2.1. In the above equations, subtracting each side of the
equations,

1

2
aijDij (W0,c − Wc) + (b̃ + â∇W) · (∇W0,c − ∇Wc)

+ 1

2c
â(∇W0,c − ∇Wc) · (∇W0,c − ∇Wc) = −c(U0 + �).

Define φ̄ as φ̄ = eW0,c−Wc . Then, we have

1

2
aijDij φ̄+(b̃+ â∇W) ·∇φ̄+ 1

2c

(
(â−ca)∇φ̄ ·∇φ̄

) 1

φ̄
= −c(U0 +�)φ̄.(3.13)
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Let {Xt } be a solution of (3.1). By the Itô formula and (3.13),

d
(
φ̄(Xt )e

∫ t
0 c(U0(Xs)+�)ds)

=
[

1

2
aijDij φ̄ + (b̃ + â∇W) · ∇φ̄ + c(U0 + �)φ̄

]
(Xt)e

∫ t
0 c(U0(Xs)+�)ds dt

+ σ∇φ̄(Xt )e
∫ t

0 c(U0(Xs)+�)ds dBt

= − 1

2c

[
1

φ̄
(â − ca)∇φ̄ · ∇φ̄

]
(Xt)e

∫ t
0 c(U0(Xs)+�)ds dt

+ σ∇φ̄(Xt )e
∫ t

0 c(U0(Xs)+�)ds dBt .

Since ca(x) ≤ â(x) and φ̄ > 0, we obtain

φ̄(Xt)e
∫ t

0 c(U0(Xs)+�)ds ≤ φ̄(x) +
∫ t

0
σ∇φ̄(Xs)e

∫ s
0 c(U0(Xr)+�)dr dBs.(3.14)

By using stopping time t ∧ τn in (3.14),

Ex

[
φ̄

(
Xt∧τn

)
e

∫ t∧τn
0 c(U0(Xs)+�)ds] ≤ φ̄(x).

Then, as n → ∞, we have

Ex

[
φ̄(Xt )e

∫ t
0 c(U0(Xs)+�)ds; t < τ∞

] ≤ φ̄(x).(3.15)

Let Cm be a subset in M1(R
N) defined as follows:

Cm ≡ {µ ∈ M1(R
N) :µ(Bl) ≥ 1 − δl ∀ l ≥ m}, m ≥ 1,

where {δl} is a sequence such that δl → 0 and determined later. Note that Cm

is a relative compact set in M1(R
N) because Cm is tight. From the definition

of T
W,�
t f ,

T
W,�
t f (x) = Ex[f (Xt);µt ∈ Cm, t < τ∞]

+ Ex[f (Xt);µt /∈ Cm, t < τ∞]
≤ ‖f ‖∞Px[µt ∈ Cm, t < τ∞]

+ Ex[f (Xt);µt /∈ Cm, t < τ∞],(3.16)

≤ ‖f ‖∞Px[µt ∈ Cm, t < τ∞]
+ ‖f φ̄−1‖∞Ex[φ̄(Xt);µt /∈ Cm, t < τ∞],

f ∈ C0(R
N), f ≥ 0.

We shall prove that Ex[φ̄(Xt);µt /∈ Cm, t < τ∞] decays exponentially as
t → ∞. On the event {µt /∈ Cm, t < τ∞}, there exists l ≥ m such that

µt(Bl) = 1

t

∫ t

0
1Bl

(Xs) ds ≤ 1 − δl(3.17)
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which is equivalent to

µt(B
c
l ) = 1

t

∫ t

0
1Bc

l
(Xs) ds > δl.(3.18)

Then, we have on {µt /∈ Cm, t < τ∞}∫ t

0
c
(
U0(Xs) + �

)
ds =

∫ t

0
c
(
U0(Xs) + �

)
1Bl

(Xs) ds

+
∫ t

0
c
(
U0(Xs) + �

)
1Bc

l
(Xs) ds

≥ inf
x

c
(
U0(x) + �

) ∫ t

0
1Bl

(Xs) ds(3.19)

+ inf|x|≥l
c
(
U0(x) + �

) ∫ t

0
1Bc

l
(Xs) ds

= β0µt(Bl)t + βlµt (B
c
l )t,

where we set β0 = infx c(U0(x) + �), βl = inf|x|≥l c(U0(x) + �). By (A3), there
exists m ≥ 1 such that

βl > 0 ∀ l ≥ m.(3.20)

So, we obtain from (3.17)–(3.19),∫ t

0
c
(
U0(Xs) + �

)
ds ≥ (−|β0|(1 − δl) + βlδl

)
t.

Take a positive constant M > 0. Then we choose δl such that M = −|β0|(1− δl)+
βlδl . Indeed, δl is defined by

δl ≡ M + |β0|
|β0| + βl

.

Then, we have∫ t

0
c
(
U0(Xs) + �

)
ds ≥ Mt on {µt /∈ Cm, t < τ∞}.(3.21)

By (3.15) and (3.21),

φ̄(x) ≥ Ex

[
φ̄(Xt)e

∫ t
0 c(U0(Xs)+�)ds;µt /∈ Cm, t < τ∞

]
≥ eMtEx[φ̄(Xt );µt /∈ Cm, t < τ∞].

