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ON RANDOM ALMOST PERIODIC TRIGONOMETRIC
POLYNOMIALS AND APPLICATIONS

TO ERGODIC THEORY

BY GUY COHEN1 AND CHRISTOPHE CUNY2

Ben-Gurion University

We study random exponential sums of the form
∑n

k=1 Xk exp{i(λ(1)
k t1 +

· · · + λ
(s)
k ts )}, where {Xn} is a sequence of random variables and {λ(i)

n : 1 ≤
i ≤ s} are sequences of real numbers. We obtain uniform estimates (on com-
pact sets) of such sums, for independent centered {Xn} or bounded {Xn} sat-
isfying some mixing conditions. These results generalize recent results of
Weber [Math. Inequal. Appl. 3 (2000) 443–457] and Fan and Schneider [Ann.
Inst. H. Poincaré Probab. Statist. 39 (2003) 193–216] in several directions.
As applications we derive conditions for uniform convergence of these sums
on compact sets. We also obtain random ergodic theorems for finitely many
commuting measure-preserving point transformations of a probability space.
Finally, we show how some of our results allow to derive the Wiener–Wintner
property (introduced by Assani [Ergodic Theory Dynam. Systems 23 (2003)
1637–1654]) for certain functions on certain dynamical systems.

1. Introduction. In their pioneering work, Paley and Zygmund [29] studied
Fourier series whose terms have random signs, that is, random Fourier series of the
form

∑∞
n=1 εnane

int , where {εn} is a Rademacher sequence (i.i.d. random variables
taking the values ±1 with probability 1

2 ), and {an} is a complex sequence. This
research was continued by Salem and Zygmund in [34].

In this paper we obtain uniform estimates of multidimensional random expo-

nential sums of the form
∑n

k=1 Xke
i(λ

(1)
k t1+···+λ

(s)
k ts ), where {Xn} is a sequence of

random variables and {λ(i)
n : 1 ≤ i ≤ s} are sequences of real numbers. Estimations

of this kind were obtained (for the one-dimensional case) in [29] and [34], and
were extended recently in several directions in [16] and [37].
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Such estimates are useful, for instance, to study almost sure (a.s.) uniform con-
vergence of certain random Fourier or random almost periodic series (see, e.g.,
[12, 16, 20, 34, 37]) and have applications in (random) ergodic theory (e.g., [8]).

Let us be more precise, concerning this latter point.
In the last decades, many authors worked on ergodic theorems with random

modulation (sometimes called “randomly weighted ergodic theorems”). One im-
portant matter may be formulated as follows: Given a sequence {Xn} on a proba-
bility space (�,µ,F ), find a measurable set �∗ ⊂ � with µ(�∗) = 1, such that
for any ω ∈ �∗ the sequence an := Xn(ω) is a universally good weight sequence
for the ergodic theorem for all functions in some specified class. More precisely,
one wants that for any measure-preserving transformation τ on a probability space
(Y,�,π), and any function f on Y with a certain integrability property (e.g.,
f ∈ Lp), the sequence 1

n

∑n
1 akf ◦ τ k converges π -a.e.

One main tool in the study of such questions (and related ones) is the use of the
spectral theorem, which transfers the problem to the study of uniform estimates
of random trigonometric polynomials. It seems that the first use of the spectral
theorem in this random context appeared in [33], on the base of the results of [34],
mentioned above. Then, many authors investigated this direction (see, e.g., [1, 2,
4, 8, 11, 35, 37]).

Another tool, mainly introduced by Rosenblatt [33] in this context (see also the
later papers [4] or [7]), is Stein’s interpolation theorem, which needs estimates on
partial sums of Dirichlet series.

Actually, it seems that what is really needed in order to use Stein’s interpolation
theorem is to estimate general exponential sums involving Fourier and Dirichlet
terms.

This paper may be divided into two parts, estimates and convergence results.
First we obtain new estimates, uniform on compacta, for random almost periodic
polynomials. Our main result in this direction is the following (see Section 3):

THEOREM 1.1. Let {Xn} be a sequence of random variables, defined on a
probability space (�,µ). Let {λ(1)

n }, . . . , {λ(s)
n } be sequences of real numbers.

(i) If {Xn} are complex-valued, symmetric and independent, then there exist
some constants C,ε > 0, independent of {Xn}, such that (with 0/0 interpreted
as 1)∥∥∥∥∥sup
m≥2

max
1≤n<m

sup
T ≥1

exp

{
ε ·

(
max

(t1,...,ts )∈[−T ,T ]s

∣∣∣∣∣
m∑

k=n+1

Xke
i(λ

(1)
k t1+···+λ

(s)
k ts )

∣∣∣∣∣
2)

×
(
Rn,m log(T + 1)(1)

× log
(
m ∨ max

1≤k≤m
max

1≤i≤s

∣∣λ(i)
k

∣∣))−1
}∥∥∥∥∥

L1(µ)

≤ C,
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where Rn,m = ∑m
k=n+1 |Xk|2. In particular, for a.e. ω ∈ � we have

sup
m>n

sup
T ≥1

max(t1,...,ts )∈[−T ,T ]s |∑m
k=n+1 Xk(ω)ei(λ

(1)
k t1+···+λ

(s)
k ts )|2

Rn,m log(T + 1) log(m ∨ max1≤k≤m max1≤i≤s |λ(i)
k |) < ∞.(2)

(ii) If {Xn} ⊂ L2(�,µ) are centered independent, then (1) and (2) remain true
with Rn,m = ∑m

k=n+1 |Xk|2 + E|Xk|2.
(iii) If {Xn} is a bounded martingale difference sequence, then (1) and (2) re-

main true with Rn,m = ∑m
k=n+1 ‖Xk‖2∞.

We also obtain similar results as in Theorem 1.1 for centered complex bounded
random variables which are not necessarily independent. In this case, the quanti-
ties Rn,m involve some (uniform) correlation coefficients.

This theorem generalizes recent results of Weber [37] and Fan and
Schneider [16], the first of which is a one-dimensional version of Theorem 1.1
for periodic polynomials with independent symmetric coefficients, that is, s = 1
and {λn} is a nondecreasing sequence of natural numbers. The paper of Fan
and Schneider gives similar estimations (in a one-dimensional setting) only with
L1(µ)-integrability, while we obtain here an Orlicz space integrability, defined by
the function ex2 − 1. Moreover, Theorem 1.1 shows that Theorem 1 of [16] holds
without their (quite restrictive) condition (V). We would like also to underline the
fact that in (1) we take the supremum over T inside the integral. This seems to be
crucial in the applications such as Stein’s interpolation, see Theorem 5.3 below,
or for random ergodic theorems for flows that we will explore in a forthcoming
paper [6].

Theorem 1.1 is also a generalization of a well-known theorem of Salem and
Zygmund [34] for Fourier series whose terms have random signs. Actually, our
proof relies on ideas of [34]. It turns out that estimates like (1) are really of a
probabilistic nature. In particular, the power of Bernstein’s inequality, which was
used in [34] (to deal with random trigonometric polynomials), is not needed. It is
this remark that allows one to consider general sequences {λ(1)

n }, . . . , {λ(s)
n } which

are not necessarily integer-valued, and which are not required to satisfy any further
assumptions.

To reach the case of general random variables, that is, random variables which
are not necessarily independent, we use recent results of [13] (see Proposition 2.5)
which permit to deduce exponential inequalities of Azuma’s type.

In the second part, we first use our estimates to obtain a.s. uniform conver-
gence on compacta of certain random series of functions of the form

∑∞
n=1 Xn ×

ei(λ
(1)
n t1+···+λ

(s)
n ts ), when {Xn} are general bounded or independent (either centered

or symmetric). For these results see Section 4.1.
Then we apply our results to ergodic theory. A special case of Theorem 1.1, due

to [37], was used in [8] to prove the following:
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Let {Xn} ⊂ L2(�,µ) be a sequence of centered independent random variables,
such that

∞∑
n=1

‖Xn‖2
2(logn)3 < ∞.

Then almost surely the sequence an = Xn(ω) has the following property: for any
contraction T on L2(Y,π) of a probability space and f ∈ L2(Y,π), the series∑∞

n=1 Xn(ω)T nf converges π -a.e.

This result raises some questions. If T is induced by a probability-preserving
transformation τ , what can be said about functions not in L2, but in some Lq ,
1 ≤ q < 2? What if we take a sequence of powers {jn}? Are there analogues for
several commuting transformations? These questions are answered by our main
application of Theorem 1.1 in the following (see Section 5):

THEOREM 1.2. Let {Xn} ⊂ L2(�,µ) be a sequence of centered independent
random variables, and let {j (1)

n }, . . . , {j (s)
n } be sequences of natural numbers. As-

sume that the series
∞∑

n=1

‖Xn‖2
2 log

(
n ∨ max

1≤k≤n
max

1≤i≤s
j

(i)
k

)
(logn)2

converges. Then there exists a set �∗ ⊂ � of full measure, such that for every
ω ∈ �∗ we have the following: for every commuting family of measure-preserving
transformations τ1, . . . , τs on a probability space (Y,π), and any f ∈ Lq(Y,π),
1 ≤ q ≤ 2, the series

∞∑
n=1

Xn(ω)f ◦ τ
j

(1)
n

1 ◦ · · · ◦ τ
j

(s)
n

s

n(2−q)/2q

converges π -a.e.

The special case of Theorem 1.2, with s = 1, jn = n and q = 2, is also a special
case of the result of [8] quoted above (for extensions to the case of two commuting
contractions see Theorem 5.2 below).

We conclude the paper by showing connections of our results with the Wiener–
Wintner property introduced by Assani in [2]; see Section 6.

2. Preliminary estimates.

2.1. Estimates for almost periodic polynomials. In [34], Lemma 4.2.3, Salem
and Zygmund used Bernstein’s inequality to compare the maximum of a trigono-
metric polynomial with its values on a certain interval. Then they obtained a very
sharp result; it seems that in their application, the full strength of their result is not
used. We give here some elementary estimates which will be useful in the study of
general exponential sums.
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LEMMA 2.1. Let {αn} be a sequence of complex numbers, and let {λn} be
a sequence of real numbers. For any n ≥ 1 put Pn(t) = ∑n

k=1 αke
iλkt . Then, for

every integer m ≥ 1 and T > 0, we have:

(i) max1≤n≤m maxt∈[−T ,T ] |P ′
n(t)| ≤ 3m max1≤n≤m {|λn|} · max1≤n≤m

maxt∈[−T ,T ] |Pn(t)|.
If in addition {λn} is positive and nondecreasing, then

(ii) max1≤n≤m maxt∈[−T ,T ] |P ′
n(t)| ≤ 2λm max1≤n≤m maxt∈[−T ,T ] |Pn(t)|.

PROOF. Define P0 ≡ 0. For t ∈ [−T ,T ] and 1 ≤ n ≤ m, we have

P ′
n(t) = i

n∑
k=1

λkαke
iλkt = i

n∑
k=1

λk

(
Pk(t) − Pk−1(t)

)

= i

n−1∑
k=1

Pk(t)(λk − λk+1) + iλnPn(t).

Hence, the results clearly follow. �

REMARKS. 1. When {λn} is a sequence of natural numbers and T = π , Bern-
stein’s inequality yields that for any n ≥ 1,

max
t∈[−π,π ] |P

′
n(t)| ≤ max

1≤k≤n
{λk} · max

t∈[−π,π ] |Pn(t)|.

It is clearly much stronger than (i), and in the monotonic case it is also stronger
than (ii).

2. The idea behind the previous simple lemma is to bypass the use of Bernstein’s
approximation for the derivative of a trigonometric polynomial, in order to over-
come the difficulties which appear in trying to extend such an approximation for
almost periodic polynomial. Since in this paper the sequence {αn} will always rep-
resent a realization of some random variables, it turns out that the obtained result
is sufficient for our needs.

NOTATION. For a positive sequence {cn}, we define c∗
m = max1≤n≤m cn.

LEMMA 2.2. Let {αn} be a sequence of complex numbers, and let
{λ(1)

n }, . . . , {λ(s)
n } be sequences of real numbers. Put Pn(t1, . . . , ts) = ∑n

k=1 αk ×
ei(λ

(1)
k t1+···+λ

(s)
k ts ). Then for every T > 0 and for every integer m ≥ 1, there exists

a rectangle I ⊂ [−T ,T ]s , with area |I |, satisfying |I | ≥ ∏s
i=1 min{ 1

6s·m|λ(i)
m |∗ , T },

such that for every (t1, . . . , ts) ∈ I we have

max
1≤n≤m

|Pn(t1, . . . , ts)| ≥ 1
2 max

1≤n≤m
max

(u1,...,us)∈[−T ,T ]s |Pn(u1, . . . , us)|.
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If in addition {λ(1)
n }, . . . , {λ(s)

n } are all positive and nondecreasing, then we can
take I with |I | ≥ ∏s

i=1 min{ 1
4s·λ(i)

m

, T }.

