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RENORMALIZED SELF-INTERSECTION LOCAL TIME FOR
FRACTIONAL BROWNIAN MOTION
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Let BH
t be a d-dimensional fractional Brownian motion with Hurst

parameterH ∈ (0,1). Assumed ≥ 2. We prove that the renormalized self-
intersection local time

� =
∫ T

0

∫ t

0
δ(BH

t − BH
s )ds dt − E

(∫ T

0

∫ t

0
δ(BH

t − BH
s )ds dt

)
exists inL2 if and only if H < 3/(2d), which generalizes the Varadhan
renormalization theorem to any dimension and with any Hurst parameter.
Motivated by a result of Yor, we show that in the case 3/4 > H ≥ 3

2d
,

r(ε)�ε converges in distribution to a normal lawN(0, T σ2), as ε tends
to zero, where�ε is an approximation of�, defined through (2), and
r(ε) = | logε|−1 if H = 3/(2d), andr(ε) = εd−3/(2H) if 3/(2d) < H .

1. Introduction. The fractional Brownian motion onRd with Hurst parame-
ter H ∈ (0,1) is a d-dimensional Gaussian processBH = {BH

t , t ≥ 0} with zero
mean and covariance function given by

E(B
H,i
t BH,j

s ) = δij

2
(t2H + s2H − |t − s|2H),

where i, j = 1, . . . , d, and s, t ≥ 0. We will assume thatd ≥ 2. The self-
intersection local time of BH is formally defined as

I =
∫ T

0

∫ t

0
δ0(B

H
t − BH

s ) ds dt,(1)

whereδ0(x) is the Dirac delta function. It measures the amount of time that the
process spends intersecting itself on the time interval[0, T ] and has been an
important topic of the theory of stochastic process. A rigorous definition of this
random variable may be obtained by approximating the Dirac function by the heat
kernel

pε(x) = (2πε)−d/2 exp{−|x|2/(2ε)},
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asε > 0 tends to zero. We denote the approximated self-intersection local time by

Iε =
∫ T

0

∫ t

0
pε(B

H
t − BH

s ) ds dt,(2)

and a natural question is to study the behavior ofIε asε tends to zero.
For H = 1/2, the processBH is a classical Brownian motion. The self-

intersection local time of the Brownian motion has been studied by many authors
[see Albeverio, Hu and Zhou (1997), Calais and Yor (1987), He, Yang, Yao
and Wang (1995), Hu (1996), Imkeller, Pérez-Abreu and Vives (1995), Varadhan
(1969), Yor (1985) and the references therein]. In the case of the planar Brownian
motion, Varadhan (1969) has proved thatIε does not converge inL2 but it can
be renormalized so thatIε − T

2π
log(1/ε) converges inL2 asε tends to zero. The

limit is called therenormalized self-intersection local time of the planar Brownian
motion. This result has been extended by Rosen (1987) to the (planar) fractional
Brownian motion, where it is proved that for 1/2 < H < 3/4,Iε −CHT ε−1+1/(2H)

converges inL2 asε tends to zero, whereCH is a constant depending only onH
[see also (4):CH = CH,2].

On the other hand, for classical Brownian motion and when the dimension
d ≥ 3, Yor (1985) and Calais and Yor (1987) have proved that the random variables{

(log(1/ε))−1/2(
Iε − E(Iε)

)
, if d = 3,

εd/2−3/2(
Iε − E(Iε)

)
, if d > 3,

converge in law to normal distribution (with a different approximation).
The first aim of this paper is to extend Rosen’s and Varadhan’s results to

arbitrary dimensions and with Hurst parameterH < 3/4. Along this line, we have
established the following result.

THEOREM 1. Let Iε be the random variable defined in (2). We have:

(i) If H < 1/d, then Iε converges in L2 as ε tends to zero.
(ii) If 1/d < H < 3/(2d), then

Iε − T CH,dε−d/2+1/(2H)(3)

converges in L2 as ε tends to zero, where

CH,d = (2π)−d/2
∫ ∞

0
(z2H + 1)−d/2 dz.(4)

(iii) If 1/d = H < 3/(2d), then

Iε − T

2H(2π)d/2 log(1/ε)(5)

converges in L2 as ε tends to zero.
(iv) If H ≥ 3/(2d), then the difference Iε − E(Iε) does not converge in L2.
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That means, ifH < 3/(2d), the differenceIε −E(Iε) converges inL2 asε tends
to zero to therenormalized self-intersection local time.

In the caseH ≥ 3/(2d) we have established the following version of the central
limit theorem.

THEOREM 2. Suppose 3/(2d) ≤ H < 3/4. Then the random variables{
(log(1/ε))−1/2(

Iε − E(Iε)
)
, if H = 3/(2d),

εd/2−3/(4H)
(
Iε − E(Iε)

)
, if H > 3/(2d),

(6)

converge as ε tends to zero in distribution to a normal law N(0, T σ 2), where σ 2

is a constant depending on d and H .

We conjecture that, as functions of the terminal timeT , these processes
converge in law to{σBT ,T ≥ 0}, whereBT is a Brownian motion. We plan to
discuss this problem in a forthcoming paper.

ForH ≥ 3/4 our method of proof of Theorem 2 does not work and the study of
the fluctuations ofIε − E(Iε) in this case is an open problem.

The proof of Theorem 1 is based on some estimates deduced by Hu in (2001)
from the local nondeterminism property of the fractional Brownian motion. The
proof of Theorem 2 is more involved, and the main ingredient is to show that
the projections on each Wiener chaos converge in law to independent Gaussian
random variables. The proof of these convergences is based on a recent general
criterion for the convergence in distribution to a normal law of a sequence of
multiple stochastic integrals established by Nualart and Peccati (2005) and by
Peccati and Tudor (2003), in the multidimensional case. We have extended their
results to a slightly more general setting applicable to the renormalization of self-
intersection local time of fractional Brownian motion and to this end we have
established a general central limit theorem which has its own interest.

In the case of the classical Brownian motion, the convergence in law of the
Wiener chaos projections of the random variables appearing in (6) has been proved
in de Faria, Drumond and Streit (2000) using a martingale approach which cannot
be extended to the caseH �= 1/2. The corresponding convergence in law to a
family of independent Brownian motions has been established in Rezgui and Streit
(2002).

The paper is organized as follows. In Section 2 we prove Theorem 1. Section 3
is devoted to a general central limit theorem using chaos expansions. Some
examples are given and will be used to deal with the self-intersection local time
of the fractional Brownian motion. Section 4 deduces the chaos expansion of the
approximated self-intersection local time, and in Section 5 we prove Theorem 2.
The proofs of the main results are based on a sequence of technical lemmas, stated
and proved in Section 6.
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2. Renormalized self-intersection local time, case dH < 3/2. Let BH =
{BH

t , t ≥ 0} be ad-dimensional fractional Brownian motion of Hurst parameter
H ∈ (0,1).

Consider the approximationIε of the self-intersection local time introduced
in (2). From the equality

pε(x) = (2π)−d
∫

Rd
exp{i〈ξ, x〉}exp

{
−ε|ξ |2

2

}
dξ

and the definition ofIε, we obtain

Iε = (2π)−d
∫ T

0

∫ t

0

∫
Rd

exp{i〈ξ,BH
t − BH

s 〉}exp
{
−ε|ξ |2

2

}
dξ ds dt.(7)

Therefore,

E(I2
ε ) = (2π)−2d

∫
T

∫
R2d

E
(
exp{iξ(BH

t − BH
s )}exp{iη(BH

t ′ − BH
s′ )})

(8)
× exp{−(ε|ξ |2 + ε|η|2)/2}dξ dη ds dt ds′ dt ′,

where

T = {(s, t, s′, t ′) : 0< s < t < T,0< s′ < t ′ < T }.(9)

Throughout this paper we will make use of the following notation, for any
τ = (s, t, s′, t ′):

λ(τ) = |t − s|2H , ρ(τ) = |t ′ − s′|2H(10)

and

µ(τ) = 1
2

[|s − t ′|2H + |s′ − t |2H − |t − t ′|2H − |s − s′|2H ]
.(11)

Notice thatλ is the variance ofBH,1
t − BH,1

s , ρ is the variance ofBH,1
t ′ − B

H,1
s′

andµ is the covariance betweenBH,1
t − BH,1

s andB
H,1
t ′ − B

H,1
s′ , whereBH,1 de-

notes a one-dimensional fractional Brownian motion with Hurst parameterH .
With this notation, for anyξ, η ∈ R

d , we can write

E[(〈ξ,BH
t − BH

s 〉 + 〈η,BH
t ′ − BH

s′ 〉)2] = λ|ξ |2 + ρ|η|2 + 2µ〈ξ, η〉.(12)

As a consequence, from (8) and (12) we deduce for allε > 0,

E(I2
ε ) = (2π)−2d

∫
T

∫
R2d

e−((λ+ε)|ξ |2+2µ〈ξ,η〉+(ρ+ε)|η|2)/2 dξ dη dτ

(13)
= (2π)−d

∫
T

[(λ + ε)(ρ + ε) − µ2]−d/2 dτ.
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On the other hand, the expectation of the random variableIε is given by

E(Iε) =
∫ T

0

∫ t

0
pε+|t−s|2H (0) ds dt

= (2π)−d/2
∫ T

0

∫ t

0
(ε + |t − s|2H)−d/2 ds dt(14)

= (2π)−d/2
∫ T

0
(T − s)(ε + s2H)−d/2 ds.