Therefore we obtain

Ex[φ̄(Xt );µt /∈ Cm, t < τ∞] ≤ φ̄(x)e−Mt, t > 0.

By (3.16), we have

T
W,�
t f (x) ≤ ‖f ‖∞Px[µt ∈ Cm, t < τ∞] + ‖f φ̄−1‖∞φ̄(x)e−Mt .(3.22)
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Applying Lemma 3.4,

lim sup
t→∞

1

t
logPx[µt ∈ Cm, t < τ∞] ≤ − inf

µ∈C̄m

IW (µ),

where C̄m is the closure of Cm. Since IW (µ) is lower semi-continuous and C̄m is
compact in M1(R

N), infµ∈C̄m
IW (µ) is attained at some µ∗ ∈ C̄m. Since existence

of invariant measure implies recurrence, it follows from Lemmas 3.5 and 3.6 and
transience of {Xt }

inf
µ∈C̄m

IW (µ) > 0.

Hence, we can find a positive constant αm > 0 such that

Px[µt ∈ Cm, t < τ∞] ≤ C(x)e−αmt , t > 0.(3.23)

Then, from (3.22) and (3.23), we obtain

T
W,�
t f (x) ≤ C(x)‖f ‖∞e−αmt + ‖f φ̄−1‖∞φ̄(x)e−Mt . �

We are ready to prove that for � = �∗, the corresponding diffusion process
{X∗

t } is ergodic.

THEOREM 3.7. Let (W ∗,�∗) be a solution of (1.1) corresponding to
�∗ = infA and let {X∗

t } be a solution of (3.1) for (W ∗,�∗). Under (A1)–(A3),
{X∗

t } is ergodic.

PROOF. Suppose that {X∗
t } is transient. Then, by Proposition 3.3,

T
W ∗,�∗
t f (x) ≤ C(x)e−αt ∀f ∈ C0(R

N), f ≥ 0.

Note that α is a positive constant independent of f and x. Taking 0 < ε < α, we
see that ∫ ∞

0
Ex[f (X∗

t )e
εt ; t < τ∞]dt =

∫ ∞
0

T
W ∗,�∗
t f (x)eεt dt

= C(x)

∫ ∞
0

e−(α−ε)t dt < ∞.

Then, there exists Green function G(x,y) for (1/2)aijDij + (b̃ + â∇W ∗) · ∇ + ε

and G(x,y) satisfies the following:

1
2aijDijG(·, y) + (b̃ + â∇W ∗) · ∇G(·, y) + εG(·, y) = 0 in R\{y}.(3.24)

We take a sequence {yn} in R
N such that yn ∈ Bn+1\B̄n. Define φ̄n(x) as follows:

φ̄n(x) ≡ G(x,yn)

G(0, yn)
, x ∈ R

N\{yn}.
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Then, we have from (3.24)

1
2aijDij φ̄n + (b̃ + â∇W ∗) · ∇φ̄n + εφ̄n = 0 in R

N\{yn}.(3.25)

We note that by setting W̄n ≡ (1/c̄) log φ̄n, (3.25) is equivalent to the following:

1

2
aijDij W̄n + c̄

2
aijDiW̄nDjW̄n + (b̃ + â∇W ∗) · ∇W̄n + ε

c̄
= 0 in R

N\{yn},
where c̄ is taken from Remark 2.1. By Lemma 2.4, we have

sup
Br

|∇W̄n| ≤ Cr, r < n.

Thus, in a similar way to the proof of existence of solutions of (1.1), we can see
that there exists smooth function W̄ such that

1

2
aijDij W̄ + (b̃ + â∇W ∗) · ∇W̄ + c̄

2
a∇W̄ · ∇W̄ + ε

c̄
= 0.(3.26)

Since (W ∗,�∗) is a solution of (1.2),

1
2aijDijW

∗ + b̃ · ∇W ∗ + 1
2 â∇W ∗ · ∇W ∗ + V − �∗ = 0.(3.27)

Adding (3.26) to (3.27), it follows from Remark 2.1 that

0 = 1

2
aijDij (W

∗ + W̄ ) + b̃ · (∇W ∗ + ∇W̄ )

+ 1

2
â∇W ∗ · ∇W ∗ + â∇W ∗ · ∇W̄ + c̄

2
a∇W̄ · ∇W̄ + V −

(
�∗ − ε

c̄

)

≥ 1

2
aijDij (W

∗ + W̄ ) + b̃ · (∇W ∗ + ∇W̄ )

+ 1

2
â∇W ∗ · ∇W ∗ + â∇W ∗ · ∇W̄ + 1

2
â∇W̄ · ∇W̄ + V −

(
�∗ − ε

c̄

)

= 1

2
aijDij (W

∗ + W̄ ) + b̃ · ∇(W ∗ + W̄ )

+ 1

2
â∇(W ∗ + W̄ ) · ∇(W ∗ + W̄ ) + V −

(
�∗ − ε

c̄

)
.

