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ERGODICITY OF STOCHASTIC DIFFERENTIAL EQUATIONS
DRIVEN BY FRACTIONAL BROWNIAN MOTION1

BY MARTIN HAIRER

University of Warwick

We study the ergodic properties of finite-dimensional systems of SDEs
driven by nondegenerate additive fractional Brownian motion with arbitrary
Hurst parameterH ∈ (0,1). A general framework is constructed to make
precise the notions of “invariant measure” and “stationary state” for such a
system. We then prove under rather weak dissipativity conditions that such an
SDE possesses a unique stationary solution and that the convergence rate of
an arbitrary solution toward the stationary one is (at least) algebraic. A lower
bound on the exponent is also given.
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1. Introduction and main result. In this paper, we investigate the long-time
behavior of stochastic differential equations driven by fractional Brownian motion.
Fractional Brownian motion (or FBM for short) is a centered Gaussian process
satisfyingBH(0) = 0 and

E|BH(t) − BH(s)|2 = |t − s|2H , t, s > 0,(1.1)

whereH , the Hurst parameter, is a real number in the rangeH ∈ (0,1). When
H = 1

2, one recovers of course the usual Brownian motion, so this is a natural one-
parameter family of generalizations of the “standard” Brownian motion. It follows
from (1.1) that FBM is also self-similar, but with the scaling law

t �→ BH(at) ≈ t �→ aHBH(t),

where “≈” denotes equivalence in law. Also, the sample paths ofBH areα-Hölder
continuous for everyα < H . The main difference between FBM and the usual
Brownian motion is that it is neither Markovian nor a semimartingale, so most
standard tools from stochastic calculus cannot be applied to its analysis.

Our main motivation is to tackle the problem of ergodicity in non-Markovian
systems. Such systems arise naturally in several situations. In physics, stochastic
forces are used to describe the interaction between a (small) system and its (large)
environment. There is no a priori reason to assume that the forces applied by
the environment to the system are independent over disjoint time intervals. In
statistical mechanics, for example, a non-Markovian noise term appears when one
attempts to derive the Langevin equation from first principles [12, 23]. Self-similar
stochastic processes like FBM appear naturally in hydrodynamics [17]. It appears
that FBM is also useful to model long-time correlations in stock markets [7, 22].

Little seems to be known about the long-time behavior of non-Markovian
systems. In the case of the non-Markovian Langevin equation (which isnot
covered by the results in this paper due to the presence of a delay term), the
stationary solution is explicitly known to be distributed according to the usual
equilibrium Gibbs measure. The relaxation toward equilibrium is a very hard
problem that was solved in [12, 13]. It is, however, still open in the nonequilibrium
case, where the invariant state cannot be guessed a priori. One well-studied general
framework for the study of systems driven by noise with extrinsic memory like the
ones considered in this paper is given by the theory of random dynamical systems
(see the monograph [1] and the reference list therein). In that framework, the
existence of random attractors, and therefore theexistence of invariant measures,
seems to be well understood. On the other hand, the problem ofuniqueness (in an
appropriate sense; see the comment following Theorem 1.3 below) of the invariant
measure on the random attractor seems to be much harder, unless one can show
that the system possesses a unique stochastic fixed point. The latter situation was
studied in [19] for infinite-dimensional evolution equations driven by FBM.

The reasons for choosing FBM as driving process for (SDE) below are twofold.
First, in particular whenH > 1

2, FBM presents genuine long-time correlations that
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persist even under rescaling. The second reason is that there exist simple, explicit
formulae that relate FBM to “standard” Brownian motion, which simplifies our
analysis. We will limit ourselves to the case where the memory of the system
comes entirely from the driving noise process, so we do not consider stochastic
delay equations.

We will only consider equations driven by nondegenerate additive noise, that is,
we consider equations of the form

dxt = f (xt ) dt + σ dBH(t), x0 ∈ Rn,(SDE)

wherext ∈ Rn, f : Rn → Rn, BH is ann-dimensional FBM with Hurst parameter
H andσ is a constant and invertiblen × n matrix. Of course, (SDE) should be
interpreted as an integral equation.

In order to ensure the existence of globally bounded solutions and in order to
have some control on the speed at which trajectories separate, we make throughout
the paper the following assumptions on the components of (SDE):

(A1) Stability. There exist constantsC(A1)
i > 0 such that

〈f (x) − f (y), x − y〉 ≤ min
{
C

(A1)
1 − C

(A1)
2 ‖x − y‖2,C

(A1)
3 ‖x − y‖2},

for everyx, y ∈ Rn.
(A2) Growth and regularity. There exist constantsC,N > 0 such thatf and its

derivative satisfy

‖f (x)‖ ≤ C(1+ ‖x‖)N , ‖Df (x)‖ ≤ C(1+ ‖x‖)N ,

for everyx ∈ Rn.
(A3) Nondegeneracy. Then × n matrixσ is invertible.

REMARK 1.1. We can assume that‖σ‖ ≤ 1 without any loss of generality.
This assumption will be made throughout the paper in order to simplify some
expressions.

One typical example that we have in mind is given byf (x) = x − x3, x ∈ R,

or any polynomial of odd degree with negative leading coefficient. Notice thatf

satisfies (A1) and (A2), but that it is not globally Lipschitz continuous.
When the Hurst parameterH of the FBM driving (SDE) is bigger than12, more

regularity forf is required, and we will then sometimes assume that the following
stronger condition holds instead of (A2):

(A2′) Strong regularity. The derivative off is globally bounded.
Our main result is that (SDE) possesses aunique stationary solution. Further-

more, we obtain an explicit bound showing that every (adapted) solution to (SDE)
converges toward this stationary solution, and that this convergence is at least al-
gebraic. We make no claim concerning the optimality of this bound for the class
of systems under consideration. Our results are slightly different for small and for
large values ofH , so we state them separately.
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THEOREM 1.2 (Small Hurst parameter).Let H ∈ (0, 1
2) and let f and σ

satisfy (A1)–(A3). Then, for every initial condition, the solution to (SDE)
converges toward a unique stationary solution in the total variation norm.
Furthermore, for every γ < maxα<H α(1 − 2α), the difference between the
solution and the stationary solution is bounded by Cγ t−γ for large t .

THEOREM 1.3 (Large Hurst parameter).Let H ∈ (1
2,1) and let f and

σ satisfy (A1)–(A3) and (A2′). Then, for every initial condition, the solution
to (SDE) converges toward a unique stationary solution in the total variation
norm. Furthermore, for every γ < 1

8, the difference between the solution and the
stationary solution is bounded by Cγ t−γ for large t .

REMARK 1.4. The “uniqueness” part of these statements should be under-
stood as uniqueness in law in the class of stationary solutions adapted to the nat-
ural filtration induced by the two-sided FBM that drives the equation. There could
in theory be other stationary solutions, but they would require knowledge of the
future to determine the present, so they are usually discarded as unphysical.

Even in the context of Markov processes, similar situations do occur. One can
well have uniqueness of the invariant measure, but nonuniqueness of the stationary
state, although other stationary states would have to foresee the future. In this
sense, the notion of uniqueness appearing in the above statements is similar to the
notion of uniqueness of the invariant measure for Markov processes. (See, e.g.,
[1, 4, 5] for discussions on invariant measures that are not necessarily measurable
with respect to the past.)

REMARK 1.5. The caseH = 1
2 is not covered by these two theorems, but it is

well known that the convergence toward the stationary state is exponential in this
case (see, e.g., [21]). In both cases, the word “total variation” refers to the total
variation distance between measures on the space of paths; see also Theorem 6.1
below for a rigorous formulation of the results above.

1.1. Idea of proof and structure of the paper. Our first task is to make
precise the notions of “initial condition,” “invariant measure,” “uniqueness” and
“convergence” appearing in the formulation of Theorems 1.2 and 1.3. This will be
achieved in Section 2, where we construct a general framework for the study of
systems driven by non-Markovian noise. Section 3 shows how (SDE) fits into that
framework.

The main tool used in the proof of Theorems 1.2 and 1.3 is a coupling
construction similar in spirit to the ones presented in [11, 20]. More precisely, we
first show by some compactness argument that there exists at least one invariant
measureµ∗ for (SDE). Then, given an initial condition distributed according to
some arbitrary measureµ, we construct a “coupling process”(xt , yt ) on Rn × Rn

with the following properties:
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1. The processxt is a solution to (SDE) with initial conditionµ∗.
2. The processyt is a solution to (SDE) with initial conditionµ.
3. The random timeτ∞ = min{t |xs = ys ∀ s ≥ t} is almost surely finite.

