
The Annals of Probability
2005, Vol. 33, No. 4, 1302–1325
DOI 10.1214/009117905000000125
© Institute of Mathematical Statistics, 2005

CONSTRAINED BROWNIAN MOTION: FLUCTUATIONS AWAY
FROM CIRCULAR AND PARABOLIC BARRIERS

BY PATRIK L. FERRARI1 AND HERBERTSPOHN

Technische Universität München

Motivated by the polynuclear growth model, we consider a Brownian
bridgeb(t) with b(±T ) = 0 conditioned to stay above the semicirclecT (t) =√

T 2 − t2. In the limit of largeT , the fluctuation scale ofb(t) − cT (t) is
T 1/3 and its time-correlation scale isT 2/3. We prove that, in the sense of
weak convergence of path measures, the conditioned Brownian bridge, when
properly rescaled, converges to a stationary diffusion process with a drift
explicitly given in terms of Airy functions. The dependence on the reference
point t = τT , τ ∈ (−1,1), is only through the second derivative ofcT (t) at
t = τT . We also prove a corresponding result where instead of the semicircle
the barrier is a parabola of heightT γ , γ > 1/2. The fluctuation scale is
thenT (2−γ )/3. More general conditioning shapes are briefly discussed.

1. Introduction and main results. We consider the Brownian bridgeb(t)

over the time interval[−T ,T ], T > 0, b(−T ) = b(T ) = 0, conditioned to lie
above the semicirclecT (t) = √

T 2 − t2. Let b+(t) be the conditioned Brownian
bridge and letXT (t) = b+(t) − cT (t) be the deviation ofb+(t) away fromcT (t),
see Figure 1. ClearlyXT (t) ≥ 0, XT (−T ) = XT (T ) = 0, and the path measure of
the process is defined onC([−T ,T ],R) = C([−T ,T ]), the space of continuous
functions over the interval[−T ,T ] equipped with the supremum norm. The issue
is to understand the statistical properties ofXT (t) for largeT .

A well-studied special case is whencT (t) is replaced by the function zero.
The Brownian bridge is then constrained to stay positive, a stochastic process
known as Brownian excursion. In the limit of largeT it converges to the three-
dimensional Bessel process. Time-dependent barriers, like the circle, seem to be
hardly studied. An exception is the parabolagT,2(t) = T 2 − t2 for which some
properties have been established [4, 5]; see below. In this paper we resolve the
fluctuation problem for:

(i) the circlecT (t),
(ii) the family of parabolasgT,γ = T γ (1− (t/T )2).

We also discuss briefly general shape functions of the formgT (t) = T g(t/T ).
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FIG. 1. Brownian bridgeb+(t) conditioned to lie above the semicirclecT (t).

Our problem arose rather indirectly in an attempt to understand a one-layer
approximation to the multilayer polynuclear growth model; see [6]. There one
hasN + 1 independent copies of the Brownian bridge, denoted here asbj (t),
|t | ≤ T , j = 0,−1, . . . ,−N , such thatbj (±T ) = j , and conditions them on
nonintersection, with the subsequent limitN → ∞. Of interest is the top lineb0(t),
|t | ≤ T . Because of conditioning, typicallyb0(t) has a shape of a semicircle.
Therefore the crude approximation consists in replacing all lower-lying Brownian
motions, that is,bj (t) with j = −1,−2, . . . , by the semicirclecT . As we
will prove, this approximation preserves the scaling behavior, in the sense that
transverse fluctuations are of orderT 1/3 and longitudinal correlations decay over a
time span of orderT 2/3. However, finer details are not accounted for. For example,
in our problemXT (t), on the scaleT 2/3, is exponentially mixing, whereas the
covariance of top lineb0(t) on the same scale has only power law decay [2, 10].

To state our main result we define thestationarydiffusion processA(t) through
the stochastic differential equation

dA(t) = a(A(t)) dt + dbt(1.1)

with bt the standard Brownian motion and drift

a(x) = Ai ′(−ω1 + x)

Ai(−ω1 + x)
,(1.2)

where−ω1 is the first zero of the Airy function Ai [1]. The relevant asymptotic is
a(x) = x−1 for x → 0+ anda(x) = −√

x for x → ∞. Thus (1.1) admits a unique
stationary measure which is given by

d

dx
P

(
A(t) ≤ x

) = Ai(−ω1 + x)2

Ai ′(−ω1)2 1[x>0].(1.3)

A(t) has continuous sample paths and the smallx behavior of the drift implies that
P(A(t) > 0 for all t) = 1.
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THEOREM 1.1. Let b+(t) be the Brownian bridgeb(t) conditioned on the
set{b(t) ≥ cT (t) for all t ∈ [−T ,T ]} and letXT (t) = b+(t) − cT (t), |t | ≤ T . The
rescaled process close to the reference pointτT is defined through

t �→ AT (t) = vsXT (τT + h−1
s t),(1.4)

with vs = 21/3(1− τ2)−1/2T 1/3, hs = v2
s . Then

lim
T →∞AT = A,(1.5)

in the sense of weak convergence of path measures onC([−N,N]), for anyN > 0.

For the polynuclear growth model, the same rescaling leads to the Airy process,
which has at−2 decay of correlations as is known from the rather intricate
explicit solution given in [2, 10]. This behavior should be seen in contrast to the
exponential mixing of the diffusion processA(t).

To prove Theorem 1.1, we rely on the fact that some reasonably explicit
expressions are available in case the semicircle is replaced by a parabola of the
form

gT,γ (t) = T γ (
1− (t/T )2).(1.6)

THEOREM 1.2. Let b+,γ (t) be the Brownian bridgeb(t) conditioned on the
set{b(t) ≥ gT,γ (t) for all t ∈ [−T ,T ]} and letXT,γ (t) = b+,γ (t) − gT,γ (t). The
rescaled process is defined through

t �→ AT ,γ (t) = vsXT,γ (τT + h−1
s t),(1.7)

with vs = T (γ−2)/341/3, hs = v2
s . Then, for γ > 1/2,

lim
T →∞AT ,γ = A,(1.8)

in the sense of weak convergence of path measures onC([−N,N]), for anyN > 0.

The limit (1.7) has the, at first sight surprising, feature that the limit processA(t)

does not depend on the scaling exponentγ . For γ = 2, that is, the standard
parabolagT,2(t) = T 2 − t2, the fluctuations are of order 1, whereas forγ > 2
they actually decrease asT → ∞. The conditionγ > 1/2 reflects the fact that
asγ → 1/2 the time-scalingT −2(γ−2)/3 → T . In other words, forγ = 1/2 the
interior is correlated with the end-points and no stationary distribution is reached
locally. Forγ < 1/2, gT,γ (t) can be replaced by the function zero and the limit
process is the Brownian excursion.

We outline the strategy to prove Theorem 1.1. Note thatXT (t) is Markov, in
the sense that upon conditioning onXT (t0) the future and the past path measures
are independent. Let us fix then the time window[−N,N] for the rescaled
processAT (t).
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(i) The first step is to show that the entrance/exit law, that is, the joint distribution
of (AT (−N),AT (N)) is close to the corresponding entrance/exit law of the limit
diffusion processA. To achieve such a result the true shape functioncT (t) is
piecewise approximated by parabolas. Parabolas are chosen because for them
reasonably explicit expressions for the transition probability are available.

