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AN ALMOST SURE INVARIANCE PRINCIPLE FOR THE RANGE
OF PLANAR RANDOM WALKS

BY RICHARD F. BASS! AND JAY ROSEN?
University of Connecticut and City University of New York

For a symmetric random walk in 72 with 2 + § moments, we repre-
sent |R(n)|, the cardinality of the range, in terms of an expansion involving
the renormalized intersection local times of a Brownian motion. We show that
foreach k > 1

X .
1 1 7
(logn)k[;|ﬂ(n)|+ Z(—l)l <Elogn+cx) Vj,nj| -0 a.s.,
j=1

where W; is a Brownian motion, W[(n) = Wi /4/1, ¥j,n 1s the renormalized

intersection local time at time 1 for W and ¢ x 1s a constant depending on
the distribution of the random walk.

1. Introduction. Let S, = X| + --- + X,, be a random walk in Z2, where
X1, X3, ... are symmetric i.i.d. vectors in Z?%. We assume that the X; have 2 + §
moments for some § > 0 and covariance matrix equal to the identity. We assume
further that the random walk S, is strongly aperiodic in the sense of Spitzer ([23],
page 42). The range R (n) of the random walk S, is the set of sites visited by the
walk up to step n:

(1.1) Rm)={So,...,Sp—1}.

As usual, |R(n)| denotes the cardinality of the range up to step n.
Dvoretzky and Erdos [6] show that for nearest-neighbor symmetric random
walks

27 a.s.

R
(1.2) lim logn 2Dl _
n—oQ n
An error in [6] was corrected by Jain and Pruitt [11]. Le Gall [12] has obtained a
central limit theorem for the second-order fluctuations of |R(n)]:

(logn)z(lﬂ?(n)l - E(Ie‘R(n)l)> d

(1.3) . S —@r)*p()
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RANGE OF PLANAR RANDOM WALK 1857

where 5 denotes convergence in law and y»(¢) is the second-order renormalized
self-intersection local time for planar Brownian motion. See also [15].

In this paper we prove an a.s. asymptotic expansion for |R(n)| to any order of
accuracy. In order to state our result we first introduce some notation. If {W;; ¢ > 0}
is a planar Brownian motion, we define the jth-order renormalized intersection
local time for {W;; ¢ > 0} as follows. y1(¢) =t, a1 (t) =t and for k > 2

k
(14) o) = [ [T pe(Ws — Wiy )dty -+ dai,
0§t1§~~§tk<ti:2
K rk—1
(1.5) 0 =tim 3 (57 1) (a0 e,
=1

where p;(x) is the density for W; and

o0 t
%=A ¢~ prye(0)dt.

Renormalized self-intersection local time was originally studied by Varadhan
[24] for its role in quantum field theory. In [21] we show that y(#) can
be characterized as the continuous process of zero quadratic variation in the
decomposition of a natural Dirichlet process. For further work on renormalized
self-intersection local times see [3, 8, 14, 18, 20].

To motivate our result define the Wiener sausage of radius ¢ as

(1.6) "WE(O,t)={xeR2‘ inf |x—WS|§8}.

0<s<t
Letting m('W, (0, t)) denote the area of the Wiener sausage of radius ¢, Le Gall [13]
shows that for each k > 1

k . J
(logn)* |:m(Wn—1/z(0, D)+ Z(—l)l (% logn + c) yj(l)] -0 a.s.
j=1

as n — oo where c is a finite constant. Using the heuristic which associates
{Sinr)/~/m; 0 <t <1} Cn~'/272 C R? with the Brownian motion {W;; 0 <t < 1},
one would expect (note that space is scaled by n~1/2) that r1—1|,7?(n)| will be “close”
to m(W,-12(0, 1)).

Our main result is the following theorem.

THEOREM 1. Let S, = X1+ --- 4+ X, be a symmetric, strongly aperiodic
random walk in Z* with covariance matrix equal to the identity and with 2 + §
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moments for some § > 0. On a suitable probability space we can construct
{Sy; n > 1} and a planar Brownian motion {W;; t > 0} such that for each k > 1

k 1
(logn)™} - |R(n)]
(1.7)

k
/1 J
+ :(—1)]<2—10gn +cx) vi(1, W(”))} -0  as.
N T
j=l1

where the random variables (1, W)y, (1, W™y ... are the renormalized
self-intersection local times (1.5) with t = 1 for the Brownian motion {W,(”) =

Wi/ /n;t >0},

_ 1 2
(1.8) cx = glog(n /2) + )

/ ¢(p) —1+1pl?/2
[—r.x2 (1 =@ (p)Ipl?/2

is a finite constant and ¢ (p) = E (e'PX1) denotes the characteristic function of X 1.

Note that the presence of the constant cx shows that the heuristic mentioned
before the statement of Theorem 1 does not completely capture the fine structure
of |R(n)|. (This can already be observed on the level of (1.3); see [15], (6.1).)

The case of two dimensions is the critical one. For dimensions 3 and higher
there are almost sure invariance principles by Hamana [10] (for dimensions 4
and higher) and Bass and Kumagai [4] (for dimension 3) that say that the range,
appropriately normalized, is close to a Brownian motion.

