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CHARACTERIZATION OF PALM MEASURES
VIA BIJECTIVE POINT-SHIFTS

BY MATTHIAS HEVELING AND GÜNTER LAST

Universität Karlsruhe

The paper considers a stationary point process N in Rd . A point-map
picks a point of N in a measurable way. It is called bijective [Thorisson, H.
(2000). Coupling, Stationarity, and Regeneration. Springer, New York] if it
is generating (by suitable shifts) a bijective mapping on N . Mecke [Math.
Nachr. 65 (1975) 335–344] proved that the Palm measure of N is point-
stationary in the sense that it is invariant under bijective point-shifts. Our
main result identifies this property as being characteristic for Palm measures.
This generalizes a fundamental classical result for point processes on the line
(see, e.g., Theorem 11.4 in [Kallenberg, O. (2002). Foundations of Modern
Probability, 2nd ed. Springer, New York]) and solves a problem posed in
[Thorisson, H. (2000). Coupling, Stationarity, and Regeneration. Springer,
New York] and [Ferrari, P. A., Landim, C. and Thorisson, H. (2004). Ann.
Inst. H. Poincaré Probab. Statist. 40 141–152]. Our second result guarantees
the existence of bijective point-maps that have (almost surely with respect to
the Palm measure of N ) no fixed points. This answers another question asked
by Thorisson. Our final result shows that there is a directed graph with vertex
set N that is defined in a translation-invariant way and whose components are
almost surely doubly infinite paths. This generalizes and complements one of
the main results in [Holroyd, A. E. and Peres, Y. (2003). Electron. Comm.
Probab. 8 17–27]. No additional assumptions (as ergodicity, nonlattice type
conditions, or a finite intensity) are made in this paper.

1. Introduction. We consider a stationary (simple) point process N in Rd

defined on a probability space (�,F ,P). Stationarity means distributional
invariance under all translations. We let PN denote the Palm measure of N (see,
e.g., [1, 7, 9, 11]). If N has a positive and finite intensity, then the normalization P0

N

of PN (the Palm probability measure of N ) describes the statistical properties of
the underlying stochastic experiment as seen from a typical point of N located
at the origin 0. Note that PN(0 /∈ N) = 0. Thorisson [14] (using a canonical
framework) calls a measurable mapping π :� → Rd a point-map if π ∈ N on
the event {0 ∈ N}. Such a π is called a bijective point-map if x �→ π ◦ θx + x

is a bijection on N , where θx :� → �, x ∈ Rd , is the underlying family of shift
operators (see Section 2). Mecke ([8], Satz 4.3) proved that bijective point-maps
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can be used to shift the point 0 to a (possibly) different point of N without biasing
the Palm measure of N (see also Theorem 9.4.1 of [14]). A short proof of this fact
is given in Section 3.

Following [14] we call a measure Q on (�,F ) point-stationary if Q(0 /∈ N) = 0
and Q is invariant under all σ(N)-measurable bijective point-maps. However, un-
like [14] we do not allow additional randomization. The main result of our paper
(Theorem 4.1) shows that point-stationarity is the characteristic property of Palm
measures. This characterization generalizes a fundamental classical result for one-
dimensional processes (see, e.g., Theorem 11.4 in [5]) and solves a problem posed
in [14] and [2] in complete generality. Our proof is based on a construction of a
nested family of bijective point-maps exhausting all points of N and on Mecke’s
[7] intrinsic characterization of Palm measures.

Thorisson [2, 14] has asked for the existence of a bijective point-map having
the property P0

N(π �= 0) = 1. Then it is possible to shift the typical point of N (in
a nonrandomized way) to an almost surely different point of N without biasing
the Palm probability measure. In dimension d = 1 there are of course many such
point-maps, as one can shift to the nearest neighbor to the right, for instance. In
dimension d ≥ 2 the situation is less clear. Shifting to the nearest neighbor of the
origin, for instance, does not solve the problem. As the nearest neighbor of the
typical point might also be the nearest neighbor of other points, it is certainly not a
typical point anymore. In this paper we will prove (see Theorem 5.1) the existence
of a σ(N)-measurable bijective point-map satisfying

PN(π = 0) = 0.(1.1)

The third main result in this paper (Theorem 6.1) shows that there is a graph with
vertex set N that is constructed from N in a translation-invariant way and whose
components are almost surely directed doubly infinite paths. This complements
Theorem 2 in [4] which provides (under some additional assumptions on N ) an
isometry-invariant graph with vertex set N having the same property.

2. Palm measures. All random elements are defined on a measurable space
(�,F ) equipped with a measurable flow θx :� → �, x ∈ Rd . This is a family
of measurable mappings such that (ω, x) �→ θxω is measurable, θ0 is the identity
on � and

θx ◦ θy = θx+y, x, y ∈ Rd .

A random measure N on Rd (see, e.g., [5]) is called adapted to the flow if

N(ω,B + x) = N(θxω,B), ω ∈ �,x ∈ Rd,B ∈ Bd,

where Bd denotes the Borel σ -field on Rd .
Let P be a σ -finite measure on (�,F ) being stationary in the sense that

P ◦ θx = P, x ∈ Rd .
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We are hence working within the {θx}-framework as introduced in [9] for point
processes (see also [11]). Although a canonical setting as used in [14] and
Chapter 11 of [5] might be more appealing to the reader, the present more general
framework is notationally less cumbersome. In Sections 3 and 4 we will not
assume that P is a probability measure. This allows us to formulate our results in
greater generality that is useful even in a probabilistic framework (see, e.g., [16] or
the proof of Proposition 4.3). Moreover, our general setting leads to a completely
symmetric form of the main result (Theorem 4.1).

