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DONSKER THEOREMS FOR DIFFUSIONS: NECESSARY
AND SUFFICIENT CONDITIONS

BY AAD VAN DER VAART AND HARRY VAN ZANTEN

Vrije Universiteit

We consider the empirical processGt of a one-dimensional diffusion
with finite speed measure, indexed by a collection of functionsF . By the
central limit theorem for diffusions, the finite-dimensional distributions of
Gt converge weakly to those of a zero-mean Gaussian random processG.
We prove that the weak convergenceGt ⇒ G takes place in�∞(F ) if and
only if the limit G exists as a tight, Borel measurable map. The proof relies
on majorizing measure techniques for continuous martingales. Applications
include the weak convergence of the local time density estimator and the
empirical distribution function on the full state space.

1. Introduction and main results. Let X be a diffusion process on an open
interval I = (l, r) ⊆ R, that is, a strong Markov process with continuous sample
paths, taking values inI . Denote the corresponding laws by{Px :x ∈ I } so that
X0 = x under Px . Assume as usual thatX is regular onI , meaning that for all
x, y ∈ I it holds that Px(τy < ∞) > 0, whereτy = inf{t :Xt = y}. Under this
condition, the scale functions and the speed measurem of the diffusionX are
well defined. The scale function is a continuous, strictly increasing function fromI

onto R, which implies in particular that the diffusion is recurrent. The speed
measure is a Borel measure that gives positive mass to every open interval inI

(cf. [9, 11, 24, 25]).
We will assume throughout that the speed measurem is finite, that is,

m(I) < ∞. We denote the normalized speed measure byµ = m/m(I), and the
distribution function corresponding toµ by F . The finiteness ofm implies that the
processX is in fact positive recurrent, andµ is the unique invariant probability
measure. Hence, by the ergodic theorem, it a.s. holds that

1

t

∫ t

0
f (Xu)du →

∫
I
f dµ

for f ∈ L1(µ). It is well known that under the stated conditions, the diffusion also
obeys a central limit theorem. It states that for every functionf ∈ L1(µ) we have
the weak convergence

√
t

(
1

t

∫ t

0
f (Xu)du −

∫
I
f dµ

)
⇒ N

(
0,�(f,f )

)
(1.1)
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ast → ∞, provided that the asymptotic variance

�(f,f ) = 4m(I)

∫
I

(∫ x

l
f (y)µ(dy) − F(x)

∫
I
f (y)µ(dy)

)2

ds(x)

is finite (see, e.g., [17]). Using the Cramér–Wold device, it is easy to obtain the
multidimensional extension of this result. For every finite number of functions
f1, . . . , fd ∈ L1(µ), we have

√
t




1

t

∫ t

0
f1(Xu)du −

∫
I
f1 dµ

...
1

t

∫ t

0
fd(Xu)du −

∫
I
fd dµ




⇒ Nd







0
...

0


 ,




�(f1, f1) · · · �(f1, fd)

...
. . .

...

�(fd, f1) · · · �(fd, fd)





 ,

where the asymptotic covariances�(fi, fj ) are defined by

�(f,g) = 4m(I)

∫
I

(∫ x

l
f (y)µ(dy) − F(x)

∫
I
f (y)µ(dy)

)
(1.2)

×
(∫ x

l
g(y)µ(dy) − F(x)

∫
I
g(y)µ(dy)

)
ds(x),

and the variances�(fi, fi) are assumed to be finite.
In this paper we investigate the infinite-dimensional extension of the central

limit theorem for diffusions. We let the functionf in (1.1) vary in an infinite class
of functionsF , and derive necessary and sufficient conditions under which the
weak convergence takes place uniformly onF . More precisely, letF ⊆ L1(µ) be
a class of functions and define for eacht > 0 the random mapGt onF by

Gt f = √
t

(
1

t

∫ t

0
f (Xu)du −

∫
I
f dµ

)
.(1.3)

The mapGt is called the empirical process indexed byF . If supf ∈F

∫ |f |dµ < ∞,

the random mapGt is a (not necessarily measurable) random map in the space
�∞(F ) of uniformly bounded functionsz :F → R, equipped with the uniform
norm ‖z‖∞ = supf ∈F |z(f )| [see (1.6)]. We say that the classF is a Donsker
class if the random mapsGt converge weakly in�∞(F ) to a tight, Borel measur-
able random elementG of �∞(F ).

Since weak convergence in�∞(F ) to a tight Borel measurable limit is
equivalent to finite-dimensional convergence and asymptotic tightness (see [1, 6],
or, e.g., [29], Theorem 1.5.4), the multidimensional central limit theorem implies
that the limit G must be a zero-mean, Gaussian random process indexed byF
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with covariance function EGf Gg = �(f,g). HenceF can be Donsker only if
there exists a version of the Gaussian processG that is a tight Borel measurable
map into �∞(F ). By general results on Gaussian processes this is equivalent
to existence of a version ofG whose sample paths are uniformly bounded and
uniformly continuous onF relative to the natural pseudo-metricdG thatG induces
onF , given by

d2
G
(f, g) = E(Gf − Gg)2.

(In other words, the classF is a GC-set in the appropriate Hilbert space, in the
sense of Dudley [5] or [6]. Also cf. [8], or Example 1.5.10 of [29].) Surprisingly,
the existence of the limit process is also sufficient forF to be Donsker. In contrast
with the situation for i.i.d. random elements no additional (entropy) conditions that
limit the size of the classF are required.

It also turns out that the processesGt themselves possess bounded and
dG-continuous sample paths as well, whence the weak convergence actually takes
place in the spaceCb(F , dG) of bounded,dG-continuous functions onF (cf.
Theorem 1.3.10 in [29]).

THEOREM 1.1. Suppose that F is bounded in L1(µ). Then F is Donsker if
and only if the centered, Gaussian random map G on F with covariance function
EGf Gg given by (1.2)admits a bounded and dG-uniformly continuous version. In
that case, for every x ∈ I ,

Gt
Px�⇒ G in Cb(F , dG) as t → ∞.

In fact, we can prove a more general result. SinceX is a regular diffusion, it has
continuous local time(lt (x) : t ≥ 0, x ∈ I ) with respect to the speed measurem.
For every integrable functionf the occupation times formula says that∫ t

0
f (Xu)du =

∫
I
f (x)lt (x)m(dx).(1.4)

This means that we can write the empirical process as

Gt f = √
t

∫
I
f (x)

(
1

t
lt (x) − 1

m(I)

)
m(dx).

There is no special reason to look only at integrals of this specific type. With the
same effort we can consider general integrals of the form

√
t

∫
I

(
1

t
lt (x) − 1

m(I)

)
λ(dx),

whereλ is an arbitrary signed measure onI , with finite total variation‖λ‖. In this
manner, we obtain a uniform central limit theorem for general additive functionals.
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So let� be a collection of signed measures onI . We define the random maps
Ht on� by

Htλ = √
t

∫
I

(
1

t
lt (x) − 1

m(I)

)
λ(dx).

Slightly abusing terminology, we callHt the empirical process indexed by the
class�. By the multidimensional central limit theorem, the finite-dimensional
distributions ofHt converge weakly to those of a Gaussian, zero-mean random
mapH on� with covariance function

EHλHν = 4

m(I)

∫
I

(
λ(l, x] − F(x)λ(I )

)(
ν(l, x] − F(x)ν(I )

)
ds(x).(1.5)

As before, the Gaussian random mapH induces a natural pseudo-metric
d2

H
(λ, ν) = E(Hλ − Hν)2 on the class�.
If the total variations of the signed measures are uniformly bounded, that is,

supλ∈� ‖λ‖ < ∞, then, for every fixedt ,

sup
λ∈�

|Ht λ| ≤ √
t sup

x∈I

∣∣∣∣1t lt (x) − 1

m(I)

∣∣∣∣ sup
λ∈�

‖λ‖ < ∞ a.s.(1.6)

HenceHt is a random map into the space�∞(�), and we can ask whether the weak
convergence ofHt to H takes place in�∞(�), with a tight, Borel measurable limit
process. If this is the case, we call the collection� a Donsker class. Again, the
existence of the limiting process, which is obviously necessary, is also sufficient.
As before, by general results on Gaussian processes the existence can be translated
into the existence of a version of the Gaussian processH that has bounded and
dH-uniformly continuous sample paths.

THEOREM 1.2. Suppose that supλ∈� ‖λ‖ < ∞. Then � is Donsker if and
only if the centered, Gaussian random map H on � with covariance function (1.5)
admits a bounded and dH-uniformly continuous version. In that case, for every
x ∈ I ,

Ht
Px�⇒ H in Cb(�,dH) as t → ∞.

Theorem 1.1 is indeed a special case of Theorem 1.2, sinceGt f = Htλf , where
λf (dx) = f (x)m(dx).

