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HAMMERSLEY’S PROCESS WITH SOURCES AND SINKS

BY ERIC CATOR AND PIET GROENEBOOM

Delft University of Technology

We show that, for a stationary version of Hammersley’s process, with
Poisson “sources” on the positivex-axis, and Poisson “sinks” on the positive
y-axis, an isolated second-class particle, located at the origin at time
zero, moves asymptotically, with probability 1, along the characteristic of
a conservation equation for Hammersley’s process. This allows us to show
that Hammersley’s process without sinks or sources, as defined by Aldous
and Diaconis [Probab. Theory Related Fields 10 (1995) 199–213] converges
locally in distribution to a Poisson process, a result first proved in Aldous
and Diaconis (1995) by using the ergodic decomposition theorem and a
construction of Hammersley’s process as a one-dimensional point process,
developing as a function of (continuous) time on the whole real line. As a
corollary we get the result thatEL(t, t)/t converges to 2, ast → ∞, where
L(t, t) is the length of a longest North-East path from(0,0) to (t, t). The
proofs of these facts need neither the ergodic decomposition theorem nor the
subadditive ergodic theorem. We also prove a version of Burke’s theorem for
the stationary process with sources and sinks and briefly discuss the relation
of these results with the theory of longest increasing subsequences of random
permutations.

1. Introduction. Let Ln be the length of a longest increasing subsequence
of a random permutation of the numbers 1, . . . , n, for the uniform distri-
bution on the set of permutations. As an example, consider the permuta-
tion (5,3,6,2,8,7,1,4,9). Longest increasing subsequences are(3,6,7,9),
(3,6,8,9), (5,6,7,9) and(5,6,8,9). In this example the length of a longest in-
creasing subsequence is equal to 4.

In Hammersley (1972) a discrete-time interacting particle process was intro-
duced, which has at thenth step a number of particles equal to the length of
a longest increasing subsequence of a (uniform) random permutation of lengthn.
This process is defined in the following way.

Start with zero particles. At each step, let, according to the uniform distribution
on [0,1], a random particleU in [0,1] appear; simultaneously, let the nearest
particle (if any) to the right ofU disappear. Then, as shown in Hammersley (1972),
the number of particles aftern steps is distributed asLn. Hammersley (1972) uses
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this discrete-time interacting particle process to show thatELn/
√

n converges to
a finite constantc > 0, which is also the limit in probability [and, as noticed later by
H. Kesten in his discussion of Kingman (1973), the almost sure limit] ofLn/

√
n.

To prove thatELn/
√

n converges to a finite constantc > 0 is the first part of
“Ulam’s problem,” the second part being the determination ofc.

Aldous and Diaconis (1995) introduce a continuous-time version of the
interacting particle process in Hammersley (1972), letting new particles appear
according to a Poisson process of rate 1, using the following rule:

EVOLUTION RULE. At times of a Poisson (ratex) process in time, a pointU
is chosen uniformly on[0, x], independent of the past, and the particle nearest to
the right ofU is moved toU , with a new particle created atU if no such particle
exists in[0, x].

For our purposes the following alternative description is most useful. Start with
a Poisson point process of intensity 1 onR

2+. Now shift the interval[0, x] vertically
through (a realization of ) this point process, and, each time a point is caught,
shift to this point the previously caught point that is immediately to the right. Let
L(x, y) be the number of particles in the interval[0, x] after shifting to heighty.
Then, by Poissonization of the length of the random permutation, we get

LÑx,y

D= L(x, y),

where

Ñx,y = #{points of Poisson point process in[0, x] × [0, y]} D= Poisson(xy).

In an alternative interpretation,L(x, y) is the maximal number of points on a
North-East path from(0,0) to (x, y) with vertices at the points of the Poisson point
process in the interior ofR2+, where the length of a North-East path is defined as the
number of vertices it has at the points of the Poisson point process in the interior
of R

2+. The reason is that a longest North-East path from the origin to(x, y) has
to pick up a point from each space–time path crossing the rectangle[0, x]× [0, y].
Aldous and Diaconis (1995) call the evolving point processy �→ L(·, y), y ≥ 0, of
newly caught and shifted pointsHammersley’s interacting particle process.

We can also introduce the evolving point processx �→ L(x, ·), x ≥ 0, running
from left to right. Analogously to the description above of the process running up,
we shift in this case an interval[0, y] on they-axis to the right through the point
process in the interior of the first quadrant, and, each time a point is caught, shift to
this point the previously caught point that is immediately below this point (if there
is such a point). By symmetry, it is clear that the processesy �→ L(·, y), y ≥ 0, and
x �→ L(x, ·), x ≥ 0, have the same distribution.

A picture of the space–time paths corresponding to the permutation(5,3,6,2,8,

7,1,4,9) is shown in Figure 1. In this case[0, x]× [0, y] contains nine points, and
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FIG. 1. Space–time paths of Hammersley’s process, contained in [0, x] × [0, y].

one can check graphically that there are four longest North-East paths (of length 4)
from (0,0) to (x, y), corresponding to the subsequences(3,6,7,9), (3,6,8,9),
(5,6,7,9) and (5,6,8,9). Following a terminology introduced in Groeneboom
(2001), we call the points of the Poisson point process in the interior ofR

2+
α-points and the North-East corners of the space–time paths of Hammersley’s
processβ-points. In fact, the actualx-coordinates of theα-points in the picture are
different from the numbers 3,6, . . . , but the ranks of thesex-coordinates are given
by 3,6, and so on, if we order theα-points according to the second coordinate.

We use a further extension of Hammersley’s interacting particle process, where
we have not only a Poisson point process in the interior ofR

2+, but also,
independently of this Poisson point process, mutually independent Poisson point
processes on thex- andy-axis. We call the Poisson point process on thex-axis
a process of “sources,” and the Poisson point process on they-axis a process of
“sinks.” The motivation for this terminology is that we now start the interacting
particle process with a nonempty configuration of “sources” on thex-axis, which
are subjected to the Hammersley’s interacting particle process in the interior
of R

2+, and which “escape” through sinks on they-axis, if such a sink appears
to the immediate left of a particle (with no other particles in between). Figure 2
shows how the space–time paths change if we add two sources and three sinks
(at particular locations) to the configuration in Figure 1.

The interacting particle process with sources and sinks was studied in Section 4
of Groeneboom (2002), where it was proved that, if the intensity of the Poisson
processes on thex- andy-axes areλ and 1/λ, respectively, and the intensity of the
Poisson process in the interior ofR

2+ is 1, the process is stationary in the sense that
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FIG. 2. Space–time paths of Hammersley’s process, with sources and sinks.

the crossings of the space–time paths of the half-linesR+ × {y} are distributed
as a Poisson point process of intensityλ, for all y > 0. The stationarity of the
process was proved by an infinitesimal generator argument. It also follows from
the computations in the Appendix of the present paper. The process is studied from
an analytical point of view in Baik and Rains (2000) (see Remark 3.1 in Section 3).