We begin our proof in Section 2 where we introduce renormalized intersection
local times I'y j(n) for our random walk. Let { be an independent exponential
random variable of mean 1, and set ¢, = n when (n — 1)A < ¢ < An. Letting
|R(&y)| denote the cardinality of the range of our random walk killed at step ¢,
we derive an L? asymptotic expansion for |R(£;)| in terms of the Lk (20) as
A — 0. In Sections 3-5, on a suitable probability space, we construct {S,; n > 1}
and a planar Brownian motion {W;;¢t > 0} and show that in the above L?
asymptotic expansion for |R(£y)| we can replace AI'x 5 (£) by v« (¢, W(A_l)), the

renormalized intersection local times for the planar Brownian motion {Wt(rl) =
W, -1,/ VAT ;t > 0}. After some preliminaries on renormalized intersection local
times for Brownian motion in Section 6, we show in Section 7 how our L2
asymptotic expansion for [R(&3)| leads to an a.s. asymptotic expansion. The proof
of Theorem 1 is completed in Section 8 by showing how to replace the random
time ¢ by fixed time. The Appendix derives some estimates used in this paper.
Our methods obviously owe a great deal to Le Gall [13].
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2. Range and random walk intersection local times. We first define the
nonrenormalized random walk intersection local times for k > 2 by

Ix(n) = Z 8(Siy» Siy) -+ 8(Si_y» Si)

0<i|<---<ix<n

2.1)
k
= Z Z 1_[ 6(Sijvx)
xe€Z?20<iy<--<ix<n j=I
where
oL ifi =j,
3G, )= { 0, otherwise,

is the usual Kronecker delta function. We set I;(n) = n so that also I1(n) =
Y ovez? 2 0<i<n0(Si, x). [One might also take as a definition of the intersection
local time the quantity 2 0<ij<-<ip<n 0(Siys Siy) -+ - 8(Si_y, Sy ). The definition
in (2.1) is more convenient for our purposes, and we see by (2.6) that either
definition leads to the same value for I'y » (n).]

Let g, (x) be the transition function for S,, and let

2.2) G0 =) e g ).
j=0

We will show in Lemma A.1 below that

23) g =G, (0)= 2L log(1/A) +cx + 0()\‘S log(1/1)) as A — 0,

T
where cy is defined in (1.8). We show in (A.18) that for any g > 1
24 Y Grx)i=00"")  asi—0.

xeZ?

Note also that

Eal 1
— —Jjh —
(2.5) E Gr(x) = jE:Oe =1

xeZz?

We now define the renormalized random walk intersection local times by setting
', (n)=I(n)=nandfork>?2

o)=Y {8(Si. Si) — 8181, i2)}

0<ij<---<ig<n

(2.6) A8 (S Siy) — 828 Gik—1,ix)}

=2

k
=1

(’j‘ - i) (— T ).

J
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Let ¢ be an independent exponential random variable of mean 1, and set
&, =n when (n — 1)A < ¢ < An. ¢, is then a geometric random variable with
P (&, > n) = e *". Note that ¢iyj=nif (n—1)/j <& <n/j. By R(.) we mean
the range of our random walk killed at step ;.

In this section we prove the following lemma.

LEMMA 1. Foreachk > 1
k

2.7 Algr%)kgli(m({x)l - Z(—l)j_lg;]Fj,k(fk)> =0 inL®
j=1
PROOF. Define
T, =min{n >0:S, = x},
the first hitting time to x. We will use the fact that

G.(x)
G;(0)’

which follows from the strong Markov property:

(2.8) P(Ty <& =

Gi(x)=) e /*P(S;=x)

j=0
oo J )
= Z Ze_/)‘P(SJ- =x,T,=n)
j=0n=0
(2.9)
o0 o0 .
=Y > e P(Te =n)e U™ P(S; =0)
n=0j=n

= P(Tx < £)G(0).

To prove our lemma we square the expression inside the parentheses in (2.7)
and then take expectations. We first show that

E(R@GIP)

2% _ |
=23 (-DVg7 Y G (Gatx — ) T+ 0 2g D).
j=2 x,yeZ?

To this end we first note that

2.11) IREII= Y Liri<g)

xeZz?
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so that

E(R@)IP) = > P(T.Ty <)

x,yeZ?

(2.12)
=Y P(Te<@)+2 Y P(Tu<Ty <)

xeZ? x#yeZ?

Using (2.8) we have that
Gy (x) 1 1
213) Y P(Ti<&)= Y. == =o"lgh.
xeZ? xeZ? &x &x

To evaluate ), 72 P(Ty < Ty < ;) we first introduce some notation. For any
u # v € Z* define inductively

AL,=T,
Apy=Auy+Toby
(2.14) Ajv=A0, +Tuoby
A, = AL+ Ty00 0,
AR = A Tuo 04
We observe that for any x # y
P(Ty <Ty < &)
(2.15) =P(AL, <AL, <) —P(Ty <A, <Al <0)
=P(A}, <) —P(Ty <A, <Al <{)
and
P(Ty <A, <Al <)
(2.16) =P(A), <Al <A, <0)—P(Tu <Ay, <Al <A <{)
=P(A}, <) — P(Tu <A} ;A <)

y,Xx?

Proceeding inductively we find that

k k
P(Ty<Ty<&) =) P(AY, <u)— Y PAYY <)
2.17) = =

+P(Te < A} AR < ).
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Using (2.8) and the strong Markov property we see that

k . .
P(Ty <Ty<&) =Y 8 Grx)(Go(y —x)) 7!

j=1
‘ 2j+1) 2j
(2.18) =Y g TG (Gulx — )
j=1
+P(Te < A} A <)
and that
P(Ty < A} : A3 <)
(2.19)

< P(AH? < 55) = g, PG (0) (G (y — 1)

Equation (2.10) then follows using (2.3) and (2.4).
We next observe that

) E(In(é‘)»)lm ({A))

=ZE< > ]l[s(sij,x) > ]m"[a(slk,y)).

x,yeZ? 0<ij<--<ip< j=1 0<li <<l <G k=1

(2.20

We can bound the contribution from x = y by

n+m
Q2 (m+m! )y E( > [ 8(Sij,x))

xeZz? 0<i1 < <ipgm<& j=1

n+m
ew —erm Y ¥ E(Tas)e

x€Z?0<i| < <ipym <00 Jj=1

=m+m! Y. G.(x)G(0).
xeZ?
By (2.3) and (2.5) the contribution to (2.20) from x = y is O(A_lgﬁm),

and by (2.6) such terms make a contribution to E(I'; ;($3) .1 (80)) which
is O lght™).