The theory of majorizing measures provides necessary and sufficient conditions
for the existence of bounded anddH-uniformly continuous Gaussian processes
on� in terms of the geometry of the pseudo-metric space(�,dH). See [7, 27], and
Chapters 11 and 12 of [16]. We shall use this theory to prove our main theorem.
Conversely, we can use it to deduce the following analytic characterization of the
Donsker property.

If (Y, d) is a pseudo-metric space, we denote byBd(y, ε) the closed ball around
y of d-radiusε.
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COROLLARY 1.3. Suppose that supλ∈� ‖λ‖ < ∞. Then � is Donsker if and
only if there exists a Borel probability measure ν on (�,dH) such that

lim
η↓0

sup
λ∈�

∫ η

0

√
log

1

ν(BdH
(λ, ε))

dε = 0.

PROOF. Combine Theorem 1.2 with Theorems 11.18 and 12.9 of [16].�

In general, the majorizing measure condition is less stringent than the metric
entropy condition introduced by Dudley [5]. However, the latter is often easier to
work with in concrete cases. Therefore, it is useful to give a sufficient entropy
condition for� to be Donsker. If(Y, d) is a pseudo-metric space, we denote by
N(ε,Y, d) the minimal number of closed balls ofd-radiusε that is needed to
coverY .

COROLLARY 1.4. Suppose that supλ∈� ‖λ‖ < ∞. Then the class � is
Donsker if ∫ ∞

0

√
logN(ε,�,dH) dε < ∞.

In view of definition (1.5) the covering numberN(ε,�,dH) is theL2(s)-cove-
ring number of the class of functions

x �→ λ(l, x] − F(x)λ(I ), λ ∈ �.

These functions are of uniformly bounded variation and hence the full class,
with the elements of� of uniformly bounded variation, possesses a finite
L2(Q)-entropy integral for any finite measureQ. (See, e.g., [29], Theorem 2.7.5.)
Unfortunately, this observation is useless in the present situation, as under our
conditions the measure defined by the scale functions is unbounded. Under
appropriate bounds on the tails of the envelope function of the class, it is still
possible to exploit the fact that the functions are of bounded variation by a
partitioning argument, as in Corollary 2.7.4 of [29]. Alternatively, for special�

we can use the preceding corollary in combination with VC-theory. However, the
best results are obtained through direct application of Theorem 1.2, as this allows
to exploit the fine properties of Gaussian processes. We illustrate this in Section 2
by several examples of interest.

The Donsker theorem is based on approximation by a continuous local
martingale and an analysis of local time. In Section 3 we present a uniform
central limit theorem for continuous local martingales under a majorizing measure
condition. This extends a result by Nishiyama [22], and is of interest on its
own. In Section 4 we recall the necessary results on local time. Following these
preparations the final section gives the proofs of the main results.
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Let us remark that because of the use of local time, our approach is limited to the
one-dimensional case. In higher dimensions one has to resort to different methods,
using for instance the generator of the diffusion to relate the empirical process to
a family of local martingales. This approach was followed (for general stationary,
ergodic Markov processes) by Bhattacharya [3] to obtain a functional central limit
theorem for

1√
n

∫ nt

0

(
f (Xu)du −

∫
I
f dµ

)
,

wheref is one fixed function,t ≥ 0 andn → ∞. It is not clear, however, whether
necessary and sufficient conditions can be obtained in this way.

The notationa � b is used to denote thata ≤ Cb for a constantC that is
universal, or at least fixed in the proof.

2. Examples. In this section we consider four special cases of Theorem 1.2.

2.1. Diffusion local time. The first example is a uniform central limit theorem
for diffusion local time. The space of continuous functions on a compact setJ ⊆ R,
endowed with the supremum norm, is denoted byC(J ).

THEOREM 2.1. Suppose that
∫
I F 2(1− F)2 ds < ∞. Then, for all x ∈ I and

compact J ⊆ I ,

√
t

(
1

t
lt − 1

m(I)

)
Px�⇒ G

in C(J ), where G is a zero-mean Gaussian random map with covariance function

EG(x)G(y) = 4

m(I)

∫
I

(
1[x,r) − F

)(
1[y,r) − F

)
ds.

PROOF. We apply Corollary 1.4 with� = {δx :x ∈ J }, where δx is the
Dirac measure concentrated atx. The integrability of the functionF 2(1 − F)2 is
equivalent to the finiteness of the covariance function of the limitG. To verify the
entropy condition, observe that the pseudo-metricd that is induced byG on � is
given byd(δx, δy) = √|s(x) − s(y)|. It follows that the space(�,d) is isometric
to (s(J ),

√| · | ). Sinces(J ) is compact, this implies that the entropy condition
of Corollary 1.4 is satisfied. Hence, we have weak convergence in�∞(J ), and
therefore also inC(J ), since diffusion local time is continuous in the space variable
(see Section 4). �

We remark that the weak convergence of the normalized local time process,
as in the preceding theorem, cannot be extended to uniformity on the entire state
spaceI . By the continuous mapping theorem, uniform weak convergence in�∞(I )

would imply weak convergence of the sup-norm to a finite limit. But since the



1428 A. VAN DER VAART AND H. VAN ZANTEN

functionx �→ lt (x) vanishes outside the range of(Xs : 0 ≤ s ≤ t), which is strictly
within I a.s., we have a.s.∥∥∥∥√t

(
1

t
lt − 1

m(I)

)∥∥∥∥∞
≥

√
t

m(I)
→ ∞,

which would lead to a contradiction.
On the other hand, we can construct a version of the limit processG with

continuous (but not necessarily bounded) sample paths on the entire state space.
Then the process

√
t(lt /t − 1/m(I)) indexed byI converges toG relative to the

topology of uniform convergence on compacta. [To construct a version ofG with
continuous sample paths onI , first construct an arbitrary versionG indexed by a
countable dense subsetQ ⊂ I . In view of the entropy bound obtained in the proof
of Theorem 2.1 the modulus of continuity sups,t∈J∩Q : |s−t |<δ |G(s) − G(t)| of the
restriction of this process to a given compactJ ⊂ I converges to zero in mean as
δ ↓ 0. Thus up to a null set the processG is uniformly continuous on bounded
subsets of its (countable, dense) index set. We can extend it by continuity to the
whole state spaceI .]

For later reference we note that, given the integrability of the function
F 2(1− F)2, there exist positive constantsc1, c2 such that, for allx ∈ I ,

c1
(
1+ |s(x)|) ≤ EG

2(x) ≤ c2
(
1+ |s(x)|).(2.1)

Because the functions is unbounded, this too shows that there is no version ofG

with bounded sample paths.

2.2. Empirical process indexed by functions. In this section we give a
sufficient condition for the weak convergence of the empirical process (1.3)
indexed by a general classF of functions. This covers many concrete examples.
However, for special classes of functions, such as indicators in the line, the result
can be improved, as illustrated in the next sections.

Let (1+ √|s| ) dF denote the measure with density(1+ √|s| ) relative toF .

THEOREM 2.2. Suppose that
∫
I F 2(1 − F)2 ds < ∞. Then every class of

functions F ⊆ L1((1+ √
s ) dF ) that satisfies the entropy condition∫ ∞

0

√
logN

(
ε,F ,L1((1+ √|s| )dF

))
dε < ∞

is Donsker.

PROOF. In view of the occupation times formulaGt f = √
t
∫
I f (lt /t −

1/m(I)) dm. Therefore, a version of the limit processH must be given by
Hf = ∫

f Gdm, for G the limit process of the diffusion local time process
obtained in Theorem 2.1. Because

∫ |f |(1 + √|s| ) dm < ∞ by assumption and
E|G| � 1 + √|s| by (2.1), this process is indeed well defined. It is easily shown
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that this processH is a mean-zero process with the correct covariance structure,
whence it suffices to check that it possesses a version with bounded and uniformly
continuous sample paths.

Now

E(Hf − Hg)2 = 2

π
(E|Hf − Hg|)2 �

(∫
|f − g|EGdm

)2

.

In view of (2.1) the intrinsic metricdH(f, g) is bounded above by a multiple of the
L1((1+√|s| ) dm)-norm off − g. Hence the existence of the appropriate version
of H follows from [5]. �

EXAMPLE 2.3. As a particular example, we may take any VC-classF with
an envelope functionF such that∫

I
F(x)

(
1+ √|s(x)| )dm(x) < ∞.

Then the covering numberN(εQF,F ,L1(Q)) is bounded byC(1/ε)V for V + 1
the VC-index of the classF and C a constant depending onV only, and any
σ -finite measureQ such thatQF < ∞. (See, e.g., Theorem 2.6.7 in [29], where
it is clear from the proof that the result extends toσ -finite measuresQ.) In
particular, the entropy condition of the preceding theorem is satisfied, and hence
F is Donsker.