If N is a flow-adapted random measure and P is a σ -finite stationary measure
on (�,F ), then the “distribution” P(N + x ∈ ·) of the shifted process N + x

is the same for any x ∈ Rd . Therefore we call N just stationary. The intensity
measure �(B) := EP[N(B)], B ∈ Bd , of a stationary random measure is given by
�(dx) = λP dx, where λP := EP[N([0,1]d)] is the intensity of N and dx refers to
integration with respect to Lebesgue measure on Rd . Here EP denotes integration
with respect to P. The measure

PN(A) :=
∫ ∫

1(θxω ∈ A,x ∈ [0,1]d)N(ω)(dx)P(dω), A ∈ F ,(2.1)

is called the Palm measure of P (with respect to N ). It is σ -finite and satisfies the
refined Campbell theorem

EP

[∫
f (θx, x)N(dx)

]
= EPN

[∫
f (θ0, x) dx

]
(2.2)

for all measurable f :� × Rd → [0,∞). If 0 < λP < ∞, then we can define the
Palm probability measure P0

N := λ−1
P PN of N .

An example of a random measure is N(·) := card{i : ξi ∈ ·}, where {ξi : i ∈ N}
is a (simple) point process of pairwise distinct points in Rd (see [5]) that are
not allowed to accumulate in bounded sets. Formally we may introduce N as a
measurable mapping from � to the space N of all locally finite subsets ϕ ⊂ Rd

equipped with the σ -field generated by the mappings ϕ �→ ϕ(B) := card(ϕ ∩ B),
B ∈ Bd . We will make no distinction between a point process and its associated
random measure.

3. Invariance properties of Palm measures. Let N be a point process in Rd

adapted to the flow {θx :x ∈ Rd}. We call a measurable mapping π :� → Rd

a point-map if π ∈ N on the event {0 ∈ N}. Such a point-map creates a point-shift
θπ :� → �, given as the composed mapping ω �→ θπ(ω)ω. We call both a point-
map and the associated point-shift bijective if

x �→ π(x) := π ◦ θx + x(3.1)

is a bijection on N whenever N �= ∅. In this case it is easy to see that the inverse
x �→ π−1(x) of this mapping is of the form

π−1(x) = π−1(0) ◦ θx + x.
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Hence π−1 := π−1(0) is again a bijective point-map. We call it the inverse point-
map of π . If π1 and π2 are two bijective point maps, then x �→ π2(π1(x)) is a
bijection on N whenever N �= ∅. It is easy to see that this bijection is associated
with the point map π2 ◦ π1 := π2 ◦ θπ1 + π1. In particular we may define for any
n ∈ N the nth iterate πn of a bijective point-shift. Further we define π0 := 0, and
π−n := (πn)−1 for n ∈ N.

The following result can be derived as a special case of Satz 4.3 in [8] (see also
Theorem 9.4.1 of [14]).

THEOREM 3.1. Let PN be the Palm measure of a stationary σ -finite measure
P and let π :� → Rd a bijective point-map. Then

PN(θπ ∈ ·) = PN.(3.2)

PROOF. Take a measurable function g :� → [0,∞) and a Borel set B ⊂ Rd

of volume 1. By the refined Campbell theorem,

EPN
[g ◦ θπ ] = EP

[∫
1(x ∈ B)g

(
θπ◦θx

)
N(dx)

]

= EP

[∫
1(x ∈ B)g

(
θπ(x)

)
N(dx)

]

= EP

[∫
1(π−1 ◦ θy + y ∈ B)g ◦ θyN(dy)

]

= EPN

[∫
1(π−1 + y ∈ B)g dy

]
= EPN

[g],

where we have used the inverse point-map π−1 of π to get the third equality. �

The above proof of Theorem 3.1 (being close to the proof in [8]) is of interest
even in the case d = 1. It seems to be more elegant than the standard textbook
proof using a limit argument.

4. Characterization of Palm measures. Thorisson [14] introduced the
concept of point-stationarity, which formalizes the intuitive idea of a point
process which looks distributionally the same seen from each of its points.
Our construction of bijective point-shifts in Proposition 4.2 and our main result
Theorem 4.1 permit us to remove the random background used in the original
definition and to reduce it to its natural form: distributional invariance under
bijective point-shifts.

We call a measure Q on (�,F ) point-stationary (with respect to N ) if
Q(0 /∈ N) = 0 and Q is invariant under all σ(N)-measurable bijective point-shifts.
The latter means that

Q(·) = Q(θπ ∈ ·)(4.1)
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holds for any bijective point-map π :� → Rd that is measurable with respect to
the σ -field generated by N .

Our aim here is to prove that point-stationarity is the characteristic prop-
erty of Palm measures. This generalizes a fundamental result for stationary
point processes on the real line due to Kaplan [6], Ryll-Nardzewski [10] and
Slivnyak [12] (see also Theorem 12.3.II in [1] and Theorem 11.4 in [5]). Our result
solves a problem posed in [2] and [14] in complete and striking generality.

THEOREM 4.1. A measure Q on (�,F ) is the Palm measure of some
stationary σ -finite measure P iff Q is σ -finite and point-stationary.

Our proof of Theorem 4.1 is based on Proposition 4.2 below that is of interest in
its own right. This purely deterministic result provides some nested and monotone
way to exhaust all points of a configuration ϕ ∈ N by measurable bijective point-
maps.

We will begin with an informal description of our construction of point-maps
and assume that 0 ∈ N . A first approach might be to fix a Borel set B ∈ Bd and
then define a point-map that maps 0 to the point in B ∩ N if it is unique and
to 0 otherwise. However, this point-map π is not bijective, unless we symmetrize
using the reflected set −B := {−x :x ∈ B} as follows. If there is a unique point x

in B ∪ (−B), and if the origin is the unique point in (B + x) ∪ (−B + x), then
we define π = π(0) := x. Otherwise we define π := 0. We call this procedure
symmetric area search. Note that π(0) = x if and only if π(x) = 0, that is, the
mapping x �→ π(x) is self-inverse.

