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LARGE DEVIATIONS AND RUIN PROBABILITIES
FOR SOLUTIONS TO STOCHASTIC
RECURRENCE EQUATIONS WITH

HEAVY-TAILED INNOVATIONS

BY DIMITRIOS G. KONSTANTINIDES AND THOMAS MIKOSCH1

University of the Aegean and University of Copenhagen

In this paper we consider the stochastic recurrence equation Yt =
AtYt−1 + Bt for an i.i.d. sequence of pairs (At ,Bt ) of nonnegative random
variables, where we assume that Bt is regularly varying with index κ > 0
and EAκ

t < 1. We show that the stationary solution (Yt ) to this equation has
regularly varying finite-dimensional distributions with index κ . This implies
that the partial sums Sn = Y1 + · · ·+Yn of this process are regularly varying.
In particular, the relation P(Sn > x) ∼ c1nP (Y1 > x) as x → ∞ holds
for some constant c1 > 0. For κ > 1, we also study the large deviation
probabilities P(Sn − ESn > x), x ≥ xn, for some sequence xn → ∞ whose
growth depends on the heaviness of the tail of the distribution of Y1. We
show that the relation P(Sn−ESn > x) ∼ c2nP (Y1 > x) holds uniformly for
x ≥ xn and some constant c2 > 0. Then we apply the large deviation results
to derive bounds for the ruin probability ψ(u) = P(supn≥1((Sn − ESn) −
µn) > u) for any µ > 0. We show that ψ(u) ∼ c3uP (Y1 > u)µ−1(κ − 1)−1

for some constant c3 > 0. In contrast to the case of i.i.d. regularly varying
Yt ’s, when the above results hold with c1 = c2 = c3 = 1, the constants c1, c2
and c3 are different from 1.

1. Introduction. The stochastic recurrence equation

Yt = AtYt−1 + Bt, t ∈ Z,(1.1)

and its stationary solution have attracted much attention over the last years. Here
((At ,Bt )) is an i.i.d. sequence of pairs of nonnegative random variables At and Bt .
[In what follows, we write A,B,Y, . . . , for generic elements of the stationary
sequences (At ), (Bt ), (Yt ), etc. We also write c for any positive constant whose
value is not of interest.]

Major applications of stochastic recurrence equations are in financial time series
analysis. For example, the squares of the GARCH process can be embedded in
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a stochastic recurrence equation of type (1.1); we refer to Section 8.4 in [15]
for an introduction to stochastic recurrence equations and [1] and [23] for
recent surveys on the mathematics of GARCH models, their properties and
relation with stochastic recurrence equations. The stochastic recurrence equation
approach has also proved useful for the estimation of GARCH and related models;
see [27, 37, 38]. In a financial or insurance context, the stochastic recurrence
equation (1.1) has natural interpretations. For example, Bt can be considered as
annual payment and At as a discount factor. The value Yt is then the aggregated
value of past discounted payments. In a life insurance context, (Yt ) is referred to
as a perpetuity; see, for example, [14]. Stochastic recurrence equations have also
been used to describe evolutions in biology; see [2] and the references therein.

It will be convenient to use the notation

�s,t =
{

As, . . . ,At , s ≤ t ,

1, s > t ,
�t = �1,t .

It is well known [5] that, under the assumptions E log+ A < ∞ and E log+ B < ∞,
(1.1) has a unique strictly stationary ergodic causal solution (Yt ) [i.e., Yt is a
function only of (As,Bs), s ≤ t] if and only if

−∞ ≤ E logA < 0.(1.2)

In what follows, we always assume these conditions to be satisfied. The stationary
solution has representation

Yt =
t∑

i=−∞
�i+1,tBi = Bt +

t−1∑
i=−∞

�i+1,tBi, t ∈ Z.(1.3)

We say that any nonnegative random variable Z and its distribution are regularly
varying with index κ if its right tail is of the form

P(Z > x) = L(x)

xκ
, x > 0,

for some κ ≥ 0 and a slowly varying function L. A result of Kesten [21] shows that
the stationary solution to the stochastic recurrence equation (1.1) has regularly
varying distribution, under quite general conditions on A and B . We cite this
benchmark result for comparison with the results we obtain in this paper.

THEOREM 1.1 (Kesten [21]). Assume that the following conditions hold:

• For some ε > 0, EAε < 1.
• The set

{log(an · · ·a1) : n ≥ 1, an · · ·a1 > 0 and an, . . . , a1 ∈ the support of PA}
generates a dense group in R with respect to summation and the Euclidean
topology. Here PA denotes the distribution of A.
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• There exists κ0 > 0 such that

EAκ0 ≥ 1,(1.4)

and E(Aκ0 log+ A) < ∞.

Then the following statements hold:

1. There exists a unique solution κ ∈ (0, κ0] to the equation

EAκ = 1.

2. If EBκ < ∞, there exists a unique strictly stationary ergodic causal solution
(Yt ) to the stochastic recurrence equation (1.1) with representation (1.3).

3. If EBκ < ∞, then Y is regularly varying with index κ > 0. In particular, there
exists c > 0 such that

P(Y > x) ∼ cx−κ , x → ∞.

Condition (1.4) is crucial. Goldie and Grübel [17] show that P(Y > x) can
decay exponentially fast to zero if (1.4) is not satisfied. Notice that (1.4) ensures
that the support of A is spread out sufficiently far.

The set-up of this paper is different from the one in Kesten’s Theorem 1.1. The
latter result is surprising insofar that a light-tailed distribution of A (such as the
exponential or the truncated normal distribution) can cause the stationary solution
(Yt ) to (1.1) to have a marginal distribution with Pareto-like tails. In this paper we
consider the case when B is regularly varying with index κ and A has a lighter
right tail than B . In this case the conditions of Kesten’s theorem are not met.
In particular, we always assume that EAκ < 1. The marginal distribution of the
stationary solution (Yt ) turns out to be regularly varying with the same index κ as
the innovations Bt .

It is the objective of this paper to study the interplay of the regular variation
of Y and the particular dependence structure of the Yt ’s with respect to the partial
sums

Sn = Y1 + · · · + Yn, n ≥ 1.

Due to (multivariate) regular variation of the finite-dimensional distributions
of (Yt ), Sn is regularly varying with index κ , and we establish the precise tail
asymptotics for P(Sn > x) for fixed n and as x → ∞. We will see that, in contrast
to i.i.d. regularly varying random variables Yt (cf. Lemma 1.3.1 in [15]), the
relation

lim
x→∞

P(Sn > x)

nP (Y > x)
= 1, n ≥ 2,
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does not hold for the stationary solution (Yt ) to (1.1), neither under the
conditions of Kesten’s theorem nor under the conditions imposed in this paper;
see Section 3.3. We will show in Proposition 3.3 that

lim
x→∞

P(Sn > x)

P (Y > x)
(1.5)

= E

(
n∑

i=1

�i

)κ

+ (1 − EAκ)

n−1∑
t=0

E

(
t∑

i=0

�i

)κ

, n ≥ 2.

A question which is closely related to (1.5) concerns the large deviations of the
partial sum process (Sn). In this case, one is interested in the asymptotic behavior
of the tail P(Sn > xn) for real sequences (xn) increasing to infinity sufficiently
fast. Classical results (see, e.g., [8, 29, 30]; cf. the surveys in Section 8.6 in [15]
and [24]) say that, for i.i.d. (Yt ) and thresholds xn → ∞, the relation

P(Sn > xn) ∼ nP (Y > xn)
(1.6)

∼ P
(
max(Y1, . . . , Yn) > xn

)
holds. For reasons of comparison, we quote a general large deviation result for
i.i.d. random variables.

THEOREM 1.2. Assume that B > 0 is regularly varying with index κ > 0.

1. ([29, 30]) Assume that κ > 2. Then

P

(
n∑

t=1

(Bt − EB) > x

)
= ��(x/

√
n
)(

1 + o(1)
)+ nP (B > x)

(
1 + o(1)

)
,

as n → ∞ and uniformly for x ≥ √
n, where �� = 1 − � is the right tail of the

standard normal distribution function �. In particular,

P

(
n∑

t=1

(Bt − EB) > x

)
= ��(x/

√
n
)(

1 + o(1)
)

uniformly for
√

n ≤ x ≤ √
an logn and a < κ − 2, and

P

(
n∑

t=1

(Bt − EB) > x

)
= nP (B > x)

(
1 + o(1)

)
uniformly for x ≥ √

an logn and a > κ − 2.
2. ([8]) Assume that κ ∈ (1,2). Then

P

(
n∑

t=1

(Bt − EB) > x

)
= nP (B > x)

(
1 + o(1)

)
,(1.7)

as n → ∞ and uniformly for x ≥ ancn, where (an) satisfies nP (B > an) ∼ 1
and (cn) is any sequence satisfying cn → ∞.
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The uniformity of these large deviation results refers to the fact that the error
bounds hold uniformly for the indicated x-regions. For example, in the case
κ ∈ (1,2), (1.7) means that

lim
n→∞ sup

x≥xn

∣∣∣∣P(
∑n

t=1(Bt − EB) > x)

nP (B > x)
− 1

∣∣∣∣= 0,(1.8)

where xn = ancn.
We will show in Theorem 4.2 that the following analog to Theorem 1.2 holds,

under the more restrictive condition that (At ) and (Bt ) are independent:

lim
n→∞ sup

x≥xn

∣∣∣∣∣P(Sn − ESn > x)

nP (Y > x)
− (1 − EAκ)E

( ∞∑
i=0

�i

)κ ∣∣∣∣∣= 0.(1.9)

The question about large deviations is closely related to the ruin probability of
the random walk (Sn). Given that EY < ∞, this is the probability

ψ(u) = P

(
sup
n≥1

[(Sn − ESn) − µn] > u

)
, u,µ > 0.

It is one of the very well studied objects of applied probability theory, starting
with classical work by Cramér in the 1930s. For i.i.d. regularly varying and, more
generally, subexponential Yt ’s, the asymptotic behavior of ψ(u) as u → ∞ was
studied by various authors; see Chapter 1 in [15]. The following benchmark result
is classical in the context of ruin for heavy-tailed distributions. We cite it here for
comparison with the results of this paper.

THEOREM 1.3. Assume that B is regularly varying with index κ > 1. Then
for any µ > 0,

P

(
sup
n≥1

(
n∑

t=1

(Bt − EB) − µn

)
> u

)
∼ 1

µ

1

κ − 1
uP (B > u), u → ∞.