The challenge is to introduce correlations betweenxs andys in precisely such a
way thatτ∞ is finite. If this is possible, the uniqueness of the invariant measure
follows immediately. Bounds on the moments ofτ∞ furthermore translate into
bounds on the rate of convergence toward this invariant measure. In Section 4, we
expose the general mechanism by which we construct this coupling. Section 5 is
then devoted to the precise formulation of the coupling process and to the study
of its properties, which will be used in Section 6 to prove Theorems 1.2 and 1.3.
We conclude this paper with a few remarks on possible extensions of our results to
situations that are not covered here.

2. General theory of stochastic dynamical systems. In this section, we
first construct an abstract framework that can be used to model a large class of
physically relevant models where the driving noise is stationary. Our framework is
very closely related to the framework of random dynamical systems with, however,
one fundamental difference. In the theory of random dynamical systems (RDS),
the abstract space� used to model the noise part typically encodes thefuture of
the noise process. In our framework of “stochastic dynamical systems” (SDS) the
noise spaceW typically encodes thepast of the noise process. As a consequence,
the evolution onW will be stochastic, as opposed to the deterministic evolution
on� one encounters in the theory of RDS. This distinction may seem futile at first
sight, and one could argue that the difference between RDS and SDS is nonexistent
by adding the past of the noise process to� and its future toW.

The additional structure we require is that the evolution onW possesses a
unique invariant measure. Although this requirement may sound very strong, it is
actually not, and most natural examples satisfy it, as long asW is chosen in such a
way that it does not contain information about the future of the noise. In very loose
terms, this requirement of having a unique invariant measure states that the noise
process driving our system is stationary and that the Markov process modeling its
evolution captures all its essential features in such a way that it could not be used
to describe a noise process different from the one at hand. In particular, this means
that there is a continuous inflow of “new randomness” into the system, which is a
crucial feature when trying to apply probabilistic methods to the study of ergodic
properties of the system. This is in opposition to the RDS formalism, where the
noise is “frozen,” as soon as an element of� is chosen.

From the mathematical point of view, we will consider that the physical process
we are interested in lives on a “state space”X and that its driving noise belongs to a
“noise space”W. In both cases, we only consider Polish (i.e., complete, separable,
and metrizable) spaces. One should think of the state space as a relatively small
space which contains all the information accessible to a physical observer of the
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process. The noise space should be thought of as a much bigger abstract space
containing all the information needed to construct a mathematical model of the
driving noise up to a certain time. The information contained in the noise space is
not accessible to the physical observer.

Before we state our definition of an SDS, we will recall several notation and
definitions, mainly for the sake of mathematical rigor. The reader can safely skip
the next section and come back to it for reference concerning the notation and the
mathematically precise definitions of the concepts that are used.

2.1. Preliminary definitions and notation. First of all, recall he definition of a
transition semigroup:

DEFINITION 2.1. Let(E,E ) be a Polish space endowed with its Borelσ -field.
A transition semigroup Pt on E is a family of mapsPt :E × E → [0,1] indexed
by t ∈ [0,∞) such that

(i) for everyx ∈ E, the mapA �→ Pt (x,A) is a probability measure onE and,
for everyA ∈ E , the mapx �→ Pt (x,A) is E -measurable,

(ii) one has the identity

Ps+t (x,A) =
∫
E
Ps(y,A)Pt (x, dy),

for everys, t > 0, everyx ∈ E and everyA ∈ E ,
(iii) P0(x, ·) = δx for everyx ∈ E.

We will freely use the notation(Ptψ)(x) = ∫
E ψ(y)Pt (x, dy), (Ptµ)(A) =∫

E Pt (x,A)µ(dx), whereψ is a measurable function onE and µ is a measure
onE.

Since we will always work with topological spaces, we will require our
transition semigroups to have good topological properties. Recall that a sequence
{µn} of measures on a topological spaceE is said to converge toward a limiting
measureµ in the weak topology if∫

E
ψ(x)µn(dx) →

∫
E
ψ(x)µ(dx) ∀ψ ∈ Cb(E),

whereCb(E) denotes the space of bounded continuous functions fromE into R.
In the sequel, we will use the notationM1(E) to denote the space of probability
measures on a Polish spaceE, endowed with the topology of weak convergence.

DEFINITION 2.2. A transition semigroup Pt on a Polish spaceE is Feller if it
mapsCb(E) into Cb(E).

REMARK 2.3. This definition is equivalent to the requirement thatx �→
Pt (x, ·) is continuous fromE to M1(E). As a consequence, Feller semigroups
preserve the weak topology in the sense that ifµn → µ in M1(E), thenPtµn →
Ptµ in M1(E) for every givent .
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Now that we have defined the “good” objects for the “noisy” part of our
construction, we turn to the trajectories on the state space. We are looking for a
space which has good topological properties but which is large enough to contain
most interesting examples. One such space is the space of càdlàg paths (continu à
droite, limite à gauche—continuous on the right, limits on the left), which can be
turned into a Polish space when equipped with a suitable topology.

DEFINITION 2.4. Given a Polish spaceE and a positive numberT , the space
D([0, T ],E) is the set of functionsf : [0, T ] → E that are right-continuous and
whose left-limits exist at every point. A sequence{fn}n∈N converges to a limitf
if and only if there exists a sequence{λn} of continuous and increasing functions
λn : [0, T ] → [0, T ] satisfyingλn(0) = 0, λn(T ) = T , and such that

lim
n→∞ sup

0≤s<t≤T

∣∣∣∣log
λn(t) − λn(s)

t − s

∣∣∣∣ = 0(2.1)

and

lim
n→∞ sup

0≤t≤T

d
(
fn(t), f (λn(t))

) = 0,(2.2)

whered is any totally bounded metric onE which generates its topology.
The spaceD(R+,E) is the space of all functions fromR+ to E such that their

restrictions to[0, T ] are inD([0, T ],E) for all T > 0. A sequence converges in
D(R+,E) if there exists a sequence{λn} of continuous and increasing functions
λn : R+ → R+ satisfyingλn(0) = 0 and such that (2.1) and (2.2) hold.

It can be shown (see, e.g., [9] for a proof ) that the spacesD([0, T ],E) and
D(R+,E) are Polish when equipped with the above topology (usually called the
Skorohod topology). Notice that the spaceD([0, T ],E) has a natural embedding
into D(R+,E) by settingf (t) = f (T ) for t > T and that this embedding is
continuous. However, the restriction operator fromD(R+,E) to D([0, T ],E) is
not continuous, since the topology onD([0, T ],E) imposes thatfn(T ) → f (T ),
which is not imposed by the topology onD(R+,E).

In many interesting situations, it is enough to work with continuous sample
paths, which live in much simpler spaces:

DEFINITION 2.5. Given a Polish spaceE and a positive numberT , the space
C([0, T ],E) is the set of continuous functionsf : [0, T ] → E equipped with the
supremum norm.

The spaceC(R+,E) is the space of all functions fromR+ to E such that their
restrictions to[0, T ] are inC([0, T ],E) for all T > 0. A sequence converges in
C(R+,E) if all its restrictions converge.

It is a standard result that the spacesC([0, T ],E) andC(R+,E) are Polish ifE is
Polish. We can now turn to the definition of the systems we are interested in.
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2.2. Definition of an SDS. Let us recall the following standard notation. Given
a product spaceX × W, we denote by	X and 	W the maps that select the
first (resp. second) component of an element. Also, given two measurable spaces
E and F, a measurable mapf :E → F and a measureµ on E, we define the
measuref ∗µ onF in the natural way byf ∗µ = µ ◦ f −1.

We first define the class of noise processes we will be interested in:

DEFINITION 2.6. A quadruple(W, {Pt }t≥0,Pw, {θt }t≥0) is called astationary
noise process if it satisfies the following:

(i) W is a Polish space,
(ii) Pt is a Feller transition semigroup onW, which acceptsPw as its unique

invariant measure,
(iii) The family {θt }t>0 is a semiflow of measurable maps onW satisfying the

propertyθ∗
t Pt (x, ·) = δx for everyx ∈ W.