PROOF. We first prove the nonmonotonic case. If for some 1 ≤ i ≤ s we have
|λ(i)

m |∗ = 0, then the polynomials {Pn}mn=1 are all constant with respect to the argu-

ment ti . So, we assume that |λ(i)
m |∗ �= 0 for any 1 ≤ i ≤ s.

There exist 1 ≤ n0 ≤ m and (u1, . . . , us) ∈ [−T ,T ]s , such that

M := ∣∣Pn0(u1, . . . , us)
∣∣ = max

1≤n≤m
max

(t1,...,ts )∈[−T ,T ]s |Pn(t1, . . . , ts)|.

Let (t1, . . . , ts) ∈ [−T ,T ]s . We have

Pn0(t1, . . . , ts) − Pn0(u1, . . . , us) =
s∑

i=1

(ti − ui)
∂Pn0

∂ti
(t ′1, . . . , t ′s),

where (t ′1, . . . , t ′s) is on the line segment joining (u1, . . . , us) and (t1, . . . , ts).
Hence using Lemma 2.1(i)

M − ∣∣Pn0(t1, . . . , ts)
∣∣

= ∣∣∣∣Pn0(t1, . . . , ts)
∣∣ − ∣∣Pn0(u1, . . . , us)

∣∣∣∣
≤ ∣∣Pn0(t1, . . . , ts) − Pn0(u1, . . . , us)

∣∣
≤

s∑
i=1

|ti − ui |
∣∣∣∣∂Pn0

∂ti
(t ′1, . . . , t ′s)

∣∣∣∣
≤ 3m

∣∣λ(1)
m

∣∣∗ max
1≤n≤m

max
v1∈[−T ,T ] |Pn(v1, t

′
2, . . . , t

′
s)| · |t1 − u1| + · · ·

+ 3m
∣∣λ(s)

m

∣∣∗ · max
1≤n≤m

max
vs∈[−T ,T ] |Pn(t

′
1, t

′
2, . . . , t

′
s−1, vs)| · |ts − us |

≤ 3mM

s∑
i=1

∣∣λ(i)
m

∣∣∗|ti − ui |.

Put

I :=
{
(t1, . . . , ts) ∈ [−T ,T ]s : |ti − ui | ≤ min

{
1

6s · m|λ(i)
m |∗ , T

}
, i = 1, . . . , s

}
.

For any (t1, . . . , ts) ∈ I we have

max
1≤n≤m

|Pn(t1, . . . , ts)| ≥
∣∣Pn0(t1, . . . , ts)

∣∣ ≥ M

2
.
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The monotonic case follows in a similar way. Using Lemma 2.1(ii) we obtain∣∣∣∣Pn0(t1, . . . , ts)
∣∣ − ∣∣Pn0(u1, . . . , us)

∣∣∣∣
≤ 2λ(1)

m max
1≤n≤m

max
v1∈[−T ,T ] |Pn(v1, t

′
2, . . . , t

′
s)| · |t1 − u1| + · · ·

+2λ(s)
m max

1≤n≤m
max

vs∈[−T ,T ] |Pn(t
′
1, t

′
2, . . . , t

′
s−1, vs)| · |ts − us |.

In that case we put

I :=
{
(t1, . . . , ts) ∈ [−T ,T ]s : min

{
|ti − ui | ≤ 1

4sλ
(i)
m

, T

}
, i = 1, . . . , s

}
. �

DEFINITION 2.1. Let K be a separable compact topological space, and let ν

be a Borel measure on K . Let {fn} be a sequence of complex continuous func-
tions on K , such that supn≥1 maxx∈K |fn(x)| < ∞. Let {σn} be a nondecreas-
ing sequence, with σn ≥ 1. We say that the sequence {fn} forms a {σn}-system
on (K, ν) if there exist some constants ρ1 > 0 and 0 < ρ2 < 1, such that for every
sequence {an} of complex numbers, and for every m ≥ 1, there exists a measurable
set Im ⊂ K , with ν(Im) ≥ ρ1

σm
such that

max
1≤n≤m

∣∣∣∣∣
n∑

k=1

akfk(x)

∣∣∣∣∣ ≥ ρ2 max
1≤n≤m

max
y∈K

∣∣∣∣∣
n∑

k=1

akfk(y)

∣∣∣∣∣ for every x ∈ Im.

REMARKS. 1. By taking {an} with zero terms, we can consider the inequality
above on any blocks.

2. Definition 2.1 is inspired by the general observation made in [20], Theorem 1,
page 68.

EXAMPLE 2.1. Let ν be the Lebesgue measure on Rs , and let T ≥ 1. By

Lemma 2.2, the sequence {ei(λ
(1)
n t1+···+λ

(s)
n ts )} forms a {(6sn)s

∏s
i=1(|λ(i)

n |∗ + 1)}-
system on ([−T ,T ]s, ν). If {λ(1)

n }, . . . , {λ(s)
n } are all positive and nondecreasing, it

forms a {(4s)s
∏s

i=1(λ
(i)
n + 1)}-system.

DEFINITION 2.2. Let K be a separable topological space, and let ν be a Borel
measure on K . Let {Kr}∞r=1 ⊂ K be a sequence of compact subspaces of K . We
say that {fn} forms a uniform {σn}-system on {(Kr, ν)}∞r=1 if for every r ≥ 1 the
sequence {fn} forms a {σn}-system on (Kr, ν) with the same corresponding con-
stants ρ1 and ρ2.

EXAMPLE 2.2. For every r ≥ 1 put Kr = [−r, r]s . Using 2.2 (see also Exam-

ple 2.1 above), the sequence {ei(λ
(1)
n t1+···+λ

(s)
n ts )} forms a uniform {ns ∏s

i=1(|λ(i)
n |∗+

1)}-system on {(Kr, ν)}∞r=1. If {λ(1)
n }, . . . , {λ(s)

n } are all positive nondecreasing, it

forms a uniform {∏s
i=1(λ

(i)
n + 1)}-system.
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Let {Xn} be a sequence of complex random variables on (�,µ). Given a se-
quence {fk} ⊂ C(K), for any 0 ≤ j < l, we define the random continuous function
Sj,l := ∑l

k=j+1 Xkfk . By separability of K and continuity in x ∈ K for each fixed

ω ∈ �, we can compute ‖Sj,l‖ = maxx∈K |∑l
k=j+1 Xk(ω)fk(x)| as the supremum

over a fixed countable dense subset of K , so ‖Sj,l‖ is measurable, and Sj,l is a
C(K)-valued random variable.

LEMMA 2.3. Let {Xn} be a sequence of complex random variables on (�,µ),
and let {fn} be a {σn}-system on (K, ν), with constants ρ1 and ρ2 as above. Then
for every positive nondecreasing function ψ , we have

E
(

max
n<k≤m

max
x∈K

ψ
(|Sn,k(x)|)) ≤ σm

ρ1

∫
K

E
(

max
n<k≤m

ψ

(
1

ρ2
|Sn,k(y)|

))
ν(dy).

PROOF. Since {fn} forms a {σn}-system on (K, ν), for every m ≥ 1, and every
ω ∈ �, there exists a Borel measurable set Im(ω) ⊂ K , with ν(Im(ω)) ≥ ρ1/σm,
such that for every x ∈ K we have

ψ

(
max

n<k≤m
max
y∈K

|Sn,k(y)|
)

1Im(ω)(x) ≤ ψ

(
1

ρ2
max

n<k≤m
|Sn,k(x)|

)
.

Integrating this inequality on K , and using the monotonicity of ψ , we obtain

max
n<k≤m

max
y∈K

ψ
(|Sn,k(y)|) ≤ σm

ρ1

∫
K

max
n<k≤m

ψ

(
1

ρ2
|Sn,k(x)|

)
ν(dx).

Taking the expectation yields the result. �

2.2. Moment inequalities for the partial sums. We recall here some results
that we will use in Section 3. The following lemma is basically Lemma 3 in [29],
part I.

LEMMA 2.4. Let Z be a nonnegative random variable on (�,µ), and let C1
and C2 be some positive constants. If

∫
Z2n dµ ≤ C1(C2n)n for every n ≥ 1, then∫

exp(δZ2) dµ ≤ 1 + C1
1−eδC2

, for every δ < 1
eC2

.

PROOF. Using the estimation n! ≥ √
2πnn+1/2e−n+1/(12n+1) (see [17], page

52), we have∫
exp(δZ2) dµ =

∫ (
1 +

∞∑
n=1

(δZ2)n

n!
)

dµ

≤ 1 + C1

∞∑
n=1

(δC2)
nnn

n! ≤ 1 + C1

∞∑
n=1

(δC2)
nnnen

nn
√

n

≤ 1 + C1

∞∑
n=1

(eδC2)
n ≤ 1 + C1

1 − eδC2
.

�
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Let {Xn} be a sequence of random variables. For any k ≥ 1, let Fk :=
σ(X1, . . . ,Xk) be the σ -algebra generated by {X1, . . . ,Xk}. The following result
was obtained by Dedecker.

PROPOSITION 2.5 ([13], Proposition 1). Let 2 ≤ p < ∞, and let {Xn} ⊂
Lp(�,µ) be a sequence of real centered random variables. Then we have∥∥∥∥∥

n∑
k=1

Xk

∥∥∥∥∥
p

≤
√

2p

(
n∑

i=1

‖X2
i ‖p/2 +

n∑
i=2

i−1∑
k=1

‖XkE(Xi |Fk)‖p/2

)1/2

.(3)

REMARKS. 1. If {Xn} are bounded centered random variables, and in the
above inequality we put the L∞-norm in the right-hand side, then Dedecker’s re-
sult can be deduced from Theorem 2.4 in [32], page 42.

2. Let X ∈ Lr(�,µ), 1 ≤ r ≤ ∞, and let F ⊂ F ′ be two σ -algebras of �.
Since the conditional expectation, with respect to a fixed σ -algebra, contracts the
Lr -norm, we have

‖E(X|F )‖r = ∥∥E
(
E(X|F ′)|F )∥∥

r ≤ ‖E(X|F ′)‖r .(4)

As a consequence of (4), we may replace Fk in Dedecker’s result by any σ -algebra
F ′

k with respect to which {X1, . . . ,Xk} are measurable. In particular, by usual com-
plexification, it is easy to obtain Dedecker’s result for {Xn} with complex values.
In that case, a factor 2 should be added in front of the right-hand side of (3).

3. As noticed in [13], this result contains Burkholder’s inequality for martingale
difference sequence.

4. An inspection of the proof of Proposition 1 in [13] shows that the “centered”
assumption is not needed.

The following maximal inequality was obtained by Móricz.

PROPOSITION 2.6 ([26], Theorem 1). Let 1 < p < ∞, and let {Xn} ⊂
Lp(�,µ) be a sequence of complex random variables. Assume there exist non-
negative numbers {αn}, and some positive constants C and q > 1, such that∥∥∥∥∥

l∑
k=j+1

Xk

∥∥∥∥∥
p

p

≤ C

(
l∑

k=j+1

αk

)q

for every l > j ≥ 0.

Then for any m > n ≥ 0,∥∥∥∥∥ max
n<l≤m

∣∣∣∣∣
l∑

k=n+1

Xk

∣∣∣∣∣
∥∥∥∥∥
p

p

≤ Cp,q

(
m∑

k=n+1

αk

)q

,

where Cp,q = C(1 − 1
2(q−1)/p )−p .
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REMARKS. 1. Originally, Theorem 1 of [26] is stated for real random vari-
ables but it extends easily to the case of complex ones. More generally, it extends
to the case of Banach-valued random variables.

2. Fix m > n ≥ 0, and assume that in the assumptions of Proposition 2.6 we
only have ∥∥∥∥∥

l∑
k=j+1

Xk

∥∥∥∥∥
p

p

≤ C

(
l∑

k=j+1

αk

)q

for every n ≤ j < l ≤ m.

This will allow us to estimate the Lp-norm of maxn<l≤m |∑l
k=n+1 Xk|. Indeed, we

put X′
k = Xk and α′

k = αk for n < k ≤ m, and otherwise we put X′
k = 0 and α′

k = 0.
Now we apply Proposition 2.6 to {X′

k} and {α′
k} (see also [8], Proposition 2.3).

3. For fixed 1 < p < ∞, the quantity Cp,q tends monotonically to infinity
when q ↓ 1.

4. For q = 1, Proposition 2.6 is no longer true. Under the same assumptions, but
with q = 1, we have (see Theorem 3 in [26] or Proposition 2.2 in [8])

∥∥∥∥∥ max
n<l≤m

∣∣∣∣∣
l∑

k=n+1

Xk

∣∣∣∣∣
∥∥∥∥∥
p

p

≤ C(2 + log2 m)p
m∑

k=n+1

αk,(5)

for any m > n ≥ 0.

The proofs of (5) (as given in [26] or [8]) extend to the case of Banach-valued
random variables.