In Section 2 we compare Hammersley’s interacting particle process, as
introduced in Aldous and Diaconis (1995), with the stationary extension of this
process, with sources on thex-axis, and sinks on they-axis. However, as an
intermediate step, we introduce a process with Poisson sources on the positive
x-axis, but no sinks on they-axis. From Theorem 2.1 in the present paper we can
deduce that this particle process, with Poisson sources of intensityλ on the positive
x-axis, but no sinks on they-axis, behaves below an asymptotically linear “wave”
of slopeλ2 through theβ-points as a stationary process.

In a coupling of the process with the stationary process, having both sources and
sinks, this wave can be interpreted as the space–time path of an isolated second-
class (or “ghost”) particle with respect to the stationary process. For the concept
“second-class particle” in the context of totally asymmetric simple exclusion
processes (TASEP), see, for example, Ferrari (1992) or Liggett [(1999), Chapter 3].
The second-class particle jumps to the previous position of the particle that exits
through the first sink at the time of exit, and successively jumps to the previous
positions of particles directly to the right of it, at times where these particles jump
to a position to the left of the second-class particle; see Figure 3. The space–time
path of the isolated second-class particle moves asymptotically, with probability 1,
along the characteristic of a conservation equation for the stationary process. Here
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FIG. 3. Path of isolated second-class particle in the configuration of Figure 2.

we establish a connection with the theory of totally asymmetric simple exclusion
processes. Although we use similar techniques as used for the study of the behavior
of second-class particles in TASEP, the situation is in a certain sense simpler in
our case, since we do not have to condition on having a second-class particle at the
origin at time zero.

In a similar way we prove that Hammersley’s process, with Poisson sinks of
intensity 1/λ, λ > 0, on the positivey-axis, but no sources on thex-axis, behaves
asymptotically as a stationary processabove a wave through theβ-points of
slopeλ2, if the Poisson sinks on the positivey-axis and the points of the Poisson
process (of intensity 1) in the interior ofR2+ are independent. By a coupling
argument, these processes can be compared directly to Hammersley’s process, as
defined in Aldous and Diaconis (1995), which has empty configurations on the
x- andy-axis. The coupling argument gives a direct and “visual” proof of the local
convergence of Hammersley’s process to a Poisson point process with intensityλ,
if one moves out along a “ray”y = λ2x, which is the main result Theorem 5 of
Aldous and Diaconis (1995). The convergence ofEL(t, t)/t to 2, ast → ∞, then
also easily follows. This implies thatELn/

√
n converges to 2, a result first proved

by Logan and Shepp (1977) and Vershik and Kerov (1977).
In Section 3 we study theβ-points of the stationary Hammersley process. For

these points we prove a “Burke theorem,” showing that these points inherit the
Poisson property from theα-points. This allows us to show, using a time reversal
argument, that in the stationary version of Hammersley’s process, a longest
“weakly” North-East path (allowing horizontal and vertical pieces along the
x- or y-axis) only spends a vanishing fraction of time on thex- or y-axis.
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2. Path of an isolated second-class particle and local convergence of
Hammersley’s process. Fix λ > 0, and let t �→ Lλ(·, t) be Hammersley’s
process, now considered as a one-dimensional point process, developing in timet ,
generated by a Poisson process of sources on the positivex-axis of intensityλ,
λ > 0, a Poisson process of sinks on the time axis of intensity 1/λ and a Poisson
process of intensity 1 inR2+, where the Poisson process on thex-axis, the Poisson
process on the time axis and the Poisson process in the plane are independent. It is
helpful to switch from time to time the point of view of Hammersley’s process
as a process of space–time paths inR

2+ and Hammersley’s process as a one-
dimensional point process, developing in time. This is somewhat similar to the two
ways one can view the Brownian sheet. Since the second coordinate can (mostly)
be interpreted as “time” in the sequel, we will denote this coordinate byt instead
of y, although, with slight abuse of language, we will continue to call the vertical
axis the “y-axis,” following standard terminology.

We add an isolated second-class particle to the process, which is located
at the origin at time zero. A picture of the trajectory of the isolated second-
class particle for the configuration shown in Figure 2 is shown in Figure 3.
Theorem 2.1 shows that the space–time path of the second-class particle is
asymptotically linear with slopeλ2. This is to be expected from results on totally
asymmetric simple exclusion processes (TASEP), as given in, for example, Ferrari
(1992). For TASEP Burgers’ equation is the relevant conservation equation in a
continuous approximation to the process. The analogue of Burgers’ equation for
a macroscopic approximation to Hammersley’s process (with neither sources nor
sinks) is

∂u(x, t)

∂t
+ u(x, t)−2∂u(x, t)

∂x
= 0,(2.1)

where u(x, t) is the intensity of the crossings at(x, t); see Liggett [(1999),
page 316], where the corresponding equation is given for the integrated intensity.

This leads us to expect that, analogously to the TASEP results,

t−1Xt
a.s.−→ 1/λ2, t → ∞,

whereXt is thex-coordinate of the second-class particle, and where
a.s.−→ denotes

almost sure convergence, since in this case the path{(x, t) = (t/λ2, t) : t ≥ 0} is a
characteristic for (2.1); compare to, for example, (12.1) in Section 12 of Ferrari
(1992).

THEOREM 2.1. Let t �→ Lλ(·, t) be the stationary Hammersley process,
defined above, with intensities λ and 1/λ on the x- and y-axis, respectively. Let
Xt be the x-coordinate of an isolated second-class particle w.r.t. Lλ at time t ,
located at the origin at time zero. Then

t−1Xt
a.s.−→1/λ2, t → ∞.(2.2)



HAMMERSLEY’S PROCESS 885

The proof of Theorem 2.1 is based on Lemma 2.1. To formulate this lemma
we first introduce some notation. Letηt , t ≥ 0, be the stationary point process,
obtained by starting with a Poisson point process with intensityγ > 0 in (0,∞)

at time 0, and letting it develop according to Hammersley’s process on(0,∞),
with Poisson sinks of intensity 1/γ on they-axis, and a Poisson point process
of intensity 1 in the interior of the first quadrant. Furthermore, letσt , t ≥ 0,
be the stationary process, coupled toηt , t ≥ 0, by using the same points in
the first quadrant as used forη, and starting with a(δ/γ )-“thickening,” δ > γ ,
of the Poisson point process with intensityγ > 0 on thex-axis, obtained by
adding independently a Poisson point process of intensityδ − γ , and lettingσt

develop according to Hammersley’s process on(0,∞). To get stationarity for the
processσ , we replace the sinks on they-axis by aγ /δ-thinned set, obtained by
keeping each sink with probabilityγ /δ, independently for each sink. Then the
sinks on they-axis for the processσ have intensity 1/δ. Finally, we lett �→ ξt be
the process of second-class particles ofη w.r.t.σ , that is, the points ofξt denote the
locations where the point processσt has extra particles w.r.t. the point processηt .