In Figure 1, we illustrate on the left the case where the point 0 is mapped
to x. This is not so on the right; here 0 is invariant under the point-map, because
there are two points in (−B + x) ∪ (B + x). Taking B ∈ Bd from finer and finer

FIG. 1. Matching by symmetric area search.
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partitions of Rd , we define a family of point-maps such that for any point x ∈ N

such that −x /∈ N and 2x /∈ N , there exists a point-map in the family that maps 0
to x. If k (2 < k < ∞) points are equidistantly aligned, we speak of a k-chain
and generalize the above approach by ordering the points with respect to some
translation-invariant order, and then define different point-maps for each specified
position in chains of fixed length. Finally, the double-sided infinite case is treated
in close analogy to the classical one-dimensional case, and the one-sided infinite
case similarly, using some fixed bijection f : N → Z.

Let us now formalize our approach. For the sake of clarity it is reasonable to
redefine point-maps in a canonical setting. Let N0 denote the measurable set of
all ϕ ∈ N such that 0 ∈ ϕ. Consider a measurable mapping σ : N0 → Rd such that
σ(ϕ) ∈ ϕ for any ϕ ∈ N0 and define

σ(ϕ, x) := σ(ϕ − x) + x, ϕ ∈ N, x ∈ ϕ.(4.2)

If σ(ϕ, ·) is a bijection on ϕ for any ϕ ∈ N, then we call σ a bijective point-map.
Formally we will make no distinction between σ as defined on N0 and the mapping
(ϕ, x) �→ σ(ϕ, x) as defined on the measurable set {(ϕ, x) ∈ N × Rd :x ∈ ϕ}. The
iterates σn(ϕ, ·), n ∈ Z, of a bijective point-map are defined as in Section 3.

PROPOSITION 4.2. There exist bijective point-maps σm,n : N0 → Rd ,
m,n ∈ N, such that for any ϕ ∈ N and x ∈ ϕ:

(a) For all m ∈ N and all n,n′ ∈ N with n �= n′,

{σ i
m,n(ϕ, x) : i ∈ Z} ∩ {σ i

m,n′(ϕ, x) : i ∈ Z} = {x}.
(b) As m → ∞,

{σ i
m,n(ϕ, x) :n ∈ N, i ∈ Z} ↑ ϕ.

PROOF. A bijective point-map σ : N0 → Rd is called a translation-invariant
matching if σ 2(ϕ,0) = 0 for any ϕ ∈ N0. As explained above, the idea is now
to construct translation-invariant matchings that exhaust all points of ϕ ∈ N with
the possible exception of points that form lattices on lines. We prepare this
construction with an analysis of the one-dimensional lattice structures in ϕ that
we will call chains in ϕ. Fix some translation-invariant order < on Rd . A k-tuple
(x1, . . . , xk) of points in ϕ, k ≥ 2, is called a k-chain if xi+1 − xi = xj − xj−1 and
xi < xj for all 1 ≤ i < j ≤ k, x1 −(x2 −x1) /∈ ϕ and xk +(x2 −x1) /∈ ϕ. A sequence
(xi : i ∈ N) of elements of ϕ is called a ∝-chain if xi+1 − xi = xj − xj−1 for all
1 ≤ i < j and x1 −(x2 −x1) /∈ ϕ. Finally we call a sequence (xi : i ∈ Z) of elements
of ϕ an ∞-chain if xi+1 − xi = xj − xj−1 and xi < xj whenever i < j .

Two distinct points x, y ∈ ϕ generate a chain Mx,y in ϕ in the following
way. For k ∈ Z let yk := x + k(y − x), in particular y0 = x and y1 = y. Then
let m := inf{n ∈ N :yn /∈ ϕ} and l := inf{n ∈ N :y−n /∈ ϕ}, where inf ∅ = ∞.
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After suitable enumeration the (finite or infinite) sequence (yi :−l < i < m) is
an (m + l − 1)-chain if both m and l are finite, a ∝-chain if one but not both of m

and l is finite and an ∞-chain if m and l are both infinite.
Let x ∈ ϕ and B ∈ Bd . We call a chain K = (xi : i ∈ I ) B-adapted if

x2 − x1 ∈ B ∪ (−B). The point x is called B-uncritical (in ϕ) if there exists
a unique B-adapted chain through x. This chain is then denoted by KB

x . Let
k ∈ {∝,2,3, . . .} and i ∈ N such that i < k. Here we use the convention i <∝
for any i ∈ N. For any x ∈ ϕ we then define

σB
k,i(ϕ, x) :=




y, if x is B-uncritical and y ∈ ϕ \ {x} is

a B-uncritical point such that

Mx,y = KB
x = KB

y = (xj : j ∈ I ) is

a k-chain with {xi, xi+1} = {x, y},
x, otherwise.

(4.3)

In the following we will derive some basic properties of the mappings σB
k,i(ϕ, ·)

that are defined this way. For convenience, we will skip indices as well as the
argument ϕ whenever possible. First we note that σ is well defined. Indeed, given
a B-uncritical point x ∈ ϕ there is at most one B-uncritical y ∈ ϕ \ {x} satisfying
the condition in (4.3). The mapping σ is translation covariant, that is, for x ∈ ϕ

and z ∈ Rd we have σ(ϕ − z, x − z) = σ(ϕ, x) − z, because x, y ∈ ϕ satisfy the
condition in (4.3) if and only if x − z, y − z ∈ ϕ − z do. Also, by the symmetry of
x and y in (4.3), we have σ(ϕ, x) = y if and only if σ(ϕ, y) = x for x, y ∈ ϕ; thus
σ 2(ϕ,0) = 0, so that σ is a translation-invariant matching.