3. Uniform estimates for random polynomials. Let {Xn} ⊂ L∞(�,µ) be
a sequence of complex centered random variables and let {fk} ⊂ C(K). For any
m > n ≥ 0 define Sn,m(x) := ∑m

k=n+1 Xkfk(x) and

Rn,m :=
m∑

i=n+1

‖Xi‖2∞ +
m∑

i=n+2

i−1∑
k=1

‖XkE(Xi |Fk)‖∞.(6)

THEOREM 3.1. Let {Xn} ⊂ L∞(�,µ) be a sequence of complex centered
random variables. Let {fn} be a {σn}-system on (K, ν), with corresponding con-
stants ρ1 and ρ2. Then for every m > n ≥ 0 we have (with 0/0 interpreted as 1)∥∥∥∥ max

n<l≤m
exp

{
ε · maxx∈K |∑l

k=n+1 Xkfk(x)|2
Rn,m

}∥∥∥∥
L1(µ)

≤ 3ν(K)σm

ρ1
,

where ε = ρ2
2/(6400 e · maxn<k≤m maxx∈K |fk(x)|2). In particular, for every

1 ≤ p < ∞ we have∥∥∥∥∥ max
n<l≤m

max
x∈K

∣∣∣∣∣
l∑

k=n+1

Xkfk(x)

∣∣∣∣∣
∥∥∥∥∥
Lp(µ)

≤ Cp

√
Rn,m log(σm + 1),
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where Cp =
√

[1 + 2 log(ep/2 + 3ν(K)/ρ1)]/ε.

PROOF. By definition, {fn} is uniformly bounded. By homogeneity, it is
enough to prove the theorem for the case where supn≥1 maxx∈K |fk(x)| ≤ 1. Fix
x ∈ K , and let p ≥ 2. By application of Proposition 2.5 (see remarks 1 and 2
after its formulation) to the sequence {Xkfk(x)} ⊂ L∞(�,µ) we have
‖Sn,m(x)‖p ≤ √

8pRn,m(x), where

Rn,m(x) :=
m∑

i=n+1

‖Xifi(x)‖2∞+
m∑

i=n+2

i−1∑
k=1

∥∥Xkfk(x)E
(
Xifi(x)|Fk(x)

)∥∥∞,(1)

and Fk(x) := σ(X1f1(x), . . . ,Xkfk(x)). Clearly, we have Fk(x) ⊂ Fk = σ(X1,

. . . ,Xk) for any x ∈ K . Since Xkfk(x) is measurable with respect to Fk(x), we
may and do apply inequality (4) to obtain (1) with Fk(x) replaced by Fk . Using the
assumption |fn(x)| ≤ 1, we have Rn,m(x) ≤ Rn,m, where Rn,m is defined by (6).
Hence for every x ∈ K and p ≥ 2 we have

‖Sn,m(x)‖p ≤
√

8pRn,m,

for every m > n ≥ 0.
For every i ≥ 1 put

αi =
i∑

k=1

‖XkE(Xi |Fk)‖∞.

So, Rn,m = ∑m
i=n+1 αi . Fix p0 > 2, and take any p ≥ p0 > 2. By Proposition 2.6,

applied with q = p/2 > 1 and {αi}, we obtain∥∥∥∥ max
n<l≤m

|Sn,l(x)|
∥∥∥∥
p

≤ (
1 − 2(1−p/2)/p)−1

√
8pRn,m

≤ (
1 − 2(1−p0/2)/p0

)−1
√

8pRn,m.

For 2 ≤ p ≤ p0, we use ‖ · ‖p ≤ ‖ · ‖p0 . Finally, we obtain for every 2 ≤ p < ∞
and x ∈ K ∥∥∥∥ max

n<l≤m
|Sn,l(x)|

∥∥∥∥
p

≤
√

8pCp0Rn,m,

where we can take Cp0 = p0(1 − 2(1−p0/2)/p0)−2.
By application of Lemma 2.4, with C1 = 1 and C2 = 16Cp0Rn,m, we deduce∫

max
n<l≤m

exp
(
δ|Sn,l(x)|2)dµ =

∫
exp

(
δ max

n<l≤m
|Sn,l(x)|2

)
dµ

≤ 1 + 1

1 − 16eδCp0Rn,m

,
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for every δ < 1
16eCp0Rn,m

, and for every x ∈ K .

Let ρ1 and ρ2 be the corresponding constants for the {σn}-system {fn}, as given
in Definition 2.1. By Lemma 2.3, applied to the function u �→ exp(δu2) for some

δ <
ρ2

2
16eCp0Rn,m

, we deduce

∫
�

max
n<l≤m

exp
(
δ max

x∈K
|Sn,l(x)|2

)
dµ

≤ σm

ρ1

∫
K

∫
�

max
n<l≤m

exp
(

δ

ρ2
2

|Sn,l(x)|2
)

dµdν(x)

≤ ν(K)σm

ρ1

(
1 + 1

1 − 16e(δ/ρ2
2)Cp0Rn,m

)
.

Put δ = ρ2
2/(32eCp0Rn,m) and εp0 = ρ2

2/(32eCp0). Since p0 > 2 is arbitrary,
and minp0≥2{Cp0} < 200, we can choose p0 > 2 such that ε = εp0 = ρ2

2/(6400e).
This yields the first result.

For p > 0, define the function φp(x) = (log(ep + x))p for any x ≥ 0. Then φp

is concave, and (logx)p ≤ φp(x) for x ≥ 1. Hence, by Jensen’s inequality and the
first result, we obtain

E
{
εp/2 · (maxn<l≤m maxx∈K |Sn,l|)p

R
p/2
n,m

}

≤ E
{
φp/2

(
exp

{
ε · maxn<l≤m maxx∈K |Sn,l|2

Rn,m

})}

≤ φp/2

(
3ν(K)σm

ρ1

)
=

(
log

(
ep/2 + 3ν(K)σm

ρ1

))p/2

.

Hence,∥∥∥∥ max
n<l≤m

max
x∈K

|Sn,l|
∥∥∥∥

2

p

≤ Rn,m

ε
log

((
ep/2 + 3ν(K)/ρ1

)
σm

)

≤ Rn,m

ε

(
1 + log(ep/2 + 3ν(K)/ρ1)

log(σm + 1)

)
log(σm + 1).

Since σm ≥ 1, we obtain the second result with Cp as defined in the statement. �

REMARKS. 1. The above theorem generalizes ideas of Theorem 4.3.1 and
Lemma 5.1.3 in [34] (see also [38], Chapter V, Theorem 8.34 and [20], Theorem 1,
page 69).

2. Clearly, the first statement of the theorem yields the finiteness of all the
Lp-norms. In fact, as noticed in [22], Lemma 3.7, page 66, it yields that all the
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Lp-norms, 2 ≤ p < ∞, are comparable to the L2-norm. This in turn implies
the comparability of all Lp-norms, with p ≥ 2. This is a weak generalization of
the Kahane–Khinchine inequality for Rademacher series (see [23], Corollary 4.6,
page 43 and see also [20], page 282).

3. It is clear from Definition 2.1 that constant functions, that is, fn(x) ≡ C �= 0
for every n ≥ 1, form a {σn}-system for any nondecreasing {σn}. By doing this, we
may obtain classical maximal inequalities for sums of bounded random variables.

COROLLARY 3.2. Let 1 < p ≤ 2, and let {Xn} ⊂ Lp(�,µ) be a sequence
of complex centered independent random variables. Let {fn} be a {σn}-system
on (K, ν), with corresponding constants ρ1 and ρ2. Then for every m > n ≥ 0
we have∥∥∥∥∥ max

n<l≤m
max
x∈K

∣∣∣∣∣
l∑

k=n+1

Xkfk(x)

∣∣∣∣∣
∥∥∥∥∥
Lp(µ)

≤ 2Cp

√
log(σm + 1)

(
m∑

k=n+1

‖Xk‖p
p

)1/p

,

where Cp =
√

[1 + 2 log(ep/2 + 3ν(K)/ρ1)]/ε.

PROOF. We first prove the corollary when {Xn} are symmetric random vari-
ables. Let {εn} be a Rademacher sequence, which is independent of {Xn}, and
let Eε be the corresponding expectation with respect to the probability space
of {εn}. Let E be the expectation in (�,µ). Fix ω ∈ �. We apply the second result
of Theorem 3.1 to the independent sequence {Xn(ω)εn}, in order to obtain

Eε

[
max

n<l≤m
max
x∈K

∣∣∣∣∣
l∑

k=n+1

Xk(ω)εkfk(x)

∣∣∣∣∣
p]

≤ (Cp/2)p

(
log(σm + 1)

m∑
k=n+1

|Xk(ω)εk|2
)p/2

≤ (Cp/2)p
(
log(σm + 1)

)p/2
m∑

k=n+1

|Xk(ω)|p,

where Cp may be computed from Theorem 3.1.
By taking the expectation E in the above inequality, we obtain that

EEε

[
max

n<l≤m
max
x∈K

∣∣∣∣∣
l∑

k=n+1

Xkεkfk(x)

∣∣∣∣∣
p]

≤ (Cp/2)p
(
log(σm + 1)

)p/2
m∑

k=n+1

E|Xk|p.
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Since {Xn} is symmetric and independent, and is also independent of {εn}, the
sequences {Xnεn} and {Xn} are stochastically equivalent. So, we have

E

[
max

n<l≤m
max
x∈K

∣∣∣∣∣
l∑

k=n+1

Xkfk(x)

∣∣∣∣∣
p]

≤ (Cp/2)p
(
log(σm + 1)

)p/2
m∑

k=n+1

E|Xk|p.

This proves the corollary for the symmetric case.
Now, let {X′

n} be an independent copy of {Xn}, defined on (�′,µ′), and let E′
be the corresponding expectation. Clearly, the sequence {Xn −X′

n} is a symmetric
sequence, so we apply the first result of the proof, for the symmetric case, in order
to obtain

EE′
[

max
n<l≤m

max
x∈K

∣∣∣∣∣
l∑

k=n+1

(Xk − X′
k)fk(x)

∣∣∣∣∣
p]

≤ (Cp/2)p
(
log(σm + 1)

)p/2
m∑

k=n+1

EE′|Xk − X′
k|p.

Using Jensen’s inequality and the fact that E′(X′
k) = 0, we have

EE′
[

max
n<l≤m

max
x∈K

∣∣∣∣∣
l∑

k=n+1

(Xk − X′
k)fk(x)

∣∣∣∣∣
p]

≥ E

[
max

n<l≤m
max
x∈K

E′
∣∣∣∣∣

l∑
k=n+1

(Xk − X′
k)fk(x)

∣∣∣∣∣
p]

≥ E

[
max

n<l≤m
max
x∈K

∣∣∣∣∣
l∑

k=n+1

Xkfk(x)

∣∣∣∣∣
p]

.

Hence,

E

[
max

n<l≤m
max
x∈K

∣∣∣∣∣
l∑

k=n+1

Xkfk(x)

∣∣∣∣∣
p]

≤ (Cp/2)p
(
log(σm + 1)

)p/2
m∑

k=n+1

E′E′|Xk − X′
k|p

≤ 2p(Cp/2)p
(
log(σm + 1)

)p/2
m∑

k=n+1

E|Xk|p,

and the result follows. �
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NOTATION. Let s ≥ 1, and consider the Euclidean space Rs . We denote by
boldface, for example, t = (t1, . . . , ts), a vector in Rs . For any t,u ∈ Rs we de-
note by 〈t,u〉 = t1u1 + · · · + tsus the inner product in Rs . We recall our notation
c∗
m = max1≤n≤m cn, for any positive sequence {cn}.

COROLLARY 3.3. Let 1 < p ≤ 2, and let {Xn} ⊂ Lp(�,µ) be a sequence

of complex centered independent random variables. Let λn = (λ
(1)
n , . . . , λ

(s)
n ) be a

sequence of vectors in Rs , and let T ≥ 1. Then there exists a positive constant Cp ,
which does not depend on {Xn}, such that for every m > n ≥ 0 we have∥∥∥∥∥ max

n<l≤m
max

t∈[−T ,T ]s

∣∣∣∣∣
l∑

k=n+1

Xke
i〈λn,t〉

∣∣∣∣∣
∥∥∥∥∥
Lp(µ)

≤ Cp

√√√√log

[
ms

s∏
i=1

(∣∣λ(i)
m

∣∣∗ + 1
) + 1

](
m∑

k=n+1

‖Xk‖p
p

)1/p

.

PROOF. Let K = [−T ,T ]s , and let ν be the Lebesgue measure on Rs . By Ex-
ample 2.1 the sequence {ei〈λn,t〉} forms a {ms ∏s

i=1(|λ(i)
m |∗ + 1)}-system on (K, ν).

Colorally 3.2 yields the result. �

Now we present further applications of Lemma 2.3. Let {Xn} ⊂ Lp(µ), 2 ≤
p < ∞, be centered random variables. For any m > n ≥ 0 define

R(p)
n,m =

m∑
i=n+1

‖Xi‖2
p +

m∑
i=n+2

i−1∑
k=1

‖XkE(Xi |Fk)‖p/2.