We use the notationηt [0, x] for the number of particles ofηt in the interval
[0, x] at timet , with the convention that particles, escaping through a sink in the
time interval[0, t], are located at zero. We defineσt [0, x] similarly. Furthermore,
we use the notationηt (0, x] (σt (0, x]) for the number of particles ofηt (σt ) in the
open half-open interval(0, x] at timet . Finally we define the “flux”Fξ (x, t) of ξ

throughx at timet by

Fξ (x, t) = σt [0, x] − ηt [0, x].(2.3)

The fluxFξ (x, t) is equal to the number of second-class particles in(0, x] at timet

minus the number of removed sinks in the segment{0} × [0, t] (through which
space–time paths of second-class particles start moving to the right). Relation (2.3)
is in fact a conservation law.

A picture of the processesη and ξ is shown in Figure 4. In this case the
processσ (inside the rectangle[0, x] × [0, t]) is obtained from the processη
by adding two sources at the locationsz1(0) and z2(0) and removing a sink
at heightS0. The crossings of horizontal lines of the space–time paths of the
processσ are the unions of the crossings of (the same) horizontal lines of the
space–time paths of the processesη andξ .

LEMMA 2.1. (i) Let η be Hammersley’s process, defined above, with sources
of intensity γ > 0 and sinks of intensity 1/γ , and let δ > γ . We add independently
a Poisson point process of intensity δ − γ to the Poisson process of sources, and
perform a γ /δ-thinning of the Poisson point process of sinks of intensity 1/γ on the
y-axis. Let σ be Hammersley’s process, coupled to η, and having the augmented
set of sources with intensity δ and the thinned set of sinks with intensity 1/δ.
Finally, let Zt be, at time t , the location of the second-class particle for which
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FIG. 4. Processes η and ξ .

the space–time path starts moving to the right through the smallest removed sink.
Then

lim
t→∞

Zt

t
= 1

γ δ
a.s.

(ii) Let η′ represent Hammersley’s process developing from left to right, with
sources (on the x-axis) of intensity γ > 0 and sinks (on the y-axis) of intensity 1/γ ,
and let 0 < δ < γ . We add independently a Poisson point process of intensity
δ−1 − γ −1 to the Poisson process of sinks of intensity γ −1, and perform a
δ/γ -thinning of the Poisson point process of sources of intensity γ on the x-axis.
Let σ ′ be the process developing from left to right, coupled to η′, and having the
augmented set of sinks with intensity δ−1 as sources and the thinned set of sources
with intensity δ as sinks. Finally, let Z′

t be the location of the second-class particle
of σ ′ w.r.t. η′, for which the space–time path leaves the x-axis through the smallest
removed source (of the original process η). Note that the smallest removed source
of η is a removed sink for η′. Then

lim
t→∞

Z′
t

t
= γ δ a.s.

PROOF. (i) Let x > 0. We have

lim
n→∞

ηn[0, nx]
n

= 1

γ
+ xγ a.s.,

since ηn[0, nx] equalsηn(0, nx] plus the number of sinks for the processη,
contained in{0} × [0, n] (where n is a positive integer), and sinceηn(0, nx]
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and the number of sinks contained in{0} × [0, n] have Poisson distributions
with parametersnxγ andn/γ , respectively. Here we use the stationarity of the
processη, implying thatηn(0, nx] has a Poisson distribution with parameternxγ .
Note that, for eachε > 0,

∞∑
n=1

P {|ηn(0, nx] − nxγ | > nε} < ∞,

and hence, by the Borel–Cantelli lemma,

P {|ηn(0, nx] − nxγ | > nε infinitely often} = 0,

implying the almost sure convergence ofηn(0, nx]/n to xγ , as n → ∞. The
almost sure convergence to 1/γ of the number of sinks for the processη, contained
in {0} × [0, n], divided byn, follows in the same way.

Similarly,

lim
n→∞

σn[0, nx]
n

= 1

δ
+ xδ a.s.

Hence, by (2.3),

lim
n→∞

Fξ (nx,n)

n
= 1

δ
− 1

γ
+ x(δ − γ ) = −(δ − γ )

{
1

γ δ
− x

}
a.s.(2.4)

This limit is negative for 0< x < 1/(γ δ) and positive forx > 1/(γ δ).
We can number the particles ofξ according to their position at time 0, so that,

for i > 0, particlei is the ith second-class particle to the right of the origin at
time 0. We then letzi(t) be the position of theith second-class particle at time
t ≥ 0. For i ≤ 0, we letzi(t), i = 0,−1,−2, . . . , be the second-class particles at
time t , for which the space–time paths leave they-axis through the removed sinks
S0, S1, . . . , respectively, ordering these removed sinks according to the height of
their location on they-axis; note thatZt = z0(t) (see Figure 4).

HenceFξ (x, t) has the representation

Fξ (x, t) = #{i > 0 :zi(t) ≤ x} − #{i ≤ 0 :zi(t) > x}.(2.5)

Note that second-class particleszi(·), i ≤ 0, starting their space–time path to the
right at a removed source in{0} × [0, t], and satisfyingzi(t) ∈ [0, x], do not give
a contribution to (2.5), since they give a contribution toηt [0, x] as a particle
of ηt , located at zero, and a contribution toσt [0, x] as a particle ofσt in the
interval (0, x]. These two contributions cancel in (2.3). It is also clear from (2.5)
that, for fixedt , the fluxFξ (x, t) is nondecreasing inx.

Relation (2.5) shows thatFξ (Zn,n) = Fξ (z0(n), n) is equal to zero at each
timen, and sinceFξ (nx,n) is nondecreasing inx for fixedn, we get from (2.4),

lim
n→∞

Zn

n
= 1

γ δ
a.s.
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But, sinceZt is nondecreasing int , we then also have

lim
t→∞

Zt

t
= 1

γ δ
a.s.

(ii) The result is obtained from part (i) by reflecting the processes w.r.t. the
diagonal, and noting that the reflected processes have the same probabilistic
behavior, but with the role of sources and sinks interchanged. The limit 1/(γ δ)

changes toγ δ because of the interchange ofx- andy-coordinate. �

PROOF OFTHEOREM 2.1. We couple the processt �→ (Lλ(·, t),Xt) with the
processt �→ (ηt , σt ), where the processesη and σ are defined as in part (i) of
Lemma 2.1, and whereLλ(·, t) = ηt andδ > γ = λ. ThenZt ≤ Xt , for all t ≥ 0,
whereZt is defined as in part (i) of Lemma 2.1. This is seen in the following way.