For any B,B ′ ∈ Bd such that (B ∪ (−B)) ∩ (B ′ ∪ (−B ′)) = ∅, x is both
B-uncritical and B ′-uncritical, and fos σB

k,i(x) �= x we have σB
i,k(x) �= σB ′

i′,k′(x)

for all pairs (i, k), (i′, k′). This is due to the fact that our matchings always swap
neighbors in a chain. But the difference of those points cannot be in both B ∪ (−B)

and B ′ ∪ (−B ′). Also, for (k, i) �= (k′, i′) we have σB
k,i(x) �= σB

k′,i′(x), whenever

σB
k,i(x) �= x. Suppose that σB

k,i(x) = σB
k′,i′(x) = y �= x. Then k = k′ must be the

length of KB
x , and we have {x, y} = {xi, xi+1} = {xi′, xi′+1}, hence i = i ′.

Next we choose bounded Borel subsets Bm,n ⊂ Rd , m,n ∈ N, such that Bm,n is
for all m,n ∈ N the finite union of sets from {Bm+1,i : i ∈ N}, and such that

{Bm,n :n ∈ N} ∪ {−Bm,n :n ∈ N}, m ∈ N,

is a nested sequence of partitions of Rd \ {0} satisfying

lim
m→∞ sup{D(Bm,n) :n ∈ N} = 0,(4.4)

where D(B) denotes the diameter of a set B ⊂ Rd .
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Take m,n ∈ N, k ∈ {∝,2,3, . . .}, i < k, x ∈ ϕ, and let y := σ
Bm,n

k,i (ϕ, x). Slightly
modifying the matchings given by (4.3), we define

σ
(m,n)
k,i (ϕ, x) :=




x, if there is an ∞-chain K through x

such that y ∈ affK

and an ∞-chain K ′ through y

such that x ∈ affK ,

σ
Bm,n

k,i (ϕ, x), otherwise,

(4.5)

where aff(B) denotes the affine hull of a set B ⊂ Rd . Due to the translation
invariance of the condition in (4.5) all the properties derived above are shared
by these mappings.

Next we define the set

Cm(ϕ, x) := {
σ

(m,n)
k,i (ϕ, x) :n ∈ N, k ∈ {∝,2,3, . . .},1 ≤ i < k

}
of all points in ϕ that are attained from x by the σ

(m,n)
k,i . We will prove that

Cm(ϕ, x) ⊂ Cm+1(ϕ, x).

If x, y ∈ Cm(ϕ, x) and x �= y, then x and y are not mutually contained in the
affine hull of an ∞-chain through the other point and there exist m,n ∈ N and
(k, i) such that σ

(m,n)
k,i (x) = y. Then there exists a unique n′ ∈ N such that

y − x ∈ (Bm+1,n′ ∪ −Bm+1,n′). Therefore x and y are Bm+1,n′ -uncritical and

Mx,y = K
Bm+1,n′
x = K

Bm+1,n′
y . Hence σ

Bm+1,n′
k,i (ϕ, x) = y ∈ Cm+1(x).

Next let us define the set L(ϕ,x) of all points y ∈ ϕ \ {x} such that there is an
∞-chain K through x and y ∈ affK and an ∞-chain K ′ through y and x ∈ affK ′.
Again, this definition is symmetric; we have y ∈ L(x) if and only if x ∈ L(y).
In particular, all points y ∈ ϕ \ {x} such that Mx,y is an ∞-chain are elements of
L(ϕ,x). We will show that⋃

m∈N

Cm(ϕ, x) = ϕ \ L(ϕ,x).(4.6)

Suppose first that y ∈ L(ϕ,x). By definition, none of the σ
(m,n)
k,i maps x to y, hence

y /∈ Cm(ϕ, x) for all m ∈ N.
Take y /∈ L(x) such that y �= x. Then Mx,y := (xj : j ∈ I ) is a k-chain, k ≥ 2, or

a ∝-chain and {x, y} = {xi, xi+1} for some i ∈ I . For m ∈ N sufficiently large there
exists an n ∈ N such that x − y ∈ (Bm,n ∪ −Bm,n) and x, y are Bm,n-uncritical.

Then Mx,y = K
Bm,n
x = K

Bm,n
y and σ

(m,n)
k,i (x) = y ∈ Cm(x).

We will now treat the case of points on ∞-chains. The basic idea is the same
as in the case of the real line. One shifts a point to its nearest neighbor in a
specified direction. We need to introduce some notation to make this definition
formal. Let S+ ⊂ Sd−1 such that Sd−1 = S+ ∪ −S+ and S+ ∩ −S+ = ∅. Then
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every doubly infinite chain K = (xi : i ∈ Z) will be attributed the unique direction
u ∈ S+ such that x2 − x1/‖x2 − x1‖ ∈ {u,−u} and we will write �K = u. Also, we
write |K| := |x2 − x1| for the “size” of K .

Let ϕ ∈ N, x ∈ ϕ, v ∈ S+ and define

δv(x) := inf{|K| : K is an ∞-chain such that �K = v and x ∈ affK}.
Since ϕ is locally finite we have δv(x) > 0. For x ∈ ϕ and t > 0 we have

card{v ∈ S+ : δv(x) < t} < ∞.(4.7)

In particular, the set {δv(x)v :v ∈ S+, δv(x) < ∞} is locally finite. If x, y ∈ ϕ and
K,K ′ are ∞-chains such that x ∈ K , y ∈ K ′, affK = affK ′ and �K = v, we have
δv(x) = δv(y).