This leads to the following definition of SDS, which is intentionally kept as
close as possible to the definition of RDS in [1], Definition 1.1.1:

DEFINITION 2.7. A stochastic dynamical system on the Polish spaceX over
the stationary noise process(W, {Pt }t≥0,Pw, {θt }t≥0) is a mapping

ϕ : R+ × X × W → X, (t, x,w) �→ ϕt (x,w),

with the following properties:

(SDS1)Regularity of paths. For every T > 0, x ∈ X and w ∈ W, the map
�T (x,w) : [0, T ] → X defined by

�T (x,w)(t) = ϕt(x, θT −tw)

belongs toD([0, T ],X).
(SDS2)Continuous dependence. The maps(x,w) �→ �T (x,w) are continuous

from X × W to D([0, T ],X) for everyT > 0.
(SDS3)Cocycle property. The family of mappingsϕt satisfies

ϕ0(x,w) = x,
(2.3)

ϕs+t (x,w) = ϕs

(
ϕt(x, θsw),w

)
,

for all s, t > 0, all x ∈ X and allw ∈ W.

REMARK 2.8. The above definition is very close to the definition of
Markovian random dynamical system introduced in [4]. Beyond the technical
differences, the main difference is a shift in the viewpoint: a Markovian RDS is
built on top of an RDS, so one can analyze it from both a semigroup point of view
and an RDS point of view. In the case of an SDS as defined above, there is no
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underlying RDS (although one can always construct one), so the semigroup point
of view is the only one we consider.

REMARK 2.9. The cocycle property (2.3) looks different from the cocycle
property for random dynamical systems. Actually, in our caseϕ is a backward
cocycle for θt , which is reasonable since, as a “left inverse” forPt , θt actually
pushes time backward. Notice also that, unlike in the definition of RDS, we require
some continuity property with respect to the noise to hold. This continuity property
sounds quite restrictive, but it is actually mainly a matter of choosing a topology
onW, which is in a sense “compatible” with the topology onX.

Similarly, we define a continuous (where “continuous” should be thought of as
continuous with respect to time) SDS by

DEFINITION 2.10. An SDS is said to becontinuous if D([0, T ],X) can be
replaced byC([0, T ],X) in the above definition.

REMARK 2.11. One can check that the embeddingsC([0, T ],X) ↪→ D([0,

T ],X) and C(R+,X) ↪→ D(R+,X) are continuous, so a continuous SDS also
satisfies Definition 2.7 of an SDS.

Given an SDS as in Definition 2.7 and an initial conditionx0 ∈ X, we now turn
to the construction of a stochastic process with initial conditionx0 constructed
in a natural way fromϕ. First, givent ≥ 0 and(x,w) ∈ X × W, we construct a
probability measureQt (x,w; ·) onX × W by

Qt (x,w;A × B) =
∫
B

δϕt (x,w′)(A)Pt (w, dw′),(2.4)

where δx denotes the delta measure located atx. The following result is
elementary:

LEMMA 2.12. Let ϕ be an SDS on X over (W, {Pt }t≥0,Pw, {θt }t≥0) and
define the family of measures Qt (x,w; ·) by (2.4). Then Qt is a Feller transition
semigroup on X × W. Furthermore, it has the property that if 	∗

Wµ = Pw for a
measure µ on X × W, then 	∗

WQtµ = Pw.

PROOF. The fact that	∗
WQtµ = Pw follows from the invariance ofPw

under Pt . We now check thatQt is a Feller transition semigroup. Conditions
(i) and (iii) follow immediately from the properties ofϕ. The continuity
of Qt (x,w; ·) with respect to(x,w) is a straightforward consequence of the facts
that Pt is Feller and that(x,w) �→ ϕt(x,w) is continuous [the latter statement
follows from (SDS2) and the definition of the topology onD([0, t],X)].
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It thus remains only to check that the Chapman–Kolmogorov equation holds.
We have from the cocycle property:

Qs+t (x,w;A × B)

=
∫
B

δϕs+t (x,w′)(A)Ps+t (w, dw′)

=
∫
B

∫
X

δϕs(y,w′)(A)δϕt (x,θsw′)(dy)Ps+t (w, dw′)

=
∫
W

∫
B

∫
X

δϕs(y,w′)(A)δϕt (x,θsw′)(dy)Ps(w,′′ dw′)Pt (w, dw′′).

The claim then follows from the propertyθ∗
s Ps(w,′′ dw′) = δw′′(dw′) by exchang-

ing the order of integration.�

REMARK 2.13. Actually, (2.4) defines the evolution of the one-point process
generated byϕ. Then-points process would evolve according to

Q
(n)
t (x1, . . . , xn,w;A1 × · · · × An × B) =

∫
B

n∏
i=1

δϕt (xi ,w
′)(Ai)Pt (w, dw′).

One can check as above that this defines a Feller transition semigroup onXn ×W.

This lemma suggests the following definition:

DEFINITION 2.14. Letϕ be an SDS as above. Then a probability measureµ

onX × W is called ageneralized initial condition for ϕ if 	∗
Wµ = Pw. We denote

by Mϕ the space of generalized initial conditions endowed with the topology of
weak convergence. Elements ofMϕ that are of the formµ = δx × Pw for some
x ∈ X will be calledinitial conditions.

Given a generalized initial conditionµ, it is natural to construct a stochastic
process(xt ,wt ) on X × W by drawing its initial condition according toµ and
then evolving it according to the transition semigroupQt . The marginalxt of this
process onX will be called theprocess generated by ϕ for µ. We will denote by
Qµ the law of this process [i.e.,Qµ is a measure onD(R+,X) in the general case
and a measure onC(R+,X) in the continuous case]. More rigorously, we define
for everyT > 0 the measureQT µ onD([0, T ],X) by

QT µ = �∗
T Ptµ,

where�T is defined as in (SDS1). By the embeddingD([0, T ],X) ↪→ D(R+,X),
this actually gives a family of measures onD(R+,X). It follows from the cocycle
property that the restriction toD([0, T ],X) of QT ′µ with T ′ > T is equal toQT µ.
The definition of the topology onD(R+,X) does therefore imply that the sequence
QT µ converges weakly to a unique measure onD(R+,X) that we denote byQµ.
A similar argument, combined with (SDS2), yields
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LEMMA 2.15. Let ϕ be an SDS. Then, the operator Q as defined above is
continuous from Mϕ to M1(D(R+,X)). �

This in turn motivates the following equivalence relation:

DEFINITION 2.16. Two generalized initial conditionsµ andν of an SDSϕ

areequivalent if the processes generated byµ andν are equal in law. In short,
µ ∼ ν ⇔ Qµ = Qν.

The physical interpretation of this notion of equivalence is that the noise space
contains some redundant information that is not required to construct the future of
the system. Note that this does not necessarily mean that the noise space could be
reduced in order to have a more “optimal” description of the system. For example,
if the processxt generated by any generalized initial condition is Markov, then all
the information contained inW is redundant in the above sense (i.e.,µ andν are
equivalent if	∗

Xµ = 	∗
Xν). This does of course not mean thatW can be entirely

thrown away in the above description (otherwise, since the mapϕ is deterministic,
the evolution would become deterministic).

The main reason for introducing the notion of SDS is to have a framework in
which one can study ergodic properties of physical systems with memory. It should
be noted that it is designed to describe systems where the memory isextrinsic,
as opposed to systems withintrinsic memory like stochastic delay equations. We
present in the next section a few elementary ergodic results in the framework
of SDS.

2.3. Ergodic properties. In the theory of Markov processes, the main tool for
investigating ergodic properties is theinvariant measure. In the setup of SDS, we
say that a measureµ on X × W is invariant for the SDSϕ if it is invariant for
the Markov transition semigroupQt generated byϕ. We say that a measureµ on
X × W is stationary for ϕ if one has

Qtµ ∼ µ ∀ t > 0,

that is, if the process onX generated byµ is stationary. Following our philosophy
of considering only what happens on the state spaceX, we should be interested in
stationary measures, disregarding completely whether they are actually invariant
or not. In doing so, we could be afraid of losing many convenient results from
the well-developed theory of Markov processes. Fortunately, the following lemma
shows that the set of invariant measures and the set of stationary measures are
actually the same, when quotiented by the equivalence relation of Definition 2.16.