On the other hand
n m
Z E( Z 1_[5(Sij,x) Z H‘S(Slk’y)>
(223) x#yeZ? 0<i) < <ip<) j=1 0<li < <lw<§ k=1

= 2 ZE< > nﬁn(S(Sl-_,-,w))),

X;ﬁyEZz T 0<ii <+ <iptm<fn j=1
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where the inner sum runs over all maps 7w :{1,2,...,n + m} — {x, y} such that
|7 =1 (x)| = m, |7T_l(y)| =n. Thus

3 E( 3 ]i[s(sij,x) > ]nlIS(Szk,y)>

x#yeZ? 0<i)<-<ip<g j=1 0<ly <<l < k=1
n+m
(2.24) = > > E(l_[ 8(S,-j,n(j))>e_)‘i"+’”
x#yeZ? T 0<ij<-<ip4m <00 Jj=1
n—+m
= 3 S []Gux()—=( - D),
x#yez? T j=1

where 7 (0) = 0. When we look at the definition (2.6) of I'x (n) we see that the
effect of replacing I,({3) I (8y) in (2.22) by Ty 2 (&) 5(y) 18 to eliminate
all maps 7 in which 7 (j) = w(j — 1) for some j. For example, if 7(1) = x
and m(2) = x, the contributions from the two terms in {§(S;,, Si,) — g18(i1,i2)}
will cancel, but if w(1) = x and 7 (2) = y, then there will be no contribution
from g,8(i1, i2).

Thus, up to an error which is O(A_lg’ﬁ'm ) (which comes from x = y), we have

E (T .60 m 1 (80))

x,yeZ?
=1 Y GG -0)"F ifm=nx1,
x,yeZ?
0, otherwise.

Consequently up to errors which are O (1! g%k )

k 4 2
E([Z(—l)f‘lgijrj,x(é“x)} )

j=1

k
= Y ()" M BTy (6)Tma(60)

n,m=1
k
(2.26) =2Y & Y GGy — )"
n=1 x,y622
k
23 g Y G (Galy — )
n=2 x,yeZ?

2k . .
=23 (Vg Y Gi)(Gix — )
j=2

x,y622
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To handle the cross-product terms we define the random measure on Z}
n

(2.27) Apy(B) = > [T8(Si;. )
{0<ii<-=<in<fH}NB j=1

Using the notation ig =0, i,,+-1 = £, we have

n
E(REOIG))=E 35 3o Lay<ey [18(Si,.)

x,yeZ20<i1 <-<in <& j=1

(2.28) .
= Y Y E(Any({ij ST <ijs1)).

x,yez? j=0
As above we have that
An,y({ij <Ty < ij+1})
(2.29) = Any({ij +Tc0bi; <ijr1})
j—1
— Z An’y({il <T, <ij41; ij + T 091']. < ij+1})
=0

and inductively we find that

Z Z E(Any({ij < Ty <ijy1})

x#yez? j=0
(2.30)
n+1
= > Y pmt Yy E(An,y<ﬂ {ij+Tob;, < iJ-H})),
x#yezZ2m=1 |Al=m JEA
where the inner sum runs over all nonempty A C {0, 1, ..., n}. Using (2.8) and the
Markov property we see that
n
Z Z E(An,y({ij <T: < l]-i-l}))
x#yez? j=0
(2.31)
n+1 n+m
= Y >0 g ] Galoa(i) —oali = 1)),
x#yeZz2m=1 |Al=m j=1

where 04 (0) = 0and o4 () is the jth element in the ordered set obtained by taking
n y’s and inserting, for each / € A, an x between the /th and (/ + 1)st y. Estimating
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the contribution from x = y we find that

E(|RQGIn(82))

n+1 n+m
(2.32) = > Y=Y g [ Guloa(i) —oali— D)
x,yeZZm:l |A|:m ]:1

+ 0()\._2 —(2k+1))

Once again we see that the effect of replacing 1,,(&y) in (2.32) by I';,.2 (&) is to
eliminate all sets A such that 04(j) =o4(j — 1) for some j. Thus we have

E(JR@)ITn(E0)
=2(-D)""1 Y "G ()(Gulx — )"

x,yeZ2
(2.33) +(=D" Y g "6 (Gux — )
x,yeZ?
+ D" Y g "G (G — )
x,yeZ?

+ 002 D),

Consequently

k
E(Ie‘R(Q)I Z(—l)"‘lg;”m(m)

n=1

—2Zg*2” Y GGy —x)" !

x,yeZ?
k 2n—1 2n—2
~ 3™ Y GGy —x)"
n=2 x,y622
(2.34) —Zg‘(z”“) 3 G (Gauly —x)™"
x,yeZ?

+ O()szg}h—(Qk-l-l))

2k ) .
=2Y Vg’ Y G@)(Gix — )

J=2 x,yeZ?

+0( —2 —(2k+1))
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Our lemma then follows from (2.10), (2.26) and (2.34). [
3. Strong approximation in L2. As usual we let X, = (E|X|HV/P.

LEMMA 2. Let X be an R?-valued random vector with mean zero and
covariance matrix equal to the identity I. Assume that for some 2 < p < 4,
E|X|P < 00. Given n > 1 one can construct on a suitable probability space two
sequences of independent random vectors X1, ..., X, and Y1, ..., Y,, where each

d 9
X; = X and the Y;’s are standard normal random vectors such that

Z<X -Y)

max O (n2/P=2/7),

1<k<n|!