EXAMPLE 2.4. Another example is given by the collection of all monotone
functionsf : I → [0,1]. Because this has a finite entropy integral for any finite
measure, this class is Donsker if

∫
I

√|s|dF < ∞.

EXAMPLE 2.5. A third example is given by the collection of all functions
f : I → [0,1] with |f (x) − f (y)| ≤ |x − y|α for someα > 1/2 in the case that
Ī is compact. This class has entropy relative to the uniform norm bounded above
by a multiple of(1/ε)1/α and hence satisfies the entropy condition of the preceding
theorem if

∫
I

√|s|dF < ∞.
Using the approach of Corollary 2.7.4 of [29], this can be extended to

unbounded state spaceI = R under the condition that for somep < 2/3

∞∑
j=1

(∫
j<|x|≤j+1

(
1+ √|s|(x)

)
dF(x)

)p

< ∞.

Analogy with the case of empirical processes for independent observations
suggests that the class will remain Donsker if this holds forp = 2/3, but we have
not investigated this.
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2.3. Local time density estimator. Suppose that the invariant probability
measureµ has a locally bounded densityf with respect to a measureν onI . Then
it follows from the occupation times formula (1.4) that the empirical measureµt ,
defined by

µt(B) = 1

t

∫ t

0
1B(Xu)du,

has the (random) density

ft (x) = m(I)f (x)lt (x)

t

with respect toν. In the statistical literature this densityft is often called the local
time estimator off ; see, for example, [4]. Ifν is the Lebesgue measure onI

andf is continuous, thenft is simply the derivative of the empirical distribution
function.

Kutoyants [14] and Negri [19] studied the statistical properties of the local
time estimator for regular diffusions onR that are generated by certain stochastic
differential equations. In particular, for the special class of diffusions he consid-
ered, Kutoyants [14] showed that the normalized difference

√
t(ft − f ) converges

weakly to a Gaussian limit, uniformly on the whole state spaceI . In this section
we complement and generalize their results, giving precise conditions for general
regular diffusions.

The finite-dimensional distributions of
√

t(ft − f ) converge weakly to those of
the centered, Gaussian random mapH with covariance function

EH(x)H(y) = 4m(I)f (x)f (y)

∫
I

(
1[x,r) − F

)(
1[y,r) − F

)
ds,

provided that these covariances are finite. The following theorem gives necessary
and sufficient conditions under which this finite-dimensional convergence can be
extended to uniform convergence, on compacta or on the full state spaceI . Recall
that we assume throughout thatf is bounded on compact subsets ofI .

THEOREM 2.6. (i) We have
√

t(ft − f )
Px�⇒ H in �∞(J ) for every compact

J ⊆ I and x ∈ I if and only if
∫
I F 2(1− F)2 ds < ∞.

(ii) We have
√

t(ft − f )
Px�⇒ H in �∞(I ) for every x ∈ I if and only if H admits

a version such that H(x) → 0 almost surely as x ↓ l or x ↑ r .

PROOF. Because
√

t(ft − f ) = f
√

t(lt /t − 1/m(I)), a version of the limit
processH of

√
t(ft − f ) can be defined asH = f G, for G the limit process of

the local time process appearing in Theorem 2.1. In the following we use a version
H = f G obtained from a version ofG with continuous sample paths on the entire
state spaceI .
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For anyx ∈ I ,

EH
2(x) = 4m(I)f 2(x)

(∫
(l,x]

F 2 ds +
∫
(x,r)

(1− F)2 ds

)
.

Therefore, the condition
∫
I F 2(1 − F)2 ds < ∞ is equivalent to the finiteness

of EH
2(x) for somex with f (x) > 0 (and then for allx ∈ I ), whence the condition

is certainly necessary.

(i) Sincef is locally bounded, the map�∞(J ) → �∞(J ) defined byz �→ f z

is continuous for the uniform norm. BecauseG is a tight Borel measurable element
in �∞(J ), so is the processH = f G. Thus the assertion follows from Theorem 2.1.

(ii) From (2.1) it follows that EH2(x) = f 2(x)EG
2(x) is bounded onI only if

the functionf 2s is bounded. Becauses(x) → ±∞ asx approaches the boundary
of I , it follows that in this casef (x) → 0 at the boundary ofI .

Because the sample pathsx �→ lt (x) of local time vanish forx near the boundary
of the state spaceI andf (x) → 0 asx tends to this boundary, the sample paths
of the process

√
t(ft − f ) tend to zero at the endpoints ofI . If

√
t(ft − f )

converges to a tight limitH in �∞(I ), then the sample paths ofH must tend to
zero at the boundary points also, as can be seen, for instance, from an almost sure
construction. Thus the condition in (ii) is necessary.

To prove sufficiency, it suffices to show that there exists a version ofH that
is a tight, Borel measurable map into�∞(I ). Let Jm be an increasing sequence
of compact intervals withJm ↑ I , and letHm = f G1Jm be the process indexed
by I with sample paths equal tof G on Jm and equal to zero outsideJm.
Because the restriction ofG to Jm is a tight, Borel measurable map into
C(Jm) ⊂ �∞(Jm) and Hm is the image of this restriction under the continuous
map z �→ f z1Jm from �∞(Jm) to �∞(I ), the processHm is a tight, Borel
measurable map into�∞(I ). The processH = f G as constructed in the first part
of the proof is separable, because it possessesdH-uniformly continuous sample
paths on every (Euclidean) compact intervalJ ⊂ I , which isdH-totally bounded
by tightness ofH. This implies that this version of the limit process satisfies
supx /∈Jm

|H(x)| → 0 almost surely, asm → ∞, as does the version ofH in the
statement of (ii). Consequently,

sup
x∈I

|Hm(x) − H(x)| ≤ sup
x /∈Jm

|H(x)| → 0,

almost surely. We conclude that the processH is the almost sure limit in�∞(I )

of a sequence of tight, Borel measurable maps into�∞(I ). This implies thatH is
itself also a tight, Borel measurable map into�∞(I ), in view of the lemma below.

�

The following lemma gives an easily verifiable sufficient condition for the
convergence of

√
t(ft − f ) on the entire state space, which is necessary under

a mild regularity condition.
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COROLLARY 2.7. Suppose that
∫
I F 2(1 − F)2 ds < ∞. Then if the function

f 2(x)|s(x)| log log|s(x)| → 0 as x → l or x → r , the convergence
√

t(ft − f )
Px�⇒ H

takes place in �∞(I ) for every x ∈ I . If the function f 2s is monotone near l and r ,
then these conditions are also necessary.

PROOF. We first prove sufficiency. LetG be the limit process in Theorem 2.1,
H = f G and let W be a two-sided Brownian motion, emanating from zero.
By the preceding theorem, it suffices to show that the sample paths ofH

converge to zero at the boundary points ofI . Observe that E(G(x) − G(y))2 =
(4/m(I))E(W(s(x)) − W(s(y)))2 for all x, y ∈ I . Moreover, by (2.1), we have
EG

2(x) � EW
2(s(x)) for x such that|s(x)| is bounded away from 0. It follows

that fory ≥ x ∈ I close enough tor ,

E
(
H(x) − H(y)

)2

= E
(
f (x)G(x) − f (y)G(y)

)2

�
(
f (x) − f (y)

)2EG
2(x) + f 2(y)E

(
G(x) − G(y)

)2

�
(
f (x) − f (y)r)2EW

2(s(x)) + f 2(y)E
(
W(s(x)) − W(s(y))

)2

= (
f (x) − f (y)

)2EW
2(s(x)) + f 2(y)E

(
W(s(x)) − W(s(y))

)2

− 2f (y)
(
f (x) − f (y)

)
EW(s(x))W

(
(s(y)) − W(s(x))

)
= E

(
f (x)W(s(x)) − f (y)W(s(y))

)2
,

by the independence of the Brownian increments. If we defineH(r) = 0 and
f (r)W(s(r)) = 0, then the processesH andf W ◦ s are continuous inL2 at r ,
as s(x)f 2(x) → 0 asx ↑ r by assumption. Consequently, under this extension
of the index set the inequality in the display remains valid forx, y ∈ [x0, r], for
sufficiently largex0. It follows that

E sup
x≥x0

|H(x)| ≤ E sup
x0≤x,y≤r

(
H(x) − H(y)

)
≤ 2E sup

x0≤x≤r
H(x) ≤ 2E sup

x0≤x≤r

(
f (x)W(s(x))

)
,

by Slepian’s lemma. By the law of the iterated logarithm for Brownian motion
and the condition onf , we have thatf (x)W(s(x)) → 0 almost surely asx ↑ r .
Therefore, the median of the variables supx0≤x≤r |f (x)W(s(x))| converges to zero
asx0 ↑ r . As a consequence of Borell’s inequality the mean of a supremum of a
separable Gaussian process is bounded above by a multiple of the median and
hence the right-hand side of the preceding display converges to zero. We conclude
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that the sequence supx≥x0
|H(x)| converges to zero in mean, and by monotonicity

also almost surely, forx → r . Similar reasoning applies forx → l.
Now assume thatf 2(x)s(x) ↓ 0 asx ↑ r . Thenf is also decreasing nearr .