PROPOSITION2.17. Let ϕ be an SDS and let µ be a stationary measure for
ϕ. Then, there exists a measure µ� ∼ µ which is invariant for ϕ.
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PROOF. Define the ergodic averages

RT µ = 1

T

∫ T

0
Qtµdt.(2.5)

Since µ is stationary, we have	∗
XRT µ = 	∗

Xµ for every T . Furthermore,
	∗

WRT µ = Pw for everyT ; therefore the sequence of measuresRT µ is tight on
X×W. Letµ� be any of its accumulation points inM1(X×W). SinceQt is Feller,
µ� is invariant forQt and, by Lemma 2.15, one hasµ� ∼ µ. �

From a mathematical point of view, it may in some cases be interesting to
know whether the invariant measureµ� constructed in Proposition 2.17 is uniquely
determined byµ. From an intuitive point of view, this uniqueness property should
hold if the information contained in the trajectories on the state spaceX is sufficient
to reconstruct the evolution of the noise. This intuition is made rigorous by the
following proposition.

PROPOSITION 2.18. Let ϕ be an SDS, define W x
T as the σ -field on W

generated by the map �T (x, ·) :W → D([0, T ],X) and set WT = ∧
x∈X W x

T .
Assume that WT ⊂ WT ′ for T < T ′ and that W = ∨

T ≥0 WT is equal to the Borel
σ -field on W. Then, for µ1 and µ2 two invariant measures, one has the implication
µ1 ∼ µ2 ⇒ µ1 = µ2.

PROOF. Assumeµ1 ∼ µ2 are two invariant measures forϕ. SinceWT ⊂ WT ′
if T < T ′, their equality follows if one can show that, for everyT > 0,

E(µ1|X ⊗ WT ) = E(µ2|X ⊗ WT ),(2.6)

whereX denotes the Borelσ -field onX.
Since µ1 ∼ µ2, one has in particular	∗

Xµ1 = 	∗
Xµ2, so let us call this

measureν. SinceW is Polish, we then have the disintegrationx �→ µx
i , yielding

formally µi(dx, dw) = µx
i (dw)ν(dx), whereµx

i are probability measures onW.
(See [10], page 196, for a proof.) FixT > 0 and define the familyµx,T

i of
probability measures onW by

µ
x,T
i =

∫
W

Pt (w, ·)µx
i (dw).

With this definition, one has

QT µi =
∫
X

(
�T (x, ·)∗µx,T

i

)
ν(dx).

Let e0 :D([0, T ],X) → X be the evaluation map at 0; then

E(QT µi |e0 = x) = (
�T (x, ·)∗µx,T

i

)
,
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for ν-almost everyx ∈ X. SinceQT µ1 = QT µ2, one therefore has

E(µ
x,T
1 |W x

T ) = E(µ
x,T
2 |W x

T ),(2.7)

for ν-almost everyx ∈ X. On the other hand, the invariance ofµi implies that, for
everyA ∈ X and everyB ∈ WT , one has the equality

µi(A × B) =
∫
X

∫
B

χA

(
ϕT (x,w)

)
µ

x,T
i (dw)ν(dx).

SinceϕT (x, ·) is W x
T -measurable andB ∈ W x

T , this is equal to∫
X

∫
B

χA

(
ϕT (x,w)

)
E

(
µ

x,T
i |W x

T

)
(dw)ν(dx).

Thus (2.7) implies (2.6) and the proof of Proposition 2.18 is complete.�

The existence of an invariant measure is usually established by finding a
Lyapunov function. In this setting, Lyapunov functions are given by the following
definition.

DEFINITION 2.19. Letϕ be an SDS and letF :X → [0,∞) be a continuous
function. ThenF is a Lyapunov function for ϕ if it satisfies the following
conditions:

(L1) The setF−1([0,C]) is compact for everyC ∈ [0,∞).
(L2) There exist constantsC andγ > 0 such that∫

X×W
F(x)(Qtµ)(dx, dw) ≤ C + e−γ t

∫
X

F(x)(	∗
Xµ)(dx),(2.8)

for everyt > 0 and every generalized initial conditionµ such that the right-
hand side is finite.

It is important to notice that one doesnot requireF to be a Lyapunov function
for the transition semigroupQt , since (2.8) is only required to hold for measures
µ satisfying	∗

Wµ = Pw. One nevertheless has the following result:

LEMMA 2.20. Let ϕ be an SDS. If there exists a Lyapunov function F for ϕ,
then there exists also an invariant measure µ� for ϕ, which satisfies∫

X×W
F(x)µ�(dx, dw) ≤ C.(2.9)

PROOF. Letx ∈ X be an arbitrary initial condition, setµ = δx ×Pw and define
the ergodic averagesRT µ as in (2.5). Combining (L1) and (L2) with the fact that
	∗

WRT µ = Pw one immediately gets the tightness of the sequence{RT µ}. By
the standard Krylov–Bogoloubov argument, any limiting point of{RT µ} is an
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invariant measure forϕ. The estimate (2.9) follows from (2.8), combined with the
fact thatF is continuous. �

This concludes our presentation of the abstract framework in which we analyze
the ergodic properties of (SDE).

3. Construction of the SDS. In this section, we construct a continuous
stochastic dynamical system which yields the solutions to (SDE) in an appropriate
sense.

First of all, let us discuss what we mean by “solution” to (SDE).

DEFINITION 3.1. Let{xt }t≥0 be a stochastic process with continuous sample
paths. We say thatxt is asolution to (SDE) if the stochastic processN(t) defined
by

N(t) = xt − x0 −
∫ t

0
f (xs) ds(3.1)

is equal in law toσBH(t), whereσ is as in (SDE) andBH(t) is ann-dimensional
FBM with Hurst parameterH .

We will set up our SDS in such a way that, for every generalized initial
condition µ, the canonical process associated to the measureQµ is a solution
to (SDE). This will be the content of Proposition 3.11 below. In order to achieve
this, our main task is to set up a noise process in a way which complies with
Definition 2.6.

3.1. Representation of the FBM. In this section, we give a representation
of the FBM BH(t) with Hurst parameterH ∈ (0,1) which is suitable for our
analysis. Recall that, by definition,BH(t) is a centered Gaussian process satisfying
BH(0) = 0 and

E|BH(t) − BH(s)|2 = |t − s|2H .(3.2)

Naturally, atwo-sided FBM by requiring that (3.2) holds for alls, t ∈ R. Notice
that, unlike for the normal Brownian motion, the two-sided FBM isnot obtained
by gluing two independent copies of the one-sided FBM together att = 0. We have
the following useful representation of the two-sided FBM, which is also (up to the
normalization constant) the representation used in the original paper [17].

LEMMA 3.2. Let w(t), t ∈ R, be a two-sided Wiener process and let H ∈ (0,1).

Define for some constant αH the process

BH(t) = αH

∫ 0

−∞
(−r)H−1/2(dw (r + t) − dw (r)

)
.(3.3)

Then there exists a choice of αH such that BH(t) is a two-sided FBM with Hurst
parameter H .
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NOTATION 3.3. Given the representation (3.3) of the FBM with Hurst
parameterH , we call w the “Wiener process associated toBH .” We also refer
to {w(t) : t ≤ 0} as the “past” ofw and to{w(t) : t > 0} as the “future” ofw. We
similarly refer to the “past” and the “future” ofBH . Notice the notion of future for
BH is different from the notion of future forw in terms ofσ -algebras, since the
future ofBH depends on the past ofw.

REMARK 3.4. The expression (3.3) looks strange at first sight, but one should
actually think ofBH(t) as being given byBH(t) = B̃H (t) − B̃H (0), where

B̃H (t) = αH

∫ t

−∞
(t − s)H−1/2 dw(s).(3.4)

This expression is strongly reminiscent of the usual representation of the
stationary Ornstein–Uhlenbeck process, but with an algebraic kernel instead of
an exponential one. Of course, (3.4) does not make any sense since(t − s)H−1/2 is
not square integrable. Nevertheless, (3.4) has the advantage of explicitly showing
the stationarity of the increments for the two-sided FBM.