In the case of unbounded random variables, we can say the following:

THEOREM 3.4. Let 2 < p < ∞, and let {Xn} ⊂ Lp(�,µ) be a sequence (not
necessarily independent) of complex centered random variables. Let {fn} be a
{σn}-system on (K, ν), with corresponding constants ρ1 and ρ2. Then for every
m > n ≥ 0 we have∥∥∥∥∥ max

n<l≤m
max
x∈K

∣∣∣∣∣
l∑

k=n+1

Xkfk(x)

∣∣∣∣∣
∥∥∥∥∥
p

≤ Cp max
n<k≤m

max
x∈K

|fk(x)|(σm)1/p

√
R

(p)
n,m,

where Cp = 2
√

2p

(ρ1)
1/pρ2

(1 − 2(1−p/2)/p)−1.

PROOF. The proof starts as the proof of Theorem 3.1. We use Dedecker’s
inequality to obtain

‖Sn,m(x)‖p ≤ max
n<k≤m

max
x∈K

|fk(x)| ·
√

8pR
(p)
n,m,
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for every m > n ≥ 0. Then, using Móricz’s inequality [26] we obtain∥∥∥∥ max
n<l≤m

|Sn,l(x)|
∥∥∥∥
p

≤ max
n<k≤m

max
x∈K

|fk(x)|(1 − 2(1−p/2)/p)−1
√

8pR
(p)
n,m.

By Lemma 2.3, applied to the function u �→ up , we obtain the result. �

REMARKS. 1. Using remark 4 after Proposition 2.6, for p = 2 we obtain∥∥∥∥∥ max
n<l≤m

max
x∈K

∣∣∣∣∣
l∑

k=n+1

Xkfk(x)

∣∣∣∣∣
∥∥∥∥∥

2

≤ C2 log(4m) max
n<k≤m

max
x∈K

|fk(x)|(σm)1/2
√

R
(2)
n,m,

where C2 = 4√
ρ1ρ2 log 2 .

2. Let {jk} be a sequence of integers, and let fk(t) = eijkt . Using the Cauchy–
Schwarz inequality one can see that for every ω ∈ � we have

max
n<l≤m

max
t∈[−π,π)

∣∣∣∣∣
l∑

k=n+1

Xk(ω)eijkt

∣∣∣∣∣ ≤ C

√√√√m

m∑
k=n+1

|Xk(ω)|2.

This illustrates the limitation of the method when p = 2.

THEOREM 3.5. Let {Xn} ⊂ L∞(�,µ) be a sequence of complex centered
random variables. Let {fn} be a uniform {σn}-system on {(Kr, ν)}. Assume that
for some q ≥ 1, we have {1/ν(Kr)} ∈ �2q and {1/σn} ∈ �q . Then there exists some
positive constants ε and C, independent of {Xn}, such that (with 0/0 interpreted
as 1) ∥∥∥∥sup

m≥1
max

0≤n<m
sup
r≥1

exp
{
ε · maxx∈Kr |∑m

k=n+1 Xkfk(x)|2
Rn,m log(ν(Kr)σm + 1)

}∥∥∥∥
L1(µ)

≤ C.

Hence for a.e. ω ∈ � we have

sup
m>n

sup
r≥1

maxx∈Kr |∑m
k=n+1 Xk(ω)fk(x)|2

Rn,m log(ν(Kr)σm + 1)
< ∞.

PROOF. For any ω ∈ � put Sn,m(ω)(x) = ∑m
k=n+1 Xk(ω)fk(x), and when ω

is not specified put Sn,m(x). By assumptions {ν(Kr)} and {σn} tend to infinity, so
without loss of generality we may and do assume that log(ν(Kr)σm + 1) ≥ 1 for
every m,r ≥ 1. This assumption reflects only in the values of ε and C.

The sequence {fn} forms a uniform {σn}-system, hence for every r ≥ 1, the
sequence {fn} forms a {σn}-system on (Kr, ν), with corresponding constants
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ρ1 and ρ2. For every r ≥ 1, we apply Theorem 3.1 with (Kr, ν) and ρ1, ρ2. Hence,
there exist universal constants C1, ε > 0, such that for every m > n ≥ 0 we have∥∥∥∥exp

{
ε · maxx∈Kr |Sn,m(x)|2

Rn,m

}∥∥∥∥
L1(µ)

≤ C1ν(Kr)σm,

for any r ≥ 1. Hence for any m > n ≥ 0 and r ≥ 1, we have∥∥∥∥exp
{
ε · maxx∈Kr |Sn,m(x)|2

Rn,m

− (2q + 1) log
(
ν(Kr)σm

)}∥∥∥∥
L1(µ)

(1)
≤ C1

(
ν(Kr)σm

)−2q
.

For any m > n ≥ 0 and r ≥ 1 put

In,m,r =
{
ω ∈ � : ε · max

x∈Kr

|Sn,m(x)(ω)|2 ≥ (2q + 1)Rn,m log
(
ν(Kr)σm + 1

)}
.

Using (1) we have∥∥∥∥exp
{
ε · maxx∈Kr |Sn,m(x)|2

Rn,m log(ν(Kr)σm + 1)
− (2q + 1)

}
1In,m,r

∥∥∥∥
L1(µ)

≤
∥∥∥∥exp

{
log

(
ν(Kr)σm + 1

)

×
[
ε · maxx∈Kr |Sn,m(x)|2

Rn,m log(ν(Kr)σm + 1)
− (2q + 1)

]}
1In,m,r

∥∥∥∥
L1(µ)

≤ C1

(ν(Kr)σm)2q
.

Hence
m−1∑
n=0

∑
r≥1

∥∥∥∥exp
{
ε · maxx∈Kr |Sn,m(x)|2

Rn,m log(ν(Kr)σm + 1)
− (2q + 1)

}
1In,m,r

∥∥∥∥
L1(µ)

≤
mC1‖1/ν(Kr)‖2q

�2q

(σm)2q
.

By assumption, the nonincreasing sequence {1/σn} is in �q . Hence by Kro-
necker’s lemma, supm≥1{ m

σ
q
m
} < ∞. We deduce

∞∑
m=1

m−1∑
n=0

∑
r≥1

∥∥∥∥exp
{
ε · maxx∈Kr |Sn,m(x)|2

Rn,m log(ν(Kr)σm + 1)
− (2q + 1)

}
1In,m,r

∥∥∥∥
L1(µ)

≤ C2,

where C2 = C1‖1/ν(Kr)‖2q
�2q

· supm≥1{ m

σ
q
m
} · ‖{ 1

σn
}‖q

�q
. So,

∥∥∥∥sup
m≥1

max
0≤n<m

sup
r≥1

exp
{
ε · maxx∈Kr |Sn,m(x)|2

Rn,m log(ν(Kr)σm + 1)
− (2q + 1)

}
1In,m,r

∥∥∥∥
L1(µ)

≤ C2.



56 G. COHEN AND C. CUNY

But, if ω /∈ Im,n,r for some m > n ≥ 0 and r ≥ 1, then

ε · maxx∈Kr |Sn,m(x)|2
Rn,m log(ν(Kr)σm + 1)

≤ 2q + 1.

So, ∥∥∥∥sup
m≥1

max
0≤n<m

sup
r≥1

exp
{
ε · maxx∈Kr |Sn,m(x)|2

Rn,m log(ν(Kr)σm + 1)

}∥∥∥∥
L1(µ)

≤ C2e
2q+1.(7)

This proves the first assertion, so in particular the integrand is finite a.e., which
is the second statement. �

REMARKS. 1. The quantity ε and C in the above theorem can be completely
computed by Theorem 3.1. Note that C1 = 3/ρ1 in the proof of Theorem 3.5.

2. The conditions {1/σn} ∈ �r , for some r > 0, together with nondecreasingness
of {σn} (by definition) is equivalent by Kronecker’s lemma to σn ≥ Cnδ , for some
δ > 0 and for every n ≥ 1. Since the assertions of Therem 3.5 are not affected
by removing finite numbers of pairs {m > n}, we could replace the assumption
{1/σn} ∈ �2q by σn ≥ Cnδ , for some δ > 0 and for every n ≥ 1.

3. If {1/σn} is not in �r for any r > 0, then {fn} is still a {max{n,σn}}-system.
With respect to this system, C in the above theorem is independent of {σn}.

COROLLARY 3.6. Let {Xn} be symmetric independent complex valued ran-
dom variables on (�,µ). Let {fn} be a uniform {σn}-system on {(Kr, ν)}. Assume
that for some q ≥ 1, we have {1/ν(Kr)} ∈ �2q and {1/σn} ∈ �q . Then there exist
some positive constants ε and C, independent of {Xn}, such that (with 0/0 inter-
preted as 1)∥∥∥∥sup

m≥1
max

0≤n<m
sup
r≥1

exp
{
ε · maxx∈Kr |∑m

k=n+1 Xkfk(x)|2
log(ν(Kr)σm + 1)

∑m
k=n+1 |Xk|2

}∥∥∥∥
L1(µ)

≤ C.

PROOF. Let {εn} be a Rademacher sequence which is independent of {Xn}.
Let Eε and E be the corresponding expectations in the probability spaces of {εn}
and {Xn}, respectively. For a.e. ω ∈ �, the sequence {Xn(ω)εn} is a sequence of
independent bounded random variables. So, we may apply Theorem 3.5. Hence
there exist some positive constants ε and C, which are independent of {Xn(ω)εn},
such that for a.e. ω ∈ � we have

Eε

[
sup
m≥1

max
0≤n<m

sup
r≥1

exp
{
ε · maxx∈Kr |∑m

k=n+1 Xk(ω)εkfk(x)|2
log(ν(Kr)σm + 1)

∑m
k=n+1 |Xk(ω)εk|2

}]
≤ C.

By taking the expectation E we have

EEε

[
sup
m≥1

max
0≤n<m

sup
r≥1

exp
{
ε · maxx∈Kr |∑m

k=n+1 Xkεkfk(x)|2
log(ν(Kr)σm + 1)

∑m
k=n+1 |Xkεk|2

}]
≤ C.
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Since {Xn} is symmetric and independent, and is also independent of {εn}, the
sequences {Xnεn} and {Xn} are stochastically equivalent. Hence, the assertion of
the theorem follows from the above result for {Xnεn}. �

For the next results, we will specify the {σn}-system.

COROLLARY 3.7. Let {Xn} be symmetric independent complex valued ran-
dom variables on (�,µ). Let λn = (λ

(1)
n , . . . , λ

(s)
n ) be a sequence of vectors in Rs .

Then there exist some positive constants ε and C, independent of {Xn}, such that
(with 0/0 interpreted as 1)∥∥∥∥∥sup
m≥1

max
0≤n<m

sup
T ≥1

exp

{
ε ·

(
max

t∈[−T ,T ]s

∣∣∣∣∣
m∑

k=n+1

Xke
i〈λk,t〉

∣∣∣∣∣
2)

×
(

log

[
CsT

s · ms ·
s∏

i=1

(∣∣λ(i)
m

∣∣∗ + 1
) + 1

]

×
m∑

k=n+1

|Xk|2
)−1}∥∥∥∥∥

L1(µ)

≤ C,

where Cs = (12s)s . Hence for a.e. ω ∈ � we have

sup
m>n

sup
T ≥1

maxt∈[−T ,T ]s |∑m
k=n+1 Xk(ω)ei〈λk,t〉|2

log[CsT s · ms · ∏s
i=1(|λ(i)

m |∗ + 1) + 1] · ∑m
k=n+1 |Xk(ω)|2 < ∞.

PROOF. For every T ≥ 1 and t ∈ Rs , put KT = [−T ,T ]s and fn(t) = ei〈λk,t〉.
By uniform continuity, the measurable function maxt∈[−T ,T ]s |∑m

k=n+1 Xke
i〈λk,t〉|

is a continuous function of T . Hence, the suprema over T ≥ 1 can be taken as
suprema over the rational numbers. So, the integrand is measurable.

As noted in Example 2.2, the sequence of functions fn(t) = ei〈λk,t〉 forms a uni-
form {(6s)sms ∏s

i=1(|λ(i)
n |∗ +1)}-system on {(Kr, ν)}∞r=1, where ν is the Lebesgue

measure. Clearly, {1/ν(Kr)} ∈ �2. With the above settings, Corollary 3.6 yields the
results when the suprema over T is taken over the natural numbers r ≥ 1. Now, for
any real T ≥ 1, with r = [T ] the integral part of T , we have

maxt∈[−T ,T ]s |∑m
k=n+1 Xk(ω)ei〈λk,t〉|2

log[CsT s · ms · ∏s
i=1(|λ(i)

m |∗ + 1) + 1] · ∑m
k=n+1 |Xk(ω)|2

≤ 2
maxt∈[−r−1,r+1]s |∑m

k=n+1 Xk(ω)ei〈λk,t〉|2
log[Cs(r + 1)s · ms · ∏s

i=1(|λ(i)
m |∗ + 1) + 1] · ∑m

k=n+1 |Xk(ω)|2 .
�

REMARKS. 1. Theorem 7 in [37] is a one-dimensional version of Corol-
lary 3.7 in the periodic case. More specifically, take s = 1, and {λn} a nondecreas-
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ing sequence of integers. Of course, in that case the suprema over T ≥ 1 is re-
dundant. Recently, Weber proved Theorem 7 without monotonicity, and under the
condition λ∗

n ≥ nδ , δ > 0 (see also remark 2 after Theorem 3.5)—personal com-
munication. Weber’s proof is completely different; it is based on the Dudley met-
ric entropy method, and uses the Borell–Sudakov–Tsirelson inequality (see [22],
Lemma 3.1, page 57).