2

PROOF. Letx = n2/p—2/p2' By (3.3) of [9] we can find a constant ¢ and such
X; and Y; so that

k

Z(X ~Y)

Write Z,, for maxj<x<y | Zle(Xi — Y;)|. By Doob’s inequality and Rosenthal’s
inequality [22],

P{ max

1<k<n

>x} <cinx PE|X|P.

<c3/n.

p

Y (Xi—Y)

i=1

”Zn”pECZ

So using Holder’s inequality
1Zall2 < x + [ Zaliz,> 0],
<X+ ZullpP(Zy =z )27

n\1/2=1/p
<x-+ C4ﬁ(x—p>

=x +cn!"VPx1=P/2

_ Csnz/p—Z/pz, 0

Using the lemma we can readily construct two i.i.d. sequences {X;};>1 and
{Yi}i>1, where the X; are equal in law to X and the Y; are standard normal, such
that for some constant C > 0 and any m > 0,

Z(X—Y)

l 2)7[

max < Cc@m2/r=2p,

om §k<2”’+1
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We see then that for any 2" < [nt] < om+l

[nt] m
=3
2 j=0

k
D (Xi—1) Y (Xi—Y))
i=1

which for some D > 0 is less than or equal to

i=2m

max
2m <k <2mt]

’

2

m
3" C@PAP < D(na) PP,
j=0

Now choose a Brownian motion W such that for m > 1,
m
W(m) =) Y.
i=1
Noting that

W (Imt]) — W (mt) |2 < ‘

sup |W(s)|H =M,
2

0<s<l1
we see that for any # > 0
H S([mt]) — W(mt)
Jm

< D(mt)z/”_z/pzm_l/2 +Mm™1/?
2

3.1)
— O(m/P=2P=0/2) (2/p=2I0 | 1)),

where

S(mth =) Xi.

i<[mt]

4. Spatial Holder continuity for renormalized intersection local times. If
{W;;t > 0} is a planar Brownian motion, set o] ¢(¢) = ¢ and for kK > 2 and
x = (x2,..., %) € (RO let

k

4.1) et x) :/ [[psWy — W, _, —xi)dt; - dn.
0<t1<---<tp<t i=2

When x; # 0 for all i and ¢ is an independent exponential random variable with
mean 1, the limit

(4.2) (8, x) = eli_I)I})Ek,e(é“,X)

exists. When x; #~ 0 for all i set

(4.3) @)=Y (—1)“"(Hu1<xi>)ak_|A|(¢,xAc>,
k}

AC{2,..., icA
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where
1 o

(4.4) uo)=[ e par
p:(x) is the density for W; and xac = (x;,, .. .,xikfw) with i1 <ip < -+ <ip_|a
and ij € {2,...,k} — A for each j, that is, the vector (xz, ..., Xk) with all terms
that have indices in A deleted. In [20] it is shown that for some § > 0 and all m
(4.5) E([7(. x) = %@ »I™) < Clx — y|*"

As before, set I;(n) =n and for k > 2 and x = (x2, ..., xx) € (Z2)*1 et
@.6)  L(n,x)= > 8(Si,—Si —x2) - 8(Si, — Si_y — Xx)

0<i;<---<irp<n
and for x € VA(ZH) 1 let
@7 Tramx= Y. (=D Gulxi/va) k- ja)(n, xae/V5).

AC{2,...k} icA
Note that I'y 3 (n) = Ty;.(n, 0).

LEMMA 3. Forany j > 1 we can find some p,8 > O such that uniformly in
A>0

(4.8) sup E(AT 0G0 y) = AT () [2) < CAP.
y|<AP

PROOF. We begin by considering
4.9) E(Tkr (G, x DTk 1)

for x' e (Z2H)k-1,
If & is a function which depends on the variable x, let

Doh = h(x) — h(0).

Let 8 be the set of all maps s: {1,2, ..., 2k} — {1,2} with [s~1(j)| =k, 1 < j <2,
and let By ={i|s(i)=s( — D)} and c(i) = |{j <i|s(j) =s@)}|.
Using the Markov property as in Lemma 5 of [20] we can then show that

E(Ti (&, xHTe (G, x2))

-X( M evn) T (T12,,.)
s€8 \ieBy zi€Z? \i€By L(l)

(4.10) i=1.2

c(i) c(i—1)
% 1_[ Gk(Z;(l)-i-va(l)/\/_—(Zv(l 1)+ Z xV(l 1)/[))

ieB§
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Fix s € 4 and note then that the corresponding summand will be O unless
Z((l’)) # 0 for all i € By. Note that by definition of B we necessarily have that

the last line in (4.10) is of the form

(4.11) Giz1) ] Gazi—za+4an.
i€B¢,il

where the a; are linear combinations of x!, x2 but do not involve z1, z2. Then we

observe that the effect of applying each D ) 1 o the product on the last line
(l)

of (4.10) is to generate a sum of several terms in each of which we have one factor

of the form D 0 R G,.. Thus schematically we can write the contribution of such

L(I)
aterm as

(4.12) (HGA 28)) K)) Yo Gz [] AaGaGi—z2+4ap,

i€B; z€z2,i=12 i€BEi#l

where each A y4; is a product of k; difference operators of the form Ax/- I and we
have ) ;. Be ki = |Bs|. If By # & and if there is only one term in the last product
on the right-hand side of (4.12), it is easily seen that the sum over z; gives 0. Thus
the product contains at least two terms and then by Lemma A.2 we can see that for
some C < oo and v > 0 independent of everything

(4.13) > G ] AaGii—z+a)|<ca 2 [T kE)"
z€Z2,i=1,2 i€Bf,i#l i€Bs

With these results, we now turn to the bound (4.9). For ease of exposition we
use y' to denote the y in the ith factor; in the end we will set y' = y. For ease of
exposition we assume that y differs from O only in the vth coordinate, and we set
a = yy. (The general case is then easily handled.)