(ii) For the interval [−N,N] we use the limit entrance/exit law and use a
suitably chosen parabola as conditioning shape, such that the resulting process
is identical toA(t), |t | ≤ N . Thus the claim of Theorem 1.1 follows from the fact
that inside[−N,N] the circle and the parabola differ at most byO(T −1/4).

Following this strategy, in Section 2 we consider the parabolic constraint and
prove Theorem 1.2. In Section 3 we establish a result needed to control the
joint entrance/exit law for the time window under consideration. With this input
we prove Theorem 1.1 in Section 4. In Section 5 we discuss other shapes. The
Appendix contains estimates on the transition probability for the conditioning
parabolic constraint and some monotonicity results required in Section 4.

2. Parabolic constraint. We plan to prove Theorem 1.2 and first state a
result on the transition density for Brownian motion conditioned to remain below
a parabola−1

2gT,2(t + T ). This result was first obtained by Groeneboom; see
(2.23) and (2.24) in [5]. In a different way it was derived by Salminen; see
Proposition (3.9) of [8]. We were led to the explicit formula in Lemma 2.1
below from Frachebourg and Martin, page 330 of [4], where the references
to [5, 8] are given. Since the result holds for an arbitrary diffusion coefficient, by
Brownian motion scaling we can easily deduce the transition density for Brownian
motion conditioned to remain abovegT,γ (t). The result is reported in Lemma 2.1
below. The vertical and horizontal scaling depends only on theg′′

T ,γ (t); therefore
we define

κ = −d2gT,γ (t)

dt2 = 2T γ−2.(2.1)

Let W(x2, t2|x1, t1) be the transition probability density for Brownian mo-
tion bx1,t1(t) conditioned to start att1 from gT,γ (t1) + x1 and ending att2 in
gT,γ (t2) + x2,

W(x2, t2|x1, t1) = d

dx2
P

(
Y(t2) ≤ x2|Y(t) ≥ 0, t ∈ [t1, t2])(2.2)

whereY(t) = bx1,t1(t) − gT,γ (t).

LEMMA 2.1. Let us define the vertical and horizontal scaling as

vs = (2κ)1/3, hs = (2κ)2/3.(2.3)

Then

W(x2, t2|x1, t1) = Ŵ (x2, t2|x1, t1)exp
(
F(x2, t2|x1, t1)

)
(2.4)
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with

Ŵ (x2, t2|x1, t1) = ∑
k≥1

vse
−ωk(t2−t1)hs/2Ai(vsx1 − ωk)

Ai ′(−ωk)

Ai(vsx2 − ωk)

Ai ′(−ωk)
(2.5)

and

F(x2, t2|x1, t1) = x1g
′
T ,γ (t1) − x2g

′
T ,γ (t2)

(2.6)

− 1

6κ1/3 [g′
T ,γ (t1)

3 − g′
T ,γ (t2)

3].

Here−ω1,−ω2, . . . are the zeros of the Airy function, 0< ω1 < ω2 < · · · .

Let XT,γ (t) be the process of Theorem 1.2. Furthermore letL be the backward
generator of the diffusion processA(t),

(Lϕ)(x) = 1

2

d2ϕ(x)

dx2 + a(x)
dϕ(x)

dx
(2.7)

as acting on smooth functionsϕ. A(t) has the invariant measure�(x)2 with

�(x) = Ai(−ω1 + x)

Ai ′(−ω1)
, x ≥ 0,

∫
R+

�(x)2 dx = 1.(2.8)

Through the ground-state transformationHf = −�(L�−1ϕ) (see, e.g., Chap-
ter V.16 of [9]), one obtains

(Hϕ)(x) = −1

2

d2ϕ(x)

dx2 + x

2
ϕ(x) − Eϕ(x), x ≥ 0.(2.9)

H is understood with Dirichlet boundary condition atx = 0 andE = 1
2ω1 implies

H� = 0. Denote byG(x,y; t) the integral kernel ofGt = e−tH , that is,

(e−tHϕ)(x) =
∫

R+
G(x,y; t)ϕ(y) dy.(2.10)

We remark thatH has purely discrete spectrum. Its eigenvalues and eigenfunc-
tions are given by

Ek = 1
2ωk+1, �k(x) = Ai(−ωk+1 + x)

Ai ′(−ωk+1)
, x ≥ 0, k = 0,1, . . . .(2.11)

Note that we use the notation� ≡ �0, since�0 reappears frequently throughout
the paper.

Before proving Theorem 1.2 we explain howA is related to a conditioned
Brownian motion.
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PROPOSITION 2.2. Let Z(t), |t | ≤ N , be Brownian motion conditioned to
stay aboves(t) = 1

4(N2 − t2) and such that the joint probability density of
(Z(−N),Z(N)) is given by

ρZ(ξ1,−N; ξ2,N) = �(ξ2)G(ξ2, ξ1;2N)�(ξ1).(2.12)

ThenZ
D= A + s onC([−N,N]).

PROOF. DenoteW(t) = Z(t) − s(t); then the transition density ofW(t) is

p(y, t |x,u) =
[∫

R
2+

dξ1 dξ2 ρZ(ξ1,−N; ξ2,N)

× G(ξ2, y;N − t)G(y, x; t − u)

× G(x, ξ1;u + N)G(ξ2, ξ1;2N)−1
]

(2.13)

×
[∫

R
2+

dξ1 dξ2 ρZ(ξ1,−N; ξ2,N)

× G(ξ2, x;N − u)G(x, ξ1;u + N)G(ξ2, ξ1;2N)−1
]−1

for x, y > 0 and −N < u < t < N . But sinceρZ(ξ1,−N; ξ2,N) = �(ξ2) ×
G(ξ2, ξ1;2N)�(ξ1), it follows that

p(y, t |x,u) = (GN−t�)(y)G(y, x; t − u)/(GN−u�)(x).(2.14)

Notice that h(x) = (GN−t�)(x) = �(x). Hence the process with transition
probability density (2.14) is the Doobh-transform; see Section IV.39 of [7]. Thus
it follows that the processW(t) satisfies the SDE

dW(t) = ã(W(t)) dt + dbt(2.15)

with the drift ã(x) = ∂ lnh(x)/∂x being equal to (1.2) andbt standard Brownian
motion. ThereforeW(t) andA(t) satisfy the same SDE and, since they have the

same distribution att = −N , W(t)
D= A(t). �

We now prove Theorem 1.2 for the case of the parabolic constraintgT,γ . The
strategy consists in first controlling the joint density of(AT ,γ (−N),AT ,γ (N)),
and then using the Markov property of Brownian motion together with Proposi-
tion 2.2 to determine the limit process ofAT ,γ . This strategy will be also the basis
of the proof of Theorem 1.1.

PROOF OF THEOREM 1.2. Consider the rescaled processAT ,γ = vs ×
XT,γ (τT + h−1

s t), |t | ≤ N , with vs = T (γ−2)/341/3 andhs = v2
s . The joint density
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of (AT ,γ (−N),AT ,γ (N)) is given by

ρT (ξ1,−N; ξ2,N) = lim
ε→0

G
(
ε, ξ2;T (1− τ)hs − N

)
G(ξ2, ξ1;2N)

(2.16)
× G

(
ξ1, ε;T (1+ τ)hs − N

)
/G(ε, ε;2T hs).