In Theorem 4.9 we prove an analogous result for (Yt ):

ψ(u) ∼ 1

µ

1

κ − 1
(1 − EAκ)E

( ∞∑
i=0

�i

)κ

uP (Y > u).(1.10)

The results of this paper are derived by applications of the heavy-tailed large
deviations heuristics. In the case of i.i.d. Yt ’s, this means that a large deviation
of the random walk Sn from its mean ESn must be due to exactly one unusually
large value Yt , whereas the Ys ’s for s 	= t are small compared to Yt . We refer
to [35] for a review on these heuristics which can be exploited in the context
of various applied probability models. For dependent Yt ’s, as considered in this
paper, the large deviations heuristics has to be combined with the understanding
of the dependence structure of the random walk Sn exceeding high thresholds. In
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the proof of the ruin probability result, it turns out that the ruin probability of the
random walk (Sn) behaves very much like the ruin probability of the random walk∑n

t=1 BtCt , where Ct =∑∞
i=t �t+1,i , t ∈ Z. This is another stationary sequence,

but, under the conditions of this paper, its marginal distributions have tails less
heavy than (Bt ). Since we assume independence of (At ) and (Bt ), hence, of (Ct )

and (Bt ), in Section 4.2, it is likely that a large value of Sn is now caused by a large
value BtCt , which in turn is caused by a large value of Bt . We make this intuition
precise by showing (1.10).

The results (1.5) on the tail of Sn for fixed n, (1.9) on the large deviations of (Sn)

and (1.10) on the ruin probability of (Sn) and their analogs for i.i.d. Yt ’s illustrate
some crucial differences between the behavior of a random walk with dependent
and independent heavy-tailed step sizes far away from the origin. The constants
on the right-hand sides of (1.5), (1.9) and (1.10), which differ from those in the
case of i.i.d. regularly varying Yt ’s, can be considered as alternative measures of
the extremal clustering behavior of the Yt ’s. Similar results were obtained only
for a few classes of stationary processes (Yt ). Those include results by Mikosch
and Samorodnitsky [25, 26] on large deviations and ruin for random walks with
step sizes which constitute a linear process with regularly varying innovations or a
stationary ergodic stable process, and by Davis and Hsing [9] on large deviations
for random walks with infinite variance regularly varying step sizes. So far the
known results do not allow one to draw a general picture which would allow
one to classify stationary sequences of regularly varying random variables Yt

with respect to their extremal behavior of the random walk with negative drift
((Sn − ESn) − µn). The cited results and also those of the present paper are
steps in the search for appropriate measures of extremal dependence in a stationary
sequence by studying the behavior of suitable functionals acting on the sequence.

The paper is organized as follows. In Section 2 we give conditions under which
the stationary solution (Yt ) to the stochastic recurrence equation (1.1) has regularly
varying finite-dimensional distributions. In Section 3 we consider applications of
this property to the weak convergence of related point processes, the central limit
theorem of (Sn) and the partial maxima of (Yt ). In Section 4.1 we study the large
deviations of (Sn) and in Section 4.2 we give our main result on the asymptotic
behavior of the ruin probability ψ(u). Since the proofs of the main results are
quite technical, we postpone them to particular sections at the end of the paper.
The proof of Theorem 4.2 will be given in Section 5 and the one of Theorem 4.9
in Section 6.

2. Regular variation of the solution to the stochastic recurrence equation.

2.1. Preliminaries. We start with some auxiliary results in order to establish
regular variation of Y . In what follows, we write �F(x) = 1−F(x) for the right tail
of any distribution function F .
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LEMMA 2.1 (Davis and Resnick [12]). Let F be a distribution function
concentrated on (0,∞). Assume Z1, . . . ,Zn are independent nonnegative random
variables satisfying

lim
x→∞

P(Zi > x)

�F(x)
= ci(2.1)

for some nonnegative finite values ci , where F(x) = P(Z1 ≤ x), and

lim
x→∞

P(Zi > x,Zj > x)

�F(x)
= 0, i 	= j.(2.2)

Then

lim
x→∞

P(Z1 + · · · + Zn > x)

�F(x)
= c1 + · · · + cn.

We will frequently make use of the following elementary property which was
proved by Breiman [7] in a special case. We refer to it as Breiman’s result and
prove a uniform version of it for further use.

LEMMA 2.2 (Breiman [7]). Let ξ, η be independent nonnegative nondegen-
erate random variables such that ξ is regularly varying with index κ > 0 and
Eηκ+ε < ∞ for some ε > 0. Then for any sequence xn → ∞,

lim
n→∞ sup

x≥xn

∣∣∣∣P(ξη > x)

P (ξ > x)
− Eηκ

∣∣∣∣= 0.

This means that the product ξη inherits regular variation from ξ .

PROOF. Fix M > 0. Then

	(x) = P(ξη > x)

P (ξ > x)
− Eηκ

=
∫
[0,M]

[
P(ξy > x)

P (ξ > x)
− yκ

]
dP (η ≤ y)

− EηκI(M,∞)(η) +
∫
(M,∞)

P (ξy > x)

P (ξ > x)
dP (η ≤ y)

= 	1(x) − 	2 + 	3(x).

Obviously,

lim
M→∞	2 = 0.
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Moreover, the uniform convergence theorem for regularly varying functions
(see [4]) implies that, for every fixed M > 0,

sup
x≥xn

|	1(x)| ≤ sup
x≥xn

∫
[0,M]

∣∣∣∣P(ξy > x)

P (ξ > x)
− yκ

∣∣∣∣dP (η ≤ y)

≤ sup
x≥xn

sup
y≤M

∣∣∣∣P(ξy > x)

P (ξ > x)
− yκ

∣∣∣∣→ 0.

An application of the Potter bounds for regularly varying functions (see [4],
page 25) yields, for x, x/y ≥ x0, for sufficiently large x0 > 0 and all y > M > 1,
that

P(ξ > x/y)

P (ξ > x)
≤ yκ+ε.

Hence,

sup
x≥xn

|	3(x)| ≤ sup
x≥xn

∫
M<y≤x/x0

yκ+ε dP (η ≤ y) + sup
x≥xn

P (η > x/x0)

P (ξ > x)

→ 0

by first letting n → ∞ and then M → ∞, since Eηκ+ε < ∞. This proves the
lemma. �

We now turn to the stochastic recurrence equation (1.1). After n iterations, we
obtain

Yn = �nY0 +
n∑

t=1

�t+1,nBt .(2.3)

As in Section 1, we assume that ((At ,Bt )) is an i.i.d. sequence of pairs of
nonnegative random variables At and Bt . In addition, suppose that B is regularly
varying with index κ > 0 and EAκ+δ < ∞ for some δ > 0. Then Breiman’s result
(Lemma 2.2) applies:

P(�i−1Bi > x)

P (B > x)
∼ (EAκ)i−1 as x → ∞.(2.4)

The following result will be crucial for the property of regular variation of
the finite-dimensional distributions of the stationary solution (Yn) to (1.1). For
its formulation, we assume that Y0 = c in (2.3) for some constant c. We use the
same notation (Yn) in this case, slightly abusing notation since (Yn) is then not the
stationary solution to (1.1).

PROPOSITION 2.3. Assume B is regularly varying with index κ > 0 and
EAκ+δ < ∞ for some δ > 0. Then the following relation holds for fixed n ≥ 1
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and Yn defined in (2.3) with Y0 = c:

P(Yn > x) ∼ P(B > x)

n−1∑
i=0

(EAκ)i as x → ∞.

PROOF. We write

Z0 = �nc, Zt = �t−1Bt, t = 1, . . . , n.

Observe that

Yn = �nc +
n∑

t=1

�t+1,nBt
d= �nc +

n∑
t=1

�t−1Bt =
n∑

t=0

Zt .

We have, for 1 ≤ i < j ≤ n,

P(Zi > x,Zj > x) ≤ P
(
�i−1 min(Bi,�i,j−1Bj) > x

)
.

Since EAκ+δ < ∞ and B is regularly varying with index κ , we can find a function
g(x) → ∞ such that g(x)/x → 0, and P(max(Ai,�i) > g(x)) = o(P (B > x)).
Hence, for i < j ,

P(Zi > x,Zj > x)

P (B > x)

≤ P(�i−1 min(Bi,�i,j−1Bj) > x,max(Ai,�i) > g(x))

P (B > x)

+ P(�i−1 min(Bi,�i,j−1Bj) > x,max(Ai,�i) ≤ g(x))

P (B > x)

≤ P(max(Ai,�i) > g(x))

P (B > x)
+ P(�i−1Bi > x,�i+1,j−1Bj > x/g(x))

P (B > x)

= o(1) + (EAκ)j−2P
(
B > x/g(x)

)(
1 + o(1)

)→ 0.

In the last step we made multiple use of Breiman’s result and the independence of
�i−1Bi and �i+1,j−1Bj . By Markov’s inequality, we also have, for 1 ≤ i ≤ n,

P(Z0 > x,Zi > x)

P (B > x)
≤ P(Z0 > x)

P (B > x)
≤ cn (EAκ+δ)nx−κ−δ

P (B > x)
→ 0.

Hence, we are in the framework of Lemma 2.1 with c0 = 0 and ci = (EAκ)i−1,
i = 1, . . . , n; see (2.4). This proves the proposition. �

2.2. Univariate regular variation of Y . In this section we indicate regular
variation of the marginal distribution of the stationary solution to the stochastic
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recurrence equation (1.1). From Proposition 2.3 and the representation (1.3) of the
stationary solution (Yt ), we conclude that

lim inf
x→∞

P(Y > x)

P (B > x)
≥ lim

x→∞
P(
∑n

i=1 �i−1Bi > x)

P (B > x)
=

n−1∑
i=0

(EAκ)i.(2.5)

Letting n → ∞ yields a lower bound for P(Y > x). This relation suggests that

P(Y > x) ∼ P(B > x)

∞∑
i=0

(EAκ)i, x → ∞,(2.6)

holds under the conditions that B is regularly varying with index κ > 0 and
EAκ < 1. Obviously, only if the latter condition holds, relation (2.6) is meaningful.
This also means that the conditions of Kesten’s Theorem 1.1 cannot be satisfied. In
that case, the index of regular variation κ of Y satisfies EAκ = 1 and EBκ < ∞.
Since in our case B is assumed to be regularly varying with index κ , the moment
condition on B is not necessarily met either.

PROPOSITION 2.4 (Grey [18]). Assume that B is regularly varying with index
κ > 0, EAκ+δ < ∞ for some δ > 0 and EAκ < 1. Then a unique strictly stationary
solution (Yt ) to the stochastic recurrence equation (1.1) exists and satisfies

P(Y > x) ∼ P(B > x)(1 − EAκ)−1.(2.7)

PROOF. The function g(h) = EAh satisfies g(0) = 1, g(κ) < 1 and it is
continuous and convex in [0, κ]. Therefore, g′(0+) = E logA < 0 and (1.2) and
E log+ A < ∞ hold. Moreover, since EBγ < ∞ for γ < κ , E log+ B < ∞ is
satisfied and, hence, a unique stationary solution (Yt ) to (1.1) exists.

Relation (2.7) follows from Theorem 1 in [18]. �

2.3. Regular variation of the finite-dimensional distributions of (Yt ). In what
follows, we assume that the conditions of Proposition 2.4 are satisfied. The latter
result states that the marginal distribution of the stationary sequence (Yn) is
regularly varying with the same index κ as the innovations Bt . It is the aim
of this section to extend this result to the finite-dimensional distributions of the
process (Yt ).