Thus, W ∗ + W̄ is a super solution of (1.1) for � = �∗ − ε/c̄. In the same way
as the proof that A 
= ∅ given in Section 2 we can see that there exists a smooth
function W̃ such that

1

2
aijDij W̃ + 1

2
â∇W̃ · ∇W̃ + b̃ · ∇W̃ + V = �∗ − ε

c̄
.

This contradicts �∗ = infA. Therefore, {X∗
t } is recurrent.
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In order to see that {X∗
t } is actually ergodic, we recall the proof of Proposi-

tion 3.3. If we suppose infµ∈C̄m
IW ∗

(µ) > 0 where m is chosen in (3.20), we can
prove Proposition 3.3, which implies that {X∗

t } is transient. Hence, we see that

inf
µ∈C̄m

IW ∗
(µ) = 0.(3.28)

Since C̄m is compact, (3.28) is attained at µ∗ ∈ C̄m. Then, it follows from Lem-
mas 3.5 and 3.6 that µ∗ is an invariant measure for {X∗

t }. �

3.2. Uniqueness of solutions corresponding to the bottom. We proved that so-
lution (W ∗,�∗) of (1.1) for �∗ = infA corresponds to ergodicity to {X∗

t } of (3.1).
Now we shall show that the solution corresponding to �∗ is unique up to an addi-
tive constant. Note that the solution of (1.1) has ambiguity on an additive constant.

THEOREM 3.8. Let W ∗
i , i = 1,2, be solutions of (1.1) corresponding

to �∗ = infA. Under (A1)–(A3), there exists constant k such that W ∗
2 (x) =

W ∗
1 (x) + k.

PROOF. Since W ∗
i , i = 1,2, are solutions of (1.2),

1
2aijDijW

∗
1 + 1

2 â∇W ∗
1 · ∇W ∗

1 + b̃ · ∇W ∗
1 + V = �∗,

1
2aijDijW

∗
2 + 1

2 â∇W ∗
2 · ∇W ∗

2 + b̃ · ∇W ∗
2 + V = �∗.

Subtracting each side in the above equations, we have

1
2aijDij (W

∗
1 − W ∗

2 ) + (b̃ + â∇W ∗
2 ) · (∇W ∗

1 − ∇W ∗
2 )

(3.29)
+ 1

2 â(∇W ∗
1 − ∇W ∗

2 ) · (∇W ∗
1 − W ∗

2 ) = 0.

Let us set φ(x) ≡ ec(W ∗
1 (x)−W ∗

2 (x)), where c is in Remark 2.1. Rewriting (3.29) in
terms of φ, we have

1

2
aijDijφ + (b̃ + â∇W ∗

2 ) · ∇φ + 1

2c
(â − ca)

∇φ

φ
· ∇φ = 0.

Hence it is implied from Remark 2.1 that

Lφ ≡ 1
2aijDijφ + (b̃ + â∇W ∗

2 ) · ∇φ ≤ 0.(3.30)

Let us take x, y ∈ R
N and consider the SDE of (3.1) for W = W ∗

2 :

dX∗
t = (

b̃(X∗
t ) + â∇W ∗

2 (X∗
t )

)
dt + σ(X∗

t ) dBt , X∗
0 = x.

Define τBn = inf{t :X∗
t /∈ Bn}, σBε(y) = inf{t :X∗

t ∈ Bε(y)}. Note that {X∗
t } is er-

godic from Theorem 3.7, especially recurrent. It follows from the Itô formula and
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(3.30) that

φ
(
X∗

t∧τBn∧σBε(y)

) = φ(x) +
∫ t∧τBn∧σBε(y)

0
Lφ(X∗

s ) ds

+
∫ t∧τBn∧σBε(y)

0
∇φ(X∗

s ) · σ(X∗
s ) dBs

≤ φ(x) +
∫ t∧τBn∧σBε(y)

0
∇φ(X∗

s ) · σ(X∗
s ) dBs.

Thus we have Ex[φ(X∗
t∧τBn∧σBε(y)

)] ≤ φ(x). By taking the limit as n → ∞,
it follows by Fatou’s lemma that E[φ(X∗

t∧σBε(y)
)] ≤ φ(x). Noting that

Px[σBε(y) < ∞] = 1, we have by sending t → ∞,

Ex

[
φ

(
X∗

σBε(y)

)] ≤ φ(x).

We note again that {X∗
t } hits the boundary of Bε(y) in finite time with probabil-

ity 1. Hence we can see that

φ(x) ≥ Ex

[
φ

(
X∗

σBε(y)

)] ≥ inf
∂Bε(y)

φ.

Taking the limit as ε → 0, we obtain

φ(y) ≤ φ(x), x, y ∈ R
N,

which implies φ is constant. Therefore W ∗
1 − W ∗

2 is also constant. �

EXAMPLE 3.9. Let us consider the linear case:

b(x) = Dx;
a(x) = a, â(x) = â;
V (x) = 1

2x · Mx + v · x.

D,M,a, â are matrices and M is symmetric; a, â are positive-definite. We con-
sider quadratic solution W ,

W(x) = 1
2x · Kx + e · x.