At time zero, we haveZ0 = X0 = 0. Since the processσ is obtained from the
processη by a thinning of the sinks and a “thickening” of the sources, and the
space–time path ofZt leaves the axis{0}×R+ through the smallest removed sink,
it will leave this axis at a time which is larger than or equal to the time the space–
time path ofXt leaves the axis, since the space–time path ofXt will leave the axis
through the smallest sink in the original set of sinks. Note that sinceσ has less
sinks and more sources:

ηt (0, x] ≤ σt (0, x], t ≥ 0, x > 0.(2.6)

This means that not onlyZt becomes positive at a time that is at least as large as
the time thatXt becomes positive, but also moves to the right at a speed that is
not faster than that ofXt . Also note that ifZt jumps to a positionx > Zt−, an
η-particle jumps over it from a positionx′ ≥ x. Here and in the sequel we use the
notationZt− to denote limt ′↑t Zt ′ , with a similar convention forXt−.

If Xt− < x andZt− ≤ Xt−, Xt will jump to x′. SinceZt ≤ x′, Zt can never
overtakeXt . Note that we can havex′ > x if several second-class particles are
next to each other, without a first-class particle in between. In this caseZt does not
have to move to the position of theη particle, but can move to the position of the
closest second-class particle to the right of it.

Hence we have, with probability 1,

lim inf
t→∞

Xt

t
≥ lim

t→∞
Zt

t
= 1

γ δ
= 1

δλ
.

Since this is true for anyδ > λ, we get

lim inf
t→∞

Xt

t
≥ 1

λ2 .

For the reverse inequality, we switch the role of the sources and the sinks,
and view Hammersley’s process as developing from left to right. This time we
add independently a Poisson point process of intensityδ−1 − γ −1 to the Poisson
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process of sinks of intensityγ −1, and perform aδ/γ -thinning of the Poisson point
process of sources of intensityγ on thex-axis, whereγ = λ and 0< δ < γ , and
use the processη′ andσ ′, defined in part (ii) of Lemma 2.1. Note thatη′ has the
same space–time paths as the processη, defined above. In the coupling we now
considerLλ as a process developing from left to right and takeLλ(t, ·) = η′

t .
Let X′

x be an isolated second-class particle for the process running from left
to right in the same way asXt is an isolated second-class particle for the process
running upward. Trajectories ofX andX′ are shown in Figure 5.

We have

X(X′(x)) ≤ x, x ≥ 0,(2.7)

writing temporarilyX′(x) instead ofX′
x andX(u) instead ofXu. Equation (2.7) is

equivalent to noting that the trajectory of(Xt , t) lies above the trajectory of(x,X′
x)

(see also Figure 5). This follows from the fact that if(Xt , t) hits a space–time path
at a point North-West of the point where(x,X′

x) hits the same space–time path,
this must also be true for the next space–time path, since the first trajectory moves
up, and the second trajectory moves to the right.

By Lemma 2.1 and the argument above, now applied on the process moving
from left to right, we get the relation

lim inf
x→∞

X′
x

x
≥ lim

x→∞
Z′

x

x
= δλ,(2.8)

with probability 1. But the almost sure relation lim infx→∞ X′
x/x ≥ δλ implies for

FIG. 5. Trajectories of (Xt , t) and (x,X′
x).
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the processt �→ Xt the almost sure relation

lim sup
t→∞

Xt

t
≤ 1/(δλ),(2.9)

since we get for eachλ′ > 1/(δλ), with probability 1,

lim sup
t→∞

X(t/λ′)
t/λ′ ≤ lim sup

t→∞
X(X′(t))

t/λ′ ≤ lim
t→∞

t

t/λ′ = λ′,

using (2.8) in the first inequality and (2.7) in the second inequality.
Since (2.9) is true for anyδ < λ, we get, with probability 1,

lim sup
t→∞

Xt

t
≤ 1

λ2 .

The result now follows. �

REMARK 2.1. The second-class particleX′
x , introduced at the end of the proof

of Theorem 2.1, plays the same role for Hammersley’s process, running from left
to right, as the second-class particleXt plays for Hammersley’s process, running
up. It therefore has to satisfy

lim
x→∞

X′
x

x
= λ2,(2.10)

with probability 1. Note that we get an interchange of thex andt coordinate which
leads toλ2 in (2.10) instead of the 1/λ2 in (2.2), but that the line along which
(x,X′

x) tends to∞ is in fact the same as the line along which(Xt , t) tends to∞.

The following lemma will allow us to show that Theorem 2.1 implies both the
local convergence of Hammersley’s process to a Poisson process and the relation
c = 2 [which is the central result Theorem 5 on page 204 in Aldous and Diaconis
(1995)].

LEMMA 2.2. Let Lλ be the stationary Hammersley process, defined in The-
orem 2.1. Furthermore, let L

−y
λ be the process obtained from Lλ by omitting the

sinks on the y-axis, and let L−x
λ be the process obtained from Lλ by omitting the

sources on the x-axis. L
−y
λ is coupled to Lλ, by using the same point process in

the interior of R
2+, and the same set of sources on the x-axis, and L−x

λ is coupled
to Lλ, by using the same point process in the interior of R

2+, and the same set of
sinks on the y-axis. Then:

(i) The processes Lλ and L
−y
λ have the same space–time paths below the

space–time path t �→ (Xt , t) of the isolated second-class particle Xt for the
process t �→ Lλ(·, t).
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(ii) The processes Lλ and L−x
λ have the same space–time paths above the

space–time path t �→ (t,X′
t ) of the isolated second-class particle X′

t for the
process t �→ Lλ(t, ·), running from left to right.

PROOF. Omit the first sink at locationy1 on they-axis. Then the path ofLλ

leaving through(0, y1) is changed to a path traveling up through theβ-point with
y-coordinatey1 to the right of(0, y1) until it hits the next path of the original
process. At this level the path of the changed (by omitting the smallest sink)
process is going to travel to the left, and the next path will go up (instead of to
the left) through the closestβ-point to the right. And so on. The “wave” through
the β-points that is caused by leaving out the first sink is in fact the space–time
path of the isolated second-class particleXt (see Figure 3).

We can now repeat the argument for the situation that arises by leaving out the
second sink. This will lead to a “wave” throughβ-points that is going to travel
North of the first wave that was caused by leaving out the first sink. This wave
is the space–time path of an isolated second-class particle in the new situation,
where the first sink is removed. Below the first wave the space–time paths remain
unchanged. The argument runs the same for all the remaining sinks.

(ii) The argument is completely similar, but now applies to the process running
from left to right instead of up (see the end of the proof of Theorem 2.1).�

In the proof of Corollary 2.1 we will need the concept of a “weakly North-East
path,” a concept also used in Baik and Rains (2000).

DEFINITION 2.1. In the stationary version of Hammersley’s process, aweakly
North-East path is a North-East path that is allowed to pick up points from either
the Poisson process on thex-axis or the Poisson process on they-axis before
going strictly North-East, picking up points from the Poisson point process in the
interior R

2+. The length of a weakly North-East path from (0,0) to (x, t) is the
number of points of the Poisson processes on the axes and the interior ofR

2+ on
this path from(0,0) and (x, t). A strictly North-East path is a path that has no
vertical or horizontal pieces (and hence no points from the axes).