For this reason, we introduce the notion of regular variation for an m-dimensio-
nal random vector: the vector Y ∈ R

m is regularly varying with index κ > 0 if there
exists a nonnull Radon measure µ on the Borel σ -field B of [0,∞]m \ {0} such
that

nP (a−1
n Y ∈ ·) v→ µ.

Here the sequence (an) satisfies P(|Y| > an) ∼ n−1,
v→ denotes vague conver-

gence in B, and µ is a measure with the property µ(t ·) = t−κµ(·) for all t > 0;
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see [32] for an introduction to regular variation, related point process convergence
and vague convergence. An equivalent way to characterize the limiting measure µ

is via a presentation in spherical coordinates. This means that, for every fixed t > 0
and (an) as above,

nP (|Y| > tan,Y/|Y| ∈ ·) v→ t−κP (� ∈ ·),
where | · | is any fixed norm,

v→ refers to vague convergence on the Borel σ -field
of the unit sphere S

d−1 corresponding to this norm and � is a vector with values
in S

d−1. Its distribution is referred to as the spectral distribution of Y.
For fixed m ≥ 1, we have

Ym = (Y1, . . . , Ym)′

= (�1,�2, . . . ,�m)′Y0 +
(
B1,B2 + A2B1, . . . ,Bm +

m−1∑
i=1

�i+1,mBi

)′

=



�1
�2
�3
...

�m−1
�m


Y0 +



1
�2,2
�2,3

...

�2,m−1
�2,m


B1 +



0
1

�3,3
...

�3,m−1
�3,m


B2 + · · · +



0
0
0
...

0
1


Bm

=: A0Y0 + A1B1 + · · · + AmBm.

Notice that A0 and Y0 are independent, and so are Ai and Bi for every i. Since
E|Ai |κ+δ < ∞ for some δ > 0 and Y0,B1, . . . ,Bm are independent and regularly
varying with index κ , a multivariate version of Breiman’s result (cf. [1, 33]) applies
to conclude that each of the vectors A0Y0, A1B1, . . . ,AmBm is regularly varying
with index κ with corresponding limiting measures µ0, . . . ,µm. We mention that
the normalizing sequences for these vectors are of the same size since, by the one-
dimensional Breiman result and Proposition 2.4, as x → ∞,

P(|A0Y0| > x) ∼ E|A0|κP (Y0 > x) ∼ E|A0|κ(1 − EAκ)−1P(B > x),

P (|AiBi | > x) ∼ E|Ai |κP (B > x), i = 1, . . . ,m.

We choose one normalizing sequence (an) for all vectors such that nP (|A0|Y0 >

an) ∼ 1. We can characterize µi via its spectral distribution. Indeed, by Breiman’s
result, we have, for any Borel set S ⊂ S

d−1 whose boundary has mean zero with
respect to the spectral distribution,

nP (|Ai |Bi > tan,Ai/|Ai | ∈ S) ∼ t−κnP (B > an)E[|Ai |κIS(Ai/|Ai |)],
and, therefore, the spectral distribution of AiYi for these sets S is given by

E[|Ai |κIS(Ai/|Ai |)]
E|Ai |κ .
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Adapting the proof of Lemma 2.1 in [12] to the multivariate case, it follows that
Ym is regularly varying with index κ and limiting measure

µ(dx) = µ0(dx) + c1µ1(dx) + · · · + cmµm(dx),(2.8)

where

ci = E|Ai |κ
E|A0|κ (1 − EAκ),

provided that the following relations holds for any Borel sets C1,C2 ⊂ [0,∞]m \
{0} which are bounded away from zero:

nP (a−1
n AiBi ∈ C1, a

−1
n AjBj ∈ C2) → 0, 0 ≤ i < j ≤ m,

where we write B0 = Y0 for the sake of simplicity. Since C1 and C2 are bounded
away from zero, there exists M > 0 such that |x| > M for all x ∈ C1,C2. Therefore,
for i < j and any γ > 0,

{a−1
n AiBi ∈ C1, a

−1
n AjBj ∈ C2}

⊂ {|Ai |Bi > anM, |Aj |Bj > anM}
⊂ {γBi > Man, γBj > Man}

∪ {
γBi > Man, |Aj |I(γ,∞)(|Aj |)Bj > Man

}
∪ {

γBj > Man, |Ai |I(γ,∞)(|Ai |)Bi > Man

}
∪ {|Ai |I(γ,∞)(|Ai |)Bi > Man, |Aj |I(γ,∞)(|Aj |)Bj > Man

}
= D1 ∪ · · · ∪ D4.

By definition of (an) and the independence of Bi and Bj , it follows immediately
that nP (D1) → 0. A similar approach applies to D2 since Bi is independent of
Bj Aj and, by Breiman’s result,

nP (D2) ∼ nP (γBi > Man)E|Aj |κI(γ,∞)(|Aj |)P (Bj > Man) → 0.

Similarly,

nP (D3) ≤ nP
(|Ai |I(γ,∞)(|Ai |)Bi > Man

)
∼ nE|Ai |κI(γ,∞)(|Ai |)P (Bi > Man),

and by, the Lebesgue dominated convergence,

lim
γ→∞ lim sup

n→∞
nP (D3) = 0.

The relation nP (D4) → 0 can be proved in the same way.
We summarize our findings.

PROPOSITION 2.5. If the conditions of Proposition 2.4 hold, then the
finite-dimensional distributions of the stationary solution (Yt ) to the stochastic
recurrence equation (1.1) are regularly varying with index κ and limiting measure
given in (2.8).
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3. Some applications of the regular variation property. In this section we
consider some applications of the property of regular variation of the solution
(Yt ) to the stochastic recurrence equation (1.1). In particular, we are interested
in functionals of the Yt ’s and their limit behavior. The results include the central
limit theorem for the partial sums of the sequence (Yt ) and limit theory for its
partial maxima.

3.1. A remark about the strong mixing property of (Yt ). Recall that a
stationary ergodic sequence (Yt ) is said to be strongly mixing if

αk = sup
A∈σ(Ys,s≤0),B∈σ(Ys,s≥k)

|P(A ∩ B) − P(A)P (B)| → 0,

and it is said to be strongly mixing with geometric rate if there are constants
r ∈ (0,1) and c > 0 such that αk ≤ crk for all k ≥ 1; see [34], compare [13]. Under
general conditions, the latter property is satisfied for the stationary solution (Yt ) of
the stochastic recurrence equation (1.3).

PROPOSITION 3.1. Assume EAε < 1, EBε < ∞ for some ε > 0. Then the
stochastic recurrence equation (1.1) has a stationary ergodic solution (Yt ) which
is also strongly mixing with geometric rate if one of the following conditions holds:

1. The Markov chain (Yt ) is µ-irreducible, that is, there exists a measure µ such
that, for any Borel set R in the support supp(Y ) of Y with µ(R) > 0, the relation∑∞

n=1 P(Yn ∈ R|Y0 = x) > 0 holds.
2. An = A(En) and Bn = B(En), where A(x) and B(x) are polynomial functions

of x and (En) are i.i.d. random variables. Moreover, A(0) < 1 and E1 has an
a.e. positive Lebesgue density on [0, x0] for some 0 < x0 ≤ ∞.

PROOF. Strong mixing of (Yt ) with geometric rate under µ-irreducibility
follows from Theorem 2.8 in [1], using standard results on mixing Markov
chains; see [22]. For polynomial An and Bn, the mixing property follows from
Theorem 4.5 in [27] or from Theorem 4.3 in [28].

REMARK 3.2. Squared GARCH processes satisfy a (in general multivariate)
version of (1.1). They were found to be strongly mixing with geometric rate;
see [6] who proved µ-irreducibility with µ Lebesgue measure. A sufficient
condition for µ-irreducibility is that µ(R) > 0 for any R ⊂ supp(Y ) implies
P(A1x + B1 ∈ R) = P(A1Y0 + B1 ∈ R|Y0 = x) > 0. This is satisfied if A1x + B1
has an a.e. positive density on supp(Y ) with respect to Lebesgue measure µ for
every x ∈ supp(Y ). Alternatively, it suffices to show that P(Yn ∈ R|Y0 = x) > 0
for sufficiently large n (possibly depending on x and R). The latter condition is
often more difficult to verify.

The relation P(A1x + B1 ∈ R|Y0 = x) > 0 also holds if µ(R) > 0 for µ

Lebesgue measure and At and Bt have a joint independent multiplicative factor
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which has an a.e. positive density on (0,∞), that is, At = FtÃt and Bt = FtB̃t ,
where (Ft ) is an i.i.d. sequence and for every t , Ft and (Ãt , B̃t ) are independent.
The squared ARCH(1) process satisfies this condition if its innovations have a
positive Lebesgue density on the real line; see [10] where the innovations of the
ARCH(1) process were assumed to be i.i.d. Gaussian, but the same methodology
can be used in the general case.

3.2. The central limit theorem. If the assumptions of Propositions 2.4 and 3.1
hold, we may conclude from Propositions 2.4, 2.5 and 3.1 that there exists a
unique stationary solution (Yt ) to the stochastic recurrence equation (1.1) which
is strongly mixing with geometric rate and which has regularly varying finite-
dimensional distributions with index κ > 0.

If κ > 2, a standard central limit theorem for stationary ergodic martingale
difference sequences applies to (Yt ) and no further mixing condition is needed.
Indeed, we have

n−1/2(Sn − ESn)

= n−1/2
n∑

t=1

[(At − EA)Yt−1 + (Bt − EB)] + n−1/2EA

n∑
t=1

(Yt−1 − EY).

Hence,

n−1/2(Sn −ESn) = n−1/2(1 −EA)−1
n∑

t=1

[(At −EA)Yt−1 + (Bt −EB)]+ oP (1).

The sequence [(At − EA)Yt−1 + (Bt − EB)] is a stationary ergodic martingale
difference sequence with respect to the filtration Ft = σ((Ax,Bx), x ≤ t).
Therefore, the central limit theorem from [3], Chapter 23, applies:

n−1/2(Sn − ESn)
d→ N(0, σ 2

Y ),

where σ 2
Y = var(Y ). Notice that EA < 1 since EAκ < 1, κ > 2 and g(h) = EAh

is a convex function.
If κ < 2, infinite variance limits may occur for (Sn); see [9, 10]. The proof relies

on a point process argument for the lagged vectors Yt (m) = (Yt , . . . , Yt+m)′ which
is identical to the proof of Theorem 2.10 in [1] and requires regular variation of
the finite-dimensional distributions and the strong mixing condition for (Yt ) with
geometric rate. It implies weak convergence of the point processes

Nn =
n∑

t=1

εYt (m)/an

d→ N.(3.1)

The limiting Poisson point process N is described in [1] and (an) is a sequence
satisfying nP (Y > an) ∼ 1.
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The convergence result (3.1) and the arguments in [1, 9, 10] imply the weak
convergence of the partial sums, sample autocovariances, sample autocorrelations
and the partial maxima of the sequence (Yt ). For details, we refer to the mentioned
literature. For example, if κ ∈ (0,2) \ {1},

a−1
n (Sn − bn)

d→ Zκ,

where Zκ is totally skewed to the right infinite variance κ-stable random
variable, bn = ESn for κ > 1 and bn = 0 for κ < 1. (We refer to [36] for an
encyclopedic treatment of stable distributions and processes.) The proof of the
weak convergence of the sample autocovariances and sample autocorrelations
is identical to the one treated in [1] for solutions to the stochastic recurrence
equation (1.1).