3.2. Noise spaces. In this section, we introduce the family of spaces that
will be used to model our noise. Denote byC∞

0 (R−) the set ofC∞ function
w : (−∞,0] → R satisfying w(0) = 0 and having compact support. Given a
parameterH ∈ (0,1), we define for everyw ∈ C∞

0 (R−) the norm

‖w‖H = sup
t,s∈R−

|w(t) − w(s)|
|t − s|(1−H)/2(1+ |t | + |s|)1/2 .(3.5)

We then define the Banach spaceHH to be the closure ofC∞
0 (R−) under the norm

‖ · ‖H . The following lemma is important in view of the framework exposed in
Section 2:

LEMMA 3.5. The spaces HH are separable.

PROOF. It suffices to find a norm‖ · ‖� which is stronger than‖ · ‖H and such
that the closure ofC∞

0 (R−) under‖ · ‖� is separable. One example of such a norm
is given by‖w‖� = supt<0 |tẇ(t)|. �

Notice that it is crucial to defineHH as the closure ofC∞
0 under‖ · ‖H . If we

defined it simply as the space of all functions with finite‖ · ‖H -norm, it would
not be separable. (Think of the space of bounded continuous functions, versus the
space of continuous functions vanishing at infinity.)

In view of the representation (3.3), we define the linear operatorDH on
functionsw ∈ C∞

0 by

(DHw)(t) = αH

∫ 0

−∞
(−s)H−1/2(ẇ(s + t) − ẇ(s)

)
ds,(3.6)

whereαH is as in Lemma 3.2. We have the following result:
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LEMMA 3.6. Let H ∈ (0,1) and let HH be as above. Then the operator DH ,
formally defined by (3.6), is continuous from HH into H1−H . Furthermore, the
operator DH has a bounded inverse, given by the formula

D−1
H = γHD1−H ,

for some constant γH satisfying γH = γ1−H .

REMARK 3.7. The operatorDH is actually (up to a multiplicative constant)
a fractional integral of orderH − 1

2 which is renormalized in such a way that one
gets rid of the divergence at−∞. It is therefore not surprising that the inverse
of DH is D1−H .

PROOF OFLEMMA 3.6. ForH = 1
2, DH is the identity and there is nothing

to prove. We therefore assume in the sequel thatH �= 1
2.

We first show thatDH is continuous fromHH into H1−H . One can easily
check thatDH mapsC∞

0 into the set ofC∞ functions which converge to a constant
at−∞. This set can be seen to belong toH1−H by a simple cutoff argument, so it
suffices to show that‖DHw‖1−H ≤ C‖w‖H for w ∈ C∞

0 . Assume without loss of
generality thatt > s and defineh = t − s. We then have

(DHw)(t) − (DHw)(s)

= αH

∫ s

−∞
(
(t − r)H−1/2 − (s − r)H−1/2)dw(r)

+ αH

∫ t

s
(t − r)H−1/2 dw(r).

Splitting the integral and integrating by parts yields

(DHw)(t) − (DHw)(s)

= −αH

(
H − 1

2

) ∫ s

s−h
(s − r)H−3/2(w(r) − w(s)

)
dr

+ αH

(
H − 1

2

) ∫ t

t−2h
(t − r)H−3/2(w(r) − w(t)

)
dr

+ αH

(
H − 1

2

) ∫ s−h

−∞
(
(t − r)H−3/2 − (s − r)H−3/2)(w(r) − w(s)

)
dr

+ αH (2h)H−1/2(w(t) − w(s)
)

≡ T1 + T2 + T3 + T4.

We estimate each of these terms separately. ForT1, we have

|T1| ≤ C(1+ |s| + |t |)1/2
∫ h

0
rH−3/2+(1−H)/2 dr ≤ ChH/2(1+ |s| + |t |)1/2.
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The termT2 is bounded byChH/2(1+|s|+|t |)1/2 in a similar way. ConcerningT3,
we bound it by

|T3| ≤ C

∫ ∞
h

(
rH−3/2 − (h + r)H−3/2)(w(s − r) − w(s)

)
dr

≤ Ch

∫ ∞
h

rH−5/2r(1−H)/2(1+ |s| + |r|)1/2 dr

≤ ChH/2(1+ |s|)1/2 + Ch

∫ ∞
h

rH/2−2(h + r)1/2 dr

≤ ChH/2(1+ |s| + h)1/2 ≤ ChH/2(1+ |s| + |t |)1/2.

The termT4 is easily bounded byChH/2(1 + |s| + |t |)1/2, using the fact that
w ∈ HH . This shows thatDH is bounded fromHH to H1−H .

It remains to show thatDH ◦D1−H is a multiple of the identity. For this, notice
that if w ∈ C∞

0 , then one has in the notation of [25], pages 94 and 95, the following
identities:

(DHw)(t) = −αH�
(
H + 1

2

)(
(I

H−1/2
+ w)(t) − (I

H−1/2
+ w)(0)

)
, H > 1

2,

(DHw)(t) = −αH�
(
H + 1

2

)(
(D

1/2−H
+ w)(t) − (D

1/2−H
+ w)(0)

)
, H < 1

2.

Furthermore, (3.6) shows thatDHw = 0 if w is a constant. The claim then follows
immediately from the fact that ifw ∈ C∞

0 andα ∈ (0,1), one hasDα+Iα+w = w and
Iα+Dα+w = w (see [25], Theorem 2.4).�

Since we want to use the operatorsDH andD1−H to switch between Wiener
processes and FBMs, it is crucial to show that the sample paths of the two-sided
Wiener process belong to everyHH with probability 1. Actually, what we show is
that the Wiener measure can be constructed as a Borel measure onHH .

LEMMA 3.8. There exists a unique Gaussian measure W on HH which is such
that the canonical process associated to it is a time-reversed Brownian motion.

PROOF. We start by showing that theHH -norm of the Wiener paths
has bounded moments of all orders. It follows from a generalization of the
Kolmogorov criterion ([24], Theorem 2.1) that

E
(

sup
s,t∈[0,2]

|w(s) − w(t)|
|s − t |(1−H)/2

)p

< ∞(3.7)

for all p > 0. Since the increments ofw are independent, this implies that, for
everyε > 0, there exists a random variableC1 such that

sup
|s−t |≤1

|w(s) − w(t)|
|s − t |(1−H)/2(1+ |t | + |s|)ε < C1,(3.8)
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with probability 1, and that all the moments ofC1 are bounded. We can therefore
safely assume in the sequel that|t − s| > 1. It follows immediately from (3.8) and
the triangle inequality that there exists a constantC such that

|w(s) − w(t)| ≤ CC1|t − s|(1+ |t | + |s|)ε,(3.9)

whenever|t − s| > 1. Furthermore, it follows from the time-inversion property
of the Brownian motion, combined with (3.7), that|w| does not grow much faster
than|t |1/2 for large values oft . In particular, for everyε′ > 0, there exists a random
variableC2 such that

|w(t)| ≤ C2(1+ |t |)1/2+ε′ ∀ t ∈ R,(3.10)

and that all the moments ofC2 are bounded. Combining (3.9) and (3.10), we get
(for some other constantC)

|w(s) − w(t)|
≤ CC

(1−H)/2
1

× C
(1+H)/2
2 |t − s|(1−H)/2(1+ |s| + |t |)(H+1)/4+ε(1−H)/2+ε′(1+H)/2.

The claim follows by choosing, for example,ε = ε′ = (1− H)/4.
This is not quite enough, since we want the sample paths to belong to the closure

of C∞
0 under the norm‖ · ‖H . Define the function

(s, t) �→ �(s, t) = (1+ |t | + |s|)2

|t − s| .

By looking at the above proof, we see that we actually proved the stronger
statement that for everyH ∈ (0,1), one can find aγ > 0 such that

‖w‖H,γ = sup
s,t

�(s, t)γ |w(s) − w(t)|
|s − t |(1−H)/2(1+ |t | + |s|)1/2 < ∞

with probability 1. Let us callHH,γ the Banach space of functions with finite
‖ · ‖H,γ -norm. We will show that one has the continuous inclusions:

HH,γ ↪→ HH ↪→ C(R−,R).(3.11)

Let us callW̃ the usual time-reversed Wiener measure onC(R−,R) equipped with
theσ -field R generated by the evaluation functions. SinceHH,γ is a measurable
subset ofC(R−,R) andW̃(HH,γ ) = 1, we can restrict̃W to a measure onHH ,
equipped with the restrictioñR of R. It remains to show that̃R is equal to the
Borelσ -fieldB onHH . This follows from the fact that the evaluation functions are
B-measurable (since they are actually continuous) and that a countable number of
function evaluations suffices to determine the‖ · ‖H -norm of a function. The proof
of Lemma 3.8 is thus complete if we show (3.11).
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Notice first that the function�(s, t) becomes large when|t − s| is small or when
either|t | or |s| is large; more precisely, we have

�(s, t) > max{|s|, |t |, |t − s|−1}.(3.12)

Therefore, functionsw ∈ HH,γ are actually more regular and have better growth
properties than what is needed to have finite‖ · ‖H -norm. Given w with
‖w‖H,γ < ∞ and anyε > 0, we will construct a functionw̃ ∈ C∞

0 such that
‖w − w̃‖H < ε. Take twoC∞ functionsϕ1 andϕ2 with the following shape:

Furthermore, we choose them such that∫
R−

ϕ1(s) ds = 1,

∣∣∣∣dϕ2(t)

dt

∣∣∣∣ ≤ 2.