Sinceγ > 1/2, T hs ∼ T (2γ−1)/3 → ∞ whenT → ∞. Using the estimate from
Lemma A.1, we have, for some constanta > 0,

G(ε, ε;2T hs) = ε2(1+ O(e−aT hs )
)

(2.17)

and

G
(
ε, ξ2;T (1− τ)hs − N

)
(2.18)

= ε
[
�(ξ2) + O

(
min

{
ξ2e

−aT hs , e−aξ2(T hs)
1/3})]

.

Therefore

lim
T →∞ρT (ξ1,−N; ξ2,N) = �(ξ2)G(ξ2, ξ1;2N)�(ξ1)

(2.19)
≡ ρA(ξ1,−N; ξ2,N).

For any bounded, continuous functionf onC([−N,N]),

EAT ,γ
(f ) =

∫
R

2+
dξ1 dξ2 ρT (ξ1,−N; ξ2,N)

× EAT ,γ

(
f |AT ,γ (−N) = ξ1,AT ,γ (N) = ξ2

)
=

∫
R

2+
dξ1 dξ2 ρA(ξ1,−N; ξ2,N)(2.20)

× EAT ,γ

(
f |AT ,γ (−N) = ξ1,AT ,γ (N) = ξ2

)
+ R1(T ,N,f ),

with R1(T ,N,f ) bounded by

|R1(T ,N,f )| ≤ ‖f ‖∞
∫

R
2+

dξ1 dξ2

(2.21)
× |ρT (ξ1,−N; ξ2,N) − ρA(ξ1,−N; ξ2,N)|,

which converges to zero asT → ∞, becauseρT converges pointwise toρA

andρT , ρA are densities with total mass 1 (Scheffé’s theorem; see, e.g., Appendix
of [3]). Finally, Proposition 2.2 implies that the nonvanishing term in (2.20)
is EA(f ). �
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3. Joint entrance and exit law. In a piecewise parabolic approximation of
the semicircle, or more generally of aconcavefunction, there are points with
discontinuities in the slope. In order to control the subleading terms we take a
continuous, piecewise parabolic shape such that thederivative has negative jumps
at its discontinuity points. We call these pointsridges.

More precisely, let us consider a Brownian bridgebs(t) conditioned to remain
above a continuous, concave, piecewise parabolic functions(t), starting from
s(tin) + xin at timetin and ending ats(tfin) + xfin at timetfin, tin < tfin, where

s(t) = aj + bj t − 1
2cj t

2 for t ∈ [uj−1, uj ](3.1)

with cj > 0, u0 = tin anduM−1 = tfin. We want to study the process close tot = t̃ ,
with t̃ very far away from the contact timesuj , sayuK−1 � t̃ � uK . Define

vs = (−2s′′(t̃ )
)1/3

, hs = v2
s ,(3.2)

the timestj = uj for j = 0, . . . ,K − 1, tj = uj−1 for j = K + 1, . . . ,M , and

tK ≡ t− = t̃ − Nh−1
s , tK+1 ≡ t+ = t̃ + Nh−1

s .(3.3)

Denote

ν(tj ) = s′(t−j ) − s′(t+j ) ≥ 0,(3.4)

in particular,ν(tK) = ν(tK+1) = 0, and

vj = (−2s′′((tj + tj−1)/2
))1/3

, hj = v2
j , �j = 1

2hj (tj − tj−1).(3.5)

Finally, let �̄ = minj =K+1 �j , assume that�̄ → ∞ as T → ∞, and that

v1xin ≤ �
1/3
1 , vMxfin ≤ �

1/3
M .

LEMMA 3.1. Fix N > 0 and denotet �→ XT (t) = bs(t) − s(t). Then the joint
density of(XT (t−),XT (t+)) with t− = tK −Nh−1

s andt+ = tK +Nh−1
s is given by

ρT (x, t−;y, t+) = d

dx

d

dy
P

(
XT (t−) ≤ x,XT (t+) ≤ y

)
= v2

s �(vsx)G(vsx, vsy;2N)�(vsy)
(
1+ O

(
e−2a�̄1/3))

(3.6)

+ ET (x, t−;y, t+),

for some constanta > 0 and where the error termET converges pointwise to0
and its total mass is bounded by∫

R
2+

dx dy|ET (x, t−;y, t+)| = O
(
e−a�̄1/3)

.(3.7)
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PROOF. Let us denote byzi the position of the Brownian bridge aboves(ti)
for i = 0, . . . ,M . Then the density (3.6) is given by

ρT (x, t−;y, t+) =
∫
R

M−3+
∏

i∈J dzi

∏M
j=1 W(zj , tj |zj−1, tj−1)∫

R
M−1+

∏M−1
i=1 dzi

∏M
j=1 W(zj , tj |zj−1, tj−1)

(3.8)

with J = {1, . . . ,K − 1,K + 2, . . . ,M − 1}. Explicitly

W(zj , tj |zj−1, tj−1) = Ŵ (zj , tj |zj−1, tj−1)
(3.9)

× exp[zj−1s
′(t+j−1) − zj s

′(t−j )]q(tj , tj−1)

with q a function independent ofzj , zj−1. When (3.9) is substituted in (3.8), the
product of theq ’s simplifies. Moreover, eacĥW contains a prefactorvj e

−ω1�j ;
see (A.5). ThusW(zj , tj |zj−1, tj−1) in (3.8) can be replaced by

v−1
j eω1�j Ŵ (zj , tj |zj−1, tj−1)exp[zj−1s

′(t+j−1) − zj s
′(t−j )](3.10)

and in additions′(t+0 ) ands′(t−M+1) can be replaced by zero.
Let us first analyze the denominator of (3.8). It can be written

∫
R

M−1+

M−1∏
i=1

(
dzi e

−ziν(ti )
) M∏
j=1

(
�(vjzj )�(vj zj−1)+R�j

(vj zj , vj zj−1)
)
,(3.11)

whereR�j
is the one in Lemma A.1. Denote

Q = �(v1z0)�(vMzM)
∏
i∈J

∫
R+

dzi e
−ziν(ti )�(vizi)�(vi+1zi);(3.12)

then the expansion of (3.11) has the leading term

Q

K+1∏
i=K

∫
R+

dzi �(vszi)�(vszi) = Qv−2
s(3.13)

plus 2M − 1 terms containing one or more factors ofR’s. The conditions
v1xin ≤ �

1/3
1 andvMxfin ≤ �

1/3
M imply the bounds

∣∣R0
�1

(v1xin)
∣∣ ≤ �(v1xin)O

(
e−a�

2/3
1 /2),

(3.14) ∣∣R0
�M

(vMxfin)
∣∣ ≤ �(vMxfin)O

(
e−a�

2/3
M /2).