PROOF OF THEOREM 1. Assertion (i) follows easily from (13) and (14).
From (14), making the change of variabless = zε1/(2H), we obtain, if 1/d <

H < 3/(2d),

E(Iε) = ε1/(2H)−d/2

(2π)d/2

∫ T ε1/(2H)

0

(
T − zε1/(2H))(z2H + 1)−d/2 dz

= ε1/(2H)−d/2T CH,d + o(ε).

ForH = 1/d we get

E(Iε) = T log(1/ε)

2H(2π)d/2 + o(ε).

Hence, the convergence inL2 of the random variables (3) and (5) is equivalent to
the convergence ofIε − E(Iε).

From (13) and (14) we obtain

E(IεIη) − E(Iε)E(Iη)

= (2π)−d
∫
T

[(
(λ + ε)(ρ + η) − µ2)−d/2 − (

(λ + ε)(ρ + η)
)−d/2]

dτ.

Therefore, a necessary and sufficient condition for the convergence inL2 of
Iε − E(Iε) is that

�T =:
∫
T

[(λρ − µ2)−d/2 − (λρ)−d/2]dτ < ∞.(15)

Finally, Lemma 11 allows us to conclude the proof of the theorem.�

3. Central limit theorem via chaos expansion. In this section we will
establish a general central limit theorem for nonlinear functionals of a Gaussian
process, based on the Wiener chaos expansion. The proof of this theorem uses
some recent results by Nualart and Peccati (2005) and by Peccati and Tudor (2003).

Consider a separable Hilbert spaceH . Let {ek, k ≥ 1} be a complete orthonor-
mal system inH . For everyn ≥ 1, we denote byH	n thenth symmetric tensor
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product ofH . For everyp = 0, . . . , n and for everyf ∈ H	n, we define thecon-
traction of f of orderp to be the element ofH⊗2(n−p) defined by

f ⊗p f =
∞∑

i1,...,ip=1

〈
f, ei1 ⊗ · · · ⊗ eip

〉
H⊗p ⊗ 〈

f, ei1 ⊗ · · · ⊗ eip

〉
H⊗p .

Suppose thatX = {X(h),h ∈ H } is anisonormal Gaussian process onH . This
means thatX is a centered Gaussian family indexed by the elements ofH , defined
on some probability space(�,F ,P) and such that, for everyh,h′ ∈ H ,

E
(
X(h)X(h′)

) = 〈h,h′〉H .

Assume thatF is aσ -algebra generated byX.
For everyn ≥ 1 we will denote byIn the multiple Wiener integral [Hu and

Kallianpur (1998)].

THEOREM 3. Consider a sequence of square integrable and centered random
variables {Fk, k ≥ 1} with Wiener chaos expansions

Fk =
∞∑

n=1

In(fn,k).

Suppose that:

(i) limN→∞ lim supk→∞
∑∞

n=N+1 n!‖fn,k‖2
H⊗n = 0;

(ii) for every n ≥ 1, limk→∞ n!‖fn,k‖2
H⊗n = σ 2

n ;
(iii)

∑∞
n=1 σ 2

n = σ 2 < ∞;
(iv) for all n ≥ 2, p = 1, . . . , n − 1, limk→∞ ‖fn,k ⊗p fn,k‖2

H⊗2(n−p) = 0.

Then Fk converges in distribution to the normal law N(0, σ 2) as k tends to
infinity.

PROOF. By Theorem 1 in Nualart and Peccati (2005), conditions (ii) and (iv)
imply that for each fixedn ≥ 1 the sequence of multiple integralsIn(fn,k)

converges in distribution to the normal lawN(0, σ 2
n ) as k tends to infinity.

Furthermore, by Theorem 1 in Peccati and Tudor (2003), for eachn ≥ 1, the
vector(I1(f1,k), . . . , In(fn,k)) converges in law to the vector(ξ1, . . . , ξn), where
{ξn, n ≥ 1} are independent centered Gaussian random variables with variances
{σ 2

n , n ≥ 1}. Now letf be aC1 function such that|f | and|f ′| are bounded by 1.
For everyN ≥ 1, set

F
(N)
k =

N∑
n=1

In(fn,k).
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Setξ (N) = ∑N
n=1 ξn, andξ = ∑∞

n=1 ξn. Then

|E(f (Fk)) − E(f (ξ))|
≤ ∣∣E(f (Fk)) − E

(
f

(
F

(N)
k

))∣∣
+ ∣∣E(

f
(
F

(N)
k

)) − E
(
f

(
ξ (N)))∣∣ + ∣∣E(

f
(
ξ (N))) − E(f (ξ))

∣∣
≤

( ∞∑
n=N+1

n!‖fn,k‖2
H⊗n

)1/2

+ ∣∣E(
f

(
F

(N)
k

)) − E
(
f

(
ξ (N)))∣∣

+ ∣∣E(
f

(
ξ (N))) − E(f (ξ))

∣∣.
Then, taking first the limit ask tends to infinity, and then the limit asN tends to
infinity, and applying conditions (i), (iii) and the convergence in law of the vector
(I1(f1,k), . . . , In(fn,k)), we get the desired result.�

REMARK 1. A sufficient condition for (i) and (iii) is that for alln ≥ 1, and
k ≥ 1,

n!‖fn,k‖2
H⊗n ≤ δn,

where
∑∞

n=1 δn < ∞.

REMARK 2. The assumptions of Theorem 3 imply the convergence in law of
the projections on the Wiener chaos to a family of independent Gaussian random
variables.

The following propositions contain examples of applications of the above
central limit theorem which will be useful in proving the renormalization result
for the fractional Brownian motion whendH ≥ 3/2.

Let H be the Hilbert space defined as the closure of setE of step functions
on R+ with respect to the scalar product〈

1[0,t],1[0,s]
〉
H = 1

2(t2H + s2H − |t − s|2H).

Let BH = {BH
t , t ≥ 0} be a(2m)-dimensional fractional Brownian motion with

Hurst parameterH , with m ≥ 1. Then,BH is an isonormal Gaussian process
associated with the Hilbert spaceH = H2m. We denote byIn the multiple
stochastic integral which provides an isometry between the symmetric tensor
product(H2m)	 equipped with the norm

√
n!‖ · ‖H⊗n and thenth Wiener chaos

of BH .
We will make use of the following notation:

K1(x, y, z) = |z + y|2H + |z − x|2H − |z + y − x|2H − z2H ,

K2(x, z) = K1(x, x, z).
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PROPOSITION4. Let {BH
t , t ≥ 0} be a (2m)-dimensional fractional Brownian

motion with Hurst parameter H ∈ (0,3/4). For any 0 < s < t , we set

Zs,t =
2m∏
i=1

(B
H,i
t − BH,i

s ).(16)

Define, for any fixed x > 0,

T (x) = 1√
T

∫ T

0
Zs,s+x ds.

Then as T tends to infinity T (x) converges in distribution to a normal
law N(0,G(x, x)), where

G(x,x) = 21−2m
∫ ∞

0
K2m

2 (x, y) dy.

PROOF. We have

E[2
T (x)] = 21−2m

T

∫ T

0

∫ t

0
K2m

2 (x, t − s) ds dt

= 21−2m
∫ T

0
K2m

2 (x, y)(1− y/T )dy

and, clearly, this converges toG(x,x) asT tends to infinity. We can write

T (x) = I2m(f2m,T ),

where

f2m,T (i2m, r1, . . . , r2m) = 1

(2m)!√T

∫ T

0

2m∏
i=1

1[s,s+x](ri) ds,

if all components of the multi-indexi2m = (i1, . . . , i2m) are different and zero
otherwise. Then, by Theorem 1 of Nualart and Peccati (2005), it suffices to show
that for anyp, 1≤ p ≤ 2m − 1,

lim
T →∞‖f2m,T ⊗p f2m,T ‖2

H⊗(2m−p) = 0.(17)

The contraction of orderp of the kernelf2m,T is given by

(f2m,T ⊗p f2m,T )(i2m−p, r1, . . . , r2m−p, j2m−p,u1, . . . , u2m−p)

= p!
((2m)!)2T 2p

∫ T

0

∫ T

0
K

p
2 (x, t − s)

2m−p∏
j=1

1[s,s+x](rj )1[t,t+x](uj ) ds dt.

In order to show (17) it suffices to prove that

lim
T →∞

1

T

∫
0<t1<t2<t3<t4<T

K
p
2 (x, t2 − t1)K

p
2 (x, t4 − t3)

(18)
× K

2m−p
2 (x, t3 − t2)K

2m−p
2 (x, t4 − t1) dt = 0.
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By L’Hôpital’s rule, (18) holds if

lim
T →∞

1

T

∫
0<t1<t2<t3<T

K
p
2 (x, t2 − t1)K

p
2 (x, T − t3)

× K
2m−p
2 (x, t3 − t2)K

2m−p
2 (x, T − t1) dt1 dt2 dt3(19)

= 0.

Sett2 − t1 = a, t3 − t2 = b, T − t3 = c. In order to show (19) it suffices to show
that

lim
T →∞

1

T

∫
0<a+b+c<T

K
p
2 (x, a)K

p
2 (x, c)K

2m−p
2 (x, b)

(20)
× K

2m−p
2 (x, a + b + c) da db dc = 0.