Then

KâK + DT K + KD + M = 0,

(DT + Kâ)e + v = 0,

� = 1
2 tr(aK) + 1

2e · âe.

If M is negative-definite, then there is a unique solution K such that K is
nonpositive-definite and D + âK is stable. See [15]. For such K , the equation
for e can be uniquely solved. The stability of D + âK implies that the diffusion

dXt = (D + âK)Xt dt + σ dBt
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is ergodic, σ is the square root of a. This implies � defined above is equal to �∗
and W obtained is the unique solution corresponding to �∗. We note there are also
solutions that are not quadratic.

In particular, in the one-dimensioned case, the equation for K becomes

âK2 + 2DK + M = 0.

If M < 0, the solution is given by

K = −D

â
±

√(
D

â

)2

− M.

Let

K− = −D

â
−

√(
D

â

)2

− M,

K+ = −D

â
+

√(
D

â

)2

− M.

Then

D + âK− = −
√(

D

â

)2

− M < 0

and

D + âK+ =
√(

D

â

)2

− M > 0.

Solution corresponding to K− is W ∗.

EXAMPLE 3.10. In [9, 10], the following conditions are considered:

(a) a(x) = â(x) = I .
(b) b(0) = 0; bj (x) has continuous first-order derivatives, Dibj (x) is bounded

for all i, j .
(c) There is c0 > 0 such that for all x,η ∈ R

d , η · Db(x)η ≤ −c0|η|2. Here
Db(x) = (Dibj (x))ij .

(d) V (x),DiV (x), i = 1, . . . , d , are bounded.

Under these conditions, Fleming and co-workers prove that there exists unique
solution (W,�) satisfying the condition

|∇W(x)| ≤ 1

c0
‖∇V ‖∞,

‖∇V ‖∞ = supx |∇V (x)|. Let {Xt } be the diffusion,

dXt = (
b(Xt) + ∇W(Xt)

)
dt + dBt .
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Denote

c = 1

c0
‖∇V ‖∞.

Then

d|Xt |2 = 2
(
Xt · b(Xt) + Xt · ∇W(Xt) + d

2

)
dt + 2Xt dBt .

By (a), (c) and the mean value theorem,

x · b(x) ≤ −c0|x|2.
Property of W implies

x · ∇W(x) ≤ c|x|.
By using a routine argument and considering |Xt |2 exp(c0t), we can prove

Ex[|Xt |2] ≤ exp(−c0t)|x|2 + 1

c0

(
d + c2

c0

)
.

This implies {Xt } is ergodic. Therefore, � = �∗ and W = W ∗.
In [15], different conditions are considered that are given as follows:

(a)′ There are c1, c2 > 0 such that

c1 ≤ a(x) ≤ c2, c1 ≤ â(x) ≤ c2.

(b)′ There are c0, r0 > 0 such that

x · b(x) ≤ −c0|x|2, |x| ≥ r0.

(c)′ aij (x), âij (x) and bi(x) have bounded first-order derivatives.
(d)′ V (x),∇V (x) are bounded.

Then (1.1) with � = �∗ has unique solution W ∗ with W ∗(0) = 0. Moreover, for
any α,β > 0, there are cα,β such that

|W ∗(x)| ≤ α|x|β + cα,β,

|∇W ∗(x)| ≤ α|x|β + cα,β .

4. Perturbation of coefficients. In the present section we shall consider the
structures of solutions of (1.1) under perturbation of coefficients. This is to con-
sider the following equation parameterized by n ∈ N:

1
2Di(a

ij
n DjWn) + 1

2 âij
n DiWnDjWn + bn · ∇Wn + Vn = �n in R

N,(4.1)

or equivalently
1
2aij

n DijWn + 1
2 âij

n DiWnDjWn + b̃n · ∇Wn + Vn = �n,
(4.2)

b̃i
n(x) ≡ bi

n(x) + 1
2Dj â

ij
n (x).
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In the same way as (2.1) we define An as follows:

An ≡ {�n; there exists smooth Wn satisfying (4.1) for �n}.(4.3)

Under certain assumptions, we can show that An = [�∗
n,∞) for some finite �∗

n.
Furthermore, we can classify the set An of �n according to the global behavior of
diffusion process defined by the SDE:

dXt = (
b̃n(Xt ) + ân∇Wn(Xt)

)
dt + σn(Xt) dBt , σn(x) ≡ an(x)1/2,(4.4)

where Wn is a solution of (4.1) corresponding to �n and {Bt } is Ft -standard
Brownian motion on a filtered probability space (�,F ,P , {Ft}). Indeed, we can
prove that �n = �∗

n (resp. �n > �∗
n) corresponds to ergodicity (resp. transience)

of {Xt } defined by (4.4) and W ∗
n corresponding to �∗

n is unique up to additive
constants.

It is interesting to study stability of solution (W ∗
n ,�∗

n) corresponding to the bot-
tom of An under perturbation of coefficients. Suppose that all coefficients converge
to corresponding ones, respectively, in some sense:

aij
n → aij , âij

n → âij , bn → b, Vn → V as n → ∞.