Using Lemma A.2, we can replace eachR0
� by � in the integration variables

up to a multiplicative factorO(e−a�1/3
). Summing up all these contributions, the

denominator is given by

denominator of(3.8) = αQv−2
s

(
1+ O

(
e−2a�̄1/3))

(3.15)
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whereα = 0 is a constant coming from the replacements described before (3.11).
The numerator is obtained similarly, but the variablesx andy are not integrated

out, with the result

numerator of(3.8) = αQ�(vsy)G(vsy, vsx;2N)�(vsx) + E1(x, y)(3.16)

where the first is the term with no factor ofR andE1(x, y) is the error term, which
is bounded by

|E1(x, y)| ≤ αQG(vsy, vsx;2N)

× [�(vsx)R0
�̄
(vsy) + �(vsy)R0

�̄
(vsx) + R0

�̄
(vsx)R0

�̄
(vsy)](3.17)

× (
1+ O

(
e−2a�̄1/3))

with R0
�̄

given in (A.6). From (3.15) and (3.16) it follows that

ρT (x, t−;y, t+) = v2
s �(vsy)G(vsy, vsx;2N)�(vsx)

(
1+ O

(
e−2a�̄1/3))

(3.18)
+ E2(x, y)

with E2(x, y) = E1(x, y)/Qv−2
s (1+ O(e−2a�̄1/3

)).

The expression ofR0
�̄

implies thatR0
�̄
(y) ≤ e−a�̄1/3

, converges pointwise to 0,
and decays exponentially iny for large y. On the other hand,G(y,x;2N) is
uniformly bounded inx andy for anyN > 0. Therefore∫

R
2+

dx dy |E2(x, y)| ≤ O
(
e−a�̄1/3)

.(3.19) �

4. Proof of Theorem 1.1. In order to prove the theorem we first control
the entrance/exit law for the interval[τT − Nh−1

s , τT + Nh−1
s ], for which we

use Lemma 3.1. Therefore one has to find a lower and an upper approximation
satisfying its hypotheses.

4.1. Upper and lower approximating shapes fort = −τT . The piecewise
parabolic approximationss± are constructed with the parabolas

fi(t) = ai + bit − 1
2cit

2 for t ∈ [ui−1, ui](4.1)

for −T = u0 < u1 < · · · < un−1 < un = 0, where the choice of theuj ’s is
discussed below. We sets±(t) = s±(−t) for t ∈ [0, T ] (although this is not
required for the result). Since we want to apply Proposition 2.2, we also determine
vj = (2cj )

1/3 and �j = 1
2(uj − uj−1)hj with hj = v2

j . In caseτ = 0, we set
bj = 0.
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4.1.1. Upper approximation, τ = 0. This is the easiest case and one needs
only a single parabola, that is,n = 1,

f1(t) = T − 1
2T −1t2.(4.2)

s+(t) = f1(t) ≥ cT (t) for all t . Sinceu0 = −T , u1 = 0,

v1 = 21/3T −1/3, �1 = 2−1/3T 1/3.(4.3)

4.1.2. Lower approximation, τ = 0. In this case one needsn = 2. We
define u1 = −T 3/4. The parabola from(−T ,0) to (u1, cT (u1)) is given by
(4.1) with a1 = T (1 − T −1/2)−1/2 and c1 = 2T −1 + O(T −3/2). The parabola
from (u1, cT (u1)) to (0, T ) has a2 = T and c2 = T −1 + O(T −3/2). Then for
t ∈ [−T ,T ], s−(t) ≤ cT (t), with

v1 = 22/3T −1/3 + O(T −5/6), �1 = 21/3T 1/3 + O(T 1/12)(4.4)

and

v2 = 21/3T −1/3 + O(T −5/6), �2 = 2−1/3T 1/12 + O(T −5/12).(4.5)

s−(t) has a ridge at±u1.

4.1.3. Upper approximation, τ < 0. In this case the construction requires
n = 3. For convenience we defineλτ = 1 − τ2 andβ = −τ > 0. Let u1 = −τT

and let the parabolaf1(t) be defined by

f1(t) = f2(t) = cT (τT ) + c′
T (τT )(t − τT )

(4.6)
+ 1

2c′′
T (τT )(1− T −1/4)(t − τT )2.

We defineu∗ to be the first intersection time afteru1 of f2(t) with cT (t).
We estimateu∗ = −βT + λτβ

−1T 3/4 + O(T 1/2). Let

f ∗(t) = a∗ − 1
2c∗t2(4.7)

be the parabola which passes through(u1, cT (t1)) and (u∗, cT (u∗)). Some
computations lead toc∗ = λ

−1/2
τ T −1 + O(T −5/4). Since f ∗(t) ≤ cT (t) for

t ∈ [u1, u
∗] andf2(t) ≥ cT (t) for t ∈ [u1, u

∗], there is a timeu2 ∈ (u1, u
∗) such

thatf ′
2(u2) = f ∗′(u2). We obtainu2 = −βT + 1

2λτβ
−1T 3/4 + O(T 1/2). Finally

one has to define the third piece of parabola. Sincef ∗(t) ≥ cT (t) for t ≥ u∗, and
f2(t) ≥ cT (t) for t ∈ [u1, u

∗], we definef3(t) by

f3(t) = f ∗(t) + (
f2(u2) − f ∗(u2)

)
.(4.8)
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This construction satisfiess+(t) ≥ cT (t) for t ∈ [−T ,T ], has a ridge att = 0, and
the second derivative is discontinuous att = ±u2. Moreover one has

v1 = 21/3λ−1/2
τ T −1/3 + O(T −7/12),

�1 = 2−1/3(1− |τ |)−1T 1/3 + O(T 1/12),

v2 = v1,
(4.9)

�2 = 2−4/3|τ |−1T 1/12 + O(T −1/6),

v3 = 21/3λ−1/6
τ T −1/3 + O(T −7/12),

�3 = 2−1/3|τ |λ−1/3
τ T 1/3 + O(T 1/12).

4.1.4. Lower approximation, τ < 0. In this case the construction requires
n = 4. Also here letβ = −τ and λτ = 1 − τ2. We defineu2 = −τT and the
parabolaf2(t) by

f2(t) = f3(t) = cT (τT ) + c′
T (τT )(t − τT )

(4.10)
+ 1

2c′′
T (τT )(1+ T −1/4)(t − τT )2.

f2(t) has an intersection withcT (t) for some timet < u2, which we define
to be u1, and remains belowcT (t) for t ∈ [u2,0]. Some computations lead to
u1 = −βT − λτβ

−1T 3/4 + O(T 1/2). Moreover let

f1(t) = a1 − 1
2c1t

2(4.11)

be the parabola passing through(−T ,0) and(u1, cT (u1)). It hasc1 = 2λ
−1/2
τ ×

T −1 + O(T −5/4). Finally we defineu3 = −βT (1− T −1/4) and

f4(t) = a4 − 1
2c4t

2(4.12)

such thatf4(u3) = f3(u3) and f ′
4(u3) = f ′

3(u3). We obtainc4 = λ
−1/2
τ T −1 +

O(T −5/4).
This construction satisfiess−(t) ≤ cT (t) for t ∈ [−T ,T ], has a ridge att = 0

and att = ±u1, and the second derivative is discontinuous att = ±u3. Moreover
one has

v1 = 21/3λ−1/6
τ T −1/3 + O(T −7/12),

�1 = 2−1/3(1− |τ |)λ−1/2
τ T 1/3 + O(T 1/12),

v2 = 21/3λ−1/2
τ T −1/3 + O(T −7/12),

�2 = 2−1/3|τ |−1T 1/12 + O(T −1/6),

v3 = v2,

�3 = 2−1/3|τ |λ−1
τ T 1/12 + O(T −1/6),(4.13)
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v4 = 21/3λ−1/6
τ T −1/3 + O(T −7/12),

�4 = 2−1/3|τ |λ−1/3
τ T 1/3 + O(T 1/12).