2. By using the reduction principle, one can deduce from Theorem 6 in [16] a
weak one-dimensional version of Corollary 3.7. It gives usual integrability (i.e.,
without the exponential of the square), without the suprema over T . The proof
of [16] uses a general Gaussian inequality of [18]. Their results hold for centered
independent random variables under a quite restrictive condition.

3. As we will see in Section 5, it seems that in applications to random ergodic
theory the suprema over T ≥ 1 is important.

The theorem below shows that the general centered case holds modulo some
slight modifications which have no impact on our applications.

NOTATION. For any real numbers a and b we put a ∨ b = max{a, b}.

THEOREM 3.8. Let 1 < p ≤ 2, and let {Xn} ⊂ Lp(�,µ) be a sequence of

complex-valued centered independent random variables. Let λn = (λ
(1)
n , . . . , λ

(s)
n )

be a sequence of vectors in Rs . Then there exist some positive constants ε and C,
independent of {Xn}, such that (with 0/0 interpreted as 1)∥∥∥∥sup

m≥1
max

0≤n<m
sup
T ≥1

exp
{
ε · maxt∈[−T ,T ]s |∑m

k=n+1 Xke
i〈λk,t〉|2

log(T s · γm + 1) · (∑m
k=n+1 |Xk|p + ‖Xk‖p

p)2/p

}∥∥∥∥
1
≤ C,

where γm = (12s)s ·ms ·∏s
i=1(|λ(i)

m |∗+1). In particular, for a.e. ω ∈ � the quantity

sup
m>n

sup
T ≥1

{(
max

t∈[−T ,T ]s

∣∣∣∣∣
m∑

k=n+1

Xk(ω)ei〈λk,t〉
∣∣∣∣∣
)

×
(√

log(T + 1) log
[
m ∨ max

1≤i≤s

(∣∣λ(i)
m

∣∣∗ + 1
) + 1

]

×
(

m∑
k=n+1

|Xk(ω)|p + ‖Xk‖p
p

)1/p)−1}

is finite.

PROOF. Let {X′
n} ⊂ Lp(�′,µ′) be a sequence of independent copies of {Xn}.

Clearly the sequence {Xn − X′
n} is symmetric independent on (� × �′,µ ⊗ µ′),

and hence Corollary 3.7 applies. So, for µ ⊗ µ′ a.e. (ω,ω′) ∈ � × �′, there exists
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a positive constant C(ω,ω′), such that for any m > n ≥ 0, and any T ≥ 1, we have

max
t∈[−T ,T ]s

∣∣∣∣∣
m∑

k=n+1

(
Xk(ω) − X′

k(ω
′)
)
ei〈λk,t〉

∣∣∣∣∣
(1)

≤ C(ω,ω′)
√

log(T s · γm + 1)

(
m∑

k=n+1

|Xk(ω) − X′
k(ω

′)|2
)1/2

.

Furthermore, for some universal constants ε > 0 and C′, independent of {Xn}, we
have ∫

exp{ε · [C(ω,ω′)]2}µ(dω)µ′(dω′) ≤ C′.

Let E and E′ be the corresponding expectations in � and �′, respectively. By
taking the expectation E′ on the left-hand side of (1), we obtain by Jensen’s in-
equality and E′(X′

k) = 0, that for a.e. ω ∈ � we have

E′
{

max
t∈[−T ,T ]s

∣∣∣∣∣
m∑

k=n+1

(
Xk(ω) − X′

k

)
ei〈λk,t〉

∣∣∣∣∣
}

≥ max
t∈[−T ,T ]s E′

∣∣∣∣∣
m∑

k=n+1

(
Xk(ω) − X′

k

)
ei〈λk,t〉

∣∣∣∣∣
≥ max

t∈[−T ,T ]s

∣∣∣∣∣
m∑

k=n+1

Xk(ω)ei〈λk,t〉
∣∣∣∣∣.

By taking the expectation E′ on the right-hand side of (1), and using: (i) ‖·‖�2 ≤
‖ · ‖�p ; (ii) Hölder’s inequality; (iii) (|a| + |b|)p ≤ 2p−1(|a|p + |b|p), we obtain

E′
{
C(ω, ·)

√
log(T s · γm + 1)

(
m∑

k=n+1

|Xk(ω) − X′
k|2

)1/2}

≤
√

log(T s · γm + 1)E′
{
C(ω, ·)

(
m∑

k=n+1

|Xk(ω) − X′
k|p

)1/p}

≤
√

log(T s · γm + 1)
(
E′[C(ω, ·)]p/(p−1))(p−1)/p

×
(

m∑
k=n+1

E′|Xk(ω) − X′
k|p

)1/p

≤
√

log(T s · γm + 1)
(
E′[C(ω, ·)]p/(p−1))(p−1)/p · 2(p−1)/p

×
(

m∑
k=n+1

|Xk(ω)|p + E′|X′
k|p

)1/p

.
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By combining that with the previous computation we obtain

sup
m>n

sup
T ≥1

exp

{
ε ·

(
max

t∈[−T ,T ]s

∣∣∣∣∣
m∑

k=n+1

Xk(ω)ei〈λk,t〉
∣∣∣∣∣
2)

×
(

22(p−1)/p log(T s · γm + 1)

(7)

×
(

m∑
k=n+1

|Xk(ω)|p + E|Xk|p
)2/p)−1}

≤ exp
{
ε · (E′[C(ω, ·)]p/(p−1))2(p−1)/p}

.

Define the function φp(u) = exp (u2(p−1)/p), which is convex in the interval
[Kp,∞), where Kp := (

2−p
2(p−1)

)p/2(p−1). Using Jensen’s inequality and using (a+
b)α ≤ aα + bα , for a, b ≥ 0 and 0 ≤ α ≤ 1, we have

exp
{
ε · (E′[C(ω, ·)]p/(p−1))2(p−1)/p}
= φp

(
E′|ε1/2C(ω, ·)|p/(p−1))

≤ φp

(
E′[|ε1/2C(ω, ·)|p/(p−1) + Kp

])
≤ E′[φp

(|ε1/2 · C(ω, ·)|p/(p−1) + Kp

)]
(8)

= E′ exp
{(|ε1/2 · C(ω, ·)|p/(p−1) + Kp

)2(p−1)/p}
≤ E′ exp

{
ε · [C(ω, ·)]2 + K2(p−1)/p

p

}
= exp

{
2 − p

2(p − 1)

}
· E′ exp{ε · [C(ω, ·)]2}.

By taking the expectation E in (8) and using the fact that EE′ exp{ε ×
[C(·, ·)]2} ≤ C′, we obtain the first result with C = exp{ 2−p

2(p−1)
} ·C′ and by chang-

ing the value of ε to ε/22(p−1)/p .
The second result follows from the first assertion using the inequality

ms ·
s∏

i=1

(∣∣λ(i)
m

∣∣∗ + 1
) ≤

[
m ∨ max

1≤i≤s

(∣∣λ(i)
m

∣∣∗ + 1
)]2s

.
�

4. Convergence results. In this section we give general convergence results
for sequences of Banach-valued random variables. Then we apply these results
with our previous uniform estimates, and we obtain a.e. uniform convergence of
random series of almost periodic functions.

Let B be a separable Banach space with norm ‖ · ‖. Let (�,µ) be a measure
space, and let E be the corresponding expectation. Let X be a random variable
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on � with values in B. The separability assumption of B is made in order to avoid
measurability complications. For 1 ≤ p < ∞, we denote by ‖X‖p the quantity
(E‖X‖p)1/p . The Banach space of all random variables with finite ‖ · ‖p-norm is
denoted by Lp(�,µ;B) or simply by Lp(µ;B) [or Lp(B)]. When B = C (or R)
we just write Lp(�,µ) or simply Lp .

Let K be a compact metric separable space. In our applications we will take
B = C(K), the space of continuous functions on K , with the norm
‖f ‖ = maxx∈K |f (x)| for f ∈ C(K).

THEOREM 4.1. Let {Xn} ⊂ Lp(�,µ;B), with 1 < p < ∞. Let {αn} be a
sequence of nonnegative numbers. Let γ and C be positive constants, and as-
sume there exists a positive nondecreasing ( possibly constant) sequence {An}, with
An ≤ Cnγ , such that for every m > n ≥ 0 we have

E

[∥∥∥∥∥
m∑

k=n+1

Xk

∥∥∥∥∥
p]

≤ Am

m∑
k=n+1

αk.(7)

If
∑∞

n=1 αnAn(logn)p converges, then the series
∑∞

n=1 Xn converges almost every-
where and in Lp(�,µ;B). Furthermore, we have

∥∥∥∥∥sup
n≥1

∥∥∥∥∥
n∑

k=1

Xk

∥∥∥∥∥
∥∥∥∥∥
p

≤ 2e1/p[
1 + p(p−1)/p(p + γ )

]( ∞∑
n=1

αnAn(logn)p

)1/p

.

PROOF. By remark 4 after Proposition 2.6, we have∥∥∥∥∥ max
n<l≤m

∥∥∥∥∥
l∑

k=n+1

Xk

∥∥∥∥∥
∥∥∥∥∥
p

p

≤ Am(log2 4m)p
m∑

k=n+1

αk,

for every m > n ≥ 0. If we restrict ourselves to m ≥ 2, by changing {An}, we may
replace the log2 4m by the natural logarithm logm.

We define a sequence of integers {κn} as the following. Let κ1 be the first integer
for which Aκ1(logκ1)

p ≥ e. For every n ≥ 2, we define inductively

κn+1 = max
{
m ≥ κn + 1 :Am(logm)p ≤ eAκn+1

(
log(κn + 1)

)p}
.

Clearly, the sequence {κn} is strictly increasing, and for every n ≥ 1 we have the
following properties:

(i) Aκn+1(logκn+1)
p ≤ eAκn+1(log(κn + 1)p < Aκn+1+1(log(κn+1 + 1))p; us-

ing (i) we have
(ii) Aκn+1 ≤ eAκn+1 and Aκn+1(log(κn + 1))p ≥ en; by the assumption

An ≤ Cnγ and (ii), we have
(iii) (p + γ ) log(κn + 1) ≥ n.
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(a) Using (7), (ii) and (iii), we obtain

∫ ∞∑
v=1

vp

∥∥∥∥∥
κv+1∑

k=κv+1

Xk

∥∥∥∥∥
p

dµ ≤
∞∑

v=1

vpAκv+1

κv+1∑
k=κv+1

αk

≤ e(p + γ )p
∞∑

n=1

αnAn(logn)p < ∞.

Hence by Beppo Levi the integrand
∑∞

v=1 vp‖∑κv+1
k=κv+1 Xk‖p converges almost

everywhere.
(b) For any naturals r and m we obtain, using Hölder’s inequality,∥∥∥∥∥

κm+r∑
k=κm+1

Xk

∥∥∥∥∥
p

≤
(

m+r−1∑
v=m

1

v
v

∥∥∥∥∥
κv+1∑

k=κv+1

Xk

∥∥∥∥∥
)p

≤
( ∞∑

v=m

1

vp/(p−1)

)p−1 ∞∑
v=1

vp

∥∥∥∥∥
κv+1∑

k=κv+1

Xk

∥∥∥∥∥
p

.

The first factor in the right-hand side converges to zero as m → ∞, while the last
factor converges a.e. by (a), so {∑κm

k=1 Xk} is a Cauchy sequence a.e., and hence
converges a.e. By taking integrals of the above inequality, and considering the con-
vergence proved in (a), {∑κm

k=1 Xk} is a Cauchy sequence in Lp(�,µ;B)-norm,
and hence converges in norm.

(c) Using (7) and (i), we have

∞∑
m=1

∫
max

κm<n≤κm+1

∥∥∥∥∥
n∑

k=κm+1

Xk

∥∥∥∥∥
p

dµ ≤
∞∑

m=1

Aκm+1(logκm+1)
p

κm+1∑
k=κm+1

αk

≤ e

∞∑
n=1

αnAn(logn)p < ∞.

Now, (b) and (c) imply that
∑∞

n=1 Xn converges a.e. in B to X :=
limm→∞

∑κm

n=1 Xn, since for κm < n ≤ κm+1, we have∥∥∥∥∥
n∑

k=1

Xk − X

∥∥∥∥∥ ≤
∥∥∥∥∥

κm∑
k=1

Xk − X

∥∥∥∥∥ +
∥∥∥∥∥

n∑
k=κm+1

Xk

∥∥∥∥∥
≤

∥∥∥∥∥
κm∑
k=1

Xk − X

∥∥∥∥∥ + max
κm<n≤κm+1

∥∥∥∥∥
n∑

k=κm+1

Xk

∥∥∥∥∥.
By considering the norm convergence proved in (a) and (b), the

Lp(�,µ;B)-norm convergence follows by taking the Lp(�,µ)-norm in the
above inequality.
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Now we will prove that supn≥1 ‖∑n
k=1 Xk‖ ∈ Lp(µ). The inequality in (b) with

m = 1 yields

sup
r≥1

∥∥∥∥∥
κr+1∑

k=κ1+1

Xk

∥∥∥∥∥
p

≤
( ∞∑

v=1

1

vp/(p−1)

)p−1 ∞∑
v=1

vp

∥∥∥∥∥
κv+1∑

k=κv+1

Xk

∥∥∥∥∥
p

.