We hope to prove that W ∗
n and �∗

n converge to W ∗ and �∗ = infA, respectively,
where A is defined by (2.1) and W ∗ is a unique solution of (1.1) corresponding
to �∗. This means that the solutions corresponding to �∗

n = infAn are stable
under the perturbation.

It turns out this is a delicate problem. For the illustration of the idea, we shall
be content with the following special example. The result obtained will be used in
Section 5. We refer to [16] for more general discussion and a counterexample.

We now consider the following special example; we consider the following
equation:

1
2aijDijWn + 1

2 âijDiWnDjWn + b̃ ·∇Wn +Vn = �n, Vn = V0 + V̄n.(4.5)

The equation corresponding to the limit of (4.5) is as follows:

1
2aijDijW + 1

2 âijDiWDjW + b̃ · ∇W + V = �, V = V0 + V̄ .(4.6)

We assume the following conditions. We suppose implicitly that all the coefficients
are smooth.

(B1) There exists smooth function W0 such that

Ū0 ≡ −(1
2aijDijW0 + 1

2 âijDiW0DjW0 + b̃ · ∇W0 + V0
) → ∞

as |x| → ∞.

(B2) V̄n, DV̄n are bounded in R
N uniformly on n.

(B3) V̄n converges to V̄ uniformly on each compact set as n → ∞.
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Let W ∗
n (resp. W ∗) be solution of (4.5) [resp. (4.6)] corresponding to �∗

n

(resp. �∗).

PROPOSITION 4.1. Under (A1), (A2), (B1)–(B3), �∗
n converges to �∗.

PROOF. It is easy to prove that lim infn→∞ �∗
n ≥ �∗. We shall prove

lim supn→∞ �∗
n ≤ �∗. Since W ∗

n (resp. W ∗) is solution of (4.5) for �∗
n [resp. (4.6)

for �∗],
1
2aijDijW

∗
n + 1

2 âijDiW
∗
n DjW

∗
n + b̃ · ∇W ∗

n + V0 + V̄n = �∗
n,

1
2aijDijW

∗ + 1
2 âijDiW

∗DjW
∗ + b̃ · ∇W ∗ + V0 + V̄ = �∗.

By subtracting both of sides, we have
1
2aijDij (W

∗ − W ∗
n ) + (b̃ + â∇W ∗

n ) · ∇(W ∗ − W ∗
n )

+ 1
2 â∇(W ∗ − W ∗

n ) · ∇(W ∗ − W ∗
n ) = �∗ − �∗

n + V̄n − V̄ .

Then, we can see that for c > 0,

1

2
aijDij

(
c(W ∗ − W ∗

n )
) + (b̃ + â∇W ∗

n ) · ∇(
c(W ∗ − W ∗

n )
)

+1

2
a∇(

c(W ∗ − W ∗
n )

) · ∇(
c(W ∗ − W ∗

n )
)

= c(�∗ − �∗
n + V̄n − V̄ ) + 1

2c
(ca − â)∇(

c(W ∗ − W ∗
n )

) · ∇(
c(W ∗ − W ∗

n )
)
.

If we take c > 0 from Remark 2.1, then
1
2aijDij

(
c(W ∗ − W ∗

n )
) + (b̃ + â∇W ∗

n ) · ∇(
c(W ∗ − W ∗

n )
)

(4.7)
+ 1

2a∇(
c(W ∗ − W ∗

n )
) · ∇(

c(W ∗ − W ∗
n )

) ≤ c(�∗ − �∗
n + V̄n − V̄ ).

Let µ∗
n be invariant measure of diffusion process X

∗,n
t defined by the following

SDE:

dX
∗,n
t = (b + â∇W ∗

n )(X
∗,n
t ) dt + σ(X

∗,n
t ) dBt , X

∗,n
0 = x.

By the construction of µ∗
n, we see that

I
W ∗

n
n (µ∗

n) = 0,(4.8)

where

I
W ∗

n
n (µ) = − inf

u∈Un

∫
Lnu

u
dµ, µ ∈ M1,

Ln = 1
2aijDij + (b + â∇W ∗

n ) · ∇,

Un = {u ∈ C2(RN);u(x) > 0,Lnu/u is bounded above}.
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Set u = exp(c(W ∗ − W ∗
n )). Then, from (4.7), we have

Lnu

u
= 1

2
aijDij

(
c(W ∗ − W ∗

n )
) + (b̃ + â∇W ∗

n ) · ∇(
c(W ∗ − W ∗

n )
)

+ 1

2
a∇(

c(W ∗ − W ∗
n )

) · ∇(
c(W ∗ − W ∗

n )
)

(4.9)

≤ c(�∗ − �∗
n + V̄n − V̄ ).

Since V̄ , V̄n are bounded, u ∈ Un. Hence, by (4.8),∫
Lnu

u
dµ∗

n ≥ 0.

Then, the above inequality and (4.9) imply that

c

∫
(�∗ − �∗

n + V̄n − V̄ ) dµ∗
n ≥ 0.

Therefore we have

�∗ − �∗
n ≥

∫
(V̄ − V̄n) dµ∗

n.