To show (20) we will make use of the following inequalities:

|K2(x, a)| ≤ kHa2H−2x2,(21)

if x < a
2, wherekH = 23−2H H(2H − 1),

a + b + c ≥ 3(abc)1/3(22)

and

|K2(x, a)| ≤ 2(ax)H .(23)

We decompose the setG = {0 < a + b + c < T } as follows:

G =
8⋃

i=1

Gi,

where

G1 = {(a, b, c) ∈ G :a > 2x, b > 2x, c > 2x},
G2 = {(a, b, c) ∈ G :a > 2x, b > 2x, c < 2x},
G3 = {(a, b, c) ∈ G :a > 2x, b < 2x, c > 2x},
G4 = {(a, b, c) ∈ G :a < 2x, b > 2x, c > 2x},
G5 = {(a, b, c) ∈ G :a > 2x, b < 2x, c < 2x},
G6 = {(a, b, c) ∈ G :a < 2x, b > 2x, c < 2x},
G7 = {(a, b, c) ∈ G :a < 2x, b < 2x, c > 2x},
G8 = {(a, b, c) ∈ G :a < 2x, b < 2x, c < 2x}.

Set, fori = 1, . . . ,8,

i
T = 1

T

∫
Gi

K
p
2 (x, a)K

p
2 (x, c)K

2m−p
2 (x, b)K

2m−p
2 (x, a + b + c) da db dc.

In what follows, we will denote byk a generic constant that may depend on
H andx.
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Case 1. Consider first the integral over the regionG1. Then, using (21)
and (22) we obtain, forT large enough,

1
T ≤ k

T

∫
G1

a(2H−2)pb(2H−2)pc(2H−2)(2m−p)(a + b + c)(2H−2)(2m−p) da db dc

≤ k

T

(∫ T

2x
a4/3(2H−2)p da

)2(∫ T

2x
a4/3(2H−2)(2m−p) da

)
≤ kT 4/3(2H−2)(2m+p)+2,

which converges to zero asT tends to infinity, because

4
3(2H − 2)(2m + p) + 2 ≤ 4

3(2H − 2)3+ 2= 8H − 6< 0.

Case 2. Using (21), (22) and (23) we obtain

2
T ≤ k

T

∫
G2

a(2H−2)pb(2H−2)pcH(2m−p)(a + b + c)(2H−2)(2m−p) da db dc

≤ kT (4H−4)(m+p/2)+1,

which converges to zero asT tends to infinity, because

(4H − 4)(m + p/2) + 1 ≤ 3(2H − 2) + 1= 6H − 5< 0.

Case 3. Using (21), (22) and (23) we obtain

3
T ≤ k

T

∫
G3

a(2H−2)pbHpc(2H−2)(2m−p)(a + b + c)(2H−2)(2m−p) da db dc

≤ kT (4H−4)(2m−p/2)+1 → 0,

because 2m − p/2 ≥ 2m − (2m − 1)/2 = m + 1/2 ≥ 1, and, so

(4H − 4)(2m − p/2) + 1≤ 4H − 3< 0.

Case 4. The integral over the setG4 is handled as in Case 3.

Case 5. Using (21), (22) and (23) we obtain

5
T ≤ k

T

∫
G5

a(2H−2)pbHpcH(2m−p)(a + b + c)(2H−2)(2m−p) da db dc

= kT (4H−4)m → 0.

Finally, the integrals over the setsG6, G7 andG8 are treated in a similar way.
�
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PROPOSITION 5. Consider the processes T (x) defined in Proposition 4.
If 3/(2d) < H < 3/4, then the random variables

YT :=
∫ ∞

0
(1+ x2H)−d/2−mT (x) dx

converge in law to the normal distribution N(0, σ 2), as T tends to infinity, where

σ 2 :=
∫ ∞

0

∫ ∞
0

(1+ x2H )−d/2−m(1+ y2H )−d/2−mG(x, y) dx dy(24)

and

G(x,y) := 21−2m
∫ ∞

0
K2m

1 (x, y, z) dz.

PROOF. Notice that

E[T (x)T (y)] = 21−2m

T

∫ T

0

∫ t

0
K2m

1 (x, y, t − s) ds dt

= 21−2m
∫ T

0
K2m

1 (x, y, z)(1− z/T )dz,

and this clearly converges asT tends to infinity toG(x,y).
As a consequence, Proposition 4 and Proposition 2 of Peccati and Tudor (2003)

imply that the finite-dimensional distributions of the process{T (x), x > 0}
converge to the finite-dimensional distributions of a Gaussian centered process
with covariance functionG(x,y). In order to complete the proof of the lemma we
need to show the following facts:

(i) ∫ ∞
0

(1+ x2H )−d/2−m sup
T

E
(|T (x)|) < ∞.(25)

(ii) For all K > 0,

lim
T →∞E

[(
T (x) − T (y)

)2] → 0(26)

as|x − y| < δ → 0, andx, y ≤ K .
(iii) σ 2 < ∞.

PROOF OF(i). Property (25) follows from∫ ∞
0

(1+ x2H )−d/2−mG(x, x)1/2 dx

≤
∫ ∞

0
(1+ x2H )−d/2−m

(∫ 2x

0
K2m

2 (x, y) dy

)1/2

dx

+
∫ ∞

0
(1+ x2H)−d/2−m

(∫ ∞
2x

K2m
2 (x, y) dy

)1/2

dx(27)
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≤ kH,m

∫ ∞
0

(1+ x2H )−d/2−m

(∫ 2x

0
(y4Hm + x4Hm)dy

)1/2

dx

+ kH,m

∫ ∞
0

(1+ x2H)−d/2−m

(∫ ∞
2x

y(2H−2)2mx4m dy

)1/2

dx

≤ k′
H,m

∫ ∞
0

(1+ x2H )−d/2−mx2mH+1/2 dx < ∞,

becauseHd > 3/2. �

PROOF OF(ii). We have

sup
T

E
[(

T (x) − T (y)
)2]

≤ 21−2m
∫ ∞

0
|K2m

2 (x, z) + K2m
2 (y, z) − 2K2m

1 (x, y, z)|dz,

and, by dominated convergence this tends to zero as|x − y| tends to zero in the
compact interval[0,K]. �

PROOF OF(iii). This follows from (27) and the fact that, by Cauchy–Schwarz
inequality, we haveG(x,y) ≤ √

G(x,x)G(y, y). �

Let us now show that (i)–(iii) imply the convergence in law ofYT to ξ , where
ξ is a random variable with theN(0, σ 2) distribution. Letf be a function such
that |f | and|f ′| are bounded by 1. We make the decomposition

|E(f (YT )) − E(f (ξ))|
≤ ∣∣E(f (YT )) − E

(
f

(
Y

(K)
T

))∣∣ + ∣∣E(
f

(
Y

(K)
T

)) − E
(
f

(
ξ (K)))∣∣

+ ∣∣E(
f

(
ξ (K))) − E(f (ξ))

∣∣,
where

Y
(K)
T =

∫ K

0
(1+ x2H )−d/2−mT (x) dx,

ξ (K) has the lawN(0, σ 2
K), and

σ 2
K = 21−2m

∫ K

0

∫ K

0
(1+ x2H)−d/2−m(1+ y2H )−d/2−mG(x, y) dx dy.

Property (i) implies that limK→∞ supT |E(f (YT )) − E(f (Y
(K)
T ))| = 0.

Property (iii) implies that limK→∞ |E(f (ξ (K))) − E(f (ξ))| = 0, and
property (ii) implies that for any fixedK > 0, limT →∞ |E(f (Y

(K)
T )) −

E(f (ξ (K)))| = 0.
This completes the proof of the proposition.�
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PROPOSITION6. Assume H = 3/(2d) < 3/4. Consider the processes

XT = 1√
T logT

∫ ∞
0

(1+ x2H )−d/2−m

(∫ T

0
Zs,s+x ds

)
dx,

where T > 0, and Zs,s+x has been defined in (16). Then XT converges in
distribution, as T tends to infinity, to a normal law N(0, σ 2), where

σ 2 := 21−2m
∫ ∞

0

∫ ∞
0

(xy)−3/2−2mH K2m
1 (x, y,1) dx dy.

PROOF. As in the proof of Proposition 4 we can show that, for each fixed
x > 0, the random variables 1√

T logT

∫ T
0 Zs,s+x ds converge to 0 inL2 asT tends

to infinity. For this reason we cannot apply the same method of proof as in
Proposition 4, and new ideas are required. The basic ingredient of the proof will
be a scaling argument and Theorem 1 of Nualart and Peccati (2005).

Let us see first that the asymptotic behavior ofXT asT tends to infinity is the
same asYT , where

YT := 1√
T logT

∫ ∞
1

x−3/2−2mH

(∫ T

0
Zs,s+x ds

)
dx.

In fact,

E[|XT − YT |] ≤ k√
T logT

∫ ∞
0

(1+ x2H )−5/2−m
E

(∣∣∣∣∫ T

0
Zs,s+x ds

∣∣∣∣)dx,

and using the estimate (27) it is not difficult to see that this converges to zero as
T tends to infinity.

So, it suffices to show thatYT converges in distribution asT tends to infinity to
the normal lawN(0, σ 2). The proof will be done in several steps.

Step 1. We claim that

lim
T →∞ E(Y 2

T ) = σ 2 < ∞,(28)

whereσ 2 is defined in (24). In fact,

E(Y 2
T ) = 2

T logT

∫ ∞
1

∫ ∞
1

(xy)−3/2−2mH
∫ T

0

∫ t

0
µ(s, s + x, t, t + y)ds dt dx dy

= 21−2m

logT

∫ ∞
1

∫ ∞
1

(xy)−3/2−2mH
∫ T

0
K2m

1 (x, y, z)

(
1− z

T

)
dzdx dy.