A point x ∈ ϕ is called B-directed for some B ∈ Bd if there exists a unique
direction u ∈ S+ such that δu(x)u ∈ B . In this case we write u(x,B) := u and
otherwise we say that the point x is B-undirected. If x ∈ ϕ is B-directed, then
we define the distance to the nearest B-undirected neighbors in L(x) in direction
u(x,B) and −u(x,B) by

s(x,B) := inf{t > 0 :x + tu(x,B) ∈ L(x) and x + tu(x,B) is B-undirected},
p(x,B) := inf{t > 0 :x − tu(x,B) ∈ L(x) and x − tu(x,B) is B-undirected},

and the B-directed component of x in L(x) by

N(x,B) := {
y ∈ L(x) :y = x + tu for t ∈ (−p(B,x,u), s(B, x,u)

)}
.

If N(x,B) has finitely many elements, that is, p(x,B) < ∞, s(x,B) < ∞, then
there exists exactly one point y ∈ N(x,B) such that N(x,B) ⊂ {y + tu(x,B) :
t ≥ 0}. We denote this point by F(x,B). The next point from x in direction u

(if there is one) will be called the successor S(x,B) of x, and we will also use
this definition in the doubly infinite case, that is, when s(x,B) = p(x,B) = ∞.
In the simply infinite case, when either s(x,B) = ∞ or p(x,B) = ∞, we
enumerate the elements of the directed component in the natural way by a function
η :N(x,B) → N, such that the end point z satisfies η(z) = 1.

Note that all of these definitions are again covariant with respect to translations
of ϕ. As a last preparation we introduce a bijective mapping f : N → Z by

f (n) :=




n − 1

2
, if n is odd,

−n

2
, if n is even,

and define g : N → N by

g(n) := f −1(
f (n) + 1

)
.

Then g is a bijection on N such that for a fixed n ∈ N we have

{gk(n) :k ∈ Z} = N.
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Now define for a B-directed point x ∈ ϕ

σB∞(ϕ, x)

:=




S(x,B), if p(x,B) + s(x,B) < ∞
and L(x) ∩ {x + tu : 0 < t < s(x,B)} �= ∅,

F(x,B), if p(x,B) + s(x,B) < ∞
and L(x) ∩ {x + tu : 0 < t < s(x,B)} = ∅,

η−1(g(η(x))), if p(x,B) < ∞, s(x,B) = ∞,

or p(x,B) = ∞, s(x,B) < ∞,

S(x,B), if p(x,B) = s(x,B) = ∞.

(4.8)

If x is not B-directed, then we define σB∞(ϕ, x) := x.
From the definition it is clear that for any B,B ′ ∈ Bd satisfying (B ∪ −B) ∩

(B ′ ∪ −B ′) = ∅ and any x ∈ ϕ we have

{(σB∞)k(x) :k ∈ Z} ∩ {(
σB ′

∞
)k

(x) :k ∈ Z
} = {x}.

Using the sets Bm,n we again define a family of mappings by

σ (m,n)∞ := σ
Bm,n∞(4.9)

and denote by

Dm(x) := {
y ∈ ϕ : there exist n ∈ N and k ∈ Z such that

(
σ

(m,n)∞
)k

(x) = y
}

the set of all points reached from x by (σ
(m,n)∞ )k for some n ∈ N and k ∈ Z. We

will show that

Dm(x) ↑ L(x) as m → ∞.(4.10)

Let y ∈ Dm(x). Then y ∈ L(x) and there exist n ∈ N and k ∈ Z such
that (σ

(m,n)∞ )k(x) = y; in particular y is Bm,n-directed, that is, there exists a
unique u ∈ S+ such that δu(x)u ∈ Bm,n. By the definition of the Bm,n there
exists a unique n′ such that δu(x)u ∈ Bm+1,n′ . Then y is Bm+1,n′ -directed and

(σ
(m+1,n′)∞ )k(x) = y. Hence, Dm(x) ⊂ Dm+1(x).
Now let z ∈ L(x) and define v := (z − x)/‖z − x‖ if (z − x)/‖z − x‖ ∈ S+ and

v := (x − z)/‖x − z‖ otherwise. Then δv(z) < ∞ and by (4.4) and (4.7) there exist
m,n ∈ N such that z is Bm,n-directed and u(z,Bm,n) = v. Then (σ

(m,n)∞ )k(x) = z

for some k ∈ Z. Hence, z ∈ Dm(x).
To finish the proof of the proposition it now suffices to define the point-maps

σm,n in such a way that

{σm,n :n ∈ N} = {
σ

(m,n′)
k,i :n′ ∈ N, k ∈ {∝,2, . . .}, i < k

} ∪ {
σ (m,n′)∞ :n′ ∈ N

}
for any m ∈ N. �
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PROOF OF THEOREM 4.1. By Theorem 3.1 it remains to prove the “if” part
of the theorem. So we assume that Q is σ -finite and point-stationary. We show that

EQ

[∫
f (θx,−x)N(dx)

]
= EQ

[∫
f (θ0, x)N(dx)

]
(4.11)

for any measurable f :� × Rd → [0,∞), and can then apply Satz 2.5 in [7] to
conclude the assertion. Although Mecke proved his result only in a canonical
framework, his proof transfers to our more general case with obvious changes (see
Proposition II.11 in [9]).

Let π be a bijective point-map. It is easy to check that

π ◦ θπ−1 = −π−1.(4.12)

Define

κπ := inf{n ∈ N :πn = 0},(4.13)

where inf ∅ := ∞. Since πn = πn−1 ◦ θπ + π we get from (4.12) that

κπ ◦ θπ−1 = inf{n ∈ N :πn ◦ θπ−1 = 0}
= inf{n ∈ N :πn−1 = π−1} = inf{n ∈ N :πn = 0} = κπ .