Integration of the above inequality and application of (a) yield

∫
sup
r≥1

∥∥∥∥∥
κr+1∑

k=κ1+1

Xk

∥∥∥∥∥
p

dµ ≤ pp−1e(p + γ )p
∞∑

n=1

αnAn(logn)p < ∞.(1)

The inequality in (c) yields

∫
sup
m≥1

max
κm<n≤κm+1

∥∥∥∥∥
n∑

k=κm+1

Xk

∥∥∥∥∥
p

dµ ≤
∫ ∞∑

m=1

max
κm<n≤κm+1

∥∥∥∥∥
n∑

k=κm+1

Xk

∥∥∥∥∥
p

dµ

(7)

≤ e

∞∑
n=1

αnAn(logn)p < ∞.

Using (1) and (7), we have

(∫
sup
n>κ1

∥∥∥∥∥
n∑

k=κ1+1

Xk

∥∥∥∥∥
p

dµ

)1/p

≤ e1/p[
1 + p(p−1)/p(p + γ )

]( ∞∑
n=1

αnAn(logn)p

)1/p

.

Since a.e. we have

sup
n≥1

∥∥∥∥∥
n∑

k=1

Xk

∥∥∥∥∥ ≤ ‖X1‖ + ‖X2‖ + · · · + ∥∥Xκ1

∥∥ + sup
n>κ1

∥∥∥∥∥
n∑

k=κ1+1

Xk

∥∥∥∥∥,
we have (∫

sup
n≥1

∥∥∥∥∥
n∑

k=1

Xk

∥∥∥∥∥
p

dµ

)1/p

≤ Aκ1

(
α1 + · · · + ακ1

)

+ e1/p[
1 + p(p−1)/p(p + γ )

]( ∞∑
n=1

αnAn(logn)p

)1/p

.

So, we obtain the maximal inequality. �
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REMARKS. 1. Theorem 4.1 uses techniques of Theorem 2.4 in [8]. In [8] the
theorem was obtained without the condition An ≤ Cnγ (which is not restrictive in
our applications), but under the assumption

∑∞
n=1 A2nαn(logn)p .

2. If (7) holds for {Am} bounded, then the condition
∑∞

n=1 αn < ∞ is not suf-
ficient in general for the a.e. convergence (see Menchoff’s example [25], Theo-
rem 3).

THEOREM 4.2. Let {Xn} ⊂ Lp(�,µ;B), with 1 < p < ∞. Let {αn} be a se-
quence of nonnegative numbers. Assume there exists a positive nondecreasing un-
bounded sequence {An}, with A1 ≥ 1, and some positive constant q ≥ 1, such that
for every m > n ≥ 0 we have

E

[
max

n<l≤m

∥∥∥∥∥
l∑

k=n+1

Xk

∥∥∥∥∥
p]

≤ Am

(
m∑

k=n+1

αk

)q

.(8)

If the series

∞∑
n=1

2n/p

( ∑
{k : 2n≤Ak≤2n+1}

αk

)q/p

,

or in particular

∞∑
n=2

(
∑

{k : 2Ak ≥n} αk)
q/p

n(logn)1−1/p

converges, then the series
∑∞

n=1 Xn converges almost everywhere and
in Lp(�,µ;B). Furthermore, we have∥∥∥∥∥sup

n≥1

∥∥∥∥∥
n∑

k=1

Xk

∥∥∥∥∥
∥∥∥∥∥
p

≤ 2
∞∑

n=1

2n/p

( ∑
{k : Ak≥2n}

αk

)s/p

.

PROOF. Define two sequences {κn} and {ln} by induction. Let κ1 = l1 = 0.
Let ln+1 be the integer such that 2ln+1 ≤ Aκn+1 < 2ln+1+1. Then define κn+1 =
max{m ≥ κn + 1 : 2ln+1 ≤ Am < 2ln+1+1}. Clearly, κn is finite by the unboundness
and nondecreasingness of {An}; moreover, it is increasing. In particular, by as-
sumption on A1, we have l2 = 0. Now, for every n ≥ 1 we have(∫

max
κn<m≤κn+1

∥∥∥∥∥
m∑

k=κn+1

Xk

∥∥∥∥∥
p

dµ

)1/p

≤ A1/p
κn+1

( κn+1∑
k=κn+1

αk

)q/p

≤ 2(ln+1+1)/p

( ∑
2ln+1≤Ak≤2ln+1+1

αk

)q/p

.
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Hence,

∞∑
n=1

∥∥∥∥∥ max
κn<m≤κn+1

∥∥∥∥∥
m∑

k=κn+1

Xk

∥∥∥∥∥
∥∥∥∥∥
p

≤ 2
∞∑

n=0

2n/p

( ∑
2n≤Ak≤2n+1

αk

)q/p

.

This proves the a.e. convergence.
Let κn < m ≤ κn+1. We have∥∥∥∥∥

m∑
k=1

Xk

∥∥∥∥∥ ≤
n−1∑
l=1

∥∥∥∥∥
κl+1∑
κl+1

Xk

∥∥∥∥∥ + max
κn+1≤l≤κn+1

∥∥∥∥∥
l∑

k=κn+1

Xk

∥∥∥∥∥.
The maximal inequality then follows from the previous computations. �

REMARKS. 1. For q > 1, using remarks 1 and 2 after Proposition 2.6, we
could assume the following weaker condition instead of (8):∥∥∥∥∥

m∑
k=n+1

Xk

∥∥∥∥∥
p

p

≤ Am

(
m∑

k=n+1

αk

)q

for every m > n ≥ 0.(9)

2. Clearly, µ(supj≥1 ‖∑n+j
k=n+1 Xk‖ ≥ ε)

n→ 0 is equivalent to the µ-a.e. conver-
gence of

∑∞
n=1 Xn. Hence, if for some 1 ≤ p < ∞ and 1 ≤ q < ∞, (8) holds for

every m > n ≥ 0 with {An} bounded, then the condition
∑∞

n=1 αn < ∞ is sufficient
for the convergence result of the above theorem. Moreover, we have

E

[
sup
n≥1

∥∥∥∥∥
n∑

k=1

Xk

∥∥∥∥∥
p]

≤ sup
n≥1

{An}
( ∞∑

k=1

αk

)q

.(10)

3. Using remarks 1 and 2 above, the condition
∑∞

n=1 αn < ∞ is sufficient for the
convergence result of the above theorem under (9), with q > 1 and {Am} bounded.
In that case (10) holds by multiplying the right-hand side by factor (1− 1

2(q−1)/p )−p

(see also [8], Theorem 2.5).

4.1. Convergence of random almost periodic series. Let {Xn} ⊂ L∞(�,µ)

be a sequence of complex centered random variables. In the following we will use
the notation:

αi =
i∑

k=1

‖XkE(Xi |Fk)‖∞ for every i ≥ 1.

THEOREM 4.3. Let {Xn} ⊂ L∞(�,µ) be a sequence of complex centered
random variables, and let 2 ≤ p < ∞. Let {fn} be a {σn}-system on (K, ν). If the
series

∞∑
n=2

(
∑

{k : 2(log(σk+1))p/2≥n} αk)
1/2

n(logn)1−1/p
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converges, then for a.e. ω ∈ � the series
∑∞

n=1 Xn(ω)fk converges
uniformly on K . Furthermore, it converges in Lp(�,µ;C(K)), and
supn≥1 maxx∈K |∑n

k=1 Xkfk(x)| is in Lp(µ).

PROOF. Put B = C(K). Using the second part of Theorem 3.1, up to appro-
priate constant, we obtain (8) with p ≥ 2, q = p/2 ≥ 1, An = Cp(log(σn + 1))p/2

and {αi} as defined above. Theorem 4.2 yields the results. �

THEOREM 4.4. Let {Xn} ⊂ L∞(�,µ) be a martingale difference sequence.
Let λn = (λ

(1)
n , . . . , λ

(s)
n ) be a sequence in Rs , and put γk = k ∨ max1≤i≤s |λ(i)

k |∗.
If the series

∞∑
n=2

(
∑

{k : γk≥n} ‖Xk‖2∞)1/2

n(logn)1/2

converges, then for every T ≥ 1 and for almost every ω ∈ �, the series∑∞
n=1 Xn(ω)ei〈λn,t〉 converges uniformly in t ∈ [−T ,T ]s . Furthermore, it con-

verges in L2(�,µ;C([−T ,T ]s)), and

sup
n≥1

max
t∈[−T ,T ]s

∣∣∣∣∣
n∑

k=1

Xke
i〈λn,t〉

∣∣∣∣∣
is in L2(µ).

PROOF. Let K = [−T ,T ]s , and let ν be the Lebesgue measure on Rs . By
Example 2.1 the sequence {ei〈λn,t〉} forms a {(n ∨ max1≤i≤s |λ(i)

n |∗)2s}-system
on (K, ν). With the above settings, Theorem 4.3 with p = 2 yields the assertions
of the theorem if

∞∑
n=2

(
∑

{k : γk≥n1/2s} ‖Xk‖2∞)1/2

n(logn)1/2 < ∞.

By a change of variable in the series above we obtain the condition of the theo-
rem. �

THEOREM 4.5. Let {Xn} ⊂ L2(�,µ) be a sequence of centered independent
random variables. Let λn = (λ

(1)
n , . . . , λ

(s)
n ) be a sequence of vectors in Rs , and

put γk = k ∨ max1≤i≤s |λ(i)
k |∗. If the series

∞∑
n=2

(
∑

{k : γk≥n} ‖Xk‖2
2)

1/2

n(logn)1/2(11)
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converges, then for every T ≥ 1 and for almost every ω ∈ �, the series∑∞
n=1 Xn(ω)ei〈λn,t〉 converges uniformly in t ∈ [−T ,T ]s . Furthermore, it con-

verges in L2(�,µ;C([−T ,T ]s)) and

sup
n≥1

max
t∈[−T ,T ]s

∣∣∣∣∣
n∑

k=1

Xke
i〈λn,t〉

∣∣∣∣∣
is in L2(µ).

PROOF. By Example 2.1 the sequence {ei〈λn,t〉} forms a {(n ∨ max1≤i≤s

|λ(i)
n |∗)2s}-system on ([−T ,T ], ν). Using Colorally 3.3 we obtain inequality (8)

with p = 2, q = 1 and An = 2sCp logγn. Theorem 4.2 yields the result, as in
Theorem 4.4. �

REMARKS. 1. The a.e. uniform convergence of multidimensional almost peri-
odic series with square integrable symmetric independent coefficients was consid-
ered in Marcus and Pisier [23], Chapter VII, Section 1. Their proofs use the metric
entropy method. Using the metric entropy method one can obtain a more precise
condition than (11). Our condition is the same sufficient condition as it is implicit
in [23], Chapter VII, Lemma 1.1. In any case, Theorem 4.5 completely recovers
Theorem 5.1.5 of [34].

2. In [24] the a.e. uniform convergence of multidimensional almost periodic
series with i.i.d. p-stable coefficients was considered. As it is implicit in [24], Re-
mark 4.4 (use [23], Chapter VII, Lemma 1.1 and then [24], Theorem B) the result
is valid for symmetric i.i.d. coefficients [not necessarily p-stable or in Lp(µ)].

3. Extending the results beyond the scope of symmetric random variable is pos-
sible, under various conditions, by a symmetrization procedure (see, e.g., [5]).

4. Let 1 < p < 2, and let {Xn} ⊂ Lp(µ) be centered independent random vari-
ables. We could use our previous results in order to obtain a.e. uniform conver-
gence also in this case (i.e., for p < 2). In that case our derived sufficient condition
is not as good as given in [24], Remark 4.4.