Thus, by L’Hôpital’s rule

lim
T →∞ E(Y 2

T ) = lim
T →∞T 21−2m

∫ ∞
1

∫ ∞
1

(xy)−3/2−2mH K2m
1 (x, y, T ) dx dy

= lim
T →∞ 21−2m

∫ ∞
1/T

∫ ∞
1/T

(xy)−3/2−2mH K2m
1 (x, y,1) dx dy

= σ 2.
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Step 2. Consider the decomposition

YT = YT,1 + YT,2,(29)

where

YT,1 = 1√
T logT

∫ ∞
1

x−3/2−2mH

(∫ T/2

0
Zs,s+x ds

)
dx,

YT,2 = 1√
T logT

∫ ∞
1

x−3/2−2mH

(∫ T

T/2
Zs,s+x ds

)
dx.

From the scaling and the stationary increments properties of fractional Brownian
motion, it follows that the random variablesYT,1 and YT,2 have the same
distribution asYT,3, where

YT,3 = 1√
2T logT

∫ ∞
2

x−3/2−2mH

(∫ T

0
Zs,s+x ds

)
dx.

We are going to compute the second and fourth moments ofYT , using the
decomposition (29). We have

E(Y 2
T ) = E(Y 2

T ,1) + E(Y 2
T ,2) + 2E(YT,1YT,2)

= 2E(Y 2
T ,3) + 2E(YT,1YT,2).

Clearly, limT →∞ E(Y 2
T ,3) = σ 2/2, and this implies that

lim
T →∞E(YT,1YT,2) = 0.(30)

Consider now the fourth moment ofYT :

E(Y 4
T ) = 2E(Y 4

T ,3) + 4E(Y 3
T ,1YT,2) + 4E(YT,1Y

3
T ,2) + 6E(Y 2

T ,1Y
2
T ,2).(31)

Step 3. We claim that

lim
T →∞ E(Y 2

T ,1Y
2
T ,2) = σ 4/4,

(32)
lim

T →∞ E(Y 3
T ,1YT,2) = 0, lim

T →∞E(YT,1Y
3
T ,2) = 0.

Let us prove the first identity of (32). The random variables(YT,1YT,2) have the
same joint distribution as(ZT,1ZT,2), where

ZT,1 = 1√
logT

∫ ∞
1/T

x−3/2−2mH

(∫ 1/2

0
Zs,s+x ds

)
dx,

ZT,2 = 1√
logT

∫ ∞
1/T

x−3/2−2mH

(∫ 1

1/2
Zs,s+x ds

)
dx.
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As a consequence, we have

E(Y 2
T ,1Y

2
T ,2) = (logT )−2

∫
D

E

( 4∏
i=1

�i

)
dµ,(33)

where�i = Bti+xi
−Bti , for i = 1,2,3,4,D = [1/T ,∞)4 ×[0,1/2]2 ×[1/2,1]2

and dµ = ∏4
i=1 x

−3/2−2mH
i dx dt . Using the notationdij = E(�i�j ) for i,

j = 1, . . . ,4, we can write

E

( 4∏
i=1

�i

)
= d12d34 + d13d24 + d14d23

and (
E

( 4∏
i=1

�i

))2m

= (d12d34)
2m + R.(34)

We have

(logT )−2
∫
D

(d12d34)
2m dµ = E(Y 2

T ,1)E(Y 2
T ,2),

and this converges toσ 4/4 asT tends to infinity. On the other hand, the residual
termR in (34) does not contribute to the limit (33). In fact, by Hölder’s inequality
we obtain, for any indexes(i, j, k) such thati + j + k = 2m, andj ≥ 1 or k ≥ 1,

(logT )−2
∣∣∣∣∫

D
(d12d34)

i(d13d24)
j (d14d23)

k dµ

∣∣∣∣
≤ (logT )−2

(∫
D

(d12d34)
2m dµ

)i/(2m)

×
(∫

D
(d13d24)

2m dµ

)j/(2m)(∫
D

(d14d23)
2m dµ

)k/(2m)

.

Then, this converges to zero asT tends to infinity because of (30),j + k ≥ 1 and

(logT )−2
∫
D

(d14d23)
2m dµ = (logT )−2

∫
D

(d13d24)
2m dµ = (

E(YT,1YT,2)
)2

.

This completes the proof of the first identity of (32). The proof of the other two
identities of (32) follows the same argument.

Step 4. By the same arguments as above and Minkowski inequality it follows
that

E(Y 4
T ) = (logT )−2

∫
E
(d12d34 + d13d24 + d14d23)

2m dµ

≤ 32m(logT )−2
∫
E
(d12d34)

2m dµ

= 32m(E(Y 2
T ))2,
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whereE = [1/T ,∞)4 ×[0,1]4. So, the sequencesYT andYT,3 are bounded inL4,
and

E
(
(YT − YT,3)

4) ≤ 32m(
E(YT − YT,3)

2)2
,(35)

which clearly converges to zero asT tends to infinity. Then, from (35), (31)
and (32) we obtain limT →∞ E(Y 4

T ) = 3σ 4. Finally, the result follows from
Theorem 1 of Nualart and Peccati (2005).�

4. Wiener chaos expansion of the self-intersection local time. In this
section we will first compute the Wiener chaos expansion of the approximation
of the self-intersection local timeIε defined by (2).

Given a multi-indexin = (i1, . . . , in), 1≤ ij ≤ d, we set

α(in) = E
[
Xi1 · · ·Xin

]
,

where theXi are independentN(0,1) random variables. Notice that

α(i2m) = (2m1)! · · · (2md)!
(m1)! · · · (md)!2m

,

if n = 2m is even and for eachk = 1, . . . , d, the number of components ofi2m

equal tok, denoted by 2mk , is also even, andα(in) = 0, otherwise.

LEMMA 7. We have

Iε =
∞∑

m=0

I2m(f2m,ε),

where f2m,ε is the element of (Hd)⊗2m given by

f2m,ε(i2m, r1, . . . , r2m)
(36)

= (2π)−d/2α(i2m)

(2m)!
∫ T

0

∫ t

0
ds dt (ε + |t − s|2H)−d/2−m

2m∏
j=1

1[s,t](rj ).

PROOF. Stroock’s formula leads to

fn,ε = 1

n!
∫ T

0

∫ t

0
E

[
Di1,...,in

r1,...,rn
pε(B

H
t − BH

s )
]
ds dt,

whereij ∈ {1, . . . , d}, andrl ∈ [0, T ].
Let us compute this expectation

E
[
Di1,...,in

r1,...,rn
pε(B

H
t − BH

s )
] = E[∂i1 · · · ∂inpε(B

H
t − BH

s )]
n∏

j=1

1[s,t](rj ).
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On the other hand, using the Fourier transform

E[∂i1 · · · ∂inpε(B
H
t − BH

s )]

= in

(2π)d

∫
Rd

ξ i1 · · · ξ inE
[
ei〈ξ,BH

t −BH
s 〉]e−ε|ξ |2/2 dξ

= in

(2π)d

∫
Rd

ξ i1 · · · ξ in exp
{
−1

2
(|t − s|2H + ε)|ξ |2

}
dξ

= in(2π)−d/2(ε + |t − s|2H )−d/2−n/2
E

[
Xi1 · · ·Xin

]
,

and the result follows. �

Let us compute theL2-norm of thenth Wiener chaos ofIε.

E[(I2m(f2m,ε))
2] = (2m)!‖f2m,ε‖2

H⊗(2m)

= (2m)! ∑
m1+···+md=m

(2m)!
(2m1)! · · · (2md)!

(2π)−d

((2m)!)2α(i2m)2

(37)
×

∫
T

(ε + λ)−d/2−m(ε + ρ)−d/2−mµ2m dτ

= αm

(2π)d22m

∫
T

(ε + λ)−d/2−m(ε + ρ)−d/2−mµ2m dτ,

where

αm = ∑
m1+···+md=m

(2m1)! · · · (2md)!
(m1!)2 · · · (md !)2 .

If Hd < 3/2, we can deduce the Wiener chaos expansion of the renormalized
self-intersection local time�:

� =
∞∑

m=1

I2m(f2m),

where

f2m(i2m, r1, . . . , r2m)

= (2π)−d/2α(i2m)

(2m)!
∫ T

0

∫ t

0
ds dt |t − s|−Hd−2mH

2m∏
j=1

1[s,t](rj ).

5. Proof of Theorem 2. The purpose of this section is to show Theorem 2.

CASE 3/(2d) ≤ H < 3/4. We are going to check that the family of random
variablesεd/2−3/(4H)(Iε − E(Iε)) satisfies the conditions of Theorem 3, for any
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sequenceε(k) → 0. We have

εd/2−3/(4H)(Iε − E(Iε)
) = εd/2−3/(4H)

∞∑
m=1

I2m(f2m,ε).

Thus, from (37) we obtain

εd−3/(2H)
E[(I2m(f2m,ε))

2]

= αmεd−3/(2H)

(2π)d22m

∫
T

[(ε + λ)(ε + ρ)]−d/2−mµ2m dτ.