We again use Lemma 5 of [20] to expand

(4.14) E((Trs s ¥ = Tka@))(Thn(@ ) = Tra(@0))
as a sum of many terms of the form
2
(o) Mewinm) ¥ (112,)
i=1

= i€B; 2€Z2,i=1,2 \ieB; et/
(4.15)

c(i) ci—1) )
x T1 GA(Z;(;) + ZXT()/\/_ <Zs(i—1) + > x‘;(l_l)/ﬁ>),
=2

ieB§
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where now x' is variously y’ or 0. For fixed s € 8 we can expand the corresponding
term as a sum of terms of the form

(1122 )
@16 x> (]‘[@mﬁx]—[@m) )

c(l)

zi€Z?,i=1,2 \keF¢ i€By
c(@) ci—1) .
< 1—[ GA(ZS(I)_Fsz()/\/_ (Zs(z Nt Z x?(l )/\/—>)
ieB§

where F runs through the subsets of {1, 2}. Note that the first line will be O unless

for each k € F we have that yv =x C((l’)) for some i € By. In particular

(4.17) |F| < |Bsl.
Using the fact that
(4.18) Gi(x) <clog(l/Ar)

we can bound the first line of (4.16) by (clog(l /)»))'B”. As before [see in
particular (4.13)], we can obtain the bound

 (mo)(nos.)

L(l)

z;€Z2,i=1,2 \keF¢
c(i) c(i—1)
(4.19) x 1 GX<ZY(,)+ZXY(1)/\/__(ZY(Z I+ Z X ”/f))‘
ieB§
< TT s IT
keF¢ i€By

Our lemma then follows using (4.17) which implies that |F¢| + |Bg| > 2. O

5. Approximating intersection local times. The goal of this section is to
prove the following lemma.

LEMMA 4. We can find a Brownian motion such that for each j > 1 there
exists B > 0 such that

(5.1) IATj2.(60) — v (G, wp-) o = O(AF).

PROOF. Let f(x) be a smooth function on R?, supported in the unit disc and
with [ f(x)dx = 1. We set fe(x) = ﬁf(x/s). On the one hand it is easy to see
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that if we set &' (f;) = [u'(x) f; (x) dx and

k
e fo = [AG0 [] fetdra- dan,
i=2

J
@6 fo = [ @0 [] e dxa- du,
i=2

we will have

k .
(5.2) R f=3 (’]‘ B i) (@' (o) E . fo)
j=I1
and
j
(5.3) a(t, fr) =/ [1/W,—W,_)dn - di;.

<1 <.-<t; N
0<t < Sti<t ;5

On the other hand it follows from (4.5) and Jensen’s inequality that

(5.4) 192(C. fo) — (@)l < CT°.
If we set Gy, (fr) = X, g2 2Ga (x/ V) fr (x),

k
Tl fo = Y Moo [T 6

X2,yeees XkE\/XZZ i=2

and

J
Ii (G, fr) = oo AT (G xR T e,

X2y XK ENAZ2 i=2
we similarly have
=~ k-1 ~ k—j5
(5-5) PG, fo) = Z (J _ 1) (_G)»(fr)) _]Ij(f)u fo).
j=1

It then follows from (4.8) that with T = A® for p > 0 small

(5.6) AT 2 (Cas £2) — ATk (@)]l2 < CT°.

To complete the proof of Lemma 4 it only remains to show that with T = A* for
o > 0 small

(5.7) IAT ks (Gas fr) — i, frr @p-1)lla < cA®
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for some ¢ < oo and ¢ > 0. Note that

)»INj(Q, fo) = Ak Z 1_[ fr St, Sti—l))

0<t)<--<tj<{ni=2

= )‘k Z l_[ fT Sl: Sli—l))

0<ty<--<tj<¢/ri=2
(5.8) .
J

OSZ}SEZI<§/}»1:[ft( ( [Zl] [1171])) 1 j

= 1_[ Se (WSt /a1 = Sty ) dir -+ d.

O<n<-=tj<¢ ;5
By (5.2)—(5.8) it suffices to show that for some 8’ > 0 and all sufficiently small 7, A
(5.9 @'(f)=0(00g/Ir)),  1Gu(f) =@ (f)l <cT AT
and

”&k(g’ f‘[, wk—l)llz S C-L'_z(k_l)’

WAL (Cns o) — Gk (L, frrwy—1)]|la < ct 2K FIRS,

The first part of (5.9) follows from the fact that u L(x) = O (log(1/|x1)); see [13],
(2.b). To prove the second part of (5.9), we note that sup, |V f; (x)| < ct 73, 50

G (fe) — 0" (fo)l
(5.11) ‘/ E(f:(VASpa) — fr(ﬁWz/x))df‘

(5.10)

< cr*3/0 e VA (Siepg — Wipa) | dt.

The second part of (5.9) then follows from the last inequality in Section 3.
The first part of (5.10) follows from the fact that sup, | fz (x)| < ¢t 2, so that

[e.e]
(5.12) |wuafgwroﬁ5cfﬂkﬂﬂ;eﬂﬂda

To prove the second part of (5.10), we use the above bounds on sup, |V f7 (x)|
and sup, | fz (x)| to see that

AT Cs fr) — Gk (s frr 3-D)]3

(5.13) < cr Xl

k o
X Z/ e! </ ”\/X(S[,]./)L] — Wt_,'/)u)Hidtl dtk) dt.
=1 0 0<t; <<t <t
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The second part of (5.10) then follows from the last inequality in Section 3. [J

6. Renormalized Brownian intersection local times. Recall the definition
of yx(¢) given in (1.5). Note from [13], (2.b) that for some fixed constant ¢

%0 I
©.1) ” =/0 ¢ prre (O dt = 7 log(1/e) + ¢ + O (c).