We note that {µ∗
n} is tight by the proof of Proposition 3.3. Indeed, {µ∗

n} ∈ C̄m,

Cm ≡ {µ ∈ M1(R
N);µ(Bl) ≥ 1 − δl ∀ l ≥ m}, δl ≡ M + |β0|

|β0| + βl

,

β0 ≡ inf
x∈RN

{U0(x) + α}, βl ≡ inf|x|≥l
{U0(x) + α},

U0(x) ≡ − sup
n

(1
2aijDijW0 + 1

2 â∇W0 · ∇W0 + b̃ · ∇W0 + Vn

)
,

α = inf
n

�∗
n.

W0 is from (B1) and m is taken so that

βl > 0 ∀ l ≥ m.

Since V̄n are uniformly bounded and V̄n converges to V̄ uniformly on compact
sets, we can see that ∫

(V̄ − V̄n) dµ∗
n → 0 (n → ∞).

Therefore, we have

lim sup
n→∞

�∗
n ≤ �∗. �

THEOREM 4.2. Let W ∗
n (resp. W ∗) be solution of (4.5) for �∗

n [resp. (4.6)
for �∗]. Under (A1), (A2), (B1)–(B3), W ∗

n (resp. �∗
n) converges to W ∗ (resp. �∗)

uniformly on compact sets, H 1
loc-strongly as n → ∞.
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PROOF. By using the estimate of ∇Wn as in Lemma 2.4 and the argument in
the proof of Theorem 2.6, we can show W ∗

n (resp. �∗
n) converges to W̃ ∗ (resp. �̃∗)

uniformly on compact sets, H 1
loc-strongly by taking a subsequence if necessary.

Furthermore (W̃ ∗, �̃∗) is a solution of (4.6). Indeed, we see that �∗ = �̃∗ by
Proposition 4.1. By uniqueness of solution corresponding to �∗ in Proposition 4.1,
we have W ∗(x) = W̃ ∗(x). �

5. Representation of �∗. For (1.1) with the coefficients satisfying the con-
ditions (A1)–(A3), we have proved that there is a unique solution (W ∗,�∗) with
W ∗(0) = 0 and � = �∗ is the smallest such that (1.1) has solution W . In this
section we will give a representation of �∗. From the representation, we will get
some moment condition for µ∗, the invariant measure for the diffusion in (3.1)
constructed from W = W ∗. Before we state our main results, we give some nota-
tion.

We shall consider a family of V . That is, we consider a particular V0 and the
bounded perturbation of V0, say V0 + V̄ for bounded V̄ . Therefore, in this section
we consider the equation

1
2Di(a

ijDjW) + 1
2 âijDiWDjW + b · ∇W + V0 + V = � in R

N.(5.1)

The smallest � such that this has solution W is denoted �∗(V ). We still use W ∗ for
the solution corresponding to �∗(V ). We shall mention if we want to emphasize
the dependence of W ∗ on V .

In this section we assume the following condition:

(A3)′ V0 is smooth and there exists a smooth function W0 such that

U0(x) = −(1
2Di(a

ijDjW0) + b · ∇W0 + 1
2 âijDiW0DjW0 + V0

) → ∞
as |x| → ∞.

We consider V satisfying the condition:

V is smooth, |V (x)| ≤ c, |DV (x)| ≤ c,(5.2)

where c is a constant that may depend on V .
Let W be a smooth function. We denote

G(W) = 1
2Di(a

ijDjW) + b · ∇W + 1
2 âijDiWDjW + V0.(5.3)

For each probability measure µ on R
N , we define

J (µ) = sup{−〈G(W),µ〉;W is smooth and G(W) is bounded above}.
Here for a function f

〈f,µ〉 =
∫

f (x) dµ(x).

Now we can state our main results.
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THEOREM 5.1. Assume (A1), (A2), (A3)′ and (5.2). Let (W ∗,�∗(V )) be the
solution defined above. Then �∗(V ) has the representation

�∗(V ) = sup
µ∈M1(R

N)

{〈V,µ〉 − J (µ)}.

Here M1(R
N) denotes the set of all probability measures on R

N . The supremum
attains at µ = µ∗, µ∗ is the invariant measure of the diffusion in (3.1) for W = W ∗.

From this theorem, we have

�∗(V ) = 〈V,µ∗〉 − J (µ∗)
≤ 〈V,µ∗〉 + 〈G(W0),µ

∗〉
= 〈V,µ∗〉 + 〈−U0,µ

∗〉.
Therefore, we have the following corollary.

COROLLARY 5.2. We assume the condition as in the above theorem. Then∫
U0(x) dµ∗(x) ≤ −�∗(V ) + ‖V ‖∞.

In particular, ∫
U0(x) dµ∗(x) < ∞.

Here ‖V ‖ is the supnorm of V .

Before we prove Theorem 5.1, we mention some elementary properties
of �∗(V ).

LEMMA 5.3. (i) �∗(V ) is Lipschitz with constant 1. That is,

|�∗(V1) − �∗(V2)| ≤ ‖V1 − V2‖∞
for V1,V2 satisfying (5.2). From this, �∗(V ) can be defined for all bounded con-
tinuous functions V by extension.