Making the change of variablesτ → ε1/(2H)τ yields

εd−3/(2H)
E[(I2m(f2m,ε))

2]

= αmε1/(2H)

(2π)d22m

∫
T ε

[(1+ λ)(1+ ρ)]−d/2−mµ2m dτ,

whereT ε = ε−1/(2H)T . Using the decompositionT ε ∩ {s < s′} = T ε
1 ∪T ε

2 ∪T ε
3 ,

whereT ε
i = ε−1/(2H)Ti and the setsTi are introduced in (46), we obtain

εd−3/(2H)
E[(I2m(f2m,ε))

2]
= αm

(2π)d22m−1

∫
0<a+b+c<T ε−1/(2H)

(
T − (a + b + c)ε1/(2H))�m da db dc,

where

�m =
3∑

i=1

[(1+ λi)(1+ ρi)]−d/2−mµ2m
i ,(38)

and the functionsλi , ρi , µi , have been defined in (47)–(52).
As a consequence,

lim
ε↓0

εd−3/(2H)
E[(I2m(f2m,ε))

2] = αmT

(2π)d22m−1

∫
R

3+
�m da db dc,(39)

and this implies condition (ii) of Theorem 3. We also have

εd−3/(2H)
E[(I2m(f2m,ε))

2] ≤ αmT

(2π)d22m−1

∫
R

3+
�m da db dc,

and, taking into account Remark 1 after Theorem 3, in order to check conditions
(i) and (iii) it suffices to show that

σ 2 :=
∞∑

m=1

αm

(2π)d22m−1

∫
R

3+
�m da db dc < ∞.
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From (38) we have

σ 2 =
3∑

i=1

∞∑
m=1

αm

(2π)d22m−1

∫
R

3+
(̂λi ρ̂i)

−d/2γ̂ m
i da db dc,

wherêλi = 1+ λi , ρ̂i = 1+ ρi and

γ̂i = µ2
i

(1+ λi)(1+ ρi)
.

Hence,

σ 2 =
3∑

i=1

2

(2π)d

∫
R

3+
(̂λi ρ̂i)

−d/2

[( ∞∑
m=0

(2m)!γ̂ m
i

(m!)222m

)d

− 1

]
da db dc.

Using Newton’s binomial formula and the definitions (64) and (65) we obtain

σ 2 = 2

(2π)d

3∑
i=1

∫
R

3+
(̂λi ρ̂i)

−d/2[(1− γ̂i)
−d/2 − 1]da db dc

= 2

(2π)d

3∑
i=1

∫
R

3+

(
(̂δi)

−d/2 − (̂λi ρ̂i)
−d/2)da db dc(40)

= 2

(2π)d

3∑
i=1

∫
R

3+
�̂i da db dc,

where the functionŝ�i are defined in (65). Finally,σ 2 < ∞ by Lemma 13.
Condition (iv) of Theorem 3 follows from the convergence (43) in Proposition 8.

CASE H = 3/(2d). As in the proof of the previous case we need to check that
the family of random variables(log(1/ε))−1/2(Iε − E(Iε)) satisfies the conditions
of Theorem 3, for any sequenceε(k) → 0. We have

(log(1/ε))−1/2(
Iε − E(Iε)

) = (log(1/ε))−1/2
∞∑

m=1

I2m(f2m,ε),

and as before we obtain

E[(I2m(f2m,ε))
2]

log(1/ε)

= 2αm

(2π)d22m log(1/ε)

×
∫

0<a+b+c<T ε−1/(2H)

(
T − t (a + b + c)ε−1/(2H))�m da db dc,
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where �m is defined by (38). From the estimates obtained in the proof of
Lemma 13 it follows that the term(a +b + c)ε−1/(2H) gives no contribution to the
limit and we can write, using L’Hôpital’s rule,

lim
ε↓0

E[(I2m(f2m,ε))
2]

log(1/ε)

= lim
ε↓0

2T αm

(2π)d22m log(1/ε)

∫
0<a+b+c<T ε−1/(2H)

�m da db dc

= lim
x↑∞

2T αm

(2π)d22m logx

∫
0<a+b<η

η<T x1/(2H)

�m(a, b, η − a − b)da db dη

= lim
x↑∞

x1/(2H)T 2αm

H22m(2π)d

∫
0<a+b<T x1/(2H)

�m

(
a, b, T x1/(2H) − a − b

)
da db

= lim
x↑∞

x3/(2H)T 4αm

H22m(2π)d

∫
0<α+β<1

�m

(
T x1/(2H)(α,β,1− α − β)

)
dα dβ.

Seteα,β = (α,β,1− α − β). We have 3/(2H) = d, and

xd�m

(
T x1/(2H)eα,β

)
= T −3

3∑
i=1

(
(T −2Hx−1 + λi)(T

−2Hx−1 + ρi)
)−d/2−m

µ2m
i (eα,β),

and whenx tends to infinity this converges to

T −3
3∑

i=1

(λiρi)
−d/2γ m

i (eα,β).

Hence,

lim
ε↓0

E[(I2m(f2m,ε))
2]

log(1/ε)
(41)

= T αm

H22m(2π)d

3∑
i=1

∫
0<α+β<1

(λiρi)
−d/2γ m

i (eα,β) dα dβ.

This proves condition (ii) of Theorem 3.
On the other hand,

σ 2 :=
3∑

i=1

∞∑
m=1

αm

H22m(2π)d

∫
0<α+β<1

(λiρi)
−d/2γ m

i (eα,β) dα dβ

=
3∑

i=1

1

H(2π)d

∫
0<α+β<1

(λiρi)
−d/2

[( ∞∑
m=0

(2m)!γ m
i

(m!)222m

)d

− 1

]
(eα,β) dα dβ.
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Using Newton’s binomial formula and the definitions (64) and (65) we obtain

σ 2 = 1

H(2π)d

3∑
i=1

∫
0<α+β<1

(λiρi)
−d/2[(1− γi)

−d/2 − 1](eα,β) dα dβ

= 1

H(2π)d

3∑
i=1

∫
0<α+β<1

(
(δi)

−d/2 − (λiρi)
−d/2)(eα,β) dα dβ(42)

= 1

H(2π)d

3∑
i=1

∫
0<α+β<1

�i(eα,β) dα dβ.

Finally, σ 2 < ∞ by Lemma 12. This proves condition (iii).
Finally,

lim
ε↓0

1

log(1/ε)

∞∑
m=N+1

E[(I2m(f2m,ε))
2]

≤
∞∑

m=N+1

3∑
i=1

T αm

H22m(2π)d

∫
0<α+β<1

(̂λi ρ̂i)
−d/2γ̂ m

i (eα,β) dα dβ,

and this converges to zero asN tends to infinity. So condition (i) holds.
Condition (iv) follows from the convergence (44) in Proposition 8.

PROPOSITION8. Fix m ≥ 1 and 1≤ p ≤ 2m − 1.

(i) If d > 3/(2H), then

lim
ε↓0

ε2d−3/H ‖f2m,ε ⊗p f2m,ε‖2
H⊗2(2m−p) = 0;(43)

(ii) if d = 3/(2H) and H < 3/4, then

lim
ε↓0

(log(1/ε))−2‖f2m,ε ⊗p f2m,ε‖2
H⊗2(2m−p) = 0.(44)

PROOF OF(43). The proof will be done in several steps.

Step 1. Let us first computef2m,ε ⊗p f2m,ε. We have, from (36),

(f2m,ε ⊗p f2m,ε)(i2m−p, j2m−p, r1, . . . , r2m−p,u1, . . . , u2m−p)

= (2π)−d

((2m)!)2

∑
kp

α(i2m−p,kp)α(kp, j2m−p)

×
∫
T

(ε + |t − s|2H )−d/2−m(ε + |t ′ − s′|2H )−d/2−mµp(s, t, s′, t ′)

×
2m−p∏
j=1

1[s,t](rj )1[s′,t ′](uj ) dτ.
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As a consequence,

‖f2m,ε ⊗p f2m,ε‖2
H⊗2(2m−p)

= A2
∫
D

4∏
i=1

(ε + |ti − si |2H )−d/2−m(45)

× µ
p
1,2(s, t)µ

p
3,4(s, t)µ

2m−p
1,3 (s, t)µ

2m−p
2,4 (s, t) ds dt,

where

A2 = (2π)−2d

((2m)!)4

∑
i2m−p,j2m−p

(∑
kp

α(i2m−p,kp)α(kp, j2m−p)

)2

,

s = (s1, s2, s3, s4), t = (t1, t2, t3, t4),

D = {(s, t) ∈ R
8 : 0< si < ti < T }

and

µi,j (s, t) = µ(si, ti, sj , tj ).

Set

�ε = ε2d−3/H
∫
D

4∏
i=1

(ε + |ti − si |2H )−d/2−m

× µ
p
1,2(s, t)µ

p
3,4(s, t)µ

2m−p
1,3 (s, t)µ

2m−p
2,4 (s, t) ds dt.

To show (43) it suffices to show that limε→0 �ε = 0.

Step 2. We are going to use a representation of�ε in terms of the expectation
of the product of four random variables. Consider a family of independent
one-dimensional fractional Brownian motions with Hurst parameterH , B

i,j
t ,

i = 1,2,3,4, j = 1, . . . ,2m. We can write

�ε = ε2d−3/H
E

(∏
i,j

Xi,j
ε

)
,

where the product is over the pairs(i, j) = (1,3), (1,4), (2,3) and(3,4), and

Xi,j
ε =

∫ T

0

∫ t

0
(ε + |t − s|2H)−d/2−m

p∏
�=1

2m−p∏
k=1

(B
i,�
t − Bi,�

s )(B
j,k
t − Bj,k

s ) ds dt.