Moreover,

a−1
n max(Y1, . . . , Yn)

d→ Rκ(θ),

where P(Rκ ≤ x) = e−x−κ
, x > 0, is the Fréchet distribution function with shape

parameter κ , P(Rκ(θ) ≤ x) = [P(Rκ ≤ x)]θ and θ ∈ (0,1) is the extremal index
of the sequence (Yt ). See [15] for an introduction to extreme value theory and,
in particular, Section 8.1, where the notion of extremal index is treated. Extreme
value theory for the solution (Yt ) to (1.1), under the conditions of Kesten’s
Theorem 1.1, was studied in [19]. In their Theorem 2.1, they calculate

θ =
∫ ∞

1
P

(
max
j≥1

j∏
i=1

Ai ≤ y−1

)
κyκ−1 dy.

We mention that the same proof as in [19] [with n1/κ replaced by (an) as above]
applies under the conditions of Proposition 2.4, when Kesten’s result does not
apply. Indeed, an inspection of their proof shows that it only requires the structure
of the stochastic recurrence equation (1.1), the definition of (an), the regular
variation of (Yt ) and the existence of some h > 0 such that EAh < 1.

The definition of the extremal index θ implies that, for xn ≥ an,

P
(
max(Y1, . . . , Yn) > xn

)∼ θnP (Y > xn).

This is in contrast to i.i.d. Yt ’s, where this relation holds with θ = 1. In the
i.i.d. case we also know that P(Sn − ESn > xn) ∼ P(max(Y1, . . . , Yn) > xn)

for suitable sequences (xn) with xn → ∞. The various results proved in this
paper, including Proposition 3.3 and Theorem 4.2, show that the exceedances of
the random walk (Sn) and of the partial maxima (max(Y1, . . . , Yn)) above high
thresholds have different asymptotic behavior which is also different from the case
of i.i.d. Yt ’s.
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3.3. Regular variation of sums. In what follows we study the tail behavior of
the sums

Sn = Y1 + · · · + Yn

for fixed n ≥ 1 under the assumptions of Proposition 2.5. It follows from
Proposition 2.5 that all linear combinations of the lagged vector Ym are regularly
varying with index κ . In particular, Sn is regularly varying with index κ . In this
section we give a precise description of the tail asymptotics of P(Sn > x) for fixed
n as x → ∞.

We have

Sn =
n∑

i=1

(
�iY0 +

i∑
t=1

�t+1,iBt

)
= Y0

n∑
i=1

�i +
n∑

t=1

Bt

n∑
i=t

�t+1,i .(3.2)

Write

Z0 = Y0

n∑
i=1

�i and Zt = Bt

n∑
i=t

�t+1,i , t = 1, . . . , n.

Notice that Y0 is independent of
∑n

i=1 �i and Bt is independent of
∑n

i=t �t+1,i .
Now an argument similar to the one in the proof of Proposition 2.3 shows that, for
0 ≤ s < t ≤ n,

P(Zt > x,Zs > x)

P (Z0 > x)
→ 0, x → ∞.

Also notice that the same result holds if Y0 = c is a constant initial value. An
application of Lemma 2.1 yields the following result.

PROPOSITION 3.3. Assume that the conditions of Proposition 2.4 hold. If (Yn)

is the stationary solution to the stochastic recurrence equation (1.1), then

lim
x→∞

P(Sn > x)

P (B > x)
= (1 − EAκ)−1E

(
n∑

i=1

�i

)κ

+
n−1∑
t=0

E

(
t∑

i=0

�i

)κ

.(3.3)

If (Yn) satisfies the stochastic recurrence equation (1.1) with Y0 = c for some
constant c, then

lim
x→∞

P(Sn > x)

P (B > x)
=

n−1∑
t=0

E

(
t∑

i=0

�i

)κ

.

For comparison, assume for the moment that (Ỹt ) is an i.i.d. sequence Ỹ1
d= Y

and Y has the stationary distribution given by (1.3). Then for every fixed n ≥ 1,

lim
x→∞

P(Ỹ1 + · · · + Ỹn > x)

nP (Y > x)
= 1.(3.4)
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This is the subexponential property of a regularly varying distribution; see [15],
Section 1.3.2 and Appendix A3 for an extensive discussion of subexponential
distributions. Property (3.4) does not remain valid for dependent stationary
sequences with regularly varying finite-dimensional distributions. This was shown
in [25] for the case of linear processes. In that case the limiting constant in (3.4) is,
in general, different from 1 and depends on the coefficients of the linear process.
Proposition 3.3 shows that a similar behavior can be expected for other nonlinear
stationary processes. In particular, by Proposition 3.3, relation (3.3) can be re-
written in the form

lim
x→∞

P(Sn > x)

P (Y > x)
= E

(
n∑

i=1

�i

)κ

+ (1 − EAκ)

n−1∑
t=0

E

(
t∑

i=0

�i

)κ

.(3.5)

It is interesting to observe that a similar relationship holds if the (At ,Bt )’s
satisfy the conditions of Kesten’s Theorem 1.1. In that case, the condition
EAκ = 1 is needed for regular variation of the stationary solution (Yt ) to the
stochastic recurrence equation (1.1) with index κ > 0. Assume, in addition, that
EBκ+δ and EAκ+δ are finite for some δ > 0. Then we may conclude from the
representation (3.2), regular variation of Y0 and Breiman’s result that

lim
x→∞

P(Sn > x)

P (Y > x)
= E

(
n∑

i=1

�i

)κ

.

In a sense, this is the limiting result in (3.5) for EAκ = 1.

4. Large deviations and ruin probabilities.

4.1. Results on large deviations. In this subsection we couple the increase of
x with n to obtain probabilities of large deviations of the type

P(Sn − ESn > x) ∼ nECκP (B > x) uniformly for x ≥ xn,

and appropriate sequences xn → ∞. Here C is a generic element of the stationary
sequence

Ct =
∞∑
i=t

�t+1,i , t ∈ Z.(4.1)

We start with an auxiliary result, where we collect some useful properties of this
sequence.

LEMMA 4.1. Assume that (At ) is an i.i.d. sequence and EAκ < 1 for some
κ > 0.

1. The sequence (Ct ) defined in (4.1) is well defined and strictly stationary.
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2. The random variable C has finite pth moment if and only if EAp < ∞ for
p > 0.

3. The sequences (Ct ) and (Dt) given by (4.2) have the same finite-dimensional
distributions. If A has an a.e. positive Lebesgue density on [0, x0] for some
x0 ≤ ∞, then (Dt) is strongly mixing with geometric rate.

PROOF. 1. The sequence (Ct ) has the same distribution as the sequence

Dt =
t∑

i=−∞
�i+1,t , t ∈ Z.(4.2)

The latter satisfies the stochastic recurrence equation

Dt = 1 + At

t−1∑
i=−∞

�i+1,t−1 = 1 + AtDt−1, t ∈ Z.(4.3)

It constitutes a unique strictly stationary sequence if E logA < 0 and E log+ A <

∞, see (1.2), which is satisfied if EAκ < 1 for some κ > 0.
2. From (4.3), the independence of Dt−1 and At and the stationarity of (Dt),

we conclude that Dt has finite pth moment if and only if At has. Since D
d= C, the

statement follows.
3. Follows from the second part of Proposition 3.1 with A(x) = x, B(x) = 1,

Ei = Ai . �

In the following result we assume, in addition, that the sequences (At ) and (Bt ),
hence, (Ct ) and (Bt ), are independent. Although we conjecture that this assump-
tion can be avoided, we need the independence at various technical steps in the
proof.

THEOREM 4.2. Assume that (At ) and (Bt ) are independent i.i.d. sequences of
nonnegative random variables, B is regularly varying with index κ > 1, EAκ < 1
and EA2κ < ∞. Consider a sequence of positive numbers such that nP (B >

xn) → 0 and, for every c > 0,

lim
n→∞ sup

x≥xn

∣∣∣∣∣
(
P

(
var

(
BI[0,x](B)

) n∑
t=1

C2
t > cx2/ logx

)

+ P

(∣∣∣∣∣
n∑

t=1

(Ct − EC)

∣∣∣∣∣> cx

))
× (

nP (B > x)
)−1

∣∣∣∣∣(4.4)

= 0.

Then the large deviation relations

lim
n→∞ sup

x≥xn

∣∣∣∣P(Sn − ESn > x)

nP (B > x)
− ECκ

∣∣∣∣= 0(4.5)
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and

lim
n→∞ sup

x≥xn

P (Sn − ESn ≤ −x)

nP (B > x)
= 0(4.6)

are satisfied.

The proof of the theorem is rather technical and therefore postponed until
Section 5.

REMARK 4.3. The validation of (4.4) is, in general, difficult. Sufficient
conditions for (4.4) can be verified by assuming certain mixing conditions on (Ct );
see Lemma 4.6 below and Lemma 4.1 part 3.

REMARK 4.4. Theorem 4.2 is applicable for finite or infinite variance
sequences (Bt ). The infinite variance comes into the picture in condition (4.4).
For κ > 2, var(BI[0,x](B)) → c for some finite c > 0. Hence, condition (4.4)
can be formulated without var(BI[0,x](B)). If κ < 2 or κ = 2 and var(B) = ∞,
var(BI[0,x](B)) → ∞. In particular, for κ = 2, var(BI[0,x](B)) is a slowly varying
function which increases to infinity. If κ ∈ (1,2), an application of Karamata’s
theorem yields, for some c > 0, var(BI[0,x](B)) ∼ cx2P(B > x) → ∞.

REMARK 4.5. The literature on large deviations for sums of stationary heavy-
tailed random variables is rather sparse. The case of linear processes Yt =∑∞

j=−∞ ϕjZt−j for i.i.d. regularly varying sequences (Zt ) was treated in [25].
In this case, the limit of (P (Sn − ESn > x)/(nP (Y > x)) is approximated
uniformly for x ≥ cn, any positive c. The limit depends in a complicated way on
the coefficients ϕj and on the coefficient of regular variation. Davis and Hsing
[9] seems to be the only reference, where large deviation results were proved
for general regularly varying stationary sequences, assuming certain mixing
conditions and κ < 2. They exploit point process convergence results and express
the limit of the sequence (P (Sn > xn)/(nP (Y > xn)) in terms of the limiting point
process, which is difficult to interpret. Unfortunately, their approach seems to work
only in the case of infinite variance random variables.