Equation (4.12) does also imply that

θπ ◦ θπ−1 = θπ(θ
π−1 )(θπ−1) = θ−π−1(θπ−1) = θ0.

Hence the assumed invariance of Q under θπ−1 yields for any k ∈ N ∪ {∞} that

EQ[1(κπ = k)f (θπ ,−π)] = EQ[1(κπ = k)f (θ0, π
−1)].(4.14)

If κπ = 1, then π = π−1 = 0. If κπ = k for some finite k ≥ 2 and i ∈ {1, . . . , k−1},
then (πi)−1 = πk−i and κπi = k. Moreover, the points π1, . . . , πk−1 are all
different in this case. Applying (4.14) with π replaced by πi and summing over
i ∈ {0, . . . , k − 1}, we obtain that

EQ

[
1(κπ = k)

∫
f (θx,−x)Nπ(dx)

]
(4.15)

= EQ

[
1(κπ = k)

∫
f (θ0, x)Nπ(dx)

]
,

where Nπ is the random counting measure supported by the set {πi : i ∈ Z}. If
κπ = ∞, then (πi)−1 = π−i for all i ∈ Z and the points πi , i ∈ Z, are all different.
Summing over i ∈ Z, we obtain (4.15) also in this case, where Nπ is defined as
before. Hence

EQ

[∫
f (θx,−x)(Nπ − δ0)(dx)

]
= EQ

[∫
f (θ0, x)(Nπ − δ0)(dx)

]
.(4.16)
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We now apply (4.16) to the bijective point-maps πm,n := σm,n(N,0), where the
σm,n are as in Proposition 4.2. Summing over n and using property (a) yields that

EQ

[∫
f (θx,−x)Nm(dx)

]
= EQ

[∫
f (θ0, x)Nm(dx)

]
,

where

Nm := δ0 + ∑
n∈N

(
Nπm,n − δ0

)
.

Taking the limit as m → ∞ and using property (b), we obtain (4.11). �

The inversion formula for Palm measures (see Satz 2.4 in [7]) implies that the
measure Q in Theorem 4.1 determines P on {N �= ∅}. One useful version of this
formula is based on the (random and convex) Voronoi cell

V := {x ∈ Rd :N ∩ S(x, |x|) = ∅},(4.17)

where |x| denotes the length of x ∈ Rd and S(x, r) is the open ball with center
x and radius r > 0. Since N is locally finite we have that the volume |V |d of
V is positive. (If P is a finite measure, then V is compact almost everywhere
on {N �= ∅} with respect to both P and PN .) We then have for all measurable
f :� → [0,∞) that

EP[1(N �= ∅)f ] = EPN

[∫
V

f ◦ θx dx

]
;(4.18)

see also Proposition 10.1 in [13] or Proposition 11.3 in [5].
The following consequence of Theorem 4.1 generalizes Theorem 9.4.1 in [14].

PROPOSITION 4.3. Let Q be a σ -finite measure on (�,F ) satisfying Q(0 /∈
N) = 0 and Q(|V |d = ∞) = 0. Then Q is point-stationary iff

EQ

[∫
V +y

h ◦ θx dx

]
= EQ

[∫
V

h ◦ θx dx

]
(4.19)

holds for all measurable h :� → [0,∞) and all y ∈ Rd .

PROOF. If Q is point-stationary, then Theorem 4.1 implies that Q = PN for
some σ -finite stationary P. Hence (4.19) follows from (4.18).

Let us now assume that (4.19) holds. Then

P(A) := EQ

[∫
V

1A ◦ θx dx

]
, A ∈ F ,(4.20)

defines a stationary measure P. Since Q is σ -finite and Q(|V |d = ∞) = 0, there
is some measurable function f :� → (0,∞) such that EQ[|V |df ] < ∞. Let τ
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denote the lexicographically smallest among the points of N that are closest to the
origin and note that

τ ◦ θx = −x on {0 ∈ N}
whenever x is in the interior of V . Then

EP[f ◦ θτ ] = EQ

[∫
V
(f ◦ θτ ) ◦ θx dx

]
= EQ[|V |df ] < ∞.

Since f ◦θτ > 0, we obtain that P is σ -finite. Since Q(0 /∈ N) = 0, we further have

P(N = ∅) = EQ[1(N = ∅)|V |d ] = 0.(4.21)

Therefore we get from the inversion formula (4.18) and definition (4.20) for all
measurable h :� → [0,∞)

EPN

[∫
V

h ◦ θx dx

]
= EQ

[∫
V

h ◦ θx dx

]
.(4.22)

Applying (similarly as above) (4.22) with h = f ◦ θτ for some (arbitrary)
measurable f :� → [0,∞) and using Q(0 /∈ N) = PN(0 /∈ N) = 0, we obtain

EPN
[|V |df ] = EQ[|V |df ].

Since |V |d < ∞ almost everywhere with respect to Q, we get the same property
with respect to P. This implies PN = Q, so that point-stationarity of Q follows
from Theorem 3.1. �

5. Bijective point-maps without fixed points. In this section we will prove
the following result announced in the Introduction.

THEOREM 5.1. There exists a σ(N)-measurable bijective point-map π

satisfying (1.1) for any stationary probability measure P on (�,F ).

The theorem will be a consequence of a more detailed result. A lattice (see,
e.g., [3]) is a locally finite set L ⊂ Rd such that x − y ∈ L whenever x, y ∈ L.
A locally finite set L ⊂ Rd is called a translated lattice if L − x is a lattice for
some (and then for all) x ∈ L.