Step 3. The variances of the random variablesεd/2−3/(4H)X
i,j
ε converge to a

constant timesT asε tends to zero. In fact,

E
[
εd−3/(2H)(Xi,j

ε )2] = (2π)d22m

αm

εd−3/(2H)
E[(I2m(f2m,ε))

2],
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and we have already proved in (39) that this converges to

2T

∫
R

3+
�m da db dc < ∞.

Step 4. In order to show that limε→0 �ε = 0, it suffices to show that each
family of random variablesεd/2−3/(4H)Xi

ε converges in law to a normal random

variable. In fact, taking into account thatE(X
i,j
ε X

i′,j ′
ε ) = 0, for (i, j) �= (i ′, j ′),

and the results proved in Peccati and Tudor (2003), the four-dimensional vector

εd/2−3/(4H)(X1,3
ε ,X1,4

ε ,X2,3
ε ,X3,4

ε )

will converge to a Gaussian random vector with independent components and,
therefore, the expectation of the product of its components will converge to zero.

Notice that the families of random variables{εd/2−3/(4H)X
i,j
ε , ε > 0} are

identically distributed and they have the same distribution as{Zε, ε > 0}, where

Zε = εd/2−3/(4H)
∫ T

0

∫ t

0
(ε + |t − s|2H)−d/2−m

2m∏
i=1

(B
H,i
t − BH,i

s ) ds dt,

and {BH
t , t ≥ 0} is a (2m)-dimensional fractional Brownian motion with Hurst

parameterH . We make the decomposition

Zε = Z1
ε − Z2

ε ,

where

Z2
ε = ε1/(4H)

∫
s<T ε−1/(2H)<t

(1+ |t − s|2H)−d/2−mZs,t ds dt,

Z1
ε = ε1/(4H)

∫
s<t∧T ε−1/(2H)

(1+ |t − s|2H)−d/2−mZs,t ds dt,

andZs,t has been defined in (16). Let us show thatZ2
ε tends to zero inL2(�).

We have

‖Z2
ε‖2 ≤ ε1/(4H)

∫
s<T ε−1/(2H)<t

(1+ |t − s|2H)−d/2−m‖Zs,t‖2 ds dt

= ε1/(4H)
∫
s<T ε−1/(2H)<t

(1+ |t − s|2H)−d/2−m|t − s|2mH ds dt

≤ ε1/(4H)
∫
s<T ε−1/(2H)<t

(1+ |t − s|2H)−d/2 ds dt

= ε1/(4H)
∫ T ε−1/(2H)

0

∫ ∞
T ε−1/(2H)−s

(1+ x2H )−d/2 dx ds

= ε1/(4H)
∫ T ε−1/(2H)

0

∫ ∞
y

(1+ x2H )−d/2 dx dy,



FRACTIONAL SELF-INTERSECTION LOCAL TIME 971

which converges to zero becauseHd > 3/2.
Finally, we have

Z1
ε =

∫ ∞
0

(1+ x2H )−d/2−m

(
ε1/(4H)

∫ T ε−1/(2H)

0
Zs,s+x ds

)
dx,

which converges in law to a normal distribution from Proposition 5.�

PROOF OF(44). Set

�ε = (log(1/ε))−2
∫
D

4∏
i=1

(ε + |ti − si |2H )−d/2−m

× µ
p
1,2(s, t)µ

p
3,4(s, t)µ

2m−p
1,3 (s, t)µ

2m−p
2,4 (s, t) ds dt.

As in the proof of (43), it suffices to show that�ε tends to zero asε tends to zero.
We can also write

�ε = (log(1/ε))−2
E

(∏
i,j

Xi,j
ε

)
,

where theXi,j
ε have been defined in step 2 of the proof of (43).

From (41) it follows that the variances of the random variables(log(1/ε))−1/2×
X

i,j
ε converge to a constant. In fact,

E[(log(1/ε))−1(Xi,j
ε )2] = (2π)d22m

αm

(log(1/ε))−1
E[(I2m(f2m,ε))

2].

Then, as in the proof of part (i), it suffices to show that the family of random
variables(log(1/ε))−1/2X

i,j
ε converges in law to a normal random variable asε

tends to zero. This family has the same distribution as{Yε, ε > 0}, where

Yε = (log(1/ε))−1/2
∫ T

0

∫ t

0
(ε + |t − s|2H)−d/2−m

2m∏
i=1

(B
H,i
t − BH,i

s ) ds dt,

and {BH
t , t ≥ 0} is a (2m)-dimensional fractional Brownian motion with Hurst

parameterH . As in the proof of part (i) we make the decomposition

Yε = Y 1
ε − Y 2

ε ,

where

Y 2
ε = (log(1/ε))−1/2ε1/(4H)

∫
s<T ε−1/(2H)<t

(1+ |t − s|2H)−d/2−mZs,t ds dt,

Y 1
ε = (log(1/ε))−1/2ε1/(4H)

∫
s<t∧T ε−1/(2H)

(1+ |t − s|2H)−d/2−mZs,t ds dt,
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andZs,t has been defined in (16). As in the proof of part (i) we obtain

‖Y 2
ε ‖2 ≤ (log(1/ε))−1/2ε1/(4H)

∫ T ε−1/(2H)

0

∫ ∞
y

(1+ x2H )−d/2 dx dy,

which clearly converges to zero. Finally, the family

Y 1
ε = (log(1/ε))−1/2

∫ ∞
0

(1+ x2H)−d/2−m

(
ε1/(4H)

∫ T ε−1/(2H)

0
Zs,s+x ds

)
dx

converges to a normal distribution from Proposition 6.�

REMARK 3. The limit variance appearing in (40) can be also expressed as

σ 2 = 2

(2π)d

∫
R

3+

[(
(1+ x2H )(1+ y2H )

− 1

4

(|z + y|2H + |z − x|2H

− |z|2H − |z + y − x|2H )2
)−d/2

− (
(1+ x2H )(1+ y2H )

)−d/2
]
dx dy dz.

We do not know a simple expression for this variance, even in the caseH = 1/2.

REMARK 4. In the particular caseH = 1/2, andd = 3, the limit variance
appearing in (42) isσ 2 = (2π2)−1. In fact, in this case we obtain

σ 2 = 1

4π3

∫
0<a+b<1

[(
ab + (a + b)(1− a − b)

)−3/2

− (
(a + b)(1− a)

)−3/2 + (b(1− b))−3/2 − b−3/2]
da db.

Making the change of variablesx = a/(a + b), y = 1/(a + b), it is not difficult
to check that the first integral equals 2π . The remaining terms are equal to∫ 1
0 b−3/2(1+b− (1−b)−1/2) db, and with the change of variable

√
1− b = cosθ ,

it is clear that this integral vanishes.

6. Technical lemmas. We will denote byk a generic constant which may
be different from one formula to another one. We will decompose the regionT
defined in (9) as follows:

T ∩ {s < s′} = T1 ∪ T2 ∪ T3,(46)
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where

T1 = {(t, s, t ′, s′) : 0< s < s′ < t < t ′ < T },
T2 = {(t, s, t ′, s′) : 0< s < s′ < t ′ < t < T },
T3 = {(t, s, t ′, s′) : 0< s < t < s′ < t ′ < T }.

We will make use of the following notation:

(i) If (t, s, t ′, s′) ∈ T1, we puta = s′ − s, b = t − s′ andc = t ′ − t . On this
region, the functionsλ, ρ andµ defined in (10) and (11) take the following values:

λ = λ1 := λ1(a, b, c) := (a + b)2H , ρ = ρ1 := (b + c)2H ,(47)

µ = µ1 := µ1(a, b, c) := 1
2[(a + b + c)2H + b2H − c2H − a2H ].(48)

(ii) If (t, s, t ′, s′) ∈ T2, we puta = s′ − s, b = t ′ − s′ andc = t − t ′. On this
region we will have

λ = λ2 := b2H , ρ = ρ2 := (a + b + c)2H ,(49)

µ = µ2 := 1
2[(b + c)2H + (a + b)2H − c2H − a2H ].(50)

(iii) If (t, s, t ′, s′) ∈ T3, we puta = t − s, b = s′ − t andc = t ′ − s′. On this
region we will have

λ = λ3 := a2H , ρ = ρ3 := c2H ,(51)

µ = µ3 := 1
2[(a + b + c)2H + b2H − (b + c)2H − (a + b)2H ].(52)

For i = 1,2,3 we setδi = λiρi − µ2
i , �i = δ

−d/2
i − (λiρi)

−d/2. Note thatλi ,
ρi , µi and so on,i = 1,2,3, are functions ofa, b andc.

The following lower bounds for the determinant of the covariance matrix of
B

H,1
t − BH,1

s and B
H,1
t ′ − B

H,1
s′ , were obtained by Hu (2001) using the local

nondeterminism property of the fractional Brownian motion [see Berman (1973)].

LEMMA 9. There exists a constant k such that, for all a, b, c > 0:

(i)

δ1 ≥ k[(a + b)2Hc2H + (b + c)2H a2H ].(53)

(ii) For i = 2,3

δi ≥ kλiρi.(54)

The following lemma provides some useful inequalities.
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LEMMA 10. We have

k(a + b + c)2H−2ac ≤ µ3 ≤ kb2H−2ac.(55)

For i = 2,3 we have

�i ≤ kµ2
i (λiρi)

−d/2−1(56)

and

�i ≤ k(λiρi)
−d/2.(57)

PROOF. The inequalities in (55) follow from

µ3 = 1
2[(a + b + c)2H + b2H − (a + b)2H − (b + c)2H ]

= H(2H − 1)ac

∫ 1

0

∫ 1

0
(b + vc + ua)2H−2 dudv.