We continue by giving some sufficient conditions for the validity of the
relation (4.4).

LEMMA 4.6. Assume A has an a.e. positive Lebesgue density on its support
[0, x0] for some x0 ≤ ∞, B is regularly varying with index κ and EAκ < 1 for
some κ > 1.

1. Assume

sup
x≥xn

n(κ+γ )/2−1(x/√var
(
BI[0,x](B)

)
logx

)−(γ+κ)
/P (B > x) → 0(4.7)

and EAκ+γ < ∞ for some γ such that κ + γ > 2. Then relation (4.4) holds.
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2. Assume that C ≤ c a.s. for some constant c > 0 and for some d, ε > 0,

sup
x≥xn

e−d(x/
√

n )2/(logx var(BI[0,x](B)))

nP (B > x)
+ sup

x≥xn

e−(x/
√

n )n−ε

nP (B > x)
→ 0.(4.8)

Then relation (4.4) holds.

REMARK 4.7. In particular, (4.4) holds for (xn) with (4.8) if A ≤ c0 for some
constant c0 < 1 and B is regularly varying with index κ > 1. Indeed, then EAd < 1
for all d > 0 and C ≤∑∞

i=0 ci
0 = (1 − c0)

−1.

REMARK 4.8. We discuss the conditions on the x-regions where (4.4) holds.
If κ > 2, var(B) < ∞. Writing P(B > x) = x−κL(x) for some slowly varying
function L, (4.7) is satisfied if[

n(κ+γ )/2−1x−γ
n

]
sup
x≥xn

[
(logx)(κ+γ )/2/L(x)

]→ 0.(4.9)

Since (logx)(κ+γ )/2/L(x) ≤ xε , for every ε > 0 and sufficiently large x,
(4.9) holds if xn = n0.5+δ with δ > γ −1(κ/2 − 1). This δ can be chosen the closer
to zero the more moments of A exist, that is, the larger γ can be chosen. These
growth rates are comparable to the case of i.i.d. Yt ’s for κ > 2, see Theorem 1.2,
where one could choose xn = c

√
n logn for some constant c > 0. Such precise

results are hard to derive in the case of dependent Yt ’s.
If κ ∈ (1,2), a similar remark applies. Then xn can be chosen of the order

n(1/κ)+δ for some δ > 0 which is in agreement with the order of magnitude of
(xn) for i.i.d. sequences, see again Theorem 1.2.

Notice that, under the above conditions, xn = cn can be chosen in most cases of
interest for κ > 1.

PROOF. By Lemma 4.1 part 3, the sequence (Dt)
d= (Ct ) is strongly mixing

with geometric rate and so is (NtDt), where the i.i.d. standard normal sequence
(Nt) is assumed to be independent of (Dt). This follows by standard results on
strong mixing; see, for example, [13].

By Markov’s inequality, for every y > 0 and γ > 0 such that EAκ+γ < ∞,

P

(
n∑

t=1

C2
t > y

)
≤ y−(γ+κ)/2E

(
n∑

t=1

C2
t

)(κ+γ )/2

= y−(γ+κ)/2E

∣∣∣∣∣
n∑

t=1

DtNt

∣∣∣∣∣
κ+γ/

E|N |(κ+γ )/2(4.10)

≤ c(n/y)(γ+κ)/2.
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In the last step we applied a moment estimate for sums of strongly mixing random
variables with geometric rate and used the fact that γ + κ > 2; see [13], page 31.
Applying (4.10) for x > 1, d > 0, we obtain

P(var(BI[0,x](B))
∑n

t=1 C2
t > dx2/ logx)

nP (B > x)

≤ c
(x/

√
logx var(BI[0,x](B)) )−(γ+κ)n(κ+γ )/2

nP (B > x)
,

and the right-hand side converges to zero uniformly for x ≥ xn, by virtue of
assumption (4.7).

Similarly, if C ≤ c a.s., applying an exponential Markov inequality for h > 0,

P

(
n∑

t=1

C2
t > y

)
≤ e−(h2/2)(y/n)Ee(h2/2)n−1∑n

t=1 C2
t

= e−(h2/2)(y/n)Eehn−1/2∑n
t=1 DtNt .

The central limit theorem for strongly mixing random variables with geometric
rate (see [20]) yields

n−1/2
n∑

t=1

DtNt
d→ N(0, σ 2),

where σ 2 = var(D). Moreover,

Ee(h2/2)n−1∑n
t=1 C2

t ≤ Ee(h2/2)C2
1 < ∞.

Applying a domination argument, the central limit theorem and assumption (4.8)
prove that

P(var(BI[0,x](B))
∑n

t=1 C2
t > dx2/ logx)

nP (B > x)

≤ c
e−(h2/2)d(x/

√
n )2/(logx var(BI[0,x](B)))

nP (B > x)
→ 0.

The estimates for P(
∑n

t=1(Ct − EC) > x) can be derived in a similar fashion. If
EAκ+γ < ∞, we have

P

(∣∣∣∣∣
n∑

t=1

(Ct − EC)

∣∣∣∣∣> x

)
≤ x−(κ+γ )E

∣∣∣∣∣
n∑

t=1

(Ct − EC)

∣∣∣∣∣
κ+γ

≤ cx−(κ+γ )n(κ+γ )/2.
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Now assume C ≤ c a.s. Since (Ct ) is strongly mixing with geometric rate, the
following exponential bound holds (see [13], page 34). For any ε < 0.5, there
exists a constant h > 0 such that

P

(
n∑

t=1

(Ct − EC) > x

)
≤ e−h(x/

√
n )n−ε

.

This concludes the proof. �

4.2. Results on ruin probabilities. In this subsection we study the ruin
probability

ψ(u) = P

(
sup
n≥0

(
(Sn − ESn) − µn

)
> u

)
,

when the initial capital u → ∞ and µ > 0. Here (Yt ) is the unique stationary
ergodic solution to (1.3), (At ) and (Bt ) are independent and satisfy the conditions
of Theorem 4.2. In particular, we assume that κ > 1. Then EB < ∞ and EA < 1
since EAκ < 1. In particular, EY = EB(1 − EA)−1 = EBEC is well defined.
This choice and the strong law of large numbers ensure that the random walk
((Sn − ESn) − µn)n≥0 has a negative drift.

THEOREM 4.9. Assume that the conditions of Theorem 4.2 hold, that κ > 1
and xn = cn is a possible threshold sequence for every c > 0. Moreover, assume
there exists γ > κ such that ECκ+γ < ∞. Assume that (Ct ) is strongly mixing
with geometric rate. Then we have, for any µ > 0,

lim
u→∞

ψ(u)

uP (B > u)
= ECκ 1

µ

1

κ − 1
.(4.11)

We postpone the proof of Theorem 4.9 to Section 6.

REMARK 4.10. The assumption that Theorem 4.2 holds for xn = cn is not
really a strong restriction. Indeed, we discussed in Remark 4.8 that this condition
is satisfied under very mild conditions.

REMARK 4.11. This result is similar to the case of i.i.d. Yt ’s; see Theorem 1.3
above. To compare with the latter one, we mention that (4.11) can be reformulated
by using Proposition 2.4:

lim
u→∞

ψ(u)

uP (Y > u)
= (1 − EAκ)ECκ 1

µ

1

κ − 1
.
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5. Proof of Theorem 4.2. We will make use of the decomposition

Sn = Y0

n∑
i=1

�i +
n∑

t=1

Bt

∞∑
i=t

�t+1,i −
n∑

t=1

Bt

∞∑
i=n+1

�t+1,i

(5.1)
= Sn,1 + Sn,2 − Sn,3.

PROOF OF (4.5). We start with an upper bound. Observe that, for small ε > 0,

P(Sn − ESn > x)

≤ P(Sn,1 − ESn,1 > xε/2)

+ P
(
Sn,2 − ESn,2 > x(1 − ε)

)+ P(−Sn,3 + ESn,3 > xε/2)

= I1(x) + I2(x) + I3(x).

We bound the Ij ’s in a series of lemmas.

LEMMA 5.1. We have

lim sup
n→∞

sup
x≥xn

Ij (x)

nP (B > x)
= 0, j = 1,3.

PROOF. We start with I1. The random variable Y0 is regularly varying with
index κ , by virtue of Proposition 2.4, and independent of (�i). Moreover,

n∑
i=1

�i ↑
∞∑
i=1

�i
d= C − 1.

We also see that

ESn,1 = EY

n∑
i=1

(EA)i ↑ EYEA

1 − EA
= c′.

The expectation EA is smaller than one since EAκ < 1 for some κ > 1 and g(h) =
EAh is a convex function; see the discussion in the proof of Proposition 2.4. An
application of Breiman’s result (Lemma 2.2) and Proposition 2.4 yield that, for
independent C,Y ,

sup
x≥xn

I1(x)

nP (B > x)
≤ sup

x≥xn

P (|Sn,1 − ESn,1| > εx/2)

nP (B > x)

≤ sup
x≥xn

P (Y (C − 1) > εx/2 − c′)
nP (B > x)

(5.2)

≤ c sup
x≥xn

P (Y > εx/2)E(C − 1)κ

nP (B > x)
→ 0.



RECURRENCE EQUATIONS WITH HEAVY-TAILED INNOVATIONS 2015

For Breiman’s result, one needs that ECκ+δ < ∞ for some δ > 0. This condition
is satisfied since EA2κ < ∞, by virtue of Lemma 4.1 part 2.

Now we turn to I3. We have

Sn,3 =
n∑

t=1

Bt�t+1,n+1

∞∑
i=n+1

�n+2,i
d= A0Cn+1

n∑
t=1

Bt�t−1(5.3)

d→ AC

∞∑
t=1

Bt�t−1 = ACY ′,(5.4)

where Y ′,A,C are independent and Y
d= Y ′. Similar arguments as for I1 show that

sup
x≥xn

I3(x)

nP (B > x)
≤ sup

x≥xn

P (|Sn,3 − ESn,3| > xε/2)

nP (B > x)
→ 0.(5.5)

This proves the lemma. �

LEMMA 5.2. We have

lim
ε↓0

lim sup
n→∞

sup
x≥xn

(
I2(x)

nP (B > x)
− ECκ

)
≤ 0.

PROOF. Write, for any δ > 0,

Qn,1(δ) = ⋃
1≤t<s≤n

{Bt > δx,Bs > δx},

Qn,2(δ) =
{

max
t≤n

Bt ≤ δx

}
,

Qn,3(δ) =
n⋃

t=1

{Bt > δx,Bs ≤ δx,1 ≤ s 	= t ≤ n}.