4.2. Joint densities. We compute now the joint entrance/exit law for the
process of Theorem 1.1.

Let b±(t) be the Brownian bridge from(s±(−T ),−T ) to (s±(T ), T ) condi-
tioned to stay aboves±. The processes we actually want to study are

AT ,±(t) = vc[b±(τT + h−1
c t) − cT (τT + h−1

c t)](4.14)

and Proposition 2.2 is concerned with the processes

YT,±(t) = vs±
[
b±

(
τT + h−1

s± t
) − s±

(
τT + h−1

s± t
)]

.(4.15)

Let us denoteλT,± = vs±/vc, and

gT,±(t) = vc[s±(τT + h−1
c t) − cT (τT + h−1

c t)].(4.16)

Then

AT ,±(t) = λ−1
T ,±YT,±(λ2

T ,±t) + gT,±(t).(4.17)

We computeλT,± and boundgT,±(t) for t ∈ [−N,N] with the result:

(a) Caseτ = 0,

λT,+ = 1, gT ,+(t) = O(N4T −2/3),

λT,− = 1+ O(T −1/2), gT ,−(t) = O(N2T −1/2).
(4.18)

(b) Caseτ < 0,

λT,± = 1+ O(T −1/4), gT ,±(t) = O(N2T −1/4).(4.19)

LEMMA 4.1. Let ρT,cT
(ξ1,−N; ξ2,N) be the joint probability density of

(AT (−N),AT (N)), whereAT is defined in(1.4).Then

lim
T →∞ρT,cT

(ξ1,−N; ξ2,N) = ρA(ξ1,−N; ξ2,N)(4.20)

with

ρA(ξ1,−N; ξ2,N) ≡ �(ξ2)G(ξ2, ξ1;2N)�(ξ1).(4.21)

PROOF. Let ρT,±(ξ1,−N; ξ2,N) be the joint probability density of
(AT ,±(−N),AT ,±(N)). Then, sinceλT,± → 1 andgT,±(t) → 0 asT → ∞,

lim
T →∞ρT,±(ξ1,−N; ξ2,N) = ρA(ξ1,−N; ξ2,N)

(4.22)
≡ �(ξ2)G(ξ2, ξ1;2N)�(ξ1).
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Denote FT,∗(ξ1,−N; ξ2,N) = ∫
xi≤ξi

dx1 dx2 ρT,∗(x1,−N;x2,N), where
∗ = {+,−, cT }. From the monotonicity properties of Propositions A.5 and A.6
it follows that

FT,+(ξ1,−N; ξ2,N) ≤ FT,cT
(ξ1,−N; ξ2,N) ≤ FT,−(ξ1,−N; ξ2,N).(4.23)

Taking the limitT → ∞ in (4.23) and using (4.22) we obtain

lim
T →∞FT,cT

(ξ1,−N; ξ2,N) = FA(ξ1,−N; ξ2,N)

(4.24)
≡

∫
xi≤ξi

dx1 dx2 ρA(ξ1,−N; ξ2,N),

thus also

lim
T →∞ρT,cT

(ξ1,−N; ξ2,N) = ρA(ξ1,−N; ξ2,N).(4.25) �

Finally we are in position to prove our main theorem on the circular constraint.

PROOF OFTHEOREM 1.1. The process we have to analyze is

AT (t) = vsXT (τT + h−1
s t)(4.26)

where XT (t) is defined in Theorem 1.1. We have to prove thatAT
D−→ A

onC([−N,N]) in the limit T → ∞, which is done through

AT + c̃T
D−→ A + s(4.27)

wheres is a fixed parabola and̃cT is a (nonrandom) function satisfying

lim
T →∞ sup

t∈[−N,N]
|c̃T (t) − s(t)| = 0.(4.28)

Then (4.27) implies

AT + c̃T − s
D−→ A,(4.29)

since the mappingx �→ x − s is continuous. Finally (4.28) combined with (4.29)

implies thatAT
D−→ A asT → ∞.

Now, let us prove (4.27). DefineLT (t) = αT (t − τT ) + βT to be the line
intersecting the circlecT at timest = τT ± h−1

s N . Moreover, let

c̃T (t) = vs

(
cT (τT + h−1

s t) − LT (τT + h−1
s t)

)
(4.30)

and

s(t) = 1
4(N2 − t2).(4.31)

A simple calculation shows thatc̃T (t) = s(t) + O(N3T −1/3), t ∈ [−N,N].
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We now consider the processYT = AT + c̃T . Let f be a bounded, continuous
function onC([−N,N]). Using the Markov property,

EYT
(f ) =

∫
R

2+
dξ1 dξ2 ρT,cT

(ξ1,−N; ξ2,N)

× EYT

(
f |YT (−N) = ξ1, YT (N) = ξ2

)
=

∫
R

2+
dξ1 dξ2 ρA(ξ1,−N; ξ2,N)(4.32)

× EYT

(
f |YT (−N) = ξ1, YT (N) = ξ2

)
+ R1(T ,N,f ),

where the remainder termR1(T ,N,f ) can be bounded by

|R1(T ,N,f )| ≤ ‖f ‖∞
∫

R
2+

dξ1 dξ2

(4.33)
× ∣∣ρT,cT

(ξ1,−N; ξ2,N) − ρA(ξ1,−N; ξ2,N)
∣∣

which converges to zero asT → ∞, becauseρT,cT
converges by Lemma 4.1

pointwise toρA, andρT,cT
, ρA are densities with total mass 1 (Scheffé’s theorem;

see, e.g., Appendix of [3]).
Let Z(t) be the process defined in Proposition 2.2 with joint density of

(Z(−N),Z(N)) given by ρZ(ξ1,−N; ξ2,N) = ρA(ξ1,−N; ξ2,N). For any
realizationω of Z, defineχc̃T

(ω) = 1 if ω(t) ≥ c̃T (t) for all t ∈ [−N,N] and
χc̃T

(ω) = 0 otherwise. Then the leading term of (4.32) is

EZ

(
f χc̃T

)
/EZ

(
χc̃T

)
,(4.34)

and we have to show that it converges toEZ(f χs)/EZ(χs) asT → ∞. Notice that
the reference measure does not depend onT ; the onlyT -dependent quantity is̃cT .
It is easy to see that

EZ(f χs)

EZ(χs)
= EZ(f χc̃T

)

EZ(χc̃T
)

+ R2(s, c̃T , f )(4.35)

with

R2(s, c̃T , f ) = EZ(f χs(1− χc̃T
))

EZ(χs)
− EZ(f (1− χs)χc̃T

)

EZ(χs)
(4.36)

+ EZ(f χc̃T
)

EZ(χc̃T
)

(
EZ(χc̃T

) − EZ(χs)

EZ(χs)

)
.