5. Applications to ergodic theory. Let (Y,�,π) be a probability space,
and let V1, . . . , Vs be pairwise commuting isometries on L2(Y,π). For every
j := (j (1), . . . , j (s)) ∈ Ns and f ∈ H := L2(Y,π), define the action

V jf = V
j(1)

1 ◦ · · · ◦ V
j(s)

s f . Using the dilation theorem for pairwise commut-
ing family of isometries (see, e.g., [28], Chapter I, Proposition 6.2), there exist
a Hilbert space H ′ ⊃ H and a family U1, . . . ,Us of pairwise commuting unitary
operators on H ′, such that for every j ∈ Ns and f ∈ H we have V jf = PHU jf ,

where PH is the orthogonal projection of H ′ onto H and U jf = U
j(1)

1 ◦ · · ·
◦ U

j(s)

s f . By the spectral theorem for the unitary representation {Uk : k ∈
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Zs} (e.g., see [31], Chapter X, Section 140), there is a positive measure µf

on [−π,π)s , called the spectral measure of f , such that for any k ∈ Zs we have

〈Ukf,f 〉 =
∫
[−π,π)s

ei〈k,t〉 dµf (t),

where 〈k, t〉 denotes the inner product in Rs .
Let {αk} be a sequence of complex numbers, and let {jk} ⊂ Ns . Using the dila-

tion theorem and the spectral theorem, for every n we have∥∥∥∥∥
n∑

k=1

αkV
jkf

∥∥∥∥∥
2

=
∥∥∥∥∥PH

(
n∑

k=1

αkU
jkf

)∥∥∥∥∥
2

≤ ‖f ‖2 max
t∈[−π,π)s

∣∣∣∣∣
n∑

k=1

αke
i〈jk,t〉

∣∣∣∣∣.(12)

REMARKS. 1. Let T1 and T2 be commuting contractions on H . One can
consider Ando’s unitary dilation for pairs of contractions ([28], Chapter I, The-
orem 6.4). Specifically, there exist two commuting unitary operators U1 and U2,
acting on H ′ ⊃ H , such that for every natural number n and m we have T n

1 T m
2 f =

PHUn
1 Um

2 f . In the case of two commuting contractions, (12) is still true when
Vi are replaced by Ti .

2. Parrott [30] gave an example (see also [28], Chapter I, Section 3) which
showed that the dilation theorem is no longer true in the case of more than
two commuting contractions (for an analogue for commuting Markov operators
see [15]).

3. For more than two commuting contractions, additional conditions should be
added in order to obtain a regular dilation (see [28], Chapter I, Theorem 9.1 or a
theorem of Brehmer [27], Chapter 6). A simple condition that one can assume on
a family of contractions is the pairwise doubly permutability (where doubly stands
for commuting also with the conjugate); see [28], Chapter I, Proposition 9.2.

NOTATION. For j = (j (1), . . . , j (s)) ∈ Zd , put |j| = max{|j (1)|, . . . , |j (s)|}. We
recall our notation a ∨ b = max{a, b}, and c∗

m = max1≤n≤m cn for a positive se-
quence {cn}. If jn = (j

(1)
n , . . . , j

(s)
n ) is a sequence of vectors, then by our notation

we have

|jm|∗ = max
1≤i≤s

∣∣j (i)
m

∣∣∗ = max
1≤n≤m

max
1≤i≤s

∣∣j (i)
n

∣∣.
THEOREM 5.1. Let {Xn} ⊂ L2(�,µ) be a sequence of centered indepen-

dent random variables, and let {jn} ⊂ Ns . If the series
∑∞

n=1 ‖Xn‖2
2 log(n ∨

|jn|∗)(logn)2 converges, then there exists a set of full measure �∗ ⊂ �, such that
for every ω ∈ �∗, for every commuting family of isometries V1, . . . , Vs on a space
L2(Y,π) and any f ∈ L2(π), the series

∞∑
n=1

Xn(ω)V jnf converges π -a.e.



RANDOM TRIGONOMETRIC POLYNOMIALS 69

Furthermore, for every ω ∈ �∗ there exists a constant Kω < ∞, independent of f ,
such that ∥∥∥∥∥sup

n≥1

∣∣∣∣∣
n∑

k=1

Xk(ω)V jkf

∣∣∣∣∣
∥∥∥∥∥

2

≤ Kω‖f ‖2.

PROOF. We construct from {Xn} two sequences of random variables in the
following way:

Yn =
{

Xn, if |jn|∗ ≤ en,

0, otherwise,

and

Zn =
{

Xn, if |jn|∗ > en,

0, otherwise.

Hence Xn = Yn + Zn.
Let {nk} be the sequence of integers for which |jnk

|∗ > enk , that is, the sequence
for which Znk

is not null. Notice that for every ω ∈ �, we have

∞∑
n=2

|Zn(ω)| ≤
( ∞∑

k=1

∣∣Znk
(ω)

∣∣2 log
(
nk ∨ ∣∣jnk

∣∣∗)(lognk)
2

)1/2

×
( ∞∑

k=1

1

log(nk ∨ |jnk
|∗)(lognk)2

)1/2

(13)

≤
( ∞∑

n=2

|Xn(ω)|2 log(n ∨ |jn|∗)(logn)2

)1/2

×
( ∞∑

n=2

1

n(logn)2

)1/2

.

By our assumption and the theorem of Beppo Levi, for µ a.e. ω ∈ � we have

∞∑
n=1

(|Xn(ω)|2 + ‖Xn‖2
2
)

log(n ∨ |jn|∗)(logn)2 < ∞.(1)

Hence, by (13) and (1), it remains only to consider the series
∑∞

n=1 YnV
jnf .

Since Yn is null when |jn|∗ > en, we may and do assume from now on (modi-
fying {jn} when necessary) that for every n ≥ 1, we have |jn|∗ ≤ en.
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On the other hand, by the second assertion of Theorem 3.8, for µ-a.e. ω ∈ �

there exists a constant Cω, such that for every m > n ≥ 1,

sup
t∈[−π,π)s

∣∣∣∣∣
m∑

k=n+1

Yk(ω)ei〈jk,t〉
∣∣∣∣∣
2

(7)

≤ Cω log(m ∨ |jm|∗ + 1)

m∑
k=n+1

|Yk(ω)|2 + ‖Yk‖2
2.

Let �∗ be the set of ω for which (1) and (7) hold, and fix ω ∈ �∗.
Using (7) together with the spectral theorem [see (12)], we have for every m >

n ≥ 0,∥∥∥∥∥
m∑

k=n+1

Yk(ω)V jkf

∥∥∥∥∥
2

2

≤ ‖f ‖2
2Cω log(m ∨ |jm|∗ + 1)

m∑
k=n+1

|Yk(ω)|2 + ‖Yk‖2
2.

Hence, the condition in (7) is satisfied with αn = |Yn(ω)|2 + ‖Yn‖2
2 and A

(ω)
n =

‖f ‖2
2Cω log(n ∨ |jn|∗ + 1). Since |jn|∗ ≤ en we are allowed to use Theorem 4.1.

Using (1), Theorem 4.1 yields the two assertions of the theorem for the se-
quence {Yn}. �

THEOREM 5.2. Let {Xn} ⊂ L2(�,µ) be a sequence of centered independent
random variables, and let {pn} and {qn} be sequences of natural numbers. If the
series

∞∑
n=1

‖Xn‖2
2 log(n ∨ p∗

n ∨ q∗
n)(logn)2

converges, then there exists a set of full measure �∗ ⊂ �, such that for every
ω ∈ �∗, for every commuting contraction T1 and T2 on a space L2(Y,π) and
any f ∈ L2(π), the series

∞∑
n=1

Xn(ω)T
pn

1 T
qn

2 f converges π -a.e.

Furthermore, for every ω ∈ �∗ there exists a constant Kω < ∞, independent of f ,
such that ∥∥∥∥∥sup

n≥1

∣∣∣∣∣
n∑

k=1

Xk(ω)T
pn

1 T
qn

2 f

∣∣∣∣∣
∥∥∥∥∥

2

≤ Kω‖f ‖2.

PROOF. As we mentioned in the remarks at the beginning of the section, we
can use the unitary dilation in the case of two commuting contractions. In this case
also (12) is still true. We proceed as in Theorem 5.1. �
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REMARKS. 1. Theorem 5.2 extends the part of [8], Theorem 4.2, related to
square integrable {Xn}, to the case of two commuting contractions. Moreover, the
convergence is along certain subsequences.

2. Using Theorems 3.8 and 4.1, we could consider the case {Xn} ⊂ Lp(�,µ),
1 < p < 2. It turns out that Theorem 4.1 does not lead to the best result that one
can obtain. In addition to Theorem 3.8 another tool seems to be needed. It will be
done in the forthcoming paper [6].

Let τ1, . . . , τs be pairwise commuting measure-preserving transformations of a
probability space (Y,�,π). For any j ∈ Ns and every �-measurable f , we define

T jf = f ◦ τ
j(1)

1 ◦ · · · ◦ τ
j(s)

s . By assumptions, for any j ∈ Ns the operator T j is an
isometry of Lq(Y,π) for any 1 ≤ q < ∞. Moreover, for fixed 1 ≤ q < ∞ the ac-
tion {T j : j ∈ Ns} on Lq(Y,π) is an isometric representation of the semigroup Ns .

As in [33] (and [7]) we want to use Stein’s complex interpolation in order to
obtain a.e. convergence results, under the assumptions of Theorem 5.1, also for
f ∈ Lq(Y,π), 1 < q < 2.

THEOREM 5.3. Let {Xn} ⊂ L2(�,µ) be a sequence of centered indepen-
dent random variables, and let {jn} ⊂ Ns . If the series

∑∞
n=1 ‖Xn‖2

2 log(n ∨
|jn|∗)(logn)2 converges, then there exists a set of full measure �∗ ⊂ �, such that
for every ω ∈ �∗, for every commuting family of measure-preserving transforma-
tions τ1, . . . , τs on (Y,π) and any f ∈ Lq(Y,π), 1 < q ≤ 2, the series

∞∑
n=1

Xn(ω)T jnf

n(2−q)/2q
converges π -a.e.

Furthermore, for every ω ∈ �∗ there exists a constant Kω < ∞, independent of f ,
such that ∥∥∥∥∥sup

n≥1

∣∣∣∣∣
n∑

k=1

Xk(ω)T jkf

n(2−q)/2q

∣∣∣∣∣
∥∥∥∥∥
q

≤ Kω‖f ‖q.

PROOF. As noted in the proof of Theorem 5.1, we may and do assume that
|jn|∗ ≤ en for every n ≥ 1.

By the Beppo Levi theorem and by our assumptions, for µ-a.e. ω ∈ � we have

∞∑
n=1

(|Xn(ω)|2 + ‖Xn‖2
2
)

log(n ∨ |jn|∗)(logn)2 < ∞.(1)

By the second assertion in Theorem 3.8, for µ-a.e. ω ∈ �, there exists Cω such



72 G. COHEN AND C. CUNY

that, for every m > n ≥ 1 and every K ≥ 1, we have

max
(η,t)∈[−K,K]×[−K,K]s

∣∣∣∣∣
m∑

k=n+1

Xk(ω)e−i(1/2)η logkei〈jk,t〉
∣∣∣∣∣
2

≤ Cω log(K + 1) log
(
m ∨ 1

2 |jm|∗ logm + 1
) m∑
k=n+1

|Xk(ω)|2 + ‖Xk‖2
2.

In particular, for every η ∈ R we have

max
t∈[−π,π)s

∣∣∣∣∣
m∑

k=n+1

Xk(ω)e−i(1/2)η logkei〈jk,t〉
∣∣∣∣∣
2

(7)

≤ 2Cω log(|η| + π) log(m ∨ |jm|∗ + 1)

m∑
k=n+1

|Xk(ω)|2 + ‖Xk‖2
2.

Let �∗ be the set for which (1) and (7) hold, and fix ω ∈ �∗. Hence, for any
f ∈ L2(Y,π) we deduce from (7) and (12), that

∥∥∥∥∥
m∑

k=n+1

Xk(ω)e−i(1/2)η logkT jkf

∥∥∥∥∥
2

2
(14)

≤ 2Cω‖f ‖2
2 log(|η| + π) log(m ∨ |jm|∗ + 1)

m∑
k=n+1

|Xk(ω)|2 + ‖Xk‖2
2.

For any complex ζ = ξ + iη with 0 ≤ ξ ≤ 1 put �n,ζ (T ) := ∑n
k=1 Xk(ω) ×

k−(1/2)ζ T jk . Using (1) and (14), we apply Theorem 4.1 with αn = |Xn(ω)|2 +
‖Xn‖2

2 and An = 2Cω‖f ‖2
2 log(|η| + π) log(n ∨ |jn|∗ + 1) in order to obtain

∥∥∥∥sup
n≥1

|�n,iη(T )f |
∥∥∥∥

2
≤ C1

√
log(|η| + π)‖f ‖2,

for some C1 > 0, which does not depend on η or f . On the other hand we have

‖ sup
n≥1

|�n,1+iη(T )f |‖1

≤ ‖f ‖1

( ∞∑
n=1

|Xn|22 log(n ∨ |jn|∗)(logn)2

)1/2

(15)

×
( ∞∑

n=1

1

n log(n ∨ |jn|∗)(logn)2

)1/2

.
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For a subset A ⊂ Y let MA be the operator of multiplication by 1A. For any
bounded integer-valued function I ≥ 1 defined on Y we have linear operators

�I,ζ (T ) =
max I∑
j=1

M{I=j}
j∑

k=1

Xk(ω)k−(1/2)ζ T jk .