Then

I2(x)

nP (B > x)
= P({Sn,2 − ESn,2 > x(1 − ε)} ∩ Qn,1(δ))

nP (B > x)

+ P({Sn,2 − ESn,2 > x(1 − ε)} ∩ Qn,2(δ))

nP (B > x)

+ P({Sn,2 − ESn,2 > x(1 − ε)} ∩ Qn,3(δ))

nP (B > x)

= I2,1(x) + I2,2(x) + I2,3(x).

Obviously, for any δ > 0,

lim
n→∞ sup

x≥xn

I2,1(x) = 0.
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Writing for any t ∈ Z, x > 0,

Bt,x = BtI[0,x](Bt ),

we obtain

sup
x≥xn

I2,2(x) ≤ sup
x≥xn

P (
∑n

t=1(Bt,δxCt − EB1,δxEC) > (1 − ε)x)

nP (B > x)
.

Notice that

sup
x≥xn

I2,2(x) ≤ sup
x≥xn

P (E1)

nP (B > x)
+ sup

x≥xn

P (E2)

nP (B > x)
,

where

E1 =
{

n∑
t=1

(Bt,δx − EB1,δx)Ct > 0.5(1 − ε)x

}
,

E2 =
{
EB1,δx

n∑
t=1

(Ct − EC) > 0.5(1 − ε)x

}
.

Conditioning on (Ct ) and using the Fuk–Nagaev inequality (inequality (2.79) on
page 78 in [31] with p = 2κ), we have, with EC2κ < ∞,

E[P(E1|(Ct ))]

≤ cE

((
0.5(1 − ε)x

)−2κ
n∑

t=1

C2κ
t

+ exp

{
−c

(
0.5(1 − ε)x

)2[var(B1,δx)

n∑
t=1

C2
t

]−1})

≤ cx−2κnEC2κ

(5.6)

+ cE

(
exp

{
−c

(
0.5(1 − ε)x

)2[var(B1,δx)

n∑
t=1

C2
t

]−1}

× I{var(B1,δx)
∑n

t=1 C2
t ≤dx2/ logx}

)

+ P

(
var(B1,δx)

n∑
t=1

C2
t > dx2/ logx

)
= J1(x) + J2(x) + J3(x),

where d > 0 is chosen small enough such that d ′ = d ′(d) = c[0.5(1 − ε)]2/d is
large enough, implying

sup
x≥xn

J2(x)

nP (B > x)
≤ sup

x≥xn

e−c(0.5(1−ε))2 logx/d

nP (B > x)
= sup

x≥xn

x−d ′

nP (B > x)
→ 0.
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We also have

sup
x≥xn

J1(x)

nP (B > x)
→ 0.

The relations

sup
x≥xn

J3(x)

nP (B > x)
→ 0 and sup

x≥xn

P (E2)

nP (B > x)
→ 0

follow by assumption (4.4). Collecting the above estimates, we proved, for every δ,

lim
n→∞ sup

x≥xn

I2,2(x) = 0.

Thus, it remains to show that

lim
ε↓0

lim
δ↓0

lim sup
n→∞

sup
x≥xn

(
I2,3(x) − ECκ)≤ 0.(5.7)

We have

I2,3(x) ≤
n∑

t=1

(
P

(
BtCt +

n∑
s=1,s 	=t

(BsCs − EBEC) > x(1 − ε),

Bt > δx, max
1≤s≤n,s 	=t

Bs ≤ δx

))

× (
nP (B > x)

)−1

≤
n∑

t=1

P(Bt min(Ct , δ
−1(1 − 2ε)) > (1 − 2ε)x)

nP (B > x)

+
n∑

t=1

(
P

(
n∑

s=1,s 	=t

(BsCs − EBEC) > xε,

Bt > δx, max
1≤s≤n,s 	=t

Bs ≤ δx

))
× (

nP (B > x)
)−1

≤ P(B1 min(C1, δ
−1(1 − 2ε)) > (1 − 2ε)x)

P (B > x)

+
n∑

t=1

(
P

(
n∑

s=1,s 	=t

(BsCs − EBEC) > xε,

max
1≤s≤n,s 	=t

Bs ≤ δx

)
P(B > δx)

)

×(nP (B > x)
)−1

= L1(x) + L2(x).
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By Breiman’s result,

lim
ε↓0

lim
δ↓0

lim sup
n→∞

sup
x≥xn

[(
L1(x) − E[(min(C, δ−1(1 − 2ε)))κ ]

(1 − 2ε)κ

)

+
(

E[(min(C, δ−1(1 − 2ε)))κ ]
(1 − 2ε)κ

− ECκ

)]
= 0.

Similar calculations as for I2,2(x) yield that, for every δ, ε,

lim
n→∞ sup

x≥xn

L2(x) = 0.

We conclude that (5.7) holds. This completes the proof of the lemma. �

Lemmas 5.1 and 5.2 prove that

lim sup
n→∞

sup
x≥xn

(
P(Sn − ESn > x)

nP (B > x)
− ECκ

)
≤ 0.(5.8)

We conclude the proof of (4.5) with the bound

lim sup
n→∞

sup
x≥xn

(
ECκ − P(Sn − ESn > x)

nP (B > x)

)
≤ 0.(5.9)

Arguing as for (5.8), we see that, for any δ > 0, uniformly for x ≥ xn,

P(Sn − ESn > x)

nP (B > x)

∼ P({Sn,2 − ESn,2 > x} ∩ Qn,2(δ))

nP (B > x)

+ P({Sn,2 − ESn,2 > x} ∩ Qn,3(δ))

nP (B > x)

= K1(x) + K2(x).

It follows by analogous arguments as for I2,2(x) that

sup
x≥xn

K1(x)

nP (B > x)
→ 0.

Write, for ε > 0,

Lt = {
Bt min

(
Ct, δ

−1(1 + ε)
)
> (1 + ε)x

}
, t ∈ Z.
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As regards K2(x), we have

K2(x) =
n∑

t=1

(
P

(
BtCt +

n∑
s=1,s 	=t

BsCs > x + nEBEC,Bt > δx,

max
s≤n,s 	=t

Bs ≤ δx

))

×(nP (B > x)
)−1

≥ [P(B1 ≤ δx)]n−1
n∑

t=1

P(Lt)

nP (B > x)

−
n∑

t=1

(
P

({
n∑

s=1,s 	=t

(BsCs − EBEC) < −εx + EBEC

}

∩ Lt ∩
{

max
s≤n,s 	=t

Bs ≤ δx

}))

×(nP (B > x)
)−1

= K2,1(x) − K2,2(x).

Since nP (B > δxn) → 0, we have

sup
x≥xn

|[P(B ≤ δx)]n−1 − 1| → 0.

Therefore and by regular variation of B ,

sup
x≥xn

(
(1 + ε)−κE

[
min

(
C,δ−1(1 + ε)

)]κ − K2,1(x)
)→ 0.(5.10)

Write

Tn,t =
{

n∑
s=1,s 	=t

(Bs,δxCs − EBEC) ≤ −εx + EBEC

}
.

As regards K2,2(x), we have, for 0 < m < M < ∞,

nP (B > x)K2,2(x)

≤
n∑

t=1

P(Tn,t ∩ Lt ∩ {Ct ≤ m}) +
n∑

t=1

P(Tn,t ∩ Lt ∩ {Ct > M})

+
n∑

t=1

P
(
Tn,t ∩ Lt ∩ {Ct ∈ (m,M]})

= K2,2,1(x) + K2,2,2(x) + K2,2,3(x).
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Then for small δ > 0, by the uniform convergence theorem for regularly varying
functions,

lim
m→0

lim
n→∞ sup

x≥xn

K2,2,1(x)

nP (B > x)
≤ lim

m→0
lim

n→∞ sup
x≥xn

P (mB > (1 + ε)x)

P (B > x)

= lim
m→0

mκ(1 + ε)−κ = 0.

Moreover, by Breiman’s result and Lebesgue dominated convergence,

lim
M→∞ lim

n→∞ sup
x≥xn

K2,2,2(x)

nP (B > x)

= lim
M→∞ lim

n→∞ sup
x≥xn

P (CI{C>M}B > (1 + ε)x)

P (B > x)

= lim
M→∞E

(
CκI(M,∞)(C)

)
(1 + ε)−κ

= 0.

Finally, using the same method of proof as for I2,2(x),

sup
x≥xn

K2,2,3(x)

nP (B > x)

≤ sup
x≥xn

n−1c

n∑
t=1

P(Tn,t )

≤ sup
x≥xn

P

(
n∑

s=1

(Bs,δxCs − EBEC) ≤ −εx/2

)
+ sup

x≥xn

P (B1,δxC > xε/2)

→ 0.

Taking the above bounds and, in particular, (5.10) into account, we conclude that

lim
n→∞ sup

x≥xn

(
(1 + ε)−κE

[
min

(
C,δ−1(1 + ε)

)]κ − K2(x)
)= 0,

and letting δ ↓ 0, ε ↓ 0, (5.9) follows.
The proof of relation (4.5) is now complete. �

PROOF OF (4.6). The proof is similar to the one for (4.5). It follows from
relations (5.2) and (5.5) that it suffices to show

sup
x≥xn

P (Sn,2 − ESn,2 ≤ −xr)

nP (B > x)
→ 0

for any r > 0. We proceed similarly as for I2(x) and use the same notation. Then
for any δ > 0,

sup
x≥xn

P ({Sn,2 − ESn,2 ≤ −xr} ∩ Qn,1(δ))

nP (B > x)
≤ sup

x≥xn

P (Qn,1(δ))

nP (B > x)
→ 0.
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Moreover, by the uniform convergence theorem for regularly varying functions,

lim
δ→∞ lim

n→∞ sup
x≥xn

P ({Sn,2 − ESn,2 ≤ −xr} ∩ Qn,3(δ))

nP (B > x)

≤ lim
δ→∞ lim

n→∞ sup
x≥xn

P (B > δx)

P (B > x)

= lim
δ→∞ δ−κ = 0.

Finally, uniformly for x ≥ xn, sufficiently large n,

� = P({Sn,2 − ESn,2 ≤ −xr} ∩ Qn,2(δ))

nP (B > x)

≤ P(
∑n

t=1(Bt,δxCt − EB1,δxEC) ≤ −xr + nECE(BI(δx,∞)(B)))

nP (B > x)

≤ P(
∑n

t=1(Bt,δxCt − EB1,δxEC) ≤ −xr/2)

nP (B > x)
.

Here we used the fact that, by Karamata’s theorem, since x ≥ xn and nP (B >

xn) → 0,

nECE
(
BI(δx,∞)(B)

)≤ cnxP (B > x) ≤ cnxP (B > xn) = o(x).

Hence,

� ≤ P(
∑n

t=1(Bt,δx − EB1,δx)Ct ≤ −xr/4)

nP (B > x)

+ P(EB1,δx

∑n
t=1(Ct − EC) ≤ −xr/4)

nP (B > x)

= �1(x) + �2(x).