(ii) �∗(V ) is convex in V .

PROOF. Let W ∗
1 be the solution of (5.1) for V = V1,� = �∗(V1). Then

1
2Di(a

ijDjW
∗
1 ) + 1

2 âijDiW
∗
1 DjW

∗
1 + b · ∇W ∗

1 + V0 + V2

= �∗(V1) + V2 − V1

≤ �∗(V1) + ‖V2 − V1‖∞.

This implies

�∗(V2) ≤ �∗(V1) + ‖V2 − V1‖∞.
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See the argument in the proof of Theorem 2.6. Similarly,

�∗(V1) ≤ �∗(V2) + ‖V2 − V1‖.
Therefore,

|�∗(V1) − �∗(V2)| ≤ ‖V1 − V2‖∞.

We now show that �∗(V ) is convex. Let V1,V2 satisfy (5.2) and W ∗
k , k = 1,2,

satisfy
1
2Di(a

ijDjW
∗
k )+ 1

2 âijDiW
∗
k DjW

∗
k +b ·∇W ∗

k +V0 +Vk = �∗(Vk), k = 1,2.

Let 0 < λ < 1 and denote W = λW ∗
1 + (1 − λ)W ∗

2 , V = λV1 + (1 − λ)V2 and
� = λ�∗(V1) + (1 − λ)�∗(V2). Then by a simple calculation, we have

1
2Di(a

ijDjW) + 1
2 âijDiWDjW + b · ∇W + V0 + V ≤ �, k = 1,2.

This implies

�∗(V ) ≤ �.

See the proof of Theorem 2.6. That is, we have

�∗(
λV1 + (1 − λ)V2

) ≤ λ�∗(V1) + (1 − λ)�∗(V2). �

Denote by Cb(R
N) the collection of all bounded continuous functions defined

on R
N . Cb(R

N) is a Banach space with supnorm. The dual space Cb(R
N)∗ can be

identified with the set of all regular bounded finitely additive set functions defined
on the field generated by closed sets of R

N . That is, for an element T ∈ Cb(R
N)∗,

there is regular bounded finitely additive set function µ such that

T (V ) =
∫

V (x)dµ(x), V ∈ Cb(R
n).

See [6], Theorem IV.6.2. For regular additive function see [6], Theorem III.5.11.
We note that M1(R

N) is a subset of Cb(R
N)∗.

For µ ∈ Cb(R
N)∗, we define

I (µ) = sup
V ∈Cb(R

N)

{〈V,µ〉 − �∗(V )}.

PROPOSITION 5.4. Let V be bounded continuous. Then

�∗(V ) = sup
µ∈Cb(R

N)∗
{〈V,µ〉 − I (µ)}.

See [7], Proposition 4.1, Chapter 1 or [23], Theorem 7.15.
We shall prove that I (µ) = J (µ) if µ is a probability measure. For V satisfy-

ing (5.2), the supremum is attained at µ = µ∗, where µ∗ is the invariant measure
of the diffusion in (3.1) for W = W ∗. Our main theorem is a consequence of this.
We begin with some elementary observations. We follow essentially the argument
in [23].
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LEMMA 5.5. If I (µ) < ∞, then µ is nonnegative and µ(RN) = 1.

PROOF. We first prove I (µ) = ∞ if µ is not nonnegative. For such µ, we take
V ≥ 0 such that µ(V ) < 0. For any α > 0,

I (µ) ≥ 〈−αV,µ〉 − �∗(−αV ).

Now �∗(−αV ) ≤ �∗(0), since −αV ≤ 0. Therefore,

I (µ) ≥ −α〈V,µ〉 − �∗(0) → ∞
as α tends to infinity. Hence I (µ) = ∞.

We now prove I (µ) = ∞ if µ(RN) 
= 1. For such µ,

I (µ) ≥ 〈α,µ〉 − �∗(α) = αµ(RN) − α − �∗(0) = α
(
µ(RN) − 1

) − �∗(0).

Here α is any real number. From this, it is easy to see that I (µ) = ∞. �

LEMMA 5.6. Let µ be a probability measure. Then I (µ) ≥ J (µ).

PROOF. Let W be a smooth function such that G(W) is bounded above. Take

Vn = min{−G(W),n}.
Then Vn is a bounded continuous function.

It is easy to see that

1
2Di(a

ijDjW) + 1
2 âijDiWDjW + b · ∇W + V0 + Vn ≤ 0.

Therefore, �∗(Vn) ≤ 0. From the relation

I (µ) ≥ 〈Vn,µ〉 − �∗(Vn) ≥ 〈Vn,µ〉,
and Vn → −G(W), Vn ≤ Vn+1 such that Vn are bounded below, we can apply the
monotone convergence theorem to get

I (µ) ≥ −〈G(W),µ〉.
Then

I (µ) ≥ sup{−〈G(W),µ〉;W is smooth, G(W) is bounded above} = J (µ). �

LEMMA 5.7. Let V ∈ Cb(R
N). Define

J ∗(V ) = sup
µ∈M1(R

N)

{〈V,µ〉 − J (µ)}.