Hence for f ∈ L1(Y,π) and y ∈ Y we have

�I,ζ (T )f (y) =
I (y)∑
k=1

Xk(ω)k−(1/2)ζ T jkf (y),

so |�I,ζ (T )f (y)| ≤ supn≥1 |∑n
k=1 Xk(ω)k−(1/2)ζ T jkf (y)|. For f1 and f2 simple

functions on Y it is easy to check that �(ζ) := ∫
�I,ζ (T )f1 · f2 dπ is continuous

in the strip 0 ≤ ξ ≤ 1 and analytic in its interior.
Our previous estimates yield∥∥|�I,iη(T )f |∥∥2 ≤ C1‖f ‖2

√
log(|η| + π), f ∈ L2(π),∥∥|�I,1+iη(T )f |∥∥1 ≤ C2‖f ‖1, f ∈ L1(π).

Stein’s interpolation ([38], Theorem XII.1.39) yields that for 1 ≤ q ≤ 2 we have,
with t = (2 − q)/q ,∥∥|�I,t (T )f |∥∥q ≤ C1,2,q‖f ‖q, f ∈ Lq(π).

Note that the constant C1,2,q depends only on C1, C2 and q , and not on the choice
of I or f . Keeping q fixed and taking f ∈ Lq(π), we define IN(y) as the first
integer j for which∣∣∣∣∣

j∑
k=1

Xk(ω)k−t/2T jkf (y)

∣∣∣∣∣ = max
1≤n≤N

∣∣∣∣∣
n∑

k=1

Xk(ω)k−t/2T jkf (y)

∣∣∣∣∣
and obtain

lim
N→∞

∥∥∥∥∥ max
1≤n≤N

∣∣∣∣∣
n∑

k=1

Xk(ω)k−(2−q)/(2q)T jkf

∣∣∣∣∣
∥∥∥∥∥
q

= lim
N→∞

∥∥|�IN,t (T )f |∥∥q ≤ C1,2,q‖f ‖q.

This yields the Lq(π)-integrability of the maximal function. Furthermore, it yields
that supn≥1 |∑n

k=1 Xk(ω)k−(2−q)/(2q)T jkf | < ∞ π -a.e. for any f ∈ Lq(π). Note
that �∗ is a subset of the set �∗ which was defined in Theorem 5.1. So, for
f ∈ L2(π) the series

∑∞
n=1 Xn(ω)T jnf converges π -a.e.; hence also, by Abel’s

summation by parts,
∑∞

n=1 Xn(ω)n−(2−q)/(2q)T jnf converges π -a.e. Since L2
is dense in Lq , the Banach principle yields that for any f ∈ Lq(π) the series∑∞

n=1 Xn(ω)n−(2−q)/(2q)T jnf converges π -a.e. �
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REMARK. In (15) we could sharpen the estimation in order to obtain a slightly
better rate in the normalization n(2−q)/(2q) that appears in Theorems 5.3 and 5.4
below.

Recall that a Dunford–Schwartz operator on L1(Y,π) is a contraction T which
is also a contraction of L∞(Y,π), and therefore is also a contraction of each
Lq(Y,π), 1 < q < ∞, by the Riesz–Thorin theorem (for a simple proof for
Markov operators, see [21], page 65). Clearly, the operator T defined in the pre-
vious theorem is a special kind of Dunford–Schwartz operator.

THEOREM 5.4. Let {Xn} ⊂ L2(�,µ) be a sequence of centered independent
random variables, and let {pn} and {qn} be sequences of natural numbers. If the
series

∞∑
n=1

‖Xn‖2
2 log(n ∨ p∗

n ∨ q∗
n)(logn)2

converges, then there exists a set of full measure �∗ ⊂ �, such that for every
ω ∈ �∗, for every commuting Dunford–Schwartz operator T1 and T2 on a
space L1(Y,π) and any f ∈ Lq(Y,π), 1 < q ≤ 2, the series

∞∑
n=1

Xn(ω)T
pn

1 T
qn

2 f

n(2−q)/(2q)
converges π -a.e.

Furthermore, for every ω ∈ �∗ there exists a constant Kω < ∞, independent of f ,
such that ∥∥∥∥∥sup

n≥1

∣∣∣∣∣
n∑

k=1

Xk(ω)T
pn

1 T
qn

2 f

n(2−q)/(2q)

∣∣∣∣∣
∥∥∥∥∥
q

≤ Kω‖f ‖q.

PROOF. In order to apply Stein’s interpolation theorem in Theorem 5.3, it was
needed that the operators involved there are Dunford–Schwartz. Since the proof of
Theorem 5.3 uses Theorem 5.1, the failure of the dilation theorem for more than
two commuting contractions restricts the present theorem to the case of only two
commuting Dunford–Schwartz operators. �

6. On the Wiener–Wintner property. In a series of papers (see [2], the
book [3] and the references therein), Assani introduced the concepts of Wiener–
Wintner functions and of Wiener–Wintner (dynamical) systems. These families
are connected to several deep theorems of Bourgain (e.g., the return times theo-
rem and the double recurrent theorem). We show that the estimates obtained for
random trigonometric polynomials allow one to deduce the Wiener–Wintner prop-
erty for functions (on a dynamical system), which satisfy some appropriate mixing
conditions.

Let us recall the notion of Wiener–Wintner functions.
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DEFINITION 6.1. Let (�,F ,µ, θ) be a dynamical system. For 0 < α < 1,
a function f is a WW function of power type α in Lp(�,µ), 1 ≤ p < ∞, if there
exists a constant Cf > 0 such that∥∥∥∥∥ max

t∈[−π,π)

∣∣∣∣∣1

n

n∑
k=1

eiktf ◦ θk

∣∣∣∣∣
∥∥∥∥∥
p

≤ Cf

nα
for every n ≥ 1.

Now, we have the following corollary of Theorem 3.1.

PROPOSITION 6.1. Let (�,�,µ, θ) be a dynamical system, and put Fk =
σ {f, . . . , f ◦ θk}. For every p ≥ 1, there exists Cp > 0, such that for any
f ∈ L∞(�,µ),∥∥∥∥∥ max

t∈[−π,π)

∣∣∣∣∣1

n

n∑
k=1

eiktf ◦ θk

∣∣∣∣∣
∥∥∥∥∥
p

(16)

≤ Cp

√
logn

n

(
n‖f ‖2∞ +

n∑
i=2

i−1∑
k=1

‖f ◦ θkE[f ◦ θi |Fk]‖∞
)1/2

.

In particular, if {f ◦ θn} is a martingale difference sequence, then for every 0 <

α < 1/2 the function f is a WW function of order α in all Lp(�,µ) spaces.

Proposition 6.1 requires uniform estimation of the correlation coefficients,
which may look too restrictive.

It is possible to use Theorem 3.4, in order to obtain:

PROPOSITION 6.2. Let (�,�,µ, θ) be a dynamical system. For every p > 2,
there exists Cp > 0, such that for every f ∈ Lp(�,µ)∥∥∥∥∥ max

t∈[−π,π)

∣∣∣∣∣1

n

n∑
k=1

eiktf ◦ θk

∣∣∣∣∣
∥∥∥∥∥
p

≤ Cp

n1−1/p

(
n‖f ‖2

p +
n∑

i=2

i−1∑
k=1

‖f ◦ θkE[f ◦ θi |Fk]‖p/2

)1/2

.

In particular, if {f ◦ θn} generates a martingale difference sequence, then f is a
WW function of power type α = 1 − 1/p − 1/2 in Lp(�,µ).

Clearly, control of the correlation coefficients involved in (16) (or in Proposi-
tion 6.2) yields the Wiener–Wintner property. Such a control is possible in many
situations. See, for example, the discussion in page 9 of [13]. A typical exam-
ple is provided by a Markov chain whose transition probability induces a quasi-
compact operator (see [19] and the references therein). For results without the
quasi-compactness assumption one can refer to [9] or [10].

We now give an application of Proposition 6.1 to K-automorphisms.
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DEFINITION 6.2 ([36]). Let (�,F ,µ) be a probability space, and let θ be an
invertible measure-preserving point transformation on �. The dynamical system
(�,F ,µ, θ) is called a K-automorphism if there exists a sub-σ -algebra C, such
that

θ−1C ⊂ C; ⋂
n≥1

θ−nC = {∅,�}; ⋃
n≥1

θnC is dense in F .

PROPOSITION 6.3. Let (�,F ,µ, θ) be a K-automorphism, and let 1 ≤
p < ∞. There exists a set of functions, which is dense in L0

p(µ) = {f ∈
Lp(µ) : E(f ) = 0}, such that for every f in this set, there exists a constant Cf,p

such that∥∥∥∥∥ max
t∈[−π,π ]

∣∣∣∣∣
n∑

k=1

eintf ◦ θn

∣∣∣∣∣
∥∥∥∥∥
p

≤ Cf,p

√
n log(n + 1) for every n ≥ 1.(17)

PROOF. Let C be the sub-σ -algebra related to the K-automorphism
(�,F ,µ, θ). By Definition 6.2 the algebra

⋃
n≥1 θnC is dense in F , hence (by

basic measure theory) the set of functions c.l.m.{1C − µ(C) :C ∈ ⋃
n≥1 θnC}

is dense in each L0
p for the norm ‖ · ‖p . By the second requirement in Defini-

tion 6.2, as k goes to infinity, the martingale E(1C |θ−kC) converges a.e. to µ(C)

(see [14], Chapter VII, Theorem 4.3). So by the bounded convergence theorem,
1C − E(1C |θ−kC) converges in Lp to 1C − µ(C). Hence, the set of functions
{1C − E(1C |θ−kC) :k ≥ 1,C ∈ θ−kC} is dense in L0

p for the norm ‖ · ‖p , and it is
sufficient to prove that (17) holds for functions of this type.

Let k ≥ 1, and let C ∈ θ−kC. Put f = 1C − E(1C |θ−kC). Since
0 ≤ E(1C |θ−kC) ≤ 1 a.e. we have |f | ≤ 1 a.e. Since θ−jC ⊂ θ−kC for every
j ≥ k, we have

E(f |θ−jC) = E(1C |θ−jC) − E
(
E(1C |θ−kC)|θ−jC

) = 0(1)

for every j ≥ k.

CLAIM. Let � be a sub-σ -algebra of F , and let η be an invertible measure-
preserving transformation. Then for any integrable random variable Z, we have
E(Z ◦ η|�) = [E(Z|η�)] ◦ η a.e.

PROOF. For any B ∈ � we have∫
B

E(Z ◦ η|�)dµ =
∫

1B · Z ◦ η dµ =
∫

(1ηB · Z) ◦ η dµ

=
∫

1ηB · Z dµ =
∫
ηB

E(Z|η�)dµ

=
∫

[1ηB · E(Z|η�)] ◦ η dµ =
∫
B
[E(Z|η�)] ◦ η dµ.



RANDOM TRIGONOMETRIC POLYNOMIALS 77

Since [E(Z|η�)] ◦ η is �-measurable, the result follows from the uniqueness of
the conditional expectation. �

For every 1 ≤ i ≤ n, put Xi = f ◦ θn+1−i , and for i > n put Xi ≡ 0. Since
|f | ≤ 1, also |Xi | ≤ 1. As usual, for any l ≥ 1 put Fl = σ(X1, . . . ,Xl). Since f is
C-measurable, Xi is θ−(n+1−i)C-measurable, so Fl ⊂ θ−(n+1−l)C. Let 1 ≤ j ≤ l

with l − j ≥ k. Using Claim and equality (1) we have

E(Xl|Fj ) = E
(
E
(
f ◦ θn+1−l

∣∣θ−(n+1−j)C
)∣∣Fj

)
= E

([
E
(
f |θ−(l−j)C

)] ◦ θn+1−l|Fj

) = 0.

With our previous notation, we obtain

R0,n =
n∑

i=1

‖Xi‖2∞ +
n∑

i=1

i∑
j=1

‖Xj E(Xi |Fj )‖∞

=
n∑

i=1

‖Xi‖2∞ +
n∑

j=1

n∑
i=j

‖Xj E(Xi |Fj )‖∞ ≤ n + nk.

By Proposition 6.1, there exists some universal constant Cp , such that∥∥∥∥∥ max
t∈[−π,π ]

∣∣∣∣∣
n∑

j=1

eij tXj

∣∣∣∣∣
∥∥∥∥∥
p

≤ Cp

√
kn log(n + 1).

Then it follows easily that∥∥∥∥∥ max
t∈[−π,π ]

∣∣∣∣∣
n∑

j=1

eij tf ◦ θj

∣∣∣∣∣
∥∥∥∥∥
p

≤ √
kCp

√
n log(n + 1),

where Cf,p = √
kCp . �

REMARKS. 1. The estimate (17) considerably improves the estimate obtained
in the proof of Theorem 4 in [2]. Similarly, our results can be applied to improve
Theorems 6 and 7 of [2].

2. The dense set of functions appearing in Proposition 6.3 is the same as the
one considered in [2].

3. The constant Cf,p may be chosen uniformly for {f ◦ θ l : l ∈ Z}. Hence the
estimate (17) can be obtained along blocks, and we may apply Proposition 2.6 (see
also the remarks after it) in order to deduce uniform convergence of the one-sided
rotated Hilbert transform, even with rate.

4. As noticed by Assani, Proposition 6.3 gives an example of a Wiener–Wintner
dynamical system of all powers 0 < α < 1/2.
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