Equation (4.36) can be bounded as

|R2(s, c̃T , f )| ≤ 2‖f ‖∞
EZ(χs)

(
EZ

(
χc̃T

(1− χs)
) + EZ

(
χs

(
1− χc̃T

)))
(4.37)

= 2‖f ‖∞
EZ(χs)

PZ

({
χs = χc̃T

})
.
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Let BT = {ω|χs(ω) = χc̃T
(ω)}; then PZ({χs = χc̃T

}) = PZ(BT ). Let
εT = supt∈[−N,N] |c̃T (t) − s(t)| = O(T −1/3); then BT ⊂ DT = {ω|χs−εT

(ω) =
χs+εT

(ω)}. In the limit T → ∞, ω ∈ BT if ω touches without crossing the
parabola s. Such paths have probability zero, therefore limT →∞ EYT

(f ) =
EZ(f χs)/EZ(χs).

We have proved thatYT = AT + c̃T
D−→ Z as T → ∞. By Proposition 2.2

Z
D= A + s, thus (4.27) holds. As discussed above, from (4.27) and the fact that

c̃T → s asT → ∞, it follows thatAT
D−→ A. �

5. Extensions. While the original motivation for our study came from the
circular constraint, the proof presented extends to more general shape functions.
We refrain from stating precise theorems. Still it should be instructive to the reader
to see how the Brownian bridge responds to a general constraint.

Let us then substitute the circlecT by gT (t) = T g(t/T ), whereg : [−1,1] → R,
g(−1) = g(1) = 0,g continuous, andg ∈ C2([−1,1]) piecewise. As before we fix
the reference pointτT , τ ∈ (−1,1), and study the fluctuations away fromgT for
times close toτT . To first approximation the fluctuation behavior is determined by
the sign ofg′′(τ ). We list three “standard” cases,gc denoting the convex envelope
of g.

(i) g′′(τ ) < 0: assume that, for aδ > 0, g ∈ C2 andg = gc on [τ − δ, τ + δ].
If g′′(τ ) < 0, the fluctuations are as specified in Theorem 1.1, where now
vs = (−2g′′(τ ))1/3.

(ii) g′′(τ ) = 0: letg be linear in[t1, t2] and, for aδ > 0, letg = gc, g′′ < 0, and
g ∈ C2 on [t1 − δ, t1) ∪ (t2, t2 + δ]. Then the fluctuations attiT are of orderT µ,
µ < 1/2, and inside the interval[t1T , t2T ] of orderT 1/2. Thus the limit process
will be Brownian excursion over the interval[t1, t2].

(iii) g′′(τ ) > 0: let [t1, t2] be an interval such thatt1 < τ < t2, g(t) < gc(t)

for t ∈ (t1, t2) andg(ti) = gc(ti), i = 1,2. Moreover assume that for someδ > 0,
g = gc and isC2 on [t1 − δ, t1] ∪ [t2, t2 + δ]. Then in(t1, t2) the constraint has
no effect on the Brownian motion and the limit process will be a Brownian bridge
over the interval[t1, t2].

Clearly there are intermediate cases to be discussed. However, a really novel
phenomenon appears if in case (i) we lift the assumption thatg is continuously
differentiable atτ . We denote the right- (left-) hand limits byf (x+) = limt↓x f (x)

andf (x−) = limt↑x f (x).

(i.a) Ridge. Assume (i) except atτ . Instead letg′′(τ+) < 0, g′′(τ−) < 0, and
ν := g′(τ−) − g′(τ+) > 0. Then the fluctuations abovegT (τT ) are of order 1
and the probability density ofXT (τT ) equals 1

2ν3x2e−νx as T → ∞. As a
consequence, (ii) and (iii) hold also if there is a ridge att1 and/ort2.
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(i.b) Curvature discontinuity. Assume (i) except atτ . Instead letg′(τ−) =
g′(τ+) but g′′(τ+) = g′′(τ−) andg′′(τ±) < 0. In this case the fluctuations are of
orderT 1/3 and the limiting probability density ofXT (τT ) is, up to normalization,
�(vs(τ

−)xT −1/3)�(vs(τ
+)xT −1/3), with vs(τ

±) = (−2g′′(τ±))1/3 and �(x)

given in (2.8).

APPENDIX

A.1. Properties of the Airy function and its zeros. For the convenience of
the reader we list a few properties of the Airy function needed in the main text. We
follow the conventions in [1].

1. For largez,

Ai(z) � 1

2
√

π 4
√

z
e−2z3/2/3.(A.1)

2. Ai(z) ≤ 0.54 for all z and the maximum is reached atz = −µ � −1.02.
3. For largek, ωk � (3π

2 k)2/3 and for allk ≥ 2

ωk − ω1 ≥ k2/3.(A.2)

4. |Ai ′(−ωk)| ≥ Ai ′(−ω1) whereω1 � 2.34, Ai′(−ω1) � 0.70.
5. Forx ∈ [0,−ω1 + µ],

Ai(−ω1 + x) ≥ Ai(−ω1 + µ)

(−ω1 + µ)
x.(A.3)

6. For allx ∈ R+,

�(x) = Ai(−ω1 + x)/Ai ′(−ω1) ≤ 6e−x, �(x) ≤ x.(A.4)

A.2. Leading term of the transition density.

LEMMA A.1. Let� = 1
2(t2 − t1)hs andyi = vsxi , i = 1,2; then

Ŵ (x2, t2|x1, t1) = vse
−ω1�

[
Ai(−ω1 + y1)Ai(−ω1 + y2)

Ai ′(−ω1)2 +R�(y1, y2)

]
(A.5)

with

|R�(y1, y2)| ≤ R0
�(y1)R

0
�(y2),

(A.6)
R0

�(y) = min{y exp(−a�),exp(−ay�1/3)}
for a constanta > 0 and � large enough. Moreover, for any fixed� > 0,
Ŵ (x2, t2|x1, t1) is uniformly bounded inx1, x2.
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PROOF. Let

�k(y) = e−(ωk−ω1)�/2Ai(−ωk + y)

Ai ′(−ωk)
.(A.7)

ThenR�(y1, y2) is given by

R�(y1, y2) = ∑
k≥2

�k(y1)�k(y2)(A.8)

and

|R�(y1, y2)| ≤
∑
k≥2

|�k(y1)|
∑
l≥2

|�l(y2)|.(A.9)

For large k, ωk � (3
2πk)2/3, and for smallk the exact values ofωk are

known [1], from which we deduce thatωk − ω1 ≥ 1
2k2/3, for all k ≥ 2. Moreover

we have|1/Ai ′(ωk)| ≤ 1 and|Ai(−ωk + y)| ≤ |y||Ai ′(−ωk)|. Therefore it follows
that ∑

k≥2

|�k(y)| ≤ y
∑
k≥2

e−k2/3�/2 ≤ ye−�/2c1(�)(A.10)

with c1(�) = 3(
√

� + √
π/2)�−3/2.

This estimate is good except for very largey. For largey, the Airy function
becomes of order 1 forωk � y, that is, fork � 2

3π
y3/2. Let k0(y) = y3/2/10. Then

we distinguish between the cases fork ≤ k0 andk ≥ k0.