Then J ∗(V ) ≤ �∗(V ).
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PROOF. It is enough to prove this for V satisfying (5.2) which we assume
now. We first observe the relation

J ∗(V ) = sup
µ

{
〈V,µ〉 + inf

W
{〈G(W),µ〉}

}

= sup
µ

inf
W

{〈G(W) + V,µ〉}

≤ inf
W

sup
µ

{〈G(W) + V,µ〉}

= inf
W

sup
x∈RN

{G(W)(x) + V (x)}.

Here the µ,W are taken over all those satisfying µ ∈ M1(R
N) and W smooth

with G(W) bounded above. Let W ∗ be the solution of (5.1) for � = �∗(V ). Take
W = W ∗ in the above relation; we have J ∗(V ) ≤ �∗(V ). �

LEMMA 5.8. Let V satisfy (5.2) and let µ∗ be the invariant measure of the
diffusion in (3.1) for � = �∗(V ) and W ∗ the solution of (5.1). Then

�∗(V ) = 〈V,µ∗〉 − I (µ∗).

PROOF. We need to prove that

〈V ′,µ∗〉 − �∗(V ′) ≤ 〈V,µ∗〉 − �∗(V )

for all V ′ ∈ Cb(R
N). This is equivalent to

�∗(V ′) − �∗(V ) ≥ 〈V ′ − V,µ∗〉, V ′ ∈ Cb(R
N).

Since �∗(·) is a convex function on Cb(R
N), there is a subgradient

µ̄ ∈ Cb(R
N)∗ of this function at V such that

�∗(V ′) − �∗(V ) ≥ 〈V ′ − V, µ̄〉, V ′ ∈ Cb(R
N).

See [7], Proposition 5.2, Chapter 1. We only need to prove µ̄ = µ∗, since this
implies the claim.

First, the nondecreasing of �∗(·) implies µ̄ is nonnegative.
Applying the above relation to V ′ = V + α, α is constant, and using

�∗(V + α) = �∗(V ) + α, we can easily deduce µ̄(RN) = 1.
Now take φn smooth functions on R

N satisfying the following properties: 0 ≤
φn ≤ φn+1 ≤ 1, φn has compact support, ∇φn are bounded uniformly in n, φn → 1
uniformly on compact sets. Then Proposition 4.1 implies �∗(V +αφn) → �∗(V +
α) = �∗(V ) + α as n → ∞. Then

lim sup
n→∞

α〈φn, µ̄〉 ≤ α

for all α. From this, we have

lim
n→∞〈1 − φn, µ̄〉 = 0.
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Then µ̄ must be a probability measure. This is a consequence of [6], Theo-
rem III.5.13.

We now prove∫ (1
2aij (x)DijW(x) + (

b(x) + â∇W ∗(x)
) · ∇W(x)

)
dµ̄(x) = 0

for W smooth function on R
n with compact support. This implies µ̄ is an invariant

measure of the diffusion in (3.1). Hence µ̄ = µ∗ by the uniqueness of the invari-
ance measure. To prove this last statement, we take such W and consider

V ′ = V − (1
2aijDijW + (b + â∇W ∗) · ∇W + 1

2 âijDiWDjW
)
.

Then by a simple calculation, we see
1
2aijDij (W + W ∗) + b · ∇(W + W ∗)

+ 1
2 âijDi(W + W ∗)Dj (W + W ∗) + V0 + V ′ = �∗(V ).

Therefore, �∗(V ′) = �∗(V ). Then,

0 ≥ 〈V ′ − V, µ̄〉 = −〈1
2aijDijW + (b + â∇W ∗) · ∇W + 1

2 âijDiWDjW, µ̄
〉
.

We replace W by αW , α > 0, divide the relation by α and let α tend to 0. We get

−〈1
2aijDijW + (b + â∇W ∗) · ∇W,µ̄

〉 ≤ 0.

We replace W by −W . Then we find〈1
2aijDijW + (b + â∇W ∗)∇W,µ̄

〉 = 0.

This is what we want to prove. �

COROLLARY 5.9. Let V ∈ Cb(R
N). Then J ∗(V ) = �∗(V ). Let µ be a prob-

ability measure. Then I (µ) = J (µ).

PROOF. We assume V ∈ Cb(R
N) satisfying (5.2). Let µ∗ be the invariant mea-

sure for the diffusion in (3.1) with W = W ∗. Then

J ∗(V ) ≥ 〈V,µ∗〉 − J (µ∗) ≥ 〈V,µ∗〉 − I (µ∗) = �∗(V ).

But we have already proved J ∗(V ) ≤ �∗(V ). Therefore, they are equal.
We now prove I (µ) = J (µ). We use the relation

J (µ) = sup
V ∈Cb(R

N)

{〈V,µ〉 − J ∗(V )}.

See [23], Theorem 7.18. By definition,

I (µ) = sup
V ∈Cb(R

N)

{〈V,µ〉 − �∗(V )}.

Since J ∗(V ) = �∗(V ) for all V , we have I (µ) = J (µ). �
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