Note that the length of a longest weakly North-East path from(0,0) to (x, t) in
the stationary version of Hammersley’s process is equal to the number of space–
time paths intersecting[0, x] × [0, t], just as in the case of Hammersley’s process
without sources or sinks (in which case only strictly North-East paths are possible).

COROLLARY 2.1 [Theorem 5 of Aldous and Diaconis (1995)].Let L be
Hammersley’s process on R+, started from the empty configuration on the axes.
Then:
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(i) For each fixed a > 0, the random particle configuration with counting
process

y �→ L(t + y, at) − L(t, at), y ≥ −t,

converges in distribution, as t → ∞, to a homogeneous Poisson process on R, with
intensity

√
a.

(ii)

lim
t→∞EL(t, t)/t = 2.

PROOF. (i) Fix a′ > a, and let, forλ = √
a′, L

−y
λ be Hammersley’s process,

starting from Poisson sources of intensityλ on the positivex-axis, and running
through an independent Poisson process of intensity 1 in the plane (without
sinks). Then we get from Theorem 2.1 and Lemma 2.2 that the counting process
y �→ L

−y
λ (t + y, at)−L

−y
λ (t, at) converges in distribution to a Poisson process of

intensityλ, since the process, restricted to a finite interval, lies with probability 1 at
level t to the right of the space–time path of the isolated second-class particleXt ,
ast → ∞.

If we couple the original Hammersley process and the processL
−y
λ via the same

Poisson point process in the plane, we get that at any level the number of crossings
of horizontal lines of the processL is contained in the set of crossings of these
lines of the processL−y

λ , since the latter process has sources on thex-axis and
no sinks on they-axis. Hence, for a finite collection of disjoint intervals[ai, bi),
i = 1, . . . , k, and nonnegative numbersθ1, . . . , θk, we obtain

E exp

{
−

k∑
i=1

θi{L(t + bi, at) − L(t + ai, at)}
}

≥ E exp

{
−

k∑
i=1

θi{L−y
λ (t + bi, at) − L

−y
λ (t + ai, at)}

}
.

But the right-hand side converges by Theorem 2.1 and Lemma 2.2 to

exp

{
−

k∑
i=1

λ(bi − ai){1− e−θi }
}
,

so we get

lim inf
t→∞ E exp

{
−

k∑
i=1

θi{L(t + bi, at) − L(t + ai, at)}
}

(2.11)
≥ e−∑k

i=1 λ(bi−ai){1−e−θi }.
A similar argument, but now comparing the processL with a processL−x

λ ,
having sinks of intensity 1/λ = 1/

√
a′ on they-axis (which can be considered to
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be “sources” for Hammersley’s process, running from left to right), but no sources
on thex-axis, shows

lim sup
t→∞

E exp

{
−

k∑
i=1

θi{L(t + bi, at) − L(t + ai, at)}
}

(2.12)
≤ e−∑k

i=1 λ(bi−ai){1−e−θi },

for anya′ < a, since in this case the crossings of horizontal lines of the processL

are supersets of the crossings of these lines by the processL−x
λ .

That the crossings of horizontal lines of the processL are supersets of the
crossings of horizontal lines by the processL−x

λ can be seen in the following way.
Proceeding as in the proof of Lemma 2.2, we can, for the processLλ, omit the
sources one by one, starting with the smallest source. The omission of the smallest
source will generate the path of a second-class particleX′

t , and the paths ofLλ

will, at the interior of a vertical segment of the path ofX′
t , have an extra crossing

of horizontal lines w.r.t. the paths of the process with the omitted source. On the
other hand, the process with the omitted source will have extra crossings ofvertical
lines, since some particles will make bigger jumps to the left. We can now repeat
the argument by omitting the second source, which will lead to a further decrease
of crossings of horizontal lines, and so on.

Combining (2.11) and (2.12), we find

lim
t→∞E exp

{
−

k∑
i=1

θi{L(t + bi, at) − L(t + ai, at)}
}

= e−∑k
i=1(bi−ai)

√
a{1−e−θi },

and the result follows.
(ii) Since the length of a longest strictly North-East path is always smaller than

or equal to the length of a longest weakly North-East path, in the situation of
a stationary process with Poisson sources on the positivex-axis and Poisson sinks
on the positivey-axis, both with intensity 1, we must have, for eacht > 0,

EL(t, t)/t ≤ 2,

since the expected length of a longest weakly North-East path from(0,0) to (t, t)

is 2t for the stationary process.
The latter fact was proved in Groeneboom (2002), and comes from the simple

observation that the length of a longest weakly North-East path from(0,0) to (t, t)

is equal to the total number of paths crossing{0}× [0, t] and[0, t]× {t}. Since the
number of crossings of{0} × [0, t] has a Poisson(t) distribution by construction,
and the number of crossings of[0, t] × {t} also has a Poisson(t) distribution, this
time by the stationarity of the processLλ, whereλ = 1 in the present case, we get
that the expectation of the total number of crossings of the left and upper edge is
exactly 2t .
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To prove conversely that lim inft→∞ EL(t, t)/t ≥ 2, we first note thatL(t, t) is
in fact the number of crossings of Hammersley’s space–time paths with the line
segment[0, t] × {t}. Take a partition 0, t/k,2t/k, . . . , t of the interval[0, t], for
some integerk > 0. Then the crossings of the space–time paths ofL of the segment
[(i − 1)t/k, it/k]× {t} contain the crossings of this line segment by the paths of a
Hammersley processL−x

λi
with sinks of intensity 1/λi = 1/

√
ai , ai < k/i, on the

y-axis, but no sources on thex-axis.
But, by Theorem 2.1 and Lemma 2.2, the crossings of the processL−x

λi
with the

segment[(i − 1)t/k, it/k] × {t} belong, ast → ∞, to the stationary part of the
process with probability 1, sinceai < k/i.

We now have

lim
t→∞ t−1E

{
L−x

λi
(it/k, t) − L−x

λi

(
(i − 1)t/k, t

)} = λi

k
,

by uniform integrability oft−1L−x
λi

(γ t, t), γ ∈ (0, i/k], t ≥ 0, using, for example,
the fact that the second moments are bounded above by the second moments of
the corresponding stationary process with sources of intensityλi and sinks of
intensity 1/λi . Hence we get, by summing over the intervals of the partition,

lim inf
t→∞ EL(t, t)/t ≥ 1

k

k∑
i=1

√
ai.