The relation supx≥xn
�2(x) → 0 follows from assumption (4.4). The relation

supx≥xn
�1(x) → 0 follows by another application of the Fuk–Nagaev inequality

in the same way as for P(E1) in combination with assumption (4.4). �

6. Proof of Theorem 4.9. We will use the notation

T0 = 0, Tn = (Y1 − EY) + · · · + (Yn − EY), n ≥ 1.

Proof of the upper bound. First, we show the relation

lim sup
u→∞

ψ(u)

uP (B > u)
≤ ECκ 1

µ

1

κ − 1
,(6.1)

by a series of auxiliary results. Before we proceed with them, we give some
intuition on the steps of the proof:
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• In Lemmas 6.1 and 6.2 we show that the event {supn≤u/M(Tn − µn) > u} does
not contribute to the order of ψ(u) for sufficiently large u and M .

• In Lemma 6.3 we show that the order of ψ(u) is essentially determined by the
event D(u) = {supn≥u/M(

∑n
t=[u/M](Bt − EB)Ct − µn) > u}.

• In Lemma 6.4 we show that it is unlikely that D(u) is caused by more than one
large value Bt > θt for any θ > 0.

• In Lemma 6.5 we show that it is unlikely that D(u) occurs if all Bt ’s in the sum∑n
t=[u/M](Bt − EB)Ct are bounded by θ(t + u).

• In Lemma 6.6 we finally show that D(u) is essentially caused by exactly one
unusually large value Bt > δ(µt + u), whereas all other values Bs , s 	= t , are of
smaller order. This lemma also gives the desired upper bound (6.1) of ψ(u).

LEMMA 6.1. For any µ > 0,

lim
M→∞ lim sup

u→∞
P(supn≤u/M(Tn − µn) > u)

uP (B > u)
= 0.

PROOF. We have

P

(
sup

n≤u/M

(Tn − µn) > u

)
≤ P

(
T[u/M] > u − EY [u/M]).(6.2)

For sufficiently large M , (1 − EY/M) > 0. Then an application of the large
deviation result of Theorem 4.2 yields that the right-hand side in (6.2) is of the
order

∼ c[u/M](1 − EY/M)−κP (B > u), u → ∞.

The latter estimate implies the statement of the lemma by letting M → ∞. �

LEMMA 6.2. We have, for any µ > 0,

lim
M→∞ lim sup

u→∞
P(supn≥u/M(T[u/M] − µn) > u)

uP (B > u)
= 0.

PROOF. We have, by virtue of the large deviation results,

P(supn≥u/M(T[u/M] − µn) > u)

uP (B > u)

≤ P(T[u/M] > u + µ[u/M])
uP (B > u)

∼ c
[u/M]P(B > u(1 + µ/M))

uP (B > u)
, u → ∞,

∼ cM−1(1 + µ/M)−κ → 0, M → ∞. �
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In the light of the two lemmas, it suffices to bound the probability

J (u) = P

(
sup

n≥u/M

[(
Tn − T[u/M]

)− (1 − ε)µn
]
> (1 − ε)u

)
for fixed M > 0 and any small ε > 0. By (5.1) and by virtue of Breiman’s result,
for large u,

J (u) ≤ P

(
Y0

∞∑
i=1

�i

+ sup
n≥u/M

(
n∑

t=[u/M]+1

(BtCt − EBEC) − (1 − ε)µn

)
> (1 − 2ε)u

)

≤ P

(
Y0

∞∑
i=1

�i > εu

)

+ P

(
sup

n≥u/M

(
n∑

t=[u/M]+1

(BtCt − EBEC) − (1 − ε)µn

)
> (1 − 3ε)u

)

∼ ε−κP (Y > u)E(C − 1)κ

+ P

(
sup

n≥u/M

(
n∑

t=[u/M]+1

(BtCt − EBEC) − (1 − ε)µn

)
> (1 − 3ε)u

)

≤ cP (Y > u)

+ P

(
sup

n≥u/M

(
n∑

t=[u/M]+1

(Bt − EB)Ct − (1 − ε/2)µn

)
> (1 − 4ε)u

)

+ P

(
sup

n≥u/M

(
EB

n∑
t=[u/M]+1

(Ct − EC) − εµn/2

)
> εu

)

= J1(u) + J2(u) + J3(u).

We show that

J3(u) = o
(
uP (Y > u)

)
.

LEMMA 6.3. Assume (Ct ) is strongly mixing with geometric rate and
ECκ+γ < ∞ for some γ > κ . Then for any M,µ > 0,

lim
u→∞

P(supn≥u/M(
∑n

t=[u/M]+1(Ct − EC) − µn) > u)

uP (B > u)
= 0.
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PROOF. We have, by Markov’s inequality,

P

(
sup

n≥u/M

(
n∑

t=[u/M]+1

(Ct − EC) − µn

)
> u

)

≤
∞∑

n=[u/M]
P

(
n∑

t=[u/M]+1

(Ct − EC) > µn + u

)
(6.3)

≤
∞∑

n=[u/M]
(µn + u)−(κ+γ )E

∣∣∣∣∣
n∑

t=[u/M]+1

(Ct − EC)

∣∣∣∣∣
κ+γ

≤ c

∞∑
n=[u/M]

(n + u)−(κ+γ )n(κ+γ )/2.

In the last step we applied the moment estimate

E

∣∣∣∣∣n−1/2
n∑

t=1

(Ct − EC)

∣∣∣∣∣
κ+γ

≤ c,

which is valid for strongly mixing sequences with geometric rate if γ > κ and
ECγ+κ < ∞, see, e.g., [13], page 31. An application of Karamata’s theorem
shows that (6.3) is of the order

∼ cu1−(κ+γ )/2 = o
(
uP (B > u)

)
,

for γ > κ . �

Thus, it remains to estimate J2(u). We proceed by a series of lemmas.

LEMMA 6.4. For every θ > 0,

P(Bt > θt for at least two t ≥ u) = o
(
uP (B > u)

)
.

PROOF. We have, by Karamata’s theorem,

P(Bt > θt for at least two t ≥ u)

≤
∞∑

t=[u]
P(Bt > θt,Bj > θj for some j 	= t)

≤
∞∑

t=[u]
P(B > θt)

∞∑
j=[u],j 	=t

P (B > θj)

∼ c[uP (B > u)]2,

from which the statement of the lemma follows. �
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LEMMA 6.5. Assume (Ct ) is strongly mixing with geometric rate,
ECκ+γ < ∞ for some γ > κ . Then for every M,µ, θ > 0,

J̃ (u) = P(Au) = o
(
uP (B > u)

)
,

where

Au = ⋃
n≥[u/M]

{
n∑

t=[u/M]+1

(Bt − EB)Ct > (1 − 4ε)(µn + u),

Bj ≤ θ(j + u) for all j = [u/M] + 1, . . . , n

}
.

PROOF. We have

J̃ (u) ≤
∞∑

n=[u/M]
P

(
n∑

t=[u/M]+1

(Bt − EB)Ct > (1 − 4ε)(µn + u),

max
j=[u/M]+1,...,n

Bj ≤ θ(n + u)

)

≤
∞∑

n=[u/M]
P

(
n∑

t=[u/M]+1

(
Bt,θ(n+u) − EB1,θ(n+u)

)
Ct > (1 − 4ε)(µn + u)

)
,

where

Bt,x = BtI[0,x](Bt ), x > 0.

Analogously to (5.6), an application of the Fuk–Nagaev inequality, conditionally
on (Ct ), yields, for d > 0 and d ′ = d ′(d) > 0,

J̃ (u) ≤ c

∞∑
n=[u/M]

n(n + u)−2κ + c

∞∑
n=[u/M]

(n + u)−d ′

+ c

∞∑
n=[u/M]

P

(
var

(
B1,θ(n+u)

)

×
n∑

t=1

C2
t > d[(1 − 4ε)(µn + u)]2/ log

(
(1 − 4ε)(µn + u)

))

= J̃1(u) + J̃2(u) + J̃3(u).

Choosing d > 0 sufficiently small such that d ′ becomes sufficiently large, an
application of Karamata’s theorem yields

J̃1(u) ≤ cu2−2κ = o
(
uP (B > u)

)
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and

J̃2(u) ≤ cu1−d ′ = o
(
uP (B > u)

)
.

An application of (4.10) yields, for γ > κ ,

J̃3(u) ≤ c

∞∑
n=[u/M]

n(κ+γ )/2
(

(µn + u)2

log(µn + u)var(B1,θ(n+u))

)−(κ+γ )/2

.(6.4)

If κ ≥ 2, var(B1,x) is slowly varying and if κ ∈ (1,2), var(B1,x) ∼ cx2P(B > x).
This follows by Karamata’s theorem. These facts and (6.4) ensure that J̃3(u) =
o(uP (B > u)). This proves the lemma. �

Finally, we bound J2(u) and obtain the desired upper bound (6.1) in the
theorem.

LEMMA 6.6. The following result holds:

lim
ε↓0

lim sup
u→∞

J2(u)

uP (B > u)
≤ ECκ 1

µ

1

κ − 1
.

PROOF. By virtue of Lemmas 6.4 and 6.5,

lim sup
u→∞

J2(u)

uP (B > u)

≤ lim sup
u→∞

P(
⋃

n≥u/M{∑n
t=[u/M]+1(Bt − EB)Ct > (1 − 4ε)(µn + u)} ∩ Aδ)

uP (B > u)
,

where, for any δ > 0,

Aδ =
∞⋃

t=[u/M]
{Bt > δ(µt + u),Bs ≤ δ(µs + u) for all s ≥ [u/M], s 	= t}.

Hence,

lim sup
u→∞

J2(u)

uP (B > u)

≤ lim sup
u→∞

∑∞
t=1 P(B1 min(C1, δ

−1(1 − 5ε)) > (1 − 5ε)(µt + u))

uP (B > u)

+ lim sup
u→∞

∞∑
t=[u/M]

P(B > δ(µt + u))

uP (B > u)

× P

( ⋃
t>n≥[u/M]

{
n∑

s=[u/M]+1

(Bs − EB)Cs > (1 − 4ε)(µn + u)

}
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∪ ⋃
n≥t

{
n∑

s=[u/M]+1,s 	=t

(Bs − EB)Cs > ε(µn + u)

}

∩ {Bs ≤ δ(µs + u), all s 	= t}
)

= lim sup
u→∞

K1(u) + lim sup
u→∞

K2(u).

Similar arguments as for J̃ (u) above show that

K2(u) = o(1)

∞∑
t=[u/M]

P(B > δ(µt + u))

uP (B > u)
= o(1).

An application of Breiman’s result and Karamata’s theorem yields

K1(u) ∼ (1 − 5ε)−κE
[
min

(
C1, δ

−1(1 − 5ε)
)]κ 1

µ

1

κ − 1
.