THEOREM 5.2. There exists a translation-invariant matching σ : N0 → Rd

such that {x ∈ ϕ :σ(ϕ, x) = x} is a translated lattice for any ϕ ∈ N.

PROOF. Let σl , l ∈ N, be an arbitrary enumeration of the translation-invariant
matchings σ

Bm,n

i,k (m,n ∈ N, k ∈ {∝,2,3, . . .}, i ∈ N, i < k) defined by (4.3) in the
proof of Proposition 4.2, where the sets Bm,n are as in (4.4).

Fix some ϕ ∈ N and define

ϕ1 := {x ∈ ϕ :σ1(ϕ, x) = x}.
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For any x /∈ ϕ1 there is a unique y ∈ ϕ \ {x} satisfying σ1(ϕ, x) = y and we define
σ(ϕ, x) := y. Assuming that ϕn is given and that σ is defined on ϕ \ ϕn we define

ϕn+1 := {x ∈ ϕn :σn+1(ϕn, x) = x}
and σ(ϕ, x) = y whenever x ∈ ϕn \ϕn+1 and σn+1(ϕ, x) = y. This defines σ(ϕ, x)

for any x ∈ ϕ \ ϕ∞, where

ϕ∞ :=
∞⋂

n=1

ϕn.

For x ∈ ϕ∞ we let σ(ϕ, x) := x. Since σn is a translation-invariant matching for
any n ∈ N, we obtain the same property for σ .

It remains to show that ϕ∞ is a translated lattice. If cardϕ∞ ≤ 1, then ϕ∞
is trivially a translated lattice, so let us assume that cardϕ∞ ≥ 2. We claim that
x + k(y − x) ∈ ϕ∞ for all k ∈ Z, whenever x, y ∈ ϕ. Since this property transfers
from ϕ∞ to ϕ∞ − z for any z ∈ ϕ∞ we may then conclude the assertion.

To prove the claim we consider two distinct points x and y of ϕ∞ and suppose
that the chain M∞ = (xk :k ∈ I ) generated by x and y in ϕ∞ is not an ∞-chain.
Then x and y have well-defined positions in the chain, say x = xi and y = xj . If
M∞ is a k-chain, k ∈ N, then 2x1 −x2 /∈ ϕ∞ and 2xk −xk−1 /∈ ϕ∞ and there exists
l0 ∈ N such that 2x1 − x2 /∈ ϕl0 and 2xk − xk−1 /∈ ϕl0 . If M∞ is a ∝-chain, then
2x1 − x2 /∈ ϕ∞ and there exists l0 ∈ N such that 2x1 − x2 /∈ ϕl0 . In both cases we
have that Ml0=M∞ , where Ml is the chain generated by x and y in ϕl . But then
even Ml = M∞ for all l ≥ l0.

By (4.4) there exist m0, n0 ∈ N such that x, y are Bm0,n0 -uncritical in ϕ.
Then for all m ≥ m0 there exists (a unique) nm ∈ N such that x and y are
Bm,nm-uncritical in ϕl for all l ≥ l0. Hence, for some l ≥ l0 and m ≥ m0 we have

σl = σ
Bm,nm

i,j , so σl(x) = y in contradiction with the choice of x and y.
Hence M∞ is an ∞-chain in ϕ∞ and our claim is proved. �

PROOF OF THEOREM 5.1. We define the flow-adapted point process

N∞ := {x ∈ N :σ(N,x) = x},
where σ : N0 → Rd is the translation-invariant matching in Theorem 5.2.
This theorem implies that N∞(ω) is a translated lattice for any ω ∈ �. By
Theorem 1.3.2 in [3] there exist linearly independent random vectors U1, . . . ,Ud

in Rd , that we may assume to be lexicographically ordered and such that

N∞ =
{

d∑
i=1

λiUi :λi ∈ Z

}
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whenever 0 ∈ N∞ and conv(N∞) = Rd . Here conv(A) denotes the convex hull of
a set A ⊂ Rd . We may then define a bijective point-map π :� → Rd by

π :=



σ(N,0), if 0 /∈ N∞,

U1, if 0 ∈ N∞ and conv(N∞) = Rd ,

0, otherwise.

(5.1)

Let us now take a stationary probability measure P on (�,F ). Then PN(0 /∈
N) = 0,

P
({N∞ = ∅} ∪ {conv(N∞) = Rd}) = 1

and PN(conv(N∞) �= Rd) = 0. Hence we have PN(π = 0) = 0, as desired. �

6. Translation-invariant graphs. Consider a bijective point-map
δ : N0 → Rd and let ϕ ∈ N. Drawing a directed line from any x ∈ ϕ to δ(ϕ, x)

equips ϕ ∈ N with the structure of a directed graph Gδ(ϕ) with vertex set ϕ. In
case δ(ϕ, x) = x we interpret x as an isolated point in Gδ(ϕ).

A directed doubly infinite path as addressed in our next result is formally defined
as a directed graph that is isomorphic to the directed graph Z with n ∈ Z pointing
to n + 1 for each n ∈ Z. Theorem 4.1 complements Theorem 2 in [4]. Regarding
the point process N our theorem is more general. We need only stationarity with
respect to translations but not ergodicity with respect to all isometries. Also a finite
intensity or a nonequidistant property is not required. Note, however, that we have
constructed our graphs from N only in a shift-invariant and not in an isometry-
invariant way. So given the restrictions on N , the result in [4] is more general.

THEOREM 6.1. There is a bijective point-map δ : N0 → Rd having the
following property. For any stationary probability measure P on (�,F ) the
components of the directed graph Gδ(N) are almost everywhere with respect to
both P and PN doubly infinite paths.