Lettingai ↑ k/i, we obtain (still for fixedk)

lim inf
t→∞ EL(t, t)/t ≥

k∑
i=1

1/
√

ik = 2
(
1+ O(1/k)

)
,

and (ii) follows by lettingk → ∞ in the latter relation. �

3. Burke’s theorem for Hammersley’s process. In this section we show
that, in the stationary version of Hammersley’s process with sources on the
x-axis and sinks on they-axis, theβ-points inherit the Poisson property from
the α-points. One could consider this as a version of Burke’s theorem for
Hammersley’s process. Burke’s theorem [see Burke (1956)] states that the output
of a stationaryM/M/1 queue is Poisson. An interesting generalization of Burke’s
theorem is discussed in O’Connell and Yor (2002). A version of Burke’s theorem
for totally asymmetric simple exclusion processes is given in Ferrari [(1992),
Theorem 7.1]. Burke’s theorem is essentially based on a time-reversibility property
and for our result on theβ-points this is also the case. Our version of Burke’s
theorem runs as follows.

THEOREM 3.1. Let Lλ be a stationary Hammersley process on [0, T1] ×
[0, T2], generated by a Poisson process of “sources” of intensity λ on the positive
x-axis, a Poisson process of intensity 1/λ of “sinks” on the positive y-axis and
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a Poisson process of intensity 1 in R
2+, where the three Poisson processes are

independent. Let L
β
λ denote the point process of β-points in [0, T1] × [0, T2], that

is, the North-East corners of the space–time paths of the process Lλ, restricted
to [0, T1] × [0, T2], Lin

λ the entries of the space–time paths on the East side of
[0, T1] × [0, T2] and Lout

λ the exits of the space–time paths on the North side. Then

L
β
λ is a homogeneous Poisson point process with intensity 1 in [0, T1] × [0, T2],

Lin
λ is a homogeneous Poisson process of intensity 1/λ and Lout

λ is a homogeneous
Poisson process of intensity λ, and all three processes are independent.

PROOF. We define a state spaceE as the possible finite point configurations
on [0, T1], soE = ⊔∞

n=0 En, where

En = {(x1, . . . , xn) : 0≤ x1 ≤ · · · ≤ xn ≤ T1} (n ≥ 1)

and E0 = {∅}, the empty configuration. We endow eachEn with the usual
topology, which makesE into a locally compact space. We define a Markov
process(Xt)0≤t≤T2 onE such thatXt is the point configuration of the Hammersley
processL on the line[0, T1] × {t}. In particular we have thatX0 is distributed
according to a Poisson process with intensityλ. From the definition of the
Hammersley process it is not hard to see that the generatorG of this Markov
process is given by

Gf (x) =
∫ T1

0
f (Rt x) dt + 1

λ
f (Lx) −

(
1

λ
+ T1

)
f (x)

wheref ∈ C0(E), L corresponds to an exit to the left andRt corresponds to an
insertion of a new Poisson point att , so

L :E → E :Lx =
{

(x2, . . . , xn), if x ∈ En (n ≥ 2),

∅, if x ∈ E0 
 E1,

and for 0< t < T1,

Rt :E → E :Rt x =


(x1, . . . , xi−1, t, xi+1, . . . , xn),

if xi−1 < t ≤ xi (x ∈ En),

(x1, . . . , xn, t), if xn < t (x ∈ En).

Here we use the convention thatx0 = 0. To prove thatG is indeed the generator,
we fix f ∈ C0(E) andx ∈ E and consider the transition operators

Ptf (x) = E
(
f (Xt)|X0 = x

)
(t ≥ 0).

We will consider the process for a time interval[0, h] (h ↓ 0) and callAh the
number of Poisson points in the strip[0, T1] × [0, h] andSh the number of sinks
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in {0} × [0, h]. Then

Phf (x) = f (x)P (Ah = 0 andSh = 0)

+ 1

T1

∫ T1

0
f (Rt x) dt · P(Ah = 1 andSh = 0)

+ f (Lx)P (Ah = 0 andSh = 1) + O(h2)

= f (x)

(
1− T1h − 1

λ
h

)
+ h

∫ T1

0
f (Rt x) dt + h

λ
f (Lx) + O(h2).

This shows that for everyf ∈ C0(E) and everyx ∈ E,
d

dt

∣∣∣∣
t=0

Ptf (x) = Gf (x).

SinceXt is clearly a homogeneous Markov process, we get fort ∈ [0, T2],
d

ds

∣∣∣∣
s=t

Psf (x) = GPtf (x).(3.1)

Now we note thatG is a continuous operator onC0(E), soetG exists and is also a
continuous operator. Since

d

ds

∣∣∣∣
s=t

esGf (x) = GetGf (x),

(3.1) together with the uniqueness of solutions of a differential equation proves
that

Ptf (x) = etGf (x).

The key idea to prove the theorem is to consider the time-reversed process

X̃s = lim
s′↓s

XT2−s′ (X̃T2 = X0).

We take the left-limit of the original processX to ensure the càdlàg property
of (X̃s)0≤s≤T2. Since, givenXt , the past of the processX is independent
of the future, it follows immediately that̃X is a Markov process, possibly
inhomogeneous. However, if we defineµ as the probability measure onE induced
by a Poisson process of intensityλ, thenX0 ∼ µ andµ is a stationary measure for
the generatorG, which implies thatX̃ also is stationary and homogeneous. The
stationarity ofX was shown in Groeneboom (2002), but will also be a consequence
of calculations done in the Appendix. Now consider the transition operators

P̃tf (x) = E
(
f (X̃t )|X̃0 = x

)
(t ≥ 0)

for the time-reversed process. Then, forf,g ∈ C0(E) andh > 0,

E
(
f (Xt+h)g(Xt)

) = E
(
g(Xt)E

(
f (Xt+h)|Xt

))
= E

(
Phf (Xt)g(Xt)

)
=

∫
E

Phf (x)g(x)µ(dx).
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We also have

E
(
f (Xt+h)g(Xt)

) = E
(
f (Xt+h)E

(
g(Xt)|Xt+h

))
= E

(
f (Xt+h)P̃hg(Xt+h)

)
=

∫
E

f (x)P̃hg(x)µ(dx).

We use that, due to the stationarity of the processX, Xt and Xt+h both have
marginal distributionµ. Combining these results gives∫

E
Phf (x)g(x)µ(dx) =

∫
E

f (x)P̃hg(x)µ(dx).(3.2)

In the Appendix we calculate the operatorG∗, defined by the equation∫
E

Gf (x)g(x)µ(dx) =
∫
E

f (y)G∗g(y)µ(dy) for all f,g ∈ C0(E).(3.3)

It is shown there that

G∗g(y) =
∫ T1

0
g(Lsy) ds + 1

λ
g(Ry) −

(
1

λ
+ T1

)
g(y),(3.4)

where in an analogous way as before we defineR :E → E as an exit to the right
andLs :E → E as a new point ats such that the point directly to the left ofs
moves to the right.