For two positive constantsr < 1 andR > 1 to be chosen later, we define

w̃(t) = ϕ2(t/R)

∫
R−

w(t + s)
ϕ1(s/r)

r
ds,

that is, we smoothen outw at length scales smaller thanr and we cut it off
at distances bigger thanR. A straightforward estimate shows that there exists a
constantC such that

‖w̃‖H,γ ≤ C‖w‖H,γ ,

independently ofr < 1/4 andR > 1. Forδ > 0 to be chosen later, we then divide
the quadrantK = {(t, s)|t, s < 0} into three regions:

K1 = {(t, s)||t | + |s| ≥ R} ∩ K,

K2 = {(t, s)||t − s| ≤ δ} ∩ K \ K1,

K3 = K \ (K1 ∪ K2).

We then bound‖w − w̃‖H by

‖w − w̃‖H ≤ sup
(s,t)∈K1∪K2

C‖w‖H,γ

�(t, s)γ
+ sup

(s,t)∈K3

|w(s) − w̃(s)| + |w(t) − w̃(t)|
|t − s|(1−H)/2(1+ |t | + |s|)1/2

≤ C(δγ + R−γ )‖w‖H,γ + 2δ(H−1)/2 sup
0<t<R

|w(t) − w̃(t)|.
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By choosingδ small enough andR large enough, the first term can be made
arbitrarily small. One can then chooser small enough to make the second term
arbitrarily small as well. This shows that (3.11) holds and therefore the proof of
Lemma 3.8 is complete.�

3.3. Definition of the SDS. The results shown so far in this section are
sufficient to construct the required SDS. We start by considering the pathwise
solutions to (SDE). Given a timeT > 0, an initial conditionx ∈ Rn and a noise
b ∈ C0([0, T ],Rn), we look for a function�T (x, b) ∈ C([0, T ],Rn) satisfying

�T (x, b)(t) = σb(t) + x +
∫ t

0
f

(
�T (x, b)(s)

)
ds.(3.13)

We have the following standard result:

LEMMA 3.9. Let f : Rn → Rn satisfy assumptions (A1) and (A2). Then, there
exists a unique map �T : Rn × C([0, T ],Rn) → C([0, T ],Rn) satisfying (3.13).
Furthermore, �T is locally Lipschitz continuous.

PROOF. The local (i.e., smallT ) existence and uniqueness of continuous
solutions to (3.13) follow from a standard contraction argument. In order to show
the global existence and the local Lipschitz property, fixx, b andT , and define
y(t) = x + σb(t). Definez(t) as the solution to the differential equation

ż(t) = f
(
z(t) + y(t)

)
, z(0) = 0.(3.14)

Writing down the differential equation satisfied by‖z(t)‖2 and using
(A1) and (A2), one sees that (3.14) possesses a (unique) solution up to timeT .
One can then set�T (x, b)(t) = z(t) + y(t) and check that it satisfies (3.13). The
local Lipschitz property of�T then immediately follows from the local Lipschitz
property off . �

We now define the stationary noise process. For this, we defineθt :HH → HH

by

(θtw)(s) = w(s − t) − w(−t).

In order to construct the transition semigroupPt , we define firstH̃H like HH ,
but with arguments inR+ instead ofR−, and we writeW̃ for the Wiener measure
onH̃H , as constructed in Lemma 3.8 above. Define the functionPt :HH ×H̃H →
HH by (

Pt(w, w̃)
)
(s) =

{
w̃(t + s) − w̃(t), for s > −t ,

w(t + s) − w̃(t), for s ≤ −t ,
(3.15)

and setPt (w, ·) = Pt(w, ·)∗W̃. This construction can be visualized by the
following picture:
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One then has the following.

LEMMA 3.10. The quadruple (HH , {Pt }t≥0,W, {θt}t≥0) is a stationary noise
process.

PROOF. We already know from Lemma 3.5 thatHH is Polish. Furthermore,
one hasθt ◦ Pt(w, ·) = w, so it remains to show thatPt is a Feller transition
semigroup withW as its unique invariant measure. It is straightforward to check
that it is a transition semigroup and the Feller property follows from the continuity
of Pt(w, w̃) with respect tow. By the definition (3.15) and the time-reversal
invariance of the Wiener process, every invariant measure for{Pt }t≥0 must have its
finite-dimensional distributions coincide with those ofW. Since the Borelσ -field
on HH is generated by the evaluation functions, this shows thatW is the only
invariant measure.�

We now construct an SDS overn copies of the above noise process. With a
slight abuse of notation, we denote that noise process by(W, {Pt }t≥0,W, {θt }t≥0).
We define the (continuous) shift operatorRT :C((−∞,0],Rn) → C0([0, T ],Rn)

by (RT b)(t) = b(t − T ) − b(−T ) and set

ϕ : R+ × Rn × W → Rn,
(3.16)

(t, x,w) �→ �t(x,RtDHw)(t).

From the above results, the following is straightforward:

PROPOSITION3.11. The function ϕ of (3.16)defines a continuous SDS over
the noise process (W, {Pt }t≥0,W, {θt }t≥0). Furthermore, for every generalized
initial condition µ, the process generated by ϕ from µ is a solution to (SDE) in
the sense of Definition 3.1.

PROOF. The regularity properties ofϕ have already been shown in Lemma 3.9.
The cocycle property is an immediate consequence of the composition property
for solutions of ODEs. The fact that the processes generated byϕ are solutions to
(SDE) is a direct consequence of (3.13), combined with Lemma 3.2, the definition
of DH and the fact thatW is the Wiener measure.�
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To conclude this section, we show that, thanks to the dissipativity condition
imposed on the drift termf , the SDS defined above admits any power of the
Euclidean norm onRn as a Lyapunov function:

PROPOSITION3.12. Let ϕ be the continuous SDS defined above and assume
that (A1) and (A2) hold. Then, for every p ≥ 2, the map x �→ ‖x‖p is a Lyapunov
function for ϕ.

PROOF. Fix p ≥ 2 and letµ be an arbitrary generalized initial condition
satisfying ∫

Rn
‖x‖p(	∗

Rnµ)(dx) < ∞.

Let ϕ̃ be the continuous SDS associated by Proposition 3.11 to the equation

dy(t) = −y dt + σ dBH(t).(3.17)

Notice that bothϕ andϕ̃ are defined over the same stationary noise process.
We definext as the process generated byϕ from µ and yt as the process

generated bỹϕ from δ0 × W (in other wordsy0 = 0). Since both SDS are defined
over the same stationary noise process,xt and yt are defined over the same
probability space. The processyt is obviously Gaussian, and a direct (but lengthy)
calculation shows that its variance is given by

E‖yt‖2 = 2H tr(σσ ∗)e−t
∫ t

0
s2H−1 cosh(t − s) ds.

In particular, one has for allt ,

E‖yt‖2 ≤ 2H tr(σσ ∗)
∫ ∞

0
s2H−1e−s ds = �(2H + 1) tr(σσ ∗) ≡ C∞.(3.18)

Now definezt = xt − yt . The processzt is seen to satisfy the random differential
equation given by

dzt

dt
= f (zt + yt ) + yt , z0 = x0.

Furthermore, one has the following equation for‖zt‖2:

d‖zt‖2

dt
= 2〈zt , f (zt + yt )〉 + 2〈zt , yt 〉.