(a) 2 ≤ k ≤ k0(y). In this case Ai(−ωk + y) � exp(−2
3(−ωk + y)3/2) ≤

exp(−1
3y3/2) and, with the same estimate for the exponential term, we obtain

|�k(y)| ≤ exp
(−1

2k2/3�
)
exp

(−1
3y3/2).(A.11)

(b) k ≥ k0(y). For this case we useωk − ω1 ≥ 1
2k2/3 and |Ai(−ωk + y)| ≤ 1

and obtain

|�k(y)| ≤ exp
(−1

2k2/3�
)
.(A.12)

Therefore for largey we have

∑
k≥2

|�k(y)| =
k0(y)∑
k=2

|�k(y)| + ∑
k>k0(y)

|�k(y)|
(A.13)

≤ ∑
k≥2

e−k2/3�/2e−y3/2/3 + ∑
k≥k0(y)

exp
(−1

2k2/3�
)
.

The first term on the right-hand side of (A.13) is bounded byc1(�)exp(−�/2 −
y3/2/3), and the second one is bounded by∫ ∞

k0(y)
dk e−k2/3�/2 ≤ c2(�)e−�y/2(A.14)
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with c2(�) = 3(
√

π/2+ √
�y/2)�−3/2.

If we take � large, we can apply the approximation for largey to the
y ≥ �2/3 and usee−y3/2/3 ≤ e−y�1/3/3 to see that (A.6) holds. On the other hand,
from (A.10), (A.14) and the boundedness of the ground state, it follows that
Ŵ (x2, t2|x1, t1) is uniformly bounded inx1, x2 for any fixed� > 0. �

A.3. Estimate of the integral with error terms.

LEMMA A.2. Let us define

I (0,∞) =
∫ ∞

0
dx �(vjx)�(vj+1x)e−νx,

IE(0,∞) =
∫ ∞

0
dx �(vjx)R0

�j+1
(vj+1x)e−νx,(A.15)

IEE(0,∞) =
∫ ∞

0
dxR0

�j
(vjx)R0

�j+1
(vj+1x)e−νx.

Then, if ν ≥ 0,

IE(0,∞) ≤ I (0,∞)Ce
−a�

1/3
j+1,

(A.16)
IEE(0,∞) ≤ I (0,∞)Ce

−a(�
1/3
j +�

1/3
j+1)

for some constantC > 0, assuming�j ,�j+1 large enough.

PROOF. First we change variables asy = vjx. Setting λ = vj+1/vj and
ν̃ = ν/vj , then

Ĩ (0,∞) = I (0,∞)vj =
∫ ∞

0
dy �(y)�(λy)e−ν̃y,

ĨE(0,∞) = IE(0,∞)vj =
∫ ∞

0
dy �(y)R0

�j+1
(λy)e−ν̃y,(A.17)

ĨEE(0,∞) = IEE(0,∞)vj =
∫ ∞

0
dyR0

�j
(y)R0

�j+1
(λy)e−ν̃y .

To prove the lemma we have to find lower bounds forĨ (0,∞) and upper bounds
for ĨE(0,∞) and ĨEE(0,∞). We use essentially (A.6), (A.3) and (A.4). First let
us boundĨ (0,∞).

(a) λ ≤ 1. Letθ = Ai(−ω1 + µ)/[(−ω1 + µ)Ai ′(−ω1)]. Then

Ĩ (0,∞) ≥
∫ 1

0
dy θ2y2λe−ν̃y = λθ2κ(ν̃),(A.18)

whereκ(ν̃) = ∫ 1
0 dx x2e−ν̃x . It is easy to see thate−x ≤ 3κ(x).
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(b) λ ≥ 1. By the change of variablex = λy, and then using the previous bound
we obtain

Ĩ (0,∞) = 1

λ

∫ ∞
0

dx �(x)�(x/λ)e−ν̃x/λ ≥ 1

λ2θ2κ(ν̃/λ).(A.19)

Next we compute some upper bounds ofĨE(0,∞).

(a) λ ≤ 1.

ĨE(0,1) ≤
∫ 1

0
dy λy2e−a�j+1e−ν̃y = λe−a�j+1κ(ν̃)(A.20)

and

ĨE(1,∞) ≤
∫ ∞

1
dy λye−a�j+1e−ν̃y6e−y ≤ 6e−ν̃λe−a�j+1.(A.21)

(b) λ ≥ 1.

ĨE(0,1/λ) ≤
∫ 1/λ

0
dy λy2e−a�j+1e−ν̃y = e−a�j+1

λ2 κ(ν̃/λ)(A.22)

and

ĨE(1/λ,∞) ≤
∫ ∞

1/λ
dy ye

−aλy�
1/3
j+1e−ν̃y ≤ 4

λ2e
−a�

1/3
j+1e−ν̃/λ.(A.23)

Putting all together, we obtain

IE(0,∞)

I (0,∞)
= ĨE(0,∞)

Ĩ (0,∞)
≤ Ce

−a�
1/3
j+1(A.24)

for all λ with C = 19/θ2 (and�j+1 ≥ 1).

Finally we boundĨEE(0,∞).

(a) λ ≤ 1.

ĨEE(0,1) ≤
∫ 1

0
dy λy2e−a(�j+�j+1)e−ν̃y = λe−a(�j+�j+1)κ(ν̃)(A.25)

and

ĨEE(1,∞) ≤
∫ ∞

1
dy λye−a�j+1e

−ay�
1/3
j e−ν̃y ≤ 4e−ν̃λe−a�j+1e

−a�
1/3
j .(A.26)

(b) λ ≥ 1. By the change of variablex = λy we obtain immediately

ĨEE(0,1/λ) = 1
λ2e

−a(�j+�j+1)κ(ν̃/λ) andĨEE(1/λ,∞) ≤ 4
λ2e

−ν̃/λe−a�j e
−a�

1/3
j+1.

Putting all together, we see that for allλ

IEE(0,∞)

I (0,∞)
= ĨEE(0,∞)

Ĩ (0,∞)
≤ Ce

−a(�
1/3
j +�

1/3
j+1). �(A.27)
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A.4. Monotonicity on conditioning shapes. Let us consider a simple random
walk on Z conditioned to come back to the origin after 2N steps, denoted
by ξN = (ξN(i))2N

i=0. Let �t = 1
2N

, �x = √
�t , and defineBN(t) by setting

BN(k�t) = �xξN(k) for k = 0, . . . ,2N , and by linear interpolation for the other
values oft ∈ [0,1]. The set of possible pathsBN is called�N . We denote byµN

the uniform measure on the continuous pathsBN .
In the sequel we consider two conditioning shapess1, s2 such thats1(t) ≤ s2(t)

for t ∈ [0,1], s2(0) ≤ 0, s2(1) ≤ 0 and s2(t) < ∞, and we denote byµsi
N the

path measure conditioned to remain abovesi , that is,µsi
N(·) = µN(·|BN(t) ≥ si(t),

t ∈ [0,1]). LetS = C([0,1]) be the set of bounded continuous functions from[0,1]
to R with sup norm, and define the set of increasing function by

M = {f ∈ C(S)|f (b1) ≤ f (b2) wheneverb1(t) ≤ b2(t) ∀ t ∈ [0,1]}.(A.28)

PROPOSITIONA.3. If s1 ≤ s2, then for allf ∈ M,∑
b∈�N

µ
s1
N(b)f (b) ≤ ∑

b∈�N

µ
s2
N(b)f (b).(A.29)

PROOF. Equation (A.29) is equivalent to

0 ≤ ∑
(b1,b2)∈�2

N

µ
s2
N(b2)f (b2)µ

s1
N(b1) − ∑

(b1,b2)∈�2
N

µ
s2
N(b2)µ

s1
N(b1)f (b1)

(A.30)
= 1

2

∑
(b1,b2)∈�2

N

(
f (b2) − f (b1)

)(
µ

s2
N(b2)µ

s1
N(b1) − µ

s1
N(b2)µ

s2
N(b1)

)
.