We will use (3.4) several times. First of all, sinceG∗1 = 0, it shows thatµ is a
stationary measure. Second, we see that forg ∈ L∞(µ)

‖G∗g‖∞ ≤ 2
(

1

λ
+ T1

)
‖g‖∞,

which proves thatG is in fact a continuous operator onL1(µ), as well as a
continuous operator onC0(E). SincePt = etG, Pt is also a continuous operator
on L1(µ). Therefore, (3.2) now shows that̃Pt = P ∗

t = etG∗
, so in fact, using the

same argument as before,G̃ = G∗. So the reversed process has the generatorG∗.
Now we define a reflected Hammersley processXV as follows: we take the

original stationary Hammersley process and reflect all the space–time paths with
respect to the line segment{1

2T1} × [0, T2]; call this avertical reflection. So all
points now move to the right and exit on the East side. One verifies that the
generator forXV is given byG∗ in the same way we did it for the processX,
and asXV also starts with a Poisson distribution of intensityλ, it has the same
distribution as̃X. Note that if one wishes to make a picture of the space–time paths
of X̃, one can take the original Hammersley process and reflect all the space–time
paths with respect to the line-segment[0, T1] × {1

2T2}, ahorizontal reflection.
Since in XV all the jumps in(0, T1) × (0, T2) are made toward a point of

a vertically reflected Poisson process, and in the processX̃ all these jumps are
made to the horizontally reflectedβ-points of the original Hammersley process,
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we have proved that theβ-points are distributed according to a Poisson process
with intensity 1. Furthermore, in the processXV paths exit on the East side
according to a Poisson process with intensity 1/λ, and this corresponds toLin

λ ,
horizontally reflected. The processLout

λ , also horizontally reflected, corresponds to
the entries ofXV at thex-axis, and is therefore Poisson with intensityλ. Finally,
the independence of the three processes follows from the fact that this is true (by
construction) forXV . �

Theorem 3.1 allows us to show that a longest weakly North-East path
from (0,0) to (t/λ2, t) only spends a vanishing proportion of time on either the
x- or y-axis. For the concept of longest weakly North-East path, see Definition 2.1.

COROLLARY 3.1. Under the same conditions as Theorem 3.1, a longest
weakly North-East path from (0,0) to (t/λ2, t) spends a vanishing proportion of
time on either the x- or y-axis, in the sense that the maximum distance from (0,0)

of the point where a longest weakly North-East path leaves the x- or y-axis, divided
by t , tends to zero with probability 1, as t → ∞.

PROOF. Consider a longest weakly North-East path from(0,0) to (t/λ2, t).
Such a path can be associated with a path of a second-class particle from(t/λ2, t)

to (0,0) for the time-reversed process, running through the sameα-points as the
longest weakly North-East path, but for which the roles ofα- andβ-points are
interchanged. This means that for the reversed process the associated path lies
below or coincides with the path of the second-class particle that starts moving
through the crossing of the upper edge[0, t/λ2] × {t}, closest to(t/λ2, t), moves
down to the firstα-point on the path of the crossing, then moves to the left until it
hits the path below the highest path crossing the rectangle[0, t/λ2] × [0, t], then
moves down again, and so on. Similarly this path lies above or coincides with the
path of the second-class particle that starts moving to the left through the crossing
of the right edge{t/λ2} × [0, t], closest to(t/λ2, t), starts moving down when it
hits theα-point on the path of the crossing, moves to the left when it hits the next
path, and so on.

According to Theorem 2.1 and Remark 2.1, now applied on the reversed
process, the “β waves” of the lower and upper path are asymptotically linear
along the line through the origin with slopeλ2. This implies the statement of
Corollary 3.1. �

REMARK 3.1. It is proved in Baik and Rains (2000) thatt−1/3{Lλ(t, t)− 2t},
whereLλ(t, t) is the length of a longest North-East path from(0,0) to (t, t) in the
stationary Hammersley process (as defined in Theorem 3.1, withλ = 1), converges
in distribution to a distribution functionF0, which is related to, but different from
the Tracy–Widom distribution function. This has the interesting consequence that
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the correlation between the number of points on the left edge and the number of
crossings of the upper edge of the square[0, t]2 tends to−1, ast → ∞. Otherwise
the variance ofLλ(t, t) would be larger thanηt , for someη > 0, instead of being
of orderO(t2/3). We do not need their result in our argument, however. Baik and
Rains (2000) use an analytical approach, applying the Deift–Zhou steepest descent
method to an appropriate Riemann–Hilbert problem (after using a representation
of the distribution function in terms of Toeplitz determinants). This approach is
rather different from the approach taken here.

As noted in Baik and Rains (2000), the stationary process is a transition between
two situations: if the intensities of the Poisson processes on thex-axis andy-axis
are strictly smaller than 1, we get thatt−1/3{Lλ(t, t)−2t} converges in distribution
to the Tracy–Widom distribution. On the other hand, if one of these intensities is
bigger than 1 (but the intensities are not equal), we get convergence ofLλ(t, t)

to a normal distribution, with the usualt−1/2 scaling (and a different centering
constant).

REMARK 3.2. In Groeneboom (2001) a signed measure processVt was
introduced, countingα- and β-points contained in regions of the plane. The
Vt -measure of a rectangle[0, x] × [0, y] is defined as the number ofα-points
minus the number ofβ-points in the rectangle[0, tx] × [0, ty], divided byt . The
Vt -process has the property that

Vt(S) → V (S),

almost surely, for rectanglesS in the plane, whereV is a positive measure with
density

fV (x, y)
def= ∂2

∂x ∂y
V (x, y) = c

4
√

xy
, x, y > 0.(3.5)

Here we use the notationV (x, y) to denote theV -measure of the rectangle
[0, x] × [0, y]. Likewise we writeVt(x, y) for the Vt -measure of the rectangle
[0, x] × [0, y].

The problem of proving part (ii) of Corollary 2.1 of the present paper was
reduced to showing that∫

B
Ṽt (u, v) dVt (u, v)

a.s.−→
∫
B

V (u, v) dV (u, v) = 1
4c2xy,(3.6)

where

Ṽt (u, v) =
∫
[0,u]×[0,v)

dVt (u
′, v′).

Although (3.6) indeed has to hold, the argument for it, given in Groeneboom
(2001), is incomplete, and needs a result like Theorem 2.1 of the present paper to
be completed. [The difficulty is caused by the locally unbounded variation of the
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measureVt , ast → ∞, which has to be treated carefully to explain why we needṼt

as integrand in the integral in the left-hand side of (3.6) instead of, e.g.,Vt , which
leads to an integral that is asymptotically twice as large.] But since Theorem 2.1
allows us to prove both the local convergence to a Poisson process and convergence
of EL(t, t)/t to 2, we did not pursue the approach in Groeneboom (2001) any
further in the present paper.

APPENDIX

The purpose of this Appendix is to prove (3.4). Remember that

E =
∞⊔

n=0

En

whereE0 = {∅} and

En = {(x1, . . . , xn) : 0≤ x1 ≤ · · · ≤ xn ≤ T1}.
A Poisson process of intensityλ induces a probability measureµ on E. Denote
by µn the restriction ofµ to En, so µn(dx) = λne−aT1 dx. The generator was
given by

G :C0(E) → C0(E) :Gf (x) =
∫ T1

0
f (Rt x) dt + 1

λ
f (Lx) −

(
1

λ
+ T1

)
f (x).