We have, fori = 2,3,

�i =
[(

1− µ2
i

λiρi

)−d/2

− 1
]
(λiρi)

−d/2.

The estimate (54), assumingk < 1, implies
µ2

i

λiρi
≤ 1 − k and (56) holds.

Moreover, (54) also implies (57).�

The following lemma is the basic ingredient in the proof of Theorem 1.

LEMMA 11. Let �T be defined by (15). Then �T < ∞ if and only if
dH < 3/2.

PROOF.

Step 1. SupposedH < 3/2. We claim that∫
[0,T ]3

�i da db dc < ∞(58)

for i = 1,2,3. From (53) we deduce

δ1 ≥ k(a + b)H (b + c)HaHcH

(59)
≥ k(abc)4H/3.

Then, (59) together with the estimate

λ1ρ1 = (a + b)2H (b + c)2H ≥ (abc)4H/3

implies (58) fori = 1.
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To handle the casei = 2, we decompose the integral over the regions{b ≥ ηa},
{b ≥ ηc} and {b < ηa, b < ηc}, for some fixed but arbitraryη > 0. We have,
using (57),

� :=
∫
b≥ηa

�2 da db dc ≤ k

∫
b≥ηa

da db dc

(a + b + c)dHbdH
.

If dH < 1, then this integral is finite. If 1< dH , then

� ≤ k

∫ T

0

∫ T

0

da dc

(a + c)dH

∫ T

ηa
b−Hd db

≤ k

∫ T

0

∫ T

0
a−4dH/3+1c−2dH/3 da dc < ∞.

It is also easy to show that� < ∞ in the case 1= dH . The caseb ≥ ηc can be
treated in a similar way.

To deal with the case bothb < ηa andb < ηc, we make use of the estimate (56)
and the following upper bound forµ2:

µ2 = 1
2[(a + b)2H − a2H + (b + c)2H − c2H ]

(60)
≤ k(a2H−1 + c2H−1)b

for η small enough. In this way we obtain

�2 ≤ k(a4H−2 + c4H−2)(a + b + c)−2H−dHb2−2H−dH

≤ k
[
a(2−d/3)H bdH/3 + c(2−d/3)H bdH/3](a + b + c)−2H−dHb−dH .

Hence,∫
b<ηa,b≤ηc

�2 da db dc

≤ k

∫
b<ηa,b≤ηc

b−dH (a + b + c)−2H−dH

× [
a(2−d/3)H bdH/3 + c(2−d/3)H bdH/3]da db dc

≤ k

∫
[0,T ]3

b−dH (a + b + c)−2H−dHa(2−d/3)H bdH/3 da db dc

≤ k

∫
[0,T ]3

b−2dH/3a−2dH/3c−2dH/3 da db dc,

which is finite ifdH < 3/2.
To handle the casei = 3, we decompose the integral over the regions

{a ≥ η1b, c ≥ η2b}, {a < η1b, c < η2b}, {a ≥ η1b, c < η2b} and {a < η1b,
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c ≥ η2b}. By symmetry it suffices to consider the first three regions. We have,
using (57), ∫

a≥η1b,c≥η2b
�3 da db dc ≤ k

∫ T

0
db

∫ T

η1b

da

adH

∫ T

η2b

dc

cdH

≤ k

∫ T

0

db

b2dH−2 < ∞.

Let us now suppose botha < η1b andc < η2b. Using (55) and (56) and thatH < 3
4

yields

�3 ≤ kb4H−4a2−2H−dH c2−2H−dH ≤ ka−2dH/3c−2dH/3b−2dH/3,

which implies that the integral over this region is finite. Finally, let us consider the
casec < η1b anda ≥ η2b. If Hd > 1, then (57) yields

�3 ≤ k(ac)−Hd

which is integrable. So, we can assumeH ≤ 1
d

≤ 1
2. Then

µ3 = 1
2[(a + b + c)2H − (a + b)2H − (c + b)2H + b2H ]

(61)
≤ kb2H−1c,

if η2 is small enough. Hence, using (56) and (61) we get

�3 ≤ kb4H−2a−2H−dH c2−2H−dH .

Consequently, if−dH + 2H + 1< 0,∫
c<η1b,a≥η2b

�3 da db dc

≤ k

∫
c<η1b,a≥η2b

b4H−2a−2H−dH c2−2H−dH dc db da

≤ k

∫
a≥η2b

a−dH−2Hb−dH+2H+1 db da

≤ k

∫ T

0
a−2dH+2 da,

which is finite ifdH < 3/2. The case−dH + 2H + 1≥ 0 is easier.

Step 2. Assume thatH = 3/(2d), and let us show that�T = ∞. It suffices to
prove that

d

2(2π)d

∫
T

µ2(λρ)−d/2−1 ds dt ds′dt ′ = ∞,(62)
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because from the identity (37) this is the second moment of the second chaos of
the renormalized self-intersection local time. In order to check (62) we will show
that

A :=
∫

0<a+b+c<T
(T − a − b − c)µ2

3(λ3ρ3)
−d/2−1 da db dc = ∞.

With the above notation, we have, using (55), forε > 0 small enough,

A ≥ k

∫
[0,ε]3

(b + c + a)4H−4(ac)2−Hd−2H da db dc := B.

If d = 2, we get

B = k

∫
[0,ε]3

1

(a + b + c)ac
da db dc = ∞.

Ford > 2, we have 2− Hd − 2H = 1/2− 3/d > −1. Hence,

B = k

3− 4H

∫
[0,ε]2

[(c + a)4H−3 − (ε + c + a)4H−3](ac)2−Hd−2H da dc,

and ∫
0<a<c<ε

(c + a)4H−3(ac)2−Hd−2H da dc

≥ 24H−3
∫

0<a<c<ε
a2−Hd−2H c2H−1−Hd da dc

≥ k

∫ ε

0
a2−2Hd da = ∞

because 2H − 1− Hd < −1. �

LEMMA 12. If H = 3/(2d) < 3/4, then for i = 1,2,3,∫ 1

0

∫ b

0
�i(a, b − a,1− b)da db < ∞.

PROOF. Suppose firsti = 1. Then, using (53), we obtain∫ 1

0

∫ b

0
δ
−d/2
1 (a, b − a,1− b)da db

≤ k

∫ 1

0

∫ b

0
[b(1− b) + (1− a)a]−3/2 da db < ∞

and ∫ 1

0

∫ b

0
(λ1ρ1)

−d/2(a, b − a,1− b)da db

≤ k

∫ 1

0
b−3/2[1− (1− b)−1/2]db < ∞.
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For i = 2 we can write, using (56),∫ 1

0

∫ b

0
�2(a, b − a,1− b)da db

≤ k

∫ 1

0

∫ b

0
(b − a)−3/2−2H [(1− a)2H + b2H − (1− b)2H − a2H ]2 da db

≤ k

∫ 1

0

∫ b

0
(b − a)−3/2−2H (b2H − a2H )2 da db.

Then, ifη is small enough,∫
a<b,b−a<ηa

(b − a)−3/2−2H (b2H − a2H )2 da db

≤ k

∫
a<b,b−a<ηa

(b − a)1/2−2H a4H−2 da db < ∞
becauseH < 3/4, and∫

a<b,b−a≥ηa
(b − a)−3/2−2H (b2H − a2H )2 da db

≤ k

∫ 1

0

∫ x/η

0
x−3/2−2H+2∧4H da dx

= k

∫ 1

0
x−1/2−2H+2∧4H dx < ∞.

Finally, for i = 3, we obtain, using (56),∫ 1

0

∫ b

0
�3(a, b − a,1− b)da db

≤ k

∫ 1

0

∫ b

0
a−3/2−2H (1− b)−3/2−2H

× [1+ (b − a)2H − (1− a)2H − b2H ]2 da db < ∞.

In fact, if we fixη1 andη2 small enough, it suffices to check that the above integral
is finite over the regions

G1 = {a < b,a ≥ η1(b − a),1− b ≥ η2(b − a)},
G2 = {a < b,a < η1(b − a),1− b < η2(b − a)},
G3 = {a < b,a ≥ η1(b − a),1− b < η2(b − a)},
G4 = {a < b,a < η1(b − a),1− b ≥ η2(b − a)}.

OnG1 we have, using (57),∫
G1

�3(a, b − a,1− b)da db ≤ k

∫
G1

a−1/2−2H (1− b)−1/2−2H da db.
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In order to estimate this integral we make the decomposition

G1 ⊂ (G1 ∩ {a > ε}) ∪ (G1 ∩ {1− b > ε}) ∪ (G1 ∩ {a < ε,1− b < ε}).
On the setG1 ∩{a > ε} the integrand is bounded byk(1−b)−1/2−2H , and making
the change of variabley = 1 − b, x = b − a, we obtain a finite integral because
H < 3

4. The same approach is used to handle the integral overG1 ∩ {1 − b > ε}.
Finally,

G1 ∩ {a < ε,1− b < ε} ⊂ G1 ∩ {b − a > 1− 2ε},
and, on this set the integrand is bounded.

From (55), we obtain onG2

1+ (b − a)2H − (1− a)2H − b2H ≤ k(b − a)2H−2a(1− b).