In [20] we show that the limit in (1.5) exists a.s. and in all L? spaces, and that
Yk (t) is continuous in ¢. The rest of this section is basically contained in [13] but
we point out that [20] came after [13] and resulted in some simplification.

For any given function 4 : (0, c0) — R we set 1 (¢, h) =t and for k > 2

k
- . k—1 _
(62) o= lim 3 (521) ho e,

where we write i, for h(g). In particular, y, (t) = ¥, (¢, u). Let # denote the set of
functions & such that lim,_,o(h, — u.) exists and is finite. In the next lemma we
will see that the limit in (6.2) exists for all & € F.

LEMMA 5 (Renormalization lemma). Let h € H. Then yi(t, h) exists for all
k>1andif h € H with lim,_,g(h, — he) = b, then for any k > 1

k

(63) A= () B e,

m=1

PROOF. Setting b, = h, — h, we have
k

3 (’1‘:11) (—he)* ey (1)

=1
(6.4) Z<1_1> e — be) o (1)
k=1N _pyi(—h k=i
0( j )( be)! (—he)* D ey (1),

o) 7)== 0,

the last line in (6.4) becomes

Using

k—1

.k_./. —_ ._ - .
65 (7)o (LT ot .

j=0 =1
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Taking i, = u, then shows the existence of y; (¢, ). Returning to general 1 € #
and now taking the & — 0 limit, we obtain

= _ i
ﬁ(z,mzz( j )(—b)f?k,-(r,m
(6.6) /=0

k
_ k—1 k—m = A
-y (m B 1) (—b) D1, ),
m=1
where the last line follows from the substitution m =k — j. [

Let i € #£. We shall sometimes write (¢, i, w) for Y (¢, h) to emphasize its
dependence on the path w. We want to discuss how renormalized intersection local
time changes with a time rescaling. Let w,(s) = r~12g (rs). Then Vi (¢, h, w;) is
the same as ¥ (¢, h) defined in terms of the Brownian motion W,(r) =W, /.

LEMMA 6 (Rescaling lemma). Let h € #. Then for any k > 1

_ i (k—1) (1 kem
67 hon=r"Y (571) (55 ls0/m)  Ruttho)
m=1

PROOF. After replacing w by w, the integral on the right-hand side of (6.2) is
replaced by

l

Wy — Wry,
f Hpe(u)dtl...dtl
o<t <---<ty<t i ﬁ
1
B Wt‘ - Wt',
6.8 =r l/ (l4ll>dl"'dt
( ) Oftlf"'5t1<rti:1_[2p8 \/; 1 ;
1
—1
B Wi = Wy )dty - diy.
/(;Etlf"'ff[<rl‘i:1_[2pr€( li 1171) 1 i

Abbreviating this last integral as «; - (rt, @), we have

k
_ 1 k—1 k-1
©9) o) =r I3 (321) e anerr. o,
Since h € # it is easily seen that limg_.o(he — hye) = —%log(l/r) and our

lemma then follows from Lemma 5. [
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7. Range and Brownian intersection local times. In this section we prove
the following theorem.

THEOREM 2. Foreachk > 1

k .

AV, (Mmm - Z(—l)f—lg;fyj@,ww)) 0 as
j=1

as A — 0.

PROOF. Using (5.1) together with Lemma 1 and its proof, we see that for some
M < o0
2
= M
2

(7.2)

4k+1<k|£(§x)|—2( DI e y;(, a’x—l)>

j=1

for all A > O sufficiently small.
We now follow [13]. With A,, = e‘”mk we have that for any ¢ > 0

4k .
ZP{ (k [R(6x,)| — Z(—l)j_lgﬁjyf(f’wxn» ng_nl}

j=1

00 4k i
(7.3) <y P{g;‘f“ (An|ﬂ(gn>| =Y (=g (e wx,,l)) > gi,’j}
n=1

j=1

= My Z g

Then by Borel-Cantelli

(7.4) gx,, <7\ |R(¢3,)| — Z( /- 1 yj(g‘ w, )) —0 a.s.

j=1
Since for each m > 1 we have that y;(¢, o, 1) is bounded in L™ uniformly in n,

then by Chebyshev’s inequality with m sufﬁmently large P(y;(¢, C())L—l) > g1,)
will be summable. So we may drop the terms for j > k and we then have

(7.5) gk <A |R(22,) |—Z( 1)/~ lgk yj(g‘ w, )>—>0 a.s.

j=1
Before continuing the proof of Theorem 2 we first prove the following lemma.
LEMMA 7. Foranyk >1

(7.6) lim  sup |y (C w5-1) — (¢, o, )| = a.s.

n—0 )“n+1 <A=<Ap
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PROOF. By (6.7) for any k > 1

LA 1 AN,
0D non =23 (71 ) (e(r)) (G )

=1

Hence for any p > 1

sup ka(C,wm)—yk(C,le)lH
p

)Ln—}—lf)\f)\n
< ’ (A”; ) (¢ )H
< sup | —| —¢ o1 ) = v(¢ 0,1
A1 SAZhy )\'" A o i p
k—1 k—m
1 A An
(7.8) +c sup <—log(—)) sup ¥, <—§,a) 1)
mgl)‘nﬁf)\f)hn 2 Mn Msriha N A TR
’ (A”;) ©)
= sup Y\ ¢ ) — Yk
A1 <A<y | An A p
k—1 k—m
1 A An
+c sup <—log(—)) sup Y, (—{)
,,;xmsxsxn 2 An dpr=isia . NA )