Denote νN(b1, b2) = µ
s2
N(b2)µ

s1
N(b1) − µ

s1
N(b2)µ

s2
N(b1). In what follows the

notationb1 ≥ s1 means that there exists at such thatb1(t) < s1(t). Similarly,
b1 ≥ s1 means thatb1(t) ≥ s1(t) for all t . For the couple(b1, b2) there are different
possibilities:

(a) b1 ≥ s1 andb2 ≥ s1, thenνN(b1, b2) = 0.
(b) b1 ≥ s1 andb2 ≥ s2, thenνN(b1, b2) = 0.
(c) b1 ≥ s1, b2 ≥ s2, butb1 ≥ s2, then:

(c1) if b2 ≥ b1, then f (b2) − f (b1) ≥ 0 and νN(b1, b2) ≥ 0 since
µ

s2
N(b1) = 0,

(c2) otherwise,b1 andb2 intersect aboves2. In this case, let(b′
1, b

′
2) be the

couple of random walks defined as follows. Take at = t0 such that
b1(t0) < s2(t0) and setb′

1(t0) = b1(t0) andb′
2(t0) = b2(t0). Then for

all othert from t0 to 1,b′
1 andb′

2 are defined by exchanging the paths
of b1 andb2 when they merge and/or divide. Similarly fort from t0
back to 0. By the Markov property we haveνN(b1, b2) = νN(b′

1, b
′
2),

and the new paths satisfyb′
2 ≥ b1 andb2 ≥ b′

1, and moreover if we
apply twice the transformation we obtain the original paths. Thus,
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f (b2)+f (b′
2)−f (b1)−f (b′

1) ≥ 0, so that the contributions in (A.30)
coming from(b1, b2) and from(b′

1, b
′
2) are positive.

(d) b2 ≥ s1, b1 ≥ s2. By symmetry the same conclusion is obtained in case (c)
holds. �

PROPOSITIONA.4 (Invariance principle). Let W0 be the path measure of the
Brownian bridge from(0,0) to (1,0). Then, asN → ∞, µN ⇒ W0, that is,

lim
N→∞

∑
b∈�N

µN(b)f (b) =
∫
S
dW0(b)f (b)(A.31)

for all f ∈ C(S).

PROPOSITIONA.5. Let µsi (b) = W0(b|b ≥ si) be the path measure for the
Brownian bridge conditioned to stay abovesi , i = 1,2. We assume thatsi are
continuous, piecewiseC1, ands1 ≤ s2. Then, for all f ∈ M,∫

S
dµs1(b)f (b) ≤

∫
S
dµs2(b)f (b).(A.32)

PROOF. DefineK(si)(b) = mint∈[0,1] �(b(t) − si(t)) with � the Heaviside
function, and letDK(si) be the set of discontinuities ofK(si). We want to
show thatPW0(DK(si)) = 0. A path b /∈ DK(si) if ∀ ε > 0, ∃ δ > 0 such that
|K(si)(b) − K(si)(b

′)| ≤ ε, for all b′ satisfying ‖b′ − b‖∞ ≤ δ. Observe that
K(si)(b) ∈ {0,1}, thus a pathb /∈ DK(si) if mint∈[0,1](b(t) − si(t)) = 0. Therefore
b ∈ DK(si) if b touchessi but does not cross it. Now, consider a pathb with
touchessi and letτ(b) be the first time that happens. The shapesi is continuous
and piecewiseC1, therefore a.s. the pathb will cross si , thusPW0(DK(si)) = 0.
From this follows

lim
N→∞

∑
b∈�N

µN(b)f (b)K(si)(b) =
∫
S
dW0(b)f (b)K(si)(b),(A.33)

for all f ∈ C(S). Since

∑
b∈�N

µ
si
N(b)f (b) =

∑
b∈�N

µN(b)f (b)K(si)(b)∑
b∈�N

µN(b)K(si)(b)
,(A.34)

(A.33) implies

lim
N→∞

∑
b∈�N

µ
si
N(b)f (b) =

∫
S
dµsi (b)f (b).(A.35)

Finally, using Proposition A.3 we conclude that (A.32) holds.�
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PROPOSITION A.6. Let µ(z) be the path measure for the Brownian bridge
from (0, z) to (1,0) conditioned to stay above a continuous piecewiseC1 shapes.
If z ≥ 0, then ∫

S
dµ(0)(b)f (b) ≤

∫
S
dµ(z)(b)f (b)(A.36)

for all increasing functionsf ∈ M.

PROOF. We have to show that∫
S2

dµ(z)(b2) dµ(0)(b1)
(
f (b2) − f (b1)

) ≥ 0.(A.37)

For each couple(b1, b2) of Brownian bridges, letτ(b1, b2) = mint∈[0,1](b1(t) =
b2(t)). Define ϕ : (b1, b2) → (b′

1, b
′
2) where b′

i (t) = bi(t) for t ∈ [0, τ (b1, b2)]
and b′

i (t) = b3−i (t) for t ∈ [τ(b1, b2),1], i = 1,2. Obviously ϕ(ϕ(b1, b2)) =
(b1, b2) and by the Markov propertydµ(z)(b2) dµ(0)(b1) = dµ(z)(b′

2) dµ(0)(b′
1).

By constructionb′
2 ≥ b1, b2 ≥ b′

1, which implies∫
S2

dµ(z)(b2) dµ(0)(b1)
(
f (b2) − f (b1)

)
(A.38)

= 1
2

∫
S2

dµ(z)(b2) dµ(0)(b1)
(
f (b2) − f (b′

1) + f (b′
2) − f (b1)

) ≥ 0.

�

COROLLARY A.7. By linearity PropositionA.5 holds also if the initial and
final points have a given joint density independent of the path measure.

COROLLARY A.8. Letg1, g2 be two probability densities such that∫
x≤x1

g1(x) dx ≤
∫
x≤x1

g2(x) dx.(A.39)

Denote byµx the path measure of Brownian motionb(t) starting fromx. Then∫
dy h(y)

∫
dx g1(x)µx

(
f |b(1) = y

)
(A.40)

≤
∫

dy h(y)

∫
dx g2(x)µx

(
f |b(1) = y

)
for any increasing functionf ∈ M, whereh denotes the probability density ofb(1).

PROOF. By linearity we need to verify the assertion only for a fixed end-point.
Let Fi(x) = ∫

y≤x gi(y) dy, and letψi(y) = F−1
i (y) if gi(y) > 0 andψ(y) = 0 if
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gi(y) = 0. ψ1(x) ≤ ψ2(x) for all x. Therefore∫
dx g2(x)µx

(
f |b(1) = y

) =
∫ 1

0
dzµψ2(z)

(
f |b(1) = y

)

≤
∫ 1

0
dzµψ1(z)

(
f |b(1) = y

)
(A.41)

=
∫

dx g1(x)µx

(
f |b(1) = x

)
. �
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