PROOF. We use the translation-invariant matching σ : N0 → Rd in Theo-
rem 5.2. Starting with ϕ0 := ϕ we define two sequences (ϕn) and (ψn) of subsets
of ϕ inductively by

ϕn+1 := {
max{x,σ (ϕn, x)} :x ∈ ϕn,σ (ϕn, x) �= x

}
, n ∈ N0,

ψn+1 := {x ∈ ϕn :σ(ϕn, x) = x}, n ∈ N0,

where the max is taken with respect to some fixed translation-invariant order <

on Rd . Further we define a sequence {Cn(x) :x ∈ ϕn}, n ∈ N0, of systems of
pairwise disjoint finite subsets of ϕ inductively by

Cn+1(x) := Cn(x) ∪ Cn

(
σ(ϕn, x)

)
, x ∈ ϕn+1,

where C0(y) := {y}, y ∈ ϕ. Note that the sets Cn(x), x ∈ ϕn, contain 2n elements.
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Let

χn := ⋃
x∈ψn

Cn−1(x), χ∞ := ⋃
n∈N

χn.

We are now following some ideas from [2] and [4]. First we define a directed graph
G = G(ϕ) with vertex set ϕ∞ := ϕ \ χ∞. We draw a directed edge from y ∈ ϕ∞
to x ∈ ϕ∞ whenever x < y and there is some n ∈ N such that y = σ(ϕn, x). In
this case we call y a mother of x and x a daughter of y. A point y ∈ ϕn (n ≥ 1)

has daughters in ϕi for each i ∈ {0, . . . , n − 1}. This defines a natural ordering of
daughters: the larger i the older the daughter. By construction the components of
G are all trees, that is, without cycles. Any point can have at most one a mother.
Moreover, any component C ⊂ ϕ∞ can contain at most one point without mother.
If this occurs, then we call C a directed component. We are defining the point-
map δ first on the components of G that are not directed, then on the directed
components of G and then finally on χ∞.

Let C ⊂ ϕ∞ be a component of G that is not directed. If x ∈ C has a daughter
(i.e., if x ∈ ϕ1), then we let δ(x) ≡ δ(ϕ, x) be the oldest one. If x has no daughter,
then we let δ(x) be the oldest among the younger sisters of x. If x has no younger
sister, then we check whether the mother has younger sisters. In this case we define
δ(x) as the oldest among these younger sisters. Since the component C is not
directed, it is clear that this royal succession rule defines δ(x) in any case! It is not
difficult to check that δ defines a graph on ϕ∞ whose components are all directed
doubly infinite paths.

Let C ⊂ ϕ∞ be a directed component of G. Then there exists a unique point
x in C that has no mother. We enumerate the points of the component starting
with x1 = x, then taking x2 = σ(ϕ1, x). We continue with the two points in
C2(x) \C1(x) and enumerate them such that x3 > x4. Subsequently we enumerate
the 2n−1 points of the set Cn(x) \ Cn−1(x), n ≥ 2 in descending order. This
procedure gives us an enumeration of all points of C. Using the function g from
the proof of Proposition 4.2 we define δ(xn) = xg(n) for all n ∈ N. Then δ induces
a doubly infinite directed path with vertex set C.

It remains to define δ on χ∞. We treat each χn, n ∈ N, separately. By
Theorem 5.2, ψn is a translated lattice. If ψn is a singleton {x}, then we let
δ(x) := x. Otherwise ψn is empty or contains infinitely many points. In the latter
case we find an m ∈ {1, . . . , d} and linearly independent vectors u1 < · · · < um

such that

ψn =
{
x +

m∑
i=1

λiui :λi ∈ Z

}

for some (and then for all) x ∈ ψn. We then define δ on χn in such a way that, for
any x ∈ ψn, the iterates of δ applied to x satisfy the relationships{
δk2n−1

(x) :k ∈ Z
} = {x + ku1 :k ∈ Z}, {δk(x) :k ∈ Z} = ⋃

k∈Z

Cn−1(x + ku1).
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We may omit the details of the pretty obvious construction.
To finish the proof we take some stationary probability measure P on (�,F )

and note that the ψn are actually measurable and translation-covariant functions
ϕ �→ ψn(ϕ). In particular, ψn(N) is then a stationary point process under P. Hence
almost everywhere with respect to both P and PN it is either empty or contains
infinitely many points. �

7. Concluding remarks. It is clearly desirable to define point-stationarity
as invariance under a preferably small family of bijective point-shifts. In the
first version of this paper we asked which Palm measures can be characterized
by invariance under just one bijective point-shift θπ . As shown by the proof
of Theorem 4.1 this essentially requires the existence of a σ(N)-measurable
bijective point-map π whose iterates πn, n ∈ Z, cover all points of N almost
everywhere with respect to the underlying measure Q. In this case we say that
Q has property (P). As shown by complete lattice-structures we can generally not
expect Palm measures to have property (P) unless d = 1. However, in the meantime
it has been established in [15] that the Palm distribution P0

N of an ergodic stationary
probability measure P has property (P) if the group of isometries of N is trivial
almost everywhere with respect to P. Hence the class of all Palm measures having
property (P) is amazingly large. The paper [15] extends recent results for Poisson
processes ([2, 4]) and solves a problem posed in [4] in great generality.

Let us call a ϕ ∈ N periodic if there is some x ∈ Rd \ {0} such that ϕ + x = ϕ.
Given the results and techniques in [15] we conjecture for d ≥ 2 that a Palm
distribution Q has property (P) if and only if it is nonperiodic in the sense that N

is not periodic Q-almost everywhere. Moreover, it should be possible to establish
an alternative and somewhat simpler version of Proposition 4.2, by constructing a
family of point-shifts that covers the periodic part of N , and then to use a version
of the point-shift in [15] to exhaust the remaining points of N .
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