Furthermore, fory ≥ x,

E
(
G(y) − G(x)

)
G(x) = − 4

m(I)

∫
1[x,y)

(
1[x,r) − F

)
ds ≤ 0.

We conclude that, fory ≥ x sufficiently close tor ,

E
(
H(y) − H(x)

)2 = E
(
f (x)G(x) − f (y)G(y)

)2

≥ f (y)2E
(
G(y) − G(x)

)2 + (
f (y) − f (x)

)2EG
2(x)

� f (y)2(s(y) − s(x)
)
.

Let xn be such thats(xn) = en. Thens(xn) − s(xm) ≥ s(xn)(1 − e−1) for n > m,
whence for sufficiently largem andn > m,

E
(
H(xn) − H(xm)

)2 � f 2(xn)s(xn) =: a2
n,

and hencedH(xk, xl) � a2n for all n ≤ k, l ≤ 2n. So the pointsxn, xn+1, . . . , x2n

area2n-separated, and Sudakov’s inequality implies that

E sup
n≤k≤2n

|H(xk)| � a2n

√
logn � a2n

√
log 2n.

If H(x) → 0 almost surely asx ↑ r , then the left-hand side tends to zero, and we
conclude thata2

n logn → 0 asn → ∞. Together with the monotonicity off 2s this
implies the necessity of the right tail condition. The condition on the left tail can
be seen to be necessary in the same way.�

LEMMA 2.8. Let Xn,X : → D be maps from a complete probability space
(,F ,P) into a complete metric space D . If Xn is Borel measurable and tight for
every n, and d(Xn,X) → 0 in outer probability, then X is Borel measurable and
tight.

PROOF. The mapX is Borel measurable, because the convergence in outer
probability implies the existence of a subsequence that converges almost surely.
The pointwise limit of a sequence of Borel measurable maps into a metric space is
itself Borel measurable.

If P∗(d(Xn,X) ≥ δ) → 0 for everyδ > 0, then there exists a sequenceδn ↓ 0
such that P∗(d(Xn,X) ≥ δn) → 0. Hence given someε > 0 we can find a
subsequencen1 < n2 < · · · such that P∗(d(Xnj

,X) ≥ δnj
) < ε2−j for every

j ∈ N. By the tightness ofXn for a fixedn, we can find a compact setKn with
P(Xn /∈ Kn) < ε2−n.

The setC = ⋂
j K

δnj
nj , whereKδ = {x :d(x,K) < δ}, is totally bounded. If

this were not the case, there would beη > 0 and a sequence{xm} ⊂ C with
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d(xm, xm′) > η for everym �= m′. Fix j such that 4δnj
< η. There exists{ym} ⊂

Knj
with d(xm, ym) < δnj

for every m, and by compactness ofKnj
this has

a converging subsequence. The tail of the sequencexm would be in a ball of
radius 2δnj

around the limit, which contradicts the construction of{xm}. ThusC is
totally bounded, and hence its closure is compact.

If Xn ∈ Kn for every n and d(Xnj
,X) < δnj

for every j , then X ∈ C. We
conclude that P(X /∈ C) < 2ε. �

2.4. Empirical distribution function. Let J be an arbitrary subset ofI . The
empirical processGt indexed by the class of functionsF = {1(l,x] :x ∈ J } is the
restriction of

√
t(Ft − F) to J , whereFt is the empirical distribution function,

defined by

Ft(x) = 1

t

∫ t

0
1(l,x](Xu)du.

Kutoyants [13], Negri [18] and Kutoyants and Negri [15] studied this object for a
certain class of stochastic differential equations. In particular, Negri [18] proved
that for these particular models,

√
t(Ft −F) converges weakly to a Gaussian limit,

uniformly on the entire state space. We extend their results to general regular
diffusions and obtain necessary and sufficient conditions in terms of the scale
function and stationary distribution.

In our general setting, it follows from the classical central limit theorem that
the finite-dimensional distributions of

√
t(Ft − F) converge weakly to those of a

centered, Gaussian random mapH with covariance function

EH(x)H(y) = 4m(I)

∫
I

(
F(u ∧ x) − F(u)F (x)

)(
F(u ∧ y) − F(u)F (y)

)
ds(u).

For uniform weak convergence we can give a necessary and sufficient integrability
condition, analogous to the preceding result for the local time estimator.

By the occupation times formula (1.4)

Ft(x) − F(x) =
∫
(l,x]

(
lt /t − 1/m(I)

)
dm.

This suggests that a version of the limit processH is given by the processH(x) =∫ x
l Gdm for G the limit process of the diffusion local time process obtained in

Theorem 2.1. In the proof of the following theorem it is seen that this integral is
indeed well defined, in anL2-sense, and gives a version ofH.

THEOREM 2.9. (i) We have
√

t(Ft − F)
Px�⇒ H in �∞(J ) for every compact

J ⊆ I and some x ∈ I if and only if
∫
I F 2(1− F)2 ds < ∞.

(ii) We have
√

t(Ft −F)
Px�⇒ H in �∞(I ) for some x ∈ I if and only if H admits

a version such that H(x) → 0 almost surely as x ↓ l or x ↑ r .
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PROOF. For anyx ∈ I , we have

EH
2(x) = 4m(I)

((
1− F(x)

)2
∫ x

l
F 2 ds + F 2(x)

∫ r

x
(1− F)2 ds

)
.

Therefore, the integrability of the functionF 2(1 − F)2 relative tos is equivalent
to the existence of the covariance process of the limit processH. It is clearly
necessary for both (i) and (ii).

If xn is such thats(xn) = en, then the integrability and monotonicity of
(1 − F)2 near r imply that

∑
n(1 − F)2(xn)(s(xn) − s(xn−1)) < ∞. Because

s(xn)/s(xn−1) = e, this implies that(1−F)2(xn)s(xn) → 0. Again by monotonic-
ity of F we obtain that(1 − F)2(x)s(x) → 0 asx ↑ r . Similarly F 2(x)s(x) → 0
asx ↓ l.

The processG of Theorem 2.1 possesses continuous sample paths and hence
is integrable on compactsJ ⊂ I . By straightforward calculations we see that, for
a < b in I ,

m(I)

4
E

(∫ b

a
GdF

)2

=
∫ b

a

∫ b

a

∫ (
1{x≤u} − F(u)

)(
1{y≤u} − F(u)

)
ds(u) dF (x) dF (y)

(2.2)

= (
F(b) − F(a)

)2
(∫ a

l
F 2 ds +

∫ r

b
(1− F)2 ds

)

+
∫ b

a

(
F

(
1− F(b)

) − (1− F)F(a)
)2

ds.

The last integral on the right-hand side is bounded above by 2(1−F(b))2(|s(b)|+
C) + 2F 2(a)(|s(a)| + C) for a constantC [depending on

∫
F 2(1 − F)2 ds].

Combined with the result of the preceding paragraph and the assumed integrability
of the functionF 2(1 − F)2 it follows that

∫ b
a Gdm → 0 in L2 as a → l and

b → r . Similarly, the same is true if botha → l andb → l, whence the integral
H(b) = ∫ b

l Gdm is well defined in theL2-sense. It can be checked that it gives a
version of the limit processH.

(i) It suffices to prove that there exists a version of the limit processH with
sample paths that are bounded anddH-uniformly continuous on the compact
J ⊂ I . In view of the preceding we have that

E
(
H(a) − H(b)

)2 = 2

π

(
E|H(a) − H(b)|)2 �

(∫ b

a
E|G|dF

)2

≤
(

sup
a<u<b

E|G(u)|
)2(

F(b) − F(a)
)2

�
(
1+ |s(a)| ∨ |s(b)|)(F(b) − F(a)

)2
,
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by (2.1). It follows that for every given compactJ ⊂ I there exists a constantC

such thatdH(x, y) ≤ C|F(x) − F(y)| for all x, y ∈ J . SinceF mapsJ into the
compact interval[0,1], this implies that(J, dH) has finite entropy integral and
henceH admits a version with bounded and uniformly continuous sample paths
on J . [We can also apply Corollary 1.4 to see directly that

√
t(Ft − F) ⇒ H in

�∞(J ) if J is compact.]
(ii) Because the sample paths of the processes

√
t(Ft − F) tend to zero at

the boundary points ofI , this must be true also for the limit processH. Therefore,
the existence of a version with this property is certainly necessary. We can
argue the sufficiency in exactly the same manner as in the proof of Theorem 2.6.