It follows from (9.11) of [3] that for any k£ > 1 we can find 8 > 0 such that

§c8’3.
p

(7.9) sup  |yk(s) — yr(@)]

|[t—s]<6,s,t<1

Actually, this is proved for a renormalized intersection local time & (#) where
Ex(t) = limy_ &k (f,x) and & (¢, x) differs from (¢, x) defined in (4.3) in
that u!(x) is replaced by n_llog(l/lxl). Since ul(x) — Jr_llog(l/lxl) =c+
O(|x|?1og |x|), see [13], (2.b), we obtain (7.9). Using (6.7) with r =¢~! and (7.9)

we find that
()‘” z) (1)
Yk Iy Yk

‘ B

sup
)"VH»I <A<y

P
(7.10)

<ct(ogt)F| =2 —1| <ct(ogt)nF,

n+1

where we have used

A
(7.11) log — = O (n~1+1/2k),
Antl
Hence
An _p"
(7.12) sup  (vk| ¢ ) —wm @]} =en "
g1 <A <hn A P
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Using (7.8) and (7.12) now shows that

-4
<cn P
)4

(7.13) sup |y (¢, 0p-1) = (8 ;1)

)‘n+l <AZAy

and our lemma then follows using Holder’s inequality for sufficiently large p and
the Borel-Cantelli lemma. [J

Continuing the proof of Theorem 2, by our choice of A,
Lk k _
(7.14) lim g3 11— 8, =0.
Together with (7.6) we have that a.s.
k o
lim sup | Y (=17 gy, 0-0)
n_)o)\n+1§)¥§)bn j:1
7.15
(7.15) . o
=Y (=D g (e ;-1)| =0.
j=1

Using the fact that |R (&) and g, are monotone decreasing we have that

sup  [AgkIRE)I — Mgk |R(50,)|

A1 Sh<hy
< gl IR @) = il |R (5,
< Mgk R = 2ngr8), | R (G|
(7.16) + 18, [R(G)| = Mg, [R (@,
+ gk, |R(G,)] = An1gh, R (¢, |
< 20 = Mns1lgs, [ R (G|
18, [R (@)l = Angh, [R@)] =0 as.
Here the first term on the right-hand side of (7.16) goes to 0 using the fact that
o — At | = |1 — enl/Zk—(n-i-l)l/Zan <2k <op 2K L
g’k‘n+l = + Y2, (7.5) and the discussion immediately preceding (7.5). The

second term on the right-hand side of (7.16) goes to 0 using (7.15) and (7.5).
Combining (7.5), (7.15) and (7.16) we have (7.1). [
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8. Nonrandom times. In this section we complete the proof of Theorem 1.
Recallthat §) =nifn—1 < %{ <n.So ¢, = [%ﬂ where [x] denotes the smallest
integer m > x. Hence (7.1) can be written as

k .
8.1) gi‘(xm(rgmn—Z(—l)f—lg;fyj@,wk_l))_>o as.

j=1

If (2, P) denotes our probability space for {S,; n > 1} and {W;; ¢t > 0}, then
the almost sure convergence in (8.1) is with respect to the measure e ’dt x P on
R}r x 2, where ¢ (¢, w) = t. Hence by Fubini’s theorem we have that for almost
every t >0

k .
(8.2) g’;<x|JR(rt/A1)| — Z(—l)j_]g;Jyj(t,a)xq)) -0  as.

j=1

Fix a 9 for which (8.2) holds and let A run through the sequence f#y/n. Then
(2.3) and (8.2) tell us that

(8.3) (logn) ( |R(n)|+z gto/n 'yj(toa")n/to)> —0 a.s.
j=1

Using (6.7) and writing b, = E log(1/r) we have that

<logn>"(%°m(n)|

(8.4) .
J .
+10 ) (~8io/n) Z( )b{/t;’lym(l,wn)>—>0 a.s.
j=l1 m=1
Then
k o i1
S (=gwn) X (270 ) ol mtion
j=1 m=1
(8.5) ) .
- )G s
= — —8io/n)  Ym(1, @n).
mZ=l<]§r:n<m_l 8t/n o " n
Now,
k . 1 ) k—m ; +m _ 1 ' m
56 2 <151— 1>x]_m > ( m—1 )xl - (1 —x) +OGET.
j=m i=0

By (7.9) with § = 1 we have that sup,; |y;(#, )| is in L? for each p and each
J=1LIfwesetV;,= sup, <1 |y (t, wye)|, we then have, taking p large enough,
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that

x EV/,

o
Y P(Vjie>nlogh)) <y —L—
=1 =1 (nlog2%)”

is summable for each 1. Hence by Borel-Cantelli V; ¢/ log(2%) — 0 a.s. for each
j = 1. Since by Lemma 6 we have for 2t < <26+ that (1, ®,) 1s bounded
by a linear combination of the V; ¢, 1 < j < k, with coefficients that are bounded
independently of r, we conclude

yj(l,w,)/logn — 0 a.s.

Thus we can replace (8.5) up to errors which are O (logn)~*~! by

k

(8.7) > (

m=1

m k
—————— ) VYu(L,wn) = ) (—=g1/n) " Y (1, @y)

since by (2.3) we have that g,/ + b1/1 = g1/n + 0((n=9).
Thus we obtain

1 k .
(8.8) (logn)"<;|ﬂz<n)| + Z(—gl/nr]y,-(l,wn)) -0 as
j=1

This, together with (A.2), gives Theorem 1.
APPENDIX

Estimates for random walks. In this appendix we will obtain some estimates
for strongly aperiodic planar random walks S, = >"" | X;, where the X; are
symmetric, have the identity as covariance matrix and have 2 4+ § moments for
some § > 0.