Using (A2) and (A3) and the Cauchy–Schwarz inequality, we can estimate the
right-hand side of this expression by:

d‖zt‖2

dt
≤ 2C

(A1)
1 − 2C

(A1)
2 ‖zt‖2 + 2〈zt , yt + f (yt )〉

(3.19)
≤ −2C

(A1)
2 ‖zt‖2 + C̃(1+ ‖yt‖2)N ,
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for some constant̃C. Therefore,

‖zt‖2 ≤ e−2C
(A1)
2 t‖x0‖2 + C̃

∫ t

0
e−2C

(A1)
2 (t−s)(1+ ‖ys‖2)N ds.

It follows immediately from (3.18) and the fact thatys is Gaussian with bounded
covariance (3.18) that there exists a constantCp such that

E‖zt‖p ≤ Cpe−pC
(A1)
2 tE‖x0‖p + Cp,

for all times t > 0. Therefore (2.8) holds and the proof of Proposition 3.12 is
complete. �

4. Coupling construction. We do now have the necessary formalism to study
the long-time behavior of the SDSϕ we constructed from (SDE). The main tool
that will allow us to do that is the notion of self-coupling for stochastic dynamical
systems.

4.1. Self-coupling of SDS. The main goal of this paper is to show that the
asymptotic behavior of the solutions of (SDE) does not depend on its initial
condition. This will then imply that the dynamics converges to a stationary state
(in a suitable sense). We therefore look for a suitable way of comparing solutions
to (SDE). In general, two solutions starting from different initial points inRn

and driven with the same realization of the noiseBH have no reason of getting
close to each other as time goes by. Condition (A1) indeed only ensures that they
will tend to approach each other as long as they are sufficiently far apart. This is
reasonable, since by comparing only solutions driven by the same realization of
the noise process, one completely forgets about the randomness of the system and
the “blurring” this randomness induces.

It is therefore important to compare probability measures (e.g., on path-space)
induced by the solutions rather than the solution themselves. More precisely, given
an SDSϕ and two generalized initial conditionsµ andν, we want to compare the
measuresQQtµ andQQt ν as t goes to infinity. The distance we will work with
is the total variation distance, henceforth denoted by‖ · ‖TV. We will actually
use the following useful representation of the total variation distance. Let� be a
measurable space and letP1 andP2 be two probability measures on�. We denote
by C(P1,P2) the set of all probability measures on� × � which are such that
their marginals on the two components are equal toP1 andP2, respectively. Let
furthermore� ⊂ � × � denote the diagonal, that is, the set of elements of the
form (ω,ω). We then have

‖P1 − P2‖TV = 2− sup
P∈C(P1,P2)

2P(�).(4.1)

Elements ofC(P1,P2) will be referred to ascouplings betweenP1 andP2. This
leads naturally to the following definition:
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DEFINITION 4.1. Let ϕ be an SDS with state spaceX and letMϕ be the
associated space of generalized initial conditions. Aself-coupling for ϕ is a
measurable map(µ, ν) �→ Q(µ, ν) from Mϕ × Mϕ into D(R+,X) × D(R+,X),
with the property that for every pair(µ, ν), Q(µ, ν) is a coupling forQµ andQν.

Define the shift map�t :D(R+,X) → D(R+,X) by

(�tx)(s) = x(t + s).

It follows immediately from the cocycle property and the stationarity of the noise
process thatQQtµ = �∗

t Qµ. Therefore, the measure�∗
t Q(µ, ν) is a coupling for

QQtµ andQQt ν [which is in general different from the couplingQ(Qtµ,Qt ν)].
Our aim in the remainder of this paper is to construct a self-couplingQ(µ, ν) for
the SDS associated to (SDE) which has the property that

lim
t→∞

(
�∗

t Q(µ, ν)
)
(�) = 1,

where� denotes as before the diagonal of the spaceD(R+,X) × D(R+,X). We
will then use the inequality

‖QQtµ − QQt ν‖TV ≤ 2− 2
(
�∗

t Q(µ, ν)
)
(�)(4.2)

to deduce the uniqueness of the stationary state for (SDE).
In the remainder of the paper, the general way of constructing such a self-

coupling will be the following. First, we fix a Polish spaceA that contains some
auxiliary information on the dynamics of the coupled process we want to keep
track of. We also define a “future” noise spaceW+ to be equal tõHn

H , whereH̃H

is as in (3.15). There is a natural continuous time-shift operator onR × W × W+
defined fort > 0 by

(s,w, w̃) �→ (
s − t, Pt (w, w̃), St w̃

)
, (St w̃)(r) = w̃(r + t) − w̃(t),(4.3)

wherePt was defined in (3.15). We then construct a (measurable) map

C :X2 × W2 × A → R × M1(A × W2+),
(4.4)

(x, y,wx,wy, a) �→ (
T (x, y,wx,wy, a),W2(x, y,wx,wy, a)

)
,

with the properties that, for all(x, y,wx,wy, a),

(C1) the timeT (x, y,wx,wy, a) is positive and greater than 1,
(C2) the marginals ofW2(x, y,wx,wy, a) onto the two copies ofW+ are both

equal to the Wiener measureW.

We call the mapC the “coupling map,” since it yields a natural way of constructing
a self-coupling for the SDSϕ. The remainder of this section explains how to
achieve this.

Given the mapC , we can construct a Markov process on the augmented space
X = X2 × W2 × R+ × A × W2+ in the following way. As long as the component
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τ ∈ R+ is positive, we just time-shift the elements inW2 × W2+ × R+ according
to (4.3) and we evolve inX2 by solving (SDE). As soon asτ becomes 0, we redraw
the future of the noise up to timeT (x, y, a) according to the distributionW2, which
may at the same time modify the information stored inA.

To shorten notation, we denote elements ofX by

X = (x, y,wx,wy, τ, a, w̃x, w̃y).

With this notation, the transition functioñQt for the process we just described is
defined by:

(a) Fort < τ , we definẽQt (X; ·) by

Q̃t (X; ·) = δϕt (x,Pt (wx,w̃x)) × δϕt (y,Pt (wy,w̃y)) × δPt (wx,w̃x)

× δPt (wy,w̃y) × δτ−t × δa × δSt w̃x
× δSt w̃y

.

(b) For t = τ , we definẽQt (X; ·) by

Q̃t (X; ·) = δϕt (x,Pt (wx,w̃x)) × δϕt (y,Pt (wy,w̃y)) × δPt (wx,w̃x)

× δPt (wy,w̃y) × δT (x,y,Pt (wx,w̃x),Pt (wy,w̃y),a)(4.5)

× W2(x, y,Pt (wx, w̃x),Pt (wy, w̃y), a).

(c) For t > τ , we defineQ̃t by imposing that the Chapman–Kolmogorov
equations hold. Since we assumed thatT (x, y,wx,wy, a) is always greater than 1,
this procedure is well defined.

We now construct an initial condition for this process, given two generalized
initial conditionsµ1 andµ2 for ϕ. We do this in such a way that, in the beginning,
the noise component of our process lives on the diagonal of the spaceW2. In other
words, the two copies of the two-sided FBM driving our coupled system have
the same past. This is possible since the marginals ofµ1 andµ2 on W coincide.
Concerning the components of the initial condition inR+ ×A×W2+, we just draw
them according to the mapC , with some distinguished elementa0 ∈ A.

We callQ0(µ1,µ2) the measure onX constructed by this procedure. Consider
a cylindrical subset ofX of the form

X = X1 × X2 × W1 × W2 × F,

where F is a measurable subset ofR+ × A × W2+. We make use of the
disintegrationw �→ µw

i , yielding formallyµi(dx, dw) = µw
i (dx)W(dw), and we

defineQ0(µ1,µ2) by

Q0(µ1,µ2)(X)

=
∫
W1∩W2

∫
X1

∫
X2

(
δT (x1,x2,w,w,a0) × W2(x1, x2,w,w,a0)

)
(F )(4.6)

× µw
2 (dx2)µ

w
1 (dx1)W(dw).
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With this definition, we finally construct the self-couplingQ(µ1,µ2) of ϕ

corresponding to the functionC as the marginal onC(R+,X) × C(R+,X) of
the process generated by the initial conditionQ0(µ1,µ2) evolving under the
semigroup given bỹQt . Condition (C2) ensures that this is indeed a coupling for
Qµ1 andQµ2.

The following section gives an overview of the way the coupling functionC is
constructed.