�

The following corollary gives a simple sufficient condition for the sample paths
of H to vanish at the boundary ofI , as required in (ii) of the preceding theorem.

COROLLARY 2.10. Suppose that
∫
I F 2(1−F)2 ds < ∞. If (1−F)2(x)s(x)×

log logs(x) → 0 as x ↑ r and F 2(x)s(x) log log|s(x)| → 0 as x ↓ l, then the con-
vergence

√
t(Ft − F)

Px�⇒ H

takes place in �∞(I ), for every x ∈ I . If the functions (1 − F)2s and F 2s are
monotone near r and l, respectively, then these conditions are necessary.

PROOF. It suffices to show that the sample paths of the processH tend to zero
at the boundary points ofI .

Choose the sequencexn such thats(xn) = en. Then s(xn)/s(xn−1) = e and
hence, form ≤ n, with b2

n = (1− F)2(xn)s(xn),

∫ xn

xm

(1− F)2 ds �
n∑

k=m

(1− F)2(xk)s(xk) =
n∑

k=m

b2
k �

n−1∑
k=m

b2
k.

From (2.2) it can be seen that a multiple of the right-hand side of this equation is a
bound on E(H(xn) − H(xm))2.

By the bounds given in the preceding proof, fora, b ∈ [xn−1, xn],
E

(
H(a) − H(b)

)2 �
(
F(b) − F(a)

)2
s(xn) =: e2

n(a, b).

In particular, forx ∈ [xn−1, xn] we have that E(H(x) − H(xn))
2 � b2

n−1. It also
follows that

N(ε, [xn−1, xn], en) ≤ N

(
ε√

s(xn)
, [F(xn−1),F (xn)], | · |

)
� bn−1

ε
.
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Therefore, by Talagrand [28], for allλ > 0 and sufficiently largen and some
constantC,

P
(

sup
xn−1≤x≤xn

(
H(x) − H(xn)

) ≥ λ

)
� e−Cλ2/b2

n−1.(2.3)

If b2
n logn → 0, then the series obtained by summing the right-hand side

over n is convergent for anyλ > 0. In view of the definitions ofbn and
xn this is the case under the condition of the corollary. This implies that
lim supn→∞ supxn−1≤x≤xn

(H(x) − H(xn)) ≤ 0 almost surely, asn → ∞. By a
similar argument on the other tail we see that supxn−1≤x≤xn

|H(x) − H(xn)| → 0
almost surely.

Given a sequence of independent zero-mean Gaussian random variables
X1,X2, . . . with varXi = b2

i , let Wn = ∑∞
i=n Xi . Because

∑
k b2

k < ∞, the series
Wn converges inL2 and hence also almost surely, by the Itô–Nisio theorem.
Thus the variablesWn form a well-defined Gaussian process andWn → 0 almost
surely asn → ∞. As noted in the preceding we have that E(H(xn) − H(xm))2 �∑n−1

k=m b2
k = E(Wn − Wm)2 for everyn,m ∈ N. This inequality remains true for

m,n ∈ N ∪ {∞} if we setH(x∞) = W∞ = 0. Therefore, by Slepian’s lemma,

E sup
k≥n

|H(xk)| ≤ E sup
∞≥k,l≥n

(
H(xk) − H(xl)

) ≤ 2E sup
k≥n

H(xk) � E sup
k≥n

Wk.

Because the sequence supk≥n |Wk| converges to zero in probability asn → ∞, its
sequence of medians converges to zero. In view of Borell’s inequality the same
is then true for the sequence of means. Combined with the preceding display this
shows that supk≥n |H(xk)| converges to zero in probability, and henceH(xn) → 0
almost surely.

By combining the results of the two preceding paragraphs we see that
supx≥xn

|H(x)| → 0 almost surely. A similar argument applies to the limit ofH

at the left boundary ofI . This concludes the proof of sufficiency of the condition
for the Donsker property.

If the function(1 − F)2s is decreasing nearr , then 1− F(xn) ≤ e(m−n)/2(1 −
F(xm)) for n > m large enough and henceF(xn) − F(xm) ≥ (1 − F(xm))(1 −
e−1/2). From (2.2) it follows that, forn > m and sufficiently largem,

E
(
H(xn) − H(xm)

)2 ≥ (
F(xn) − F(xm)

)2
∫ xm

l
F 2 ds �

(
1− F(xm)

)2
s(xm).

Arguing as in the proof of Corollary 2.7 this yields the necessity of the right tail
condition. The condition on the left tail can be seen to be necessary in the same
way. �

Because the set of indicator functions of cells in the real line is a VC-class, we
can deduce the assertion of the preceding corollary also from Theorem 2.2 under
the condition ∫

I

√|s|dm < ∞.
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For distribution functionsF and scale functionss with regular tail behavior this
condition appears to be generally stronger than the condition of the preceding
corollary. For instance, ifs(x) = x and 1− F(x) = x−1/2(logx)−α for largex,
then the right tail of the integral in the preceding display is finite ifα > 1, whereas
(1 − F)2(x)s(x) log logs(x) → 0 asx → ∞ for any α > 0. More generally, we
have the following relationships between the conditions, where we state the results
for the right tails only.

LEMMA 2.11. Suppose that
∫
I

√|s|dm < ∞. Then:

(i)
∫
I F 2(1− F)2 ds < ∞.

(ii) (1− F)2(x)s(x) → 0 as x ↑ r .
(iii) If (1− F)2(x)s(x) ↓ 0 as x ↑ r , then

∫ ∞
x (1− F)2 ds logs(x) → 0.

(iv) If
∫ ∞
x (1− F)2 ds log logs(x) → 0, then (1− F)2(x)s(x) log logs(x) → 0.

PROOF. By Markov’s inequality we obtain, withXt a stationary diffusion, for
x such thats(x) > 0,

1− F(x) = P
(√

s(Xt) >
√

s(x)
) ≤ 1√

s(x)

∫ r

x

√
s dF.

In particular, the function(1 − F)
√

s tends to zero at the right endpoint ofI ,
proving (ii). Then partial integration gives that, forx0 such thats(x0) = 0,∫ r

x0

√
s dF = 1

2

∫ r

x0

1√
s
(1− F)ds.(2.4)

We conclude that finiteness of the two integrals in the display is equivalent.

(i) BecauseF 2(1−F)2 � (1−F)/
√

s we obtain that
∫ r
x0

F 2(1−F)2 ds < ∞.
Convergence of this integral at the left endpoint ofI is proved similarly.

(iii) Define xn by s(xn) = en. Integrability of the function(1 − F)/
√

s at the
right end ofI implies that

∑
n(1 − F)(xn)e

n/2 < ∞. Because the sequence(1 −
F)(xn)e

n/2 is decreasing by assumption, it follows that(1− F)(xn)e
n/2n → 0.

(Indeed, if
∑

an < ∞ and an is decreasing, then∞ >
∑

k

∑
2k−1≤n<2k an ≥∑

k 2k−1a2k−1, so that 2ka2k → 0 ask → ∞. It follows that sup2k−1≤n≤2k nan �
2k−1a2k−1 → 0, sonan → 0.) Hence,∑

n≥n0

(1− F)2(xn)s(xn) ≤ (1− F)
(
xn0

)
en0/2

∑
n≥n0

(1− F)(xn)e
n/2 = O(1/n0),

asn0 → ∞. This implies that logs(xn0)
∫ r
xn0

(1− F)2 ds → 0.

(iv) With xn as before, we have(1− F)2(xn0)s(xn0) ≤ ∑
n≥n0

(1− F)2(xn) ×
s(xn), which is bounded above by a multiple of

∫ r
xn0−1

(1− F)2 ds. �
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On the other hand, it is not true in general that the condition
∫
I

√|s|dm < ∞
is stronger than the condition of Corollary 2.10 and hence the latter condition is
not necessary in general. This is also clear from the proof, which is based on the
assumption that the right-hand side of (2.3) yields a convergent series. Without
some regularity on the sequenceb2

n, this does not reduce to the simple condition
as stated.

EXAMPLE 2.12. Define a sequencexn by log log log log logs(xn) = n (where
we use the logarithm at base 2), and define

1− F(x) = 1√
s(xn)

√
log log log logs(xn)

, xn−1 < x ≤ xn.

Then
∫
I

√|s|dm < ∞, but (1− F)2(xn) s(xn) = (log log log logs(xn))
−1.

Because this distribution functionF possesses flat parts, it cannot appear as the
stationary distribution of a regular diffusion. However, by moving a tiny fraction of
the total mass, we can construct a distribution with full support without destroying
the preceding properties.