Let

G.(x):=) e Mg, (x).
n=0

If

¢(p) = E("™)
denotes the characteristic function of X, we have

eipx

1
(A1) G0 =37 /[_m]z o
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LEMMA A.1. Let S, be as above. Then
1
(A2) G, (0) = 3 log(1/A) +cx + O(k‘S log(1/2)),

where

/ ¢(p) —1+1|pl?/2

1
A3 = —log(n?/2) +
A3 ex=gloelr/2) (eal (1 p(p)IpP/2

(27)?

is a finite constant.
PROOF. We have

1
(A4) G, (0)= 2 /[—71,71]2 TRy 50 dp.
We intend to compare this with
L / _ 4
@02 Jonap x+1p1272 7

whose asymptotics are easier to compute. Indeed,

1
L oeivioin®
—m a2 A+ pl?/2
(A.5) [—m,m] Ipl=/
po A+ 19227 T S rap—pom A+ 1p2/2

where D(0, ) is the disc centered at the origin of radius . It is clear that

dp,

1
ro | R —— _dpr o,
(A.6) [—m,72=DO,7) A+ |p|?/2 P [—m,72=DO,7) |p1?/2 P *

On the other hand, using polar coordinates

A7 —— dp =2n(log(h +7%/2) —log(})).
(A7) /D(o,n)x+|p|2/z p =27 (log(h + 72/2) — log(2))
Thus
1 1
- ——dp
21)2 Ji—rn 2/2
(AS) (2m) /[l,]zf\erl/1
= —log(1/A) + — log(%/2) + O ().
2 2
We then note that
[ e[ 4
[—mx2 1 —e *¢(p) [—r.al? A+ |pl?/2
(A +1p1?/2) — (A —e ¢ (p))
A9 =
(A9 [ A=+ 1P2/2)
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(A.10)
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_ o) —1+1plP2
(w72 (1 —e P (p))(A + |p|?/2)

o(p)—1
—a d
/[—n,nP (I —e ()G +1pl2/2)
¢(p)

14 dp.
SRR s pp vy YR P EN TR

eP* — 1 —ip-x+(p-x)?/2| <c(p-x)*T

for some ¢ < co we have by our assumptions that

(A.11)

lp(p) — 1+ |pl?/2] < c|p*™.

This implies that

(A.12)

lp(p) — 1] <"|pl?

for p € [—m, 7% and

(A.13)

1—e*¢p(p) =+ IpP)

for some ¢ > 0 and sufficiently small A. Hence

(A.14)

and

(A.15)

lo(p)l

A Y
(e D) e UGt 192 7

1
<ex? / oy
a2 O+ 1122

<cA

1
—  _dp=0@)
[—n/Vaava (14 |pl?)?

b(p) — 1|
A d
/[—n,ﬂz (I —e oo+ 1pI22) "

2
[~ (A +|pl9)

Ip?

SC}L[ —————dp = 0(Alog(1/2)).
iy (1 [p P = Olog1/2)

Setting f(p) =¢(p) — 1+ |p|2/2 and using (A.11), we see that

i SO
-t (L= (P)IIPP/2 |

1881
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Consider then

/ f(p) dp
[—rx2 (1 —e ¢ (p)) (A +1pl*/2)

B / f(p) )
[—m.a12 (1= ¢ (p)Ipl*/2
_ f(p)
~Jierar (L= e (p) (- + | p[2/2)

dp
(A.16)

_/ f(p) »
[—m.x12 (1 —e ¢ (p)Ipl?/2

f(p
d
* /[—m]z d—crpnip2?

_/ f(p) dp
[—zx > (L= ¢(p)|pl?/2
We have

/ f(p) dp
[—m.xl2 (1 —e P (p)(A +|pl?/2)

B / f(p) dp
[—m.x12 (1 —e ¢ (p)Ipl?/2

_ _/ J(p)r dp
—ral2 (L—e*@(p)(h +1p12/2)|pl?/2

= 01 log(1/1)),

(A.17)

and the last line in (A.16) can be bounded similarly. This completes the proof of
Lemma A.1. [

LEMMA A.2. Let S, be as above. For all m > 1

(A.18) 1Gllm=0G"Y™  asr—0

and

(A.19) 1Gs, = Gallm = O(Ix = X |(Va) ™) asr—o0.
Forallm>?2and 7 € Z*

(A.20) 185 Gallm < &Iz 271" (log(1/2)) 1™

and forany 0 < 8 < 1
(A21) 1A, /5Gallm < ¢'l2lP/ma= 1
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and

k
(A.22) H ( [1a., ﬁ) Gy
i=1

k
m i=1

PROOF. By [23], page 77, we know that ¢,(x) < c1/n, where g, is the
transition probability for S,. So

-1 _— 1 -1,_— 1
lgnllim =Y ga@)" <™+ Y " gu(x) =~ In
xeZ? 272

Then

00
—A
1Gallm <D e " Ngnllm-
n=0

Substituting the above estimate for ||gy, ||, and breaking the sum into the sum over
n < 1/A and the sum over n > 1/, we easily obtain (A.18).
Equation (A.19) follows from (A.18) and the resolvent equation

(A.23) Gy —Guy=}—NG,*xGy.

By Proposition 2.1 of [2], for each B € (0, 1] there exists a constant cg such that

l4n (1) — g < cpn ™ (Ix = yl//n)’.
So for any fixed w € Z?
lgnC+w) = gu Ol < NgaC+w) —gall% " Y (gn(x + w)gn (x))
xeZz?
< 2(cpn™ (lwl/v/n)P)"

We take mth roots, substitute into

1GA(-+w) — GaOllm < DY e Mlgn - +w) = gu()llm.
n=0

break the sum into the sum over n < 1/A and the sum over n > 1/A, and let
w = z/~/A to obtain (A.21).
For (A.22) we note that for each j we can write (]_[f: 1A y ﬁ)G » as a sum of

25=1 terms of the form Azj/ﬁGx (z + b) for some b so that by (A.21)

k
’(H Azt/ﬁ) G

i=l

(A.24) < 2k g | Plmy Y m,

m

We have inequality (A.24) for j = 1,..., k. If we take the product of these k
inequalities and then take kth roots, we have (A.22). [
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