Define G+f = Gf + (1/λ + T1)f ; we will calculate the dual ofG+. Let
f,g ∈ C0(E):∫

E
G+f (x)g(x)µ(dx)

= e−λT1G+f (∅)g(∅) +
∞∑

n=1

∫
En

G+f (x)g(x)µn(dx)

= e−λT1
1

λ
f (∅)g(∅) + e−λT1

∫ T1

0
f (t)g(∅) dt

+ e−λT1

∞∑
n=1

[
λn

∫
En

∫ T1

0
f (Rt x)g(x) dt dx + λn−1

∫
En

f (Lx)g(x) dx

]

= e−λT1
1

λ
f (∅)g(∅) + e−λT1

∫ T1

0
f (t)g(∅) dt

+ e−λT1

∞∑
n=1

n∑
i=1

λn
∫
{x∈En,xi−1<t≤xi}

f (x1, . . . , xi−1, t, xi+1, . . . , xn)

× g(x) dx dt
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+ e−λT1

∞∑
n=1

λn
∫
{x∈En,t>xn}

f (x1, . . . , xn, t)g(x) dx dt

+ e−λT1

∞∑
n=1

λn−1
∫
En

f (x2, . . . , xn)g(x) dx.

Now we make a change of variable for each term in such a way that we getf (y)

in each of the integrals:

∫
E

G+f (x)g(x)µ(dx)

= e−λT1
1

λ
f (∅)g(∅) + e−λT1

∫ T1

0
f (y)g(∅) dy

+ e−λT1

∞∑
n=1

n∑
i=1

λn
∫
{y∈En,yi≤s≤yi+1}

f (y)g(y1, . . . , yi−1, s,

yi+1, . . . , yn) dy ds

+ e−λT1

∞∑
n=1

λn
∫
En+1

f (y)g(y1, . . . , yn) dy

+ e−λT1

∞∑
n=1

λn−1
∫
{y∈En−1,s≤y1}

f (y)g(s, y1, . . . , yn−1) dy ds

= 1

λ
f (∅)g(∅)µ0(E0) + 1

λ

∫
E1

f (y)g(∅)µ1(dy)

+
∞∑

n=1

n∑
i=1

∫
{y∈En,yi≤s≤yi+1}

f (y)g(y1, . . . , yi−1, s,

yi+1, . . . , yn)µn(dy) ds

+
∞∑

n=0

∫
{y∈En,s≤y1}

f (y)g(s, y1, . . . , yn)µn(dy) ds

+
∞∑

n=2

1

λ

∫
En

f (y)g(y1, . . . , yn−1)µn(dy)

=
∞∑

n=0

∫
En

f (y)

(∫ T1

0
g(Lsy) ds

)
µn(dy) +

∞∑
n=0

1

λ

∫
En

f (y)g(Ry)µn(dy)

=
∫
E

f (y)

(∫ T1

0
g(Lsy) ds + 1

λ
g(Ry)

)
µ(dy).
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Here we defineR as an exit to the right andLs as a new point ats such that the
point directly to the left ofs moves to the right, that is,

R :E → E :Rx =
{

(x1, . . . , xn−1), if x ∈ En (n ≥ 2),

∅, if x ∈ E0 
 E1,

and for 0< s < T1,

Ls :E → E :Lsx =


(x1, . . . , xi−1, s, xi+1, . . . , xn),

if xi ≤ s < xi+1 (x ∈ En),

(s, x1, . . . , xn), if s < x1 (x ∈ En).

SinceG∗g = G∗+g − (1/λ + T1)g, we have shown that

G∗g(y) =
∫ T1

0
g(Lsy) ds + 1

λ
g(Ry) −

(
1

λ
+ T1

)
g(y).

Acknowledgments. We are much indebted to Ronald Pyke for his comments
and encouragement. We also want to thank Timo Seppäläinen for pointing out
the connection of our result with the theory of second-class particles, which led to
a simplification of the original proofs. Finally, we would like to thank an Associate
Editor and referee for their helpful remarks.

REFERENCES

ALDOUS, D. and DIACONIS, P. (1995). Hammersley’s interacting particle process and longest
increasing subsequences.Probab. Theory Relatated Fields 103 199–213.

ALDOUS, D. and DIACONIS, P. (1999). Longest increasing subsequences: From patience sorting to
the Baik–Deift–Johansson theorem.Bull. Amer. Math. Soc. 36 413–432.

BAIK , J. and RAINS, E. (2000). Limiting distributions for a polynuclear growth model with external
sources.J. Statist. Phys. 100 523–541.

BURKE, P. J. (1956). The output of a queueing system.Oper. Res. 4 699–704.
FERRARI, P. A. (1992). Shocks in the Burgers equation and the asymmetric simple exclusion

process. InAutomata Networks, Dynamical Systems and Statistical Physics (E. Goles
and S. Martinez, eds.) 25–64. Kluwer, Dordrecht.

GROENEBOOM, P. (2001). Ulam’s problem and Hammersley’s process.Ann. Probab. 29 683–690.
GROENEBOOM, P. (2002). Hydrodynamical methods for analyzing longest increasing subsequences.

J. Comput. Appl. Math. 142 83–105.
HAMMERSLEY, J. M. (1972). A few seedlings of research.Proc. Sixth Berkeley Symp. Math. Statist.

Probab. 1 345–394. Univ. California Press, Berkeley.
KINGMAN , J. F. C. (1973). Subadditive ergodic theory.Ann. Probab. 1 883–909.
LIGGETT, T. M. (1999).Stochastic Interacting Systems, Contact, Voter and Exclusion Processes.

Springer, New York.
LOGAN, B. F. and SHEPP, L. A. (1977). A variational problem for random Young tableaux.Adv.

Math. 26 206–222.
O’CONNELL, N. and YOR, M. (2002). A representation for non-colliding random walks.Electron.

Comm. Probab. 7 1–12.
SEPPÄLÄINEN, T. (1996). A microscopic model for the Burgers equation and longest increasing

subsequences.Electron. J. Probab. 1 1–51.



HAMMERSLEY’S PROCESS 903

VERSHIK, A. M. and KEROV, S. V. (1977). Asymptotics of the Plancherel measure of the
symmetric group and the limiting form of Young tableaux.Soviet Math. Dokl. 18
527–531. (Translation ofDokl. Acad. Nauk SSSR 32 1024–1027.)

DEPARTMENT OFAPPLIED MATHEMATICS (DIAM)
DELFT UNIVERSITY OF TECHNOLOGY

MEKELWEG 4
2628 CD DELFT

THE NETHERLANDS

E-MAIL : e.a.cator@ewi.tudelft.nl
p.groeneboom@ewi.tudelft.nl