3. Continuous martingales and majorizing measures. Let (,F , {Ft },P)

be a filtered probability space. On this stochastic basis, suppose that we have a
collectionM = {Mθ : θ ∈ �} of continuous local martingalesMθ = (Mθ

t : t ≥ 0),
indexed by a countable pseudo-metric space(�,d). Thequadratic d-modulus of
continuity ‖M‖d of the collectionM is the stochastic process defined by

‖M‖d,t = sup
θ,ψ : d(θ,ψ)>0

√〈Mθ − Mψ 〉t
d(θ,ψ)

.

Here 〈N〉 denotes the quadratic variation process of the continuous local
martingaleN .

The quadratic modulus was introduced explicitly by Nishiyama [21, 22] and
appeared already implicitly in the papers Bae and Levental [2] and Nishiyama [20].
The relevance of the quadratic modulus stems from the fact that for every time
t ≥ 0 and every constantK > 0, the random mapθ �→ Mθ

t 1{‖M‖d,t≤K} is sub-
Gaussian with respect to the pseudo-metricKd. Indeed, the Bernstein inequality
for continuous local martingales (see, e.g., [26]) implies that

P
(∣∣Mθ

t 1{‖M‖d,t≤K} − M
ψ
t 1{‖M‖d,t≤K}

∣∣ ≥ x
)

≤ P(|Mθ
t − M

ψ
t | ≥ x,‖M‖d,t ≤ K)

≤ P
(|Mθ

t − M
ψ
t | ≥ x, 〈Mθ − Mψ 〉t ≤ K2d2(θ,ψ)

)
≤ 2e−(1/2)x2/(K2d2(θ,ψ)).

For random maps whose increments are controlled in this manner, the theory of
majorizing measures gives sharp bounds for the modulus of continuity. As before,
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we denote byN(η,�,d) the minimal number of balls ofd-radiusη that are needed
to cover�. The symbol� between two expressions means that the left-hand side
is less than a universal positive constant times the right-hand side.

LEMMA 3.1. For all δ, x, η > 0,K ≥ 1, every Borel probability measure ν on
(�,d), and every bounded stopping time τ ,

P
(

sup
t≤τ

sup
d(θ,ψ)<δ

|Mθ
t − M

ψ
t | ≥ x; ‖M‖d,τ ≤ K

)

� K

x

(
sup
θ

∫ η

0

√
log

1

ν(Bd(θ, ε))
dε + δ

√
N(η,�,d)

)
.

PROOF. We may of course assume that the right-hand side of the inequality
in the statement of the lemma is finite. Introduce the stopping timeτK =
inf{t :‖M‖d,t > K}, so that the probability in the statement of the lemma is
bounded by P(supt≤τ Xδ

t ≥ x), where

Xδ
t = sup

d(θ,ψ)<δ

∣∣Mθ
τK∧t − M

ψ
τK∧t

∣∣.(3.1)

By Bernstein’s exponential inequality for continuous martingales we have for all
a ≥ 0 and every finite stopping timeσ

P
(∣∣Mθ

τK∧σ − M
ψ
τK∧σ

∣∣ > a
)

= P
(∣∣Mθ

τK∧σ − M
ψ
τK∧σ

∣∣ > a; 〈Mθ − Mψ 〉τK∧σ ≤ K2d2(θ,ψ)
)

≤ 2e−(1/2)a2/(K2d2(θ,ψ)).

Hence, the random mapθ �→ Mθ
τK∧σ is sub-Gaussian with respect to the pseudo-

metricKd. By formula (11.15) on page 317 of [16] this implies that for allδ, η > 0

EXδ
σ � K

(
sup
θ

∫ η

0

√
log

1

ν(Bd(θ, ε))
dε + δ

√
N(η,�,d)

)
,(3.2)

whereBd(ξ, ε) is the ball aroundξ with d-radiusε. In particular, we see that
EXδ

t < ∞ for everyt ≥ 0. Also, for any pair(θ,ψ) and for every finite stopping
timeσ , by the Davis–Gundy inequality,

E
(
Mθ

τK∧σ − M
ψ
τK∧σ

)2 ≤ E〈Mθ − Mψ 〉τK∧σ ≤ K2d2(θ,ψ).

Thus, the collection{Mθ
τK∧σ − M

ψ
τK∧σ :σ is a finite stopping time} is bounded

in L2 and therefore uniformly integrable. This implies that the stopped local
martingaleMθ

τK∧t −M
ψ
τK∧t is of class (D), which means that it is in fact a uniformly

integrable martingale (see, e.g., pages 11–12 of [10]). It is then easy to see that
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the processXδ defined by (3.1) is a submartingale. Hence, by the submartingale
inequality, P(supt≤τ Xδ

t ≥ x) ≤ EXδ
τ/x. In combination with (3.2) this yields the

statement of the lemma.�

With the help of this lemma we can prove results concerning the regularity
and asymptotic tightness of collections of continuous local martingales under
majorizing measure conditions. The key condition is the existence of a pseudo-
metric d on � for which the modulus is finite or bounded in probability and for
which there exists a probability measureν such that the integral on the right-hand
side in the preceding lemma is continuous at zero. The latter is the continuous
majorizing measure condition:

lim
η↓0

sup
θ

∫ η

0

√
log

1

ν(Bd(θ, ε))
dε = 0.(3.3)

The first theorem deals with regularity of a given collection of local martingalesM .

THEOREM 3.2. Suppose there exists a Borel probability measure ν on (�,d)

such that (3.3) holds for a pseudo-metric d on � for which ‖M‖d,τ < ∞ almost
surely. Then the random map θ �→ Mθ

τ is almost surely bounded and uniformly
d-continuous on �.

PROOF. By Lemma 3.1, there exists for everyn ∈ N a positive numberδn such
that for everyK,x > 0,

P
(

sup
d(θ,ψ)<δn

|Mθ
τ − Mψ

τ | ≥ x; ‖M‖d,τ ≤ K

)
� K

4nx
.

For everyn, define the event

An =
{

sup
d(θ,ψ)<δn

|Mθ
τ − Mψ

τ | > 1

2n

}
.

Then for everyK > 0 we have
∑

P(An; ‖M‖d,τ ≤ K) � K
∑

2−n < ∞. So by
the Borel–Cantelli lemma, P(Aninfinitely often; ‖M‖d,τ ≤ K) = 0. Since‖M‖d,τ

is almost surely finite by assumption, it follows that

P(An infinitely often) = P(An infinitely often;‖M‖d,τ < ∞)

≤ ∑
K

P(An infinitely often;‖M‖d,τ ≤ K) = 0.

So we almost surely have that supd(θ,ψ)<δn
|Mθ

τ − M
ψ
τ | ≤ 2−n for all n large

enough, which implies that the random mapθ �→ Mθ
τ is uniformly continuous.

Recall that under the majorizing measure condition, the pseudo-metric space
(�,d) is totally bounded (see, e.g., the proof of Lemma A.2.19 of [29]). It follows
thatθ �→ Mθ

τ is bounded with probability 1. �
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Suppose now that for eachn ∈ N, we have a collectionMn = {Mn,θ : θ ∈ �}
of continuous local martingales and a finite stopping timeτn on a stochastic
basis(n,F n, {F n

t },Pn). For eachn the local martingalesMn,θ are indexed by
a parameterθ belonging to a fixed pseudo-metric space�. Recall that a sequence
Xn of �∞(�)-valued random elements is calledasymptotically d-equicontinuous
in probability if for all ε, η > 0 there exists aδ > 0 such that

lim sup
n→∞

P
(

sup
d(θ,ψ)≤δ

|Xn(θ) − Xn(ψ)| > ε

)
≤ η.

Weak convergence in�∞(�) to a tight limit is equivalent to finite-dimensional
convergence and equicontinuity with respect to a semimetricd such that(�,d) is
totally bounded (see, e.g., [29], Theorem 1.5.7). For the random mapsθ �→ Mn,θ

τn
,

finite-dimensional weak convergence will typically follow from a classical
martingale central limit theorem (cf. [10]). Using Lemma 3.1, it is straightforward
to give sufficient conditions for asymptotic equicontinuity in terms of the quadratic
modulus and majorizing measures. The next theorem extends Theorem 3.2.4
of [22], which gives sufficient conditions for asymptotic equicontinuity in terms
of metric entropy.

THEOREM 3.3. Suppose there exists a Borel probability measure ν on (�,d)

such that (3.3) holds for a pseudo-metric d on � for which ‖Mn‖d,τn = OP (1).
Then (�,d) is totally bounded and the sequence of random maps θ �→ Mn,θ

τn
in

�∞(�) is asymptotically d-equicontinuous in probability.

PROOF. The total boundedness of(�,d) is a direct consequence of the
existence of a majorizing measure. See, for example, the proof of Lemma A.2.19
of [29].

Let the random mapXn on � be defined byXn(θ) = Mn,θ
τn

. Then for every
K > 0

P
(

sup
d(θ,ψ)≤δ

|Xn(θ) − Xn(ψ)| > ε

)

≤ P
(

sup
d(θ,ψ)≤δ

|Xn(θ) − Xn(ψ)| > ε; ‖Mn‖d,τn ≤ K

)
+ P

(‖Mn‖d,τn > K
)
.