Hence,∫
G2

�3(a, b − a,1− b)da db ≤ k

∫
G2

a1/2−2H (1− b)1/2−2H (b − a)4H−4 da db.

On the setG2 ∩ {b − a > ε} this integral is clearly finite, and on the set
G2 ∩ {b − a ≤ ε} we haveb − a ≥ 1− 2ε, and again the integral is finite provided
ε < 1/2.

Fix 0 < ε < 1− η2. Using (56), on the setG3 ∩ {b − a > ε} we have

�3(a, b − a,1− b) ≤ ka1/2−2H (1− b)1/2−2H ε4H−4

which is integrable. On the setG3 ∩ {b − a ≤ ε} we have

a = 1− (b − a) − (1− b) ≥ 1− ε − η2 > 0.

Then, using the estimate

1+ (b − a)2H − (1− a)2H − b2H ≤ |1− b2H | + |(b − a)2H − (1− a)2H |
≤ k[(b − a)2H−1 + a2H−1](1− b),

we obtain, on the setG3 ∩ {b − a ≤ ε},
�3(a, b − a,1− b) ≤ ka−3/2−2H (1− b)1/2−2H [(b − a)4H−2 + a4H−2]

≤ k(1− b)1/2−2H [(b − a)4H−2 + 1],
which is again integrable.�

We will make use of the following notation, fori = 1,2,3:

λ̂i = λi + 1, ρ̂i = ρi + 1,(63)

δ̂i = λ̂i ρ̂i − µ2
i ,(64)

�̂i = (δ̂i)
−d/2 − (λ̂i ρ̂i)

−d/2.(65)
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LEMMA 13. Let d > 2 and 3/(2d) < H < 3/4. Then for i = 1,2,3∫
R

3+
�̂i da db dc < ∞.(66)

PROOF. The proof will be done in several steps.

Step 1. Suppose firsti = 1. Then,

�̂1 ≤ (δ̂1)
−d/2 = (

δ1 + (a + b)2H + (b + c)2H + 1
)−d/2

.

First,�1 is integrable in the region{a, b, c ≥ 1} because the estimate (59) yields

�̂1 ≤ δ
−d/2
1 ≤ k(abc)−2dH/3

anddH > 3/2. On the other hand, using (53) we obtain

�̂1 ≤ [k(a + b)2H c2H + k(b + c)2Ha2H + (a + b)2H + (b + c)2H + 1]−d/2

≤ k[max(a2H + b2H ,a2H + c2H ,b2H + c2H ) + 1]−d/2,

which implies the integrability of�1 on the complement of the region{a, b, c ≥ 1}.

Step 2. Suppose thati = 2. Then, using (54) we obtain

�̂2 ≤ (
δ2 + (a + b + c)2H + b2H + 1

)−d/2

≤ [k(a + b + c)2Hb2H + (a + b + c)2H + b2H + 1]−d/2.

On {a, b, c ≤ 1} the function�̂2 is clearly integrable. If one of the coordinates is
bigger than 1 and the other two are smaller we use the estimate

�̂2 ≤ k[max(a, b, c)2H + 1]−d/2.

If a ≤ 1, b > 1 andc > 1, or if a > 1, b > 1 andc ≤ 1 we use the estimate

�̂2 ≤ k[max(ab, bc)2H + 1]−d/2.

If a > 1, b > 1 andc > 1 we use the estimate

�̂2 ≤ k[(a + b + c)2Hb2H ]−d/2 ≤ k(abc)−2dH/3.

So it only remains to check the integrability of�̂2 in the region

G = {(a, b, c) :b ≤ 1, a, c > 1}.
Using inequality (56), on the regionG we have

�̂2 ≤ kµ2
2(λ̂2ρ̂2)

−d/2

≤ k[(1+ c)2H + (a + 1)2H − c2H − a2H ]2(a + c)−Hd−2H .
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Consequently,∫
G

�̂2 da db dc

≤ k

∫ ∞
1

∫ ∞
1

[(a + 1)2H − a2H ]2(a + c)−Hd−2H da dc

≤ k

∫ ∞
1

∫ ∞
1

a4H−2(a + c)−Hd−2H da dc

≤ k

∫ ∞
1

a2H−Hd−1 da < ∞
becaused > 2.

Step 3. Suppose thati = 3. We claim that (66) holds fori = 3. On {a ≥
η1b, c ≥ η2b} we have using (54)

�̂3 ≤ (δ2 + a2H + c2H + 1)−d/2

≤ k(a2H + 1)−d/2(c2H + 1)−d/2,

and as a consequence, we obtain∫
a≥η1b,c≥η2b

�̂3 da db dc

≤ k

∫ ∞
1

db

∫ ∞
η2b

∫ ∞
η1b

a−Hdc−Hd da dc ≤ k

∫ ∞
1

db

b2dH−2 < ∞,

if dH > 3/2.
On {a < η1b, c < η2b}, using the estimates (56) and (55), we obtain

�̂3 ≤ kb4H−4(ac)2(a2H + 1)−d/2−1(c2H + 1)−d/2−1.

If dH > 3/2 andH < 3/4, then∫
a<η1b,c<η2b

�̂3 da db dc

≤ k

∫
[0,∞)2

(a2H + 1)−d/2−1(c2H + 1)−d/2−1(ac)2 da dc

∫ ∞
a/η1∨c/η2

b4H−4 db

≤ k

∫
a<c

(a2H + 1)−d/2−1(c2H + 1)−d/2−1(ac)2c4H−3 da dc < ∞.

Finally, let us consider the casec < η2b and a ≥ η1b. We have, using the
estimates (61) and (56),

�̂3 ≤ k
(
b4H−2 + (a + b)4H−2)c2(a2H + 1)−d/2−1(c2H + 1)−d/2−1,
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if η1 is small enough. If 2H < 1 we use(a + b)4H−2 ≤ b4H−2, and if 2H > 1
we use

(a + b)4H−2 ≤ (1+ η2)
4H−2b4H−2.

In this way we obtain

�̂3 ≤ k(b4H−2 + a4H−2)c2(a2H + 1)−d/2−1(c2H + 1)−d/2−1.

By decomposing the integral over the regions{1 < c < η2b <
η2
η1

a}, {c < 1 <

η2b <
η2
η1

a}, {c < η2b < 1 <
η2
η1

a} and{c < η2b <
η2
η1

a < 1} we easily show that
the integral is finite. �

REFERENCES

ALBEVERIO, S., HU, Y. Z. and ZHOU, X. Y. (1997). A remark on non smoothness of self intersection
local time of planar Brownian motion.Statist. Probab. Lett. 32 57–65.

BERMAN, S. M. (1973). Local nondeterminism and local times of Gaussian processes.Bull. Amer.
Math. Soc. 79 475–477.

CALAIS , J. Y. and YOR, M. (1987). Renormalization et convergence en loi pour certaines intégrales
multiples associées au mouvement brownien dansR

d . Séminaire de Probabilités XXI.
Lecture Notes in Math. 1247 375–403. Springer, Berlin.

DE FARIA , M., DRUMOND, C. and STREIT, L. (2000). The renormalization of self-intersection
local times. I. The chaos expansion.Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3
223–236.

HE, S. W., YANG, W. Q., YAO, R. Q. and WANG, J. G. (1995). Local times of self-intersection for
multidimensional Brownian motion.Nagoya Math. J. 138 51–64.

HU, Y. Z. (1996). On the self-intersection local time of Brownian motion—via chaos expansion.
Publ. Mat. 40 337–350.

HU, Y. Z. (2001). Self-intersection local time of fractional Brownian motions—via chaos expansion.
J. Math. Kyoto Univ. 41 233–250.

HU, Y. Z. and KALLIANPUR, G. (1998). Exponential integrability and application to stochastic
quantization.Appl. Math. Optim. 37 295–353.

IMKELLER, P., PÉREZ-ABREU, V. and VIVES, J. (1995). Chaos expansions of double intersection
local time of Brownian motion inRd and renormalization.Stochastic Process. Appl. 56
1–34.

NUALART, D. (1995).The Malliavin Calculus and Related Topics. Probability and Its Applications.
Springer, New York.

NUALART, D. and PECCATI, G. (2005). Central limit theorems for sequences of multiple stochastic
integrals.Ann. Probab. 33 177–193.

PECCATI, G. and TUDOR, C. A. (2003). Gaussian limits for vector-valued multiple stochastic
integrals. Preprint.

REZGUI, A. and STREIT, L. (2002). The renormalization of self intersection local times of Brownian
motion. Preprint.

ROSEN, J. (1987). The intersection local time of fractional Brownian motion in the plane.
J. Multivariate Anal. 23 37–46.

VARADHAN, S. R. S. (1969). Appendix to “Euclidean quantum field theory” by K. Symanzik. In
Local Quantum Theory (R. Jost, ed.). Academic Press, New York.



FRACTIONAL SELF-INTERSECTION LOCAL TIME 983

YOR, M. (1985). Renormalization et convergence en loi pour les temps locaux d’intersection du
mouvement brownien dansR3. Séminaire de Probabilités XIX. Lecture Notes in Math.
1123 350–365. Springer, Berlin.

DEPARTMENT OFMATHEMATICS

UNIVERSITY OF KANSAS

405 SNOW HALL

LAWRENCE, KANSAS 66045
USA
E-MAIL : hu@math.ku.edu

FACULTAT DE MATEMÀTIQUES

UNIVERSITAT DE BARCELONA

GRAN VIA 585
08007 BARCELONA

SPAIN

E-MAIL : dnualart@ub.edu