Noticing that

lim
ε↓0

lim
δ↓0

(1 − 5ε)−κE
[
min

(
C1, δ

−1(1 − 5ε)
)]κ = ECκ,

the lemma is proved. �

Proof of the lower bound. Now we want to prove that

lim inf
u→∞

ψ(u)

uP (B > u)
≥ ECκ 1

µ

1

κ − 1
.(6.5)

Again, we proceed by a series of auxiliary results. We start with a short outline of
the steps in the proof:

• In Lemmas 6.7 and 6.8 we show that the order of ψ(u) is essentially determined
by the event

D̃(u) =
{

sup
n≥u/M

(
n∑

t=[u/M]+1

(BtCt − EBEC) − µn

)
> u

}
.

• In Lemma 6.9 we complete the lower bound (6.5) of ψ(u) by first showing that
D̃(u) is essentially determined by the event

D(u) =
{

sup
n≥u/M

(
n∑

t=[u/M]+1

(Bt − EB)Ct − µn

)
> u

}
.

The probability of D(u) is bounded from below by intersecting D(u) with the
union of the events {Bt > δ(µt +u),Bs ≤ δ(µt +u), for all s 	= t}, that is, Bt is
unusually large, whereas all the other Bs ’s are smaller.
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LEMMA 6.7. For every ε,M,µ > 0,

ψ(u) ≥ L1(u) + o
(
uP (B > u)

)
,

where

L1(u) = P

(
sup

n≥[u/M]
(
Tn − T[u/M] − µn

)
> u(1 + ε)

)
.

PROOF. We have

ψ(u) ≥ P

(
sup

n≥[u/M]
(
Tn − T[u/M] − µn

)+ T[u/M] > u

)

≥ P

(
sup

n≥[u/M]
(
Tn − T[u/M] − µn

)
> (1 + ε)u,T[u/M] ≥ −εu

)

≥ P

(
sup

n≥[u/M]
(
Tn − T[u/M] − µn

)
> (1 + ε)u

)
− P

(
T[u/M] ≤ −εu

)
,

but, by (4.6),

P
(
T[u/M] ≤ −εu

)= o
(
uP (B > u)

)
.

This concludes the proof. �

LEMMA 6.8. We have, for any ε,µ,M > 0, k ≥ 1 and some c > 0,

L1(u) ≥ P

(
sup

n≥[u/M]

(
n−k∑

t=[u/M]+1

(BtCt − EBEC) − (1 + ε)µn

)
> (1 + 3ε)u

)

− c(EAκ)kuP (B > u).

PROOF. Using the decomposition (5.1) and writing

R1(k, u) = sup
n≥[u/M]

(
n−k∑

t=[u/M]+1

(BtCt − EBEC) − (1 + ε)µn

)
,

R2(k, u) = sup
n≥[u/M]

(
n−k∑
t=1

Bt

∞∑
i=n+1

�t+1,i − εµn

)
,

we have, for large u,

L1(u) ≥ P
(
R1(k, u) − R2(k, u) > (1 + 2ε)n

)
≥ P

(
R1(k, u) > (1 + 3ε)u,−R2(k, u) > −εu

)
≥ P

(
R1(k, u) > (1 + 3ε)u

)− P
(
R2(k, u) ≥ εu

)
= L2(u) − L3(u).
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We show that

L3(u) ≤ c(EAκ)kuP (B > u).

We have, for k ≥ 1,

L3(u) ≤ P

(
sup

n≥[u/M]

( [u/M]∑
t=1

Bt�t+1,n+1Cn+1 − εµn/2

)
≥ εu/2

)

+ P

(
sup

n≥[u/M]

(
n−k∑

t=[u/M]+1

Bt�t+1,n+1Cn+1 − εµn/2

)
≥ εu/2

)

= L3,1(u) + L3,2(u).

Then, by (5.3) and Markov’s inequality, for 0 < δ < 1,

L3,1(u) ≤
∞∑

n=[u/M]
P

( [u/M]∑
t=1

Bt�t+1,[u/M]�[u/M]+1,n+1Cn+1 > (ε/2)(µn + u)

)

≤
∞∑

n=[u/M]
P
(
Y0�[u/M]+1,n+1Cn+1 > (ε/2)(µn + u)

)

≤ c

∞∑
n=[u/M]

(EAκ−δ)n−[u/M](n + u)−κ+δ

≤ cu−κ+δ = o
(
uP (B > u)

)
.

Moreover, by (5.3) and Breiman’s result,

L3,2(u) ≤
∞∑

n=[u/M]
P

(
n−k∑

t=[u/M]+1

Bt�t+1,n−k�n−k+1,n+1Cn+1 > (ε/2)(µn + u)

)

≤
∞∑

n=[u/M]
P
(
Y0�n−k+1,n+1Cn+1 > (ε/2)(µn + u)

)
≤ c(EAκ)kuP (B > u). �

Next we bound L2.

LEMMA 6.9. We have, for every k ≥ 1,

lim
ε↓0

lim inf
u→∞

L2(u)

uP (B > u)
≥ ECκ 1

µ

1

κ − 1
.
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PROOF. Writing

R1(k, u) = sup
n≥[u/M]

(
n−k∑

t=[u/M]+1

(Bt − EB)Ct − (1 + 2ε)µn

)
,

R2(k, u) = inf
u≥[u/M]

(
EB

n−k∑
t=[u/M]+1

(Ct − EC) + εµn

)
,

we have

L2(u) ≥ P
(
R1(k, u) + R2(k, u) > (1 + 3ε)u

)
≥ P

(
R1(k, u) > (1 + 4ε)u,R2(k, u) > −εu

)
≥ P

(
R1(k, u) > (1 + 4ε)u

)− P
(
R2(k, u) ≤ −εu

)
= L4(u) − L5(u).

Lemma 6.3 and its proof show that

L5(u) = o
(
uP (B > u)

)
.

Now we turn to L4. Writing

Dt(δ, u) = {
Bs ≤ δ(µs + u) for all s ∈ [[u/M],∞) \ {t}},

Et (δ, u) = {
Bt min

(
Ct, δ

−1(1 + 5ε)
)
> (1 + 5ε)(µt + u)

}
,

we have, for small δ > 0,

L4(u) ≥
∞∑

t=[u/M]
P

(
{Bt > δ(µt + u)} ∩ Dt(δ, u)

∩
{

sup
n≥t

(
n−k∑

r=[u/M]+1

(Br − EB)Cr − (1 + 4ε)µn

)

> (1 + 4ε)u

})

≥
∞∑

t=[u/M]
P
(
Et(δ, u) ∩ Dt(δ, u)

)

−
∞∑

t=[u/M]
P

(
Et(δ, u) ∩ Dt(δ, u)

∩
{

sup
n≥t

(
n−k∑

r=[u/M]+1

(Br − EB)Cr − (1 + 4ε)µn

)
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≤ (1 + 4ε)u

})

≥
∞∑

t=[u/M]
P
(
E1(δ, u)

)
P
(
Bs ≤ δ(µs + u) for all s ≥ [u/M])

−
∞∑

t=[u/M]
P

(
Et(δ, u) ∩ Dt(u, δ)

∩
{

sup
n≥t

(
n−k∑

r=[u/M]+1,r 	=t

(Br − EB)Cr − (1 + 4ε)µn

)

≤ (1 + 4ε)u − (1 + 5ε)(µt + u) + EBCt

})
= L4,1(u) − L4,2(u).

By Breiman’s result and Karamata’s theorem, as u → ∞,

L4,1(u) ∼
∞∑

t=[u/M]

[
(1 + 5ε)−κE

[
min

(
C1, δ

−1(1 + 5ε)
)]κ

P (B > µt + u)
]

× P
(
Bs ≤ δ(µs + u) for all s ≥ [u/M])

≥ (1 + 6ε)−κE
[
min

(
C1, δ

−1(1 + 5ε)
)]κ ∞∑

t=[u/M]
P(B > µt + u)

∼ (1 + 6ε)−κE
[
min

(
C1, δ

−1(1 + 5ε)
)]κ 1

µ

1

κ − 1
P(B > u).

We conclude that

lim
ε↓0

lim
δ↓0

lim inf
u→∞

I4,1(u)

uP (B > u)
≥ ECκ 1

µ

1

κ − 1
.

As regards L4,2(u), we have

L4,2(u) ≤ c

∞∑
t=[u/M]

P(B > t + u)

× P

(
sup
n≥t

(
n−k∑

r=[u/M]+1,r 	=t

(Br − EB)Cr − (1 + 4ε)µn

)

≤ −εu − (1 + 5ε)µt + EBCt

)
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≤ c

∞∑
t=[u/M]

P(B > t + u)

× P

(
sup
n≥t

(
n−k∑

r=[u/M]+1,r 	=t

(Br − EB)Cr − (1 + 4ε)µn

)

≤ −εu − (1 + 5ε)µt + EBM

)

+ c

∞∑
t=[u/M]

P(B > t + u)P (C > M)

= I4,2,1(u) + I4,2,2(u).

We have

lim
M→∞ lim sup

u→∞
I4,2,2(u)

uP (B > u)
≤ c lim

M→∞P(C > M) = 0.

Observe that, for large u,

P

(
sup
n≥t

(
n−k∑

r=[u/M]+1,r 	=t

(Br − EB)Cr − (1 + 4ε)µn

)

≤ −εu − (1 + 5ε)µt + EBM

)

≤ P

(( [u/M]+u−k∑
r=[u/M]+1,r 	=t

(Br − EB)Cr − (1 + 4ε)µ([u/M] + u)

)
≤ −εu

)
.

Now an argument similar to the one for Theorem 4.2 shows that

I4,2,1(u) = o
(
uP (B > u)

)
.

This proves the lemma. �

Now a combination of the above lemmas shows that the lower bound (6.5)
holds. Indeed, we have, for any k ≥ 1,

lim inf
u→∞

ψ(u)

uP (B > u)
≥ lim inf

u→∞
L1(u)

uP (B > u)
≥ lim inf

u→∞
L2(u)

uP (B > u)
− c(EAκ)k.

Now, observing that EAκ < 1, let k → ∞, ε ↓ 0. This proves the theorem. �
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Extensions. A careful study of the proofs in the previous sections shows
that the particular structure of the sequence (Yt ) was inessential for the proofs.
Indeed, we made extensive use of the fact that the random walk (Sn) can be
approximated by the random walk S̃n = ∑n

t=1 BtCt . It is not difficult to see that
the results of Theorems 4.2 and 4.9 remain valid if Sn is replaced by S̃n and the
following conditions on any stationary sequence (Ct ) hold: (Bt ) is independent
of (Ct ), (Ct ) is strongly mixing with geometric rate, ECκ+γ < ∞ for some
γ > κ and (4.4) holds. Moreover, the assertion of Lemma 4.6 remains valid.
A stationary sequence Xt = BtCt for (Bt ) and (Ct ) independent is called a
stochastic volatility model in the econometrics literature; see [11] for some theory
and further references.

Acknowledgments. We thank the referee for constructive remarks which led
to an improved presentation of the paper. We are grateful to Qihe Tang who kindly
pointed out to us that the proof of Proposition 2.4 can be found in Grey’s paper.
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