Now if η > 0 is given, we can first chooseK large enough to ensure that
lim supP(‖Mn‖d,τn > K) < η/2. Lemma 3.1 implies that for this fixedK , we
can choose aδ > 0 such that the first term on the right-hand side is less thanη/2.

�

The preceding theorems do not use the full power of Lemma 3.1, because they
use the control inθ of the local martingalest �→ M

n,θ
t , but not the control in

the time parametert . In the following theorem we use the lemma to establish a
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majorizing measure condition for the asymptotic tightness in�∞([0, T ] × �) of
random maps of the form(t, θ) �→ M

n,θ
t , for fixedT ∈ (0,∞).

We make the same assumptions as in the preceding theorem, and in addition
assume that for every fixedθ ∈ � the sequence of processes(M

n,θ
t : 0 ≤ t ≤ T )

is asymptotically equicontinuous in probability relative to the Euclidean metric
on [0, T ]. By the martingale central limit theorem, this is certainly true if
the sequence of quadratic variation processes〈Mn,θ 〉 converges pointwise in
probability to a continuous function (which is then the quadratic variation process
of the Gaussian limit process).

THEOREM 3.4. Suppose there exists a Borel probability measure ν on (�,d)

such that (3.3) holds for a pseudo-metric d on � for which ‖Mn‖d,τn = OP (1).
Furthermore, assume that, for every fixed θ ∈ �, the sequence of processes
(M

n,θ
t : 0 ≤ t ≤ T ) is asymptotically equicontinuous in probability relative to the

Euclidean metric. Then the sequence of random maps Mn is asymptotically tight
in the space �∞([0, T ] × �).

PROOF. By the majorizing measure condition (3.3) the set� is totally
bounded underd. If θ1, . . . , θm is aδ-net over� ands, t ∈ [0, T ], then for alli

|Mn,θ
s − M

n,θ
t | ≤ |Mn,θi

s − M
n,θi
t | + 2 sup

0≤t≤T

|Mn,θ
t − M

n,θi
t |.

Hence

sup
|s−t |<γ

sup
d(θ,ψ)≤δ

|Mn,θ
s − M

n,ψ
t |

≤ sup
|s−t |<γ

sup
d(θ,ψ)≤δ

(|Mn,θ
s − M

n,θ
t | + |Mn,θ

t − M
n,ψ
t |)

≤ max
i

sup
|s−t |<γ

|Mn,θi
s − M

n,θi
t | + 3 sup

0≤t≤T

sup
d(θ,ψ)≤δ

|Mn,θ
t − M

n,ψ
t |.

Fix ε, η > 0. Extending the argument in the proof of Theorem 3.3, we can show
that there existsδ > 0 such that

lim sup
n→∞

P
(

sup
0≤t≤T

sup
d(θ,ψ)≤δ

|Mn,θ
t − M

n,ψ
t | > ε

)
< η.(3.4)

For thisδ = δ(ε, η) there exists a finiteδ-netθ1, . . . , θm over� (wherem depends
on δ). By the assumption of asymptotic equicontinuity of the processest �→ M

n,θ
t ,

there existsγ = γ (η,m, θ1, . . . , θm) such that

lim sup
n→∞

P
(

sup
|s−t |<γ

|Mn,θi
s − M

n,θi
t | > ε

)
<

η

m
, i = 1, . . . ,m.
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Combining the preceding displays we see that

lim sup
n→∞

P
(

sup
|s−t |<γ

sup
d(θ,ψ)≤δ

|Mn,θ
s − M

n,ψ
t | > 4ε

)
≤

m∑
i=1

η

m
+ η ≤ 2η.

Thus for the given pair(ε, η) we have found a pair(γ, δ) of positive numbers
such that this holds. Because the probability on the left-hand side is increasing in
γ andδ, the bound remains true if we replaceγ or δ by the smaller of the two.
This implies that the sequence of processesMn is asymptotically equicontinuous
in probability relative to the product of the Euclidean metric on[0, T ] and the
pseudo-metricd on �, and hence it is asymptotically tight ([29], Theorem 1.5.7).

�

In the preceding theorem we can also use an arbitrary pseudo-metric for which
the interval [0, T ] is totally bounded (and this could be permitted to depend
on θ ), rather than the Euclidean metric. However, because the local martingales
t �→ M

n,θ
t are continuous relative to the Euclidean metric by assumption, this

apparent generalization would not make the theorem more general: the necessary
continuity of the limit points t �→ Mθ

t would imply that the equicontinuity
necessarily also holds relative to the Euclidean pseudo-metric. For simplicity of
the statement we have used the Euclidean metric throughout.

4. A limit theorem for diffusion local time. In this section we collect some
classical and some less well-known facts about diffusion local time. We shall need
these in the proof of Theorem 1.2. As in the Introduction, letX be the regular
diffusion on the open intervalI . A central result in the theory of one-dimensional
diffusions is that diffusions in natural scale are in fact time-changed Brownian
motions; see, for instance, [25] or [11]. In our setting, we have that under Px ,
it holds thats(Xt) = Wτt , whereW is a Brownian motion that starts ins(x), and
τt is the right-continuous inverse of the processA defined by

At =
∫
I
LW

t (s(y))m(dy).

Here LW = (LW
t (y) : t ≥ 0, y ∈ R) is the local time ofW . It follows from this

relation that the local timelt (y) of X with respect to the speed measurem satisfies
lt (y) = LW

τt
(s(y)).

This time-change representation of diffusion local time shows that with
probability 1, the random functiony �→ lt (y) can be chosen continuous and has
compact support. In particular, it holds that‖lt‖∞ = supy∈I lt (y) < ∞ almost
surely. In [30] it is shown that in fact,‖lt‖∞ = OP (t) as t → ∞. For the sake
of easy reference, we include a proof of this fact. We need the following lemma.
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LEMMA 4.1. For every x ∈ I we have, for Z standard normally distributed
and t → ∞,

τt

t2
Px�⇒ 1

m2(I )Z2 .

PROOF. The processA defined above is a continuous additive functional
of W , and sincem is finite, it is integrable. By Proposition (2.2) in Chapter XIII
of [24], it follows that

1√
t
At

Px�⇒ m(I)LB
1 (0),(4.1)

whereLB is the local time of a Brownian motionB that starts in 0. The process
τ is the right-continuous inverse ofA, so for everyt, T ≥ 0 it holds thatτt < T if
and only ifAT > t . By (4.1), it follows that, for everyz ≥ 0,

Px

(
τt

t2 < z

)
= Px(At2z > t) = Px

(
1

t
√

z
At2z >

1√
z

)

→ Px

(
m(I)LB

1 (0) >
1√
z

)

= Px

(
1

m2(I )(LB
1 (0))2

< z

)
.

To complete the proof we use the well-known fact that(LB
1 (0))2 has aχ2

1-distribu-
tion (see [12], Theorem 3.6.17 and Problem 2.8.2).�

THEOREM 4.2. For every x ∈ I we have ‖lt‖∞ = OPx (t) as t → ∞.

PROOF. Let us writeαt = t−1‖lt‖∞. We have to prove thatαt is asymptoti-
cally tight for t → ∞. By the time-change relation, we have for alla, b > 0

Px(αt > a) = Px

(
sup

z∈s(I )

1

t
LW

t2(τt /t2)
(z) > a

)

≤ Px

(
sup

z∈R,u≤b

1

t
LW

t2u
(z) > a

)
+ Px

(
τt

t2 > b

)
.

By the scaling property of Brownian local time (see Exercise (2.11) in Chapter VI
of [24] and note thatW is a Brownian motion starting ats(x)) it holds under Px
that

sup
z∈R,u≤b

1

t
LW

t2u
(z)

d= sup
z∈R,u≤b

LB
u

(
z − s(x)

t

)
= sup

z∈R

LB
b (z),
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whereLB is the local time of a standard Brownian motionB (starting in 0). So we
find that for alla, b > 0

Px(αt > a) ≤ Px

(
sup
z∈R

LB
b (z) > a

)
+ Px

(
τt

t2 > b

)
.(4.2)

The proof is finished upon noting thatz �→ LB
b (z) is bounded (because continuous

with compact support), almost surely andτt/t2 is asymptotically tight. �

5. Proof of Theorem 1.2.

5.1. Reduction to the natural scale case. Let us first show that it suffices to
prove the theorem for diffusionsX that are in natural scale (i.e., for which the
identity function is a scale function). The diffusionY = s(X) is in natural scale
(see, e.g., Theorem V.46.12 of [25]), and we have the relations

m = mY ◦ s, lt = lYt ◦ s, F = FY ◦ s,

between the local timelY , speed measuremY and stationary distributionFY

of Y , and the local timel, speed measurem and stationary distributionF of X.
Moreover,

EH
Y (λ ◦ s−1)HY (ν ◦ s−1) = EHλHν.

It follows that the class� is Donsker forX if and only if the class� ◦ s−1 =
{λ ◦ s−1 :λ ∈ �} is Donsker forY . So if we have proved the theorem for diffusions
in natural scale, we can apply it to the diffusionY = s(X) and the class� ◦ s−1 to
prove it for a diffusionX that is not in natural scale.

In the remainder of the proof we therefore assume thatX is in natural scale.
The processX is then an ergodic diffusion in natural scale on the open intervalI .
Therefore, we must haveI = R (see, e.g., Theorem 20.15 of [11]). Moreover, the
fact that the state space is open implies thatX is a local martingale (cf., e.g., [25],
Corollary V.46.15). We also note that for diffusions in natural scale on an open
interval, the diffusion local timelt (x) with respect to the speed measure coincides
with the semimartingale local time ofX (see [25], Section V.49).

5.2. Asymptotic equivalence with uniform weak convergence of continuous
local martingales. In this section we show that the weak convergence of the
empirical processHt is equivalent to the weak convergence of a normalized
�∞(�)-valued continuous local martingale. SinceX is now in natural scale,
we haveI = R. For everyx ∈ R, define the functionsπx and �x on R by
πx = 2(1[x,∞) − F) and

�x(y) =
∫ y

y0

πx(u)du,
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wherey0 is an arbitrary, but fixed point inR. The functionπx is the difference
of two increasing functions, and hence�x is the difference of two convex
functions. Moreover, we have the relationπx(b) − πx(a) = ν(a, b] for all a ≤ b,
whereν is the signed measureν = 2(δx − µ) on R, and δx denotes the Dirac
measure concentrated atx. So by the generalized Itô formula (see, e.g., [24],
Theorem VI.1.5, or [25], 45.1)

�x(Xt) − �x(X0) =
∫ t

0
πx(Xu)dXu + 1

2

∫
R

lt (y)ν(dy).

It follows from the definition ofν and the occupation times formula (1.4) that

1

2

∫
R

lt (y)ν(dy) = lt (x) −
∫

R

lt (y)µ(dy) = lt (x) − 1

m(I)
t,

so that, under Pz,

1

t
lt (x) − 1

m(R)
= 1

t

(
�x(Xt) − �x(z)

) − 1

t

∫ t

0
πx(Xu)dXu.

If we integrate this identity with respect toλ(dx) and use the stochastic Fubini
theorem (see [23], Theorem IV.45), we see that the empirical processHt can be
decomposed as

Ht λ = Rz,t (λ) − 1√
t
Mλ

t(5.1)

under Pz, whereMλ is the continuous local martingale defined by

Mλ
t = 2

∫ t

0
hλ(Xu)dXu with hλ(x) = λ(l, x] − F(x)λ(I ),(5.2)

andRz,t (λ) = t−1/2 ∫
R
(�x(Xt) − �x(z))λ(dx). The next step is to show that the

Rz,t -term vanishes uniformly inλ, so that we only have to deal with the martingale
part ofHt . The functionsπx are bounded in absolute value by 2, so we have the
pointwise inequality|�x | ≤ � for everyx, where� is a function that does not
depend onx. It follows that

sup
x∈R

1√
t
|�x(Xt) − �x(z)| ≤ 1√

t

(
�(Xt) + �(z)

)
.

Consequently, we have

sup
λ∈�

|Rz,t (λ)| ≤ sup
λ∈�

‖λ‖ 1√
t

(
�(Xt) + �(z)

)
.

The right-hand side converges to 0 in probability, since the law ofXt converges in
total variation distance to the stationary measureµ ast → ∞, whatever the initial
law (see, e.g., [25], Section 54.5).
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5.3. Continuity of the empirical process. In this section we prove that the
empirical process isdH-continuous. Observe that we haveHtλ = ∫

I φt (x)λ(dx),
with

φt(x) = √
t

(
1

t
lt (x) − 1

m(I)

)
.

Since the random functionx �→ lt (x) is almost surely continuous and has compact
support, the random functionφt is bounded and continuous with probability 1.
Note also that by the occupation times formula (1.4),φt satisfies∫

I
φt (x)m(dx) = 1√

t

∫ t

0
1du − √

t = 0.

Hence, thedH-continuity of the empirical process is a consequence of the
following lemma.

LEMMA 5.1. Let ψ be a continuous function on I with compact support and
φ = ψ − ∫

ψ dµ. Then if λn and λ are signed measures with ‖λn‖ bounded and
dH(λn, λ) → 0, it holds that∫

I
φ(x)λn(dx) →

∫
I
φ(x)λ(dx)

as n → ∞.

PROOF. Define αn = λn(I ) − λ(I). Since the total variation of the signed
measuresλn is uniformly bounded by assumption, the sequenceαn is bounded.
Hence, it has a converging subsequence, sayαn′ → α. Observe that the conver-
gencedH(λn, λ) → 0 implies thatn′ has a further subsequencen′′ such that

λn′′(l, x] − F(x)λn′′(I ) → λ(l, x] − F(x)λ(I )

for almost everyx ∈ I [recall thatX is now in natural scale, so thats(x) = x]. So
there exists a dense setD ⊆ I such that for allx ∈ D

λn′′(l, x] = λn′′(l, x] − F(x)λn′′(I ) + F(x)λn′′(I )

→ λ(l, x] − F(x)λ(I ) + F(x)
(
α + λ(I)

) = λ(l, x] + αF(x).

Sinceψ is compactly supported and continuous, we can approximate it uniformly
by functionsψm of the formψm = ∑m

i=1 1(am,i ,am,i+1]ψ(ai,m) for am,0 < am,1 <

· · · < am,m finite partitions of the support ofψ . The preceding display shows that
for every fixedm, asn → ∞,∫

ψm(x)λn′′(dx) →
∫

ψm(x)λ(dx) + α

∫
ψm(x)µ(dx).
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By the uniform approximation asm → ∞, this is then also true forψ in the place
of ψm. Consequently,∫

I
φ(x)λn′′(dx) =

∫
I
ψ(x)λn′′(dx) − λn′′(I )

∫
I
ψ dµ

→
∫
I
ψ(x)λ(dx) + α

∫
ψ(x)µ(dx) − (

α + λ(I)
) ∫

ψ(x)µ(dx)

=
∫
I
φ(x)λ(dx).

This completes the proof.�

5.4. End of the proof. We can now finish the proof of Theorem 1.2. That the
existence of a bounded anddH-uniformly continuous version of the Gaussian limit
H is necessary for� to be Donsker follows from the general theory of weak
convergence to Gaussian processes.

For the proof of the converse, suppose that such a bounded and uniformly
continuous versionH exists. By Theorem 12.9 of [16], this implies that there exists
a Borel measureν on (�,dH) such that

lim
η↓0

sup
λ

∫ η

0

√
log

1

ν(BdH
(λ, ε))

dε = 0.(5.3)

It follows that (�,dH) is totally bounded (see, e.g., the proof of Lemma A.2.19
of [29]), and therefore separable. Hence, since the empirical processHt is
dH-continuous, we may assume that� is countable.

By the considerations in Section 5.2, it suffices to show that the random maps
H

′
t defined byH

′
tλ = t−1/2Mλ

t converge weakly toH, whereMλ is the local
martingale given by (5.2). By the ergodic theorem ([9], Section 6.8), we have

1

t
〈Mλ,Mν〉t = 4

t

∫ t

0
hλ(Xu)hν(Xu)d〈X〉u = 4

t

∫
R

hλ(x)hν(x)lt (x) dx

a.s.→ 4

m(R)

∫
R

hλ(x)hν(x) dx = EHλHν

as t → ∞. So by the martingale central limit theorem, the finite-dimensional
distributions ofH′

t converge weakly to those ofH. Now pick an arbitrary sequence
an → ∞ and apply Theorem 3.3 to the local martingalesMn,λ defined by

M
n,λ
t = 1√

an

Mλ
ant ,

and the stopping timeτn equal to 1. Then in view of (5.3), all that remains to be
shown is that‖Mn‖dH,1 = OP (1). Since

1

an

〈Mλ − Mν〉an = 4

an

∫
R

(
hλ(x) − hν(x)

)2
lan(x) dx � 1

an

∥∥lan

∥∥∞ d2
H
(λ, ν),
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we have

‖Mn‖2
dH,1 = sup

dH(λ,ν)>0

(1/an)〈Mλ − Mν〉an

d2
H
(λ, ν)

� 1

an

∥∥lan

∥∥∞.

By Theorem 4.2 it holds that‖lan‖∞ = OP (an), so indeed,‖Mn‖dH,1 = OP (1).
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