4.2. Construction of the coupling function. Let us consider that the initial
conditionsµ1 andµ2 are fixed once and for all and denote byxt andyt the two
X-valued processes obtained by considering the marginals ofQ(µ1,µ2) on its two
X components. Define the random (but not stopping) timeτ∞ by

τ∞ = inf{t > 0|xs = ys for all s > t}.
Our aim is to find a spaceA and a functionC satisfying (C1) and (C2) such
that the processesxt andyt eventually meet and stay together for all times, that
is, such that limT →∞ P(τ∞ < T ) = 1. If the noise process driving the system
was Markov, the “stay together” part of this statement would not be a problem,
since it would suffice to start drivingxt andyt with identical realizations of the
noise as soon as they meet. Since the FBM is not Markov, it is possible to make
the future realizations of two copies coincide with probability 1 only if the past
realizations also coincide. If the past realizations do not coincide for some time,
we interpret this as introducing a “cost” into the system, which we need to master.
(This notion of cost will be made precise in Definition 5.3 below.) Fortunately, the
memory of past events becomes smaller and smaller as time goes by, which can be
interpreted as a natural tendency of the cost to decrease. This way of interpreting
our system leads to the following algorithm that should be implemented by the
coupling functionC :

(4.7)

The precise meaning of the statements appearing in this diagram will be made
clear in the sequel, but the general idea of the construction should be clear by now.
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One step in (4.7) corresponds to the time between two jumps of theτ -component
of the coupled process. Our aim is to construct the coupling functionC in such a
way that, with probability 1, there is a time after which step 2 always succeeds.
This time is then precisely the random timeτ∞ we want to estimate.

It is clear from what has just been exposed that we will actually never need to
consider the continuous-time process on the spaceX given by the self-coupling
described in the previous section, but it is sufficient to describe what happens at the
beginning of each step in (4.7). We will therefore only consider the discrete-time
dynamic obtained by sampling the continuous-time system just before each step.
The discrete-time dynamic will take place on the spaceZ = (X2 ×W2 ×A)× R+
and we will denote its elements by

(Z, τ), Z = (x, y,wx,wy, a), τ ∈ R+.

Since the time steps of the discrete dynamic are not equally spaced, the timeτ

is required to keep track of how much time really elapsed. The dynamic of the
discrete process(Zn, τn) on Z is determined by the function� : R+ × Z × (A ×
W2+) → Z given by

�
(
t, (Z, τ ), (w̃x, w̃y, ã)

) = (
ϕt

(
x,Pt (wx, w̃x)

)
, ϕt

(
y,Pt (wy, w̃y)

)
,

Pt (wx, w̃x),Pt (wy, w̃y), ã, τ + t
)
.

(The notation are the same as in the definition ofQ̃t above.) With this definition at
hand, the transition function for the process(Zn, τn) is given by

P(Z, τ) = �
(
T (Z), (Z, τ), ·)∗W2(Z),(4.8)

whereT and W2 are defined in (4.4). Given two generalized initial conditions
µ1 andµ2 for the original SDS, the initial condition(Z0, τ0) is constructed by
choosingτ0 = 0 and by drawingZ0 according to the measure

µ0(X) = δa0(A)

∫
W1∩W2

∫
X1

∫
X2

µw
2 (dx2)µ

w
1 (dx1)W(dw),

whereX is a cylindrical set of the formX = X1 × X2 × W1 × W2 × A. It follows
from the definitions (4.5) and (4.6) that if we defineτn as thenth jump of the
process onX constructed above andZn as (the component inX2 × W2 × A of )
its left-hand limit atτn, the process we obtain is equal in law to the Markov chain
that we just constructed.

Before carrying further on with the construction ofC , we make a few
preliminary computations to see how changes in the past of the FBM affect its
future. The formulae and estimates obtained in Section 4.3 are crucial for the
construction ofC and for the obtainment of the bounds that lead to Theorems
1.2 and 1.3. In particular, Proposition 4.4 is the main estimate that leads to the
coherence of the coupling construction and to the bounds on the convergence rate
toward the stationary state.



730 M. HAIRER

4.3. Influence of the past on the future. Let wx ∈ HH and setBx = DHwx .
Consider furthermore two functionsgw andgB satisfying

t �→
∫ t

0
gw(s) ds ∈ HH , t �→

∫ t

0
gB(s) ds ∈ H1−H ,(4.9)

and defineBy andwy by By(0) = wy(0) = 0 and

dBy = dBx + gB dt, dwy = dwx + gw dt.(4.10)

As an immediate consequence of the definition ofDH , the following relations
betweengw andgB will ensure thatBy = DHwy .

LEMMA 4.2. Let Bx , By , wx , wy , gB and gw be as in (4.9), (4.10)and
assume that Bx = DHwx and By = DHwy . Then, gw and gB satisfy the following
relation:

gw(t) = αH

d

dt

∫ t

−∞
(t − s)1/2−HgB(s) ds,(4.11a)

gB(t) = γHα1−H

d

dt

∫ t

−∞
(t − s)H−1/2gw(s) ds.(4.11b)

If gw(t) = 0 for t > t0, one has

gB(t) = (
H − 1

2

)
γHα1−H

∫ t0

−∞
(t − s)H−3/2gw(s) ds,(4.11c)

for t ≥ t0. Similarly, if gB(t) = 0 for t > t0, one has

gw(t) = (1
2 − H

)
αH

∫ t0

−∞
(t − s)−H−1/2gB(s) ds,(4.11d)

for t ≥ t0. If gw is differentiable for t > t0 and gw(t) = 0 for t < t0, one has

gB(t) = γHα1−Hgw(t0)

(t − t0)1/2−H
+ γHα1−H

∫ t

t0

g′
w(s)

(t − s)1/2−H
ds,(4.11e)

for t ≥ t0. Similarly, if gB is differentiable for t > t0 and gB(t) = 0 for t < t0, one
has

gw(t) = αHgB(t0)

(t − t0)H−1/2 + αH

∫ t

t0

g′
B(s)

(t − s)H−1/2 ds,(4.11f )

for t ≥ t0.

PROOF. The claims (4.11a) and (4.11b) follow immediately from (4.10), using
the linearity of DH and the inversion formula. The other claims are simply
obtained by differentiating under the integral; see [25] for a justification.�
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We will be led in the sequel to consider the following situation, where
t1, t2 andg1 are assumed to be given:

(4.12)

In this figure, gw and gB are related by (4.11a) and (4.11b) as before. The
boldfaced regions indicate that we consider the corresponding parts ofgw or
gB to be given. The dashed regions indicate that those parts ofgw and gB are
computed from the boldfaced regions by using the relations (4.11a) and (4.11b).
The picture is coherent since (4.11a) and (4.11b) in both cases only use information
about the past to compute the present. One should think of the interval[0, t1] as
representing the time spent on steps 1 and 2 of the algorithm (4.7). The interval
[t1, t2] corresponds to the waiting time, that is, step 3. Let us first give an explicit
formula forg2 in terms ofg1:

LEMMA 4.3. Consider the situation of Proposition 4.4.Then, g2 is given by

g2(t) = C

∫ t1

0

t1/2−H(t2 − s)H−1/2

t + t2 − s
g1(s) ds,(4.13)

with a constant C depending only on H .

PROOF. We extendg1(t) to the whole real line by setting it equal to 0 outside
of [0, t1]. Using Lemma 4.2, we see that, for some constantC and fort > t2,

g2(t − t2) = C

∫ t2

0
(t − s)−H−1/2gB(s) ds

= C

∫ t2

0
(t − s)−H−1/2 d

ds

∫ s

0
(s − r)H−1/2g1(r) dr ds

= C(t − t2)
−H−1/2

∫ t2

0
(t2 − r)H−1/2g1(r) dr

− C
(
H + 1

2

) ∫ t2

0
(t − s)−H−3/2

∫ s

0
(s − r)H−1/2g1(r) dr ds

≡ C

∫ t1

0
K(t, r)g1(r) dr,
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where the integration stops att1 becauseg1 is equal to 0 for larger values oft . The
kernelK is given by

K(t, r) = (t − t2)
−H−1/2(t2 − r)H−1/2

− (
H + 1

2

) ∫ t2

r
(t − s)−H−3/2(s − r)H−1/2 ds

= (t − t2)
−H−1/2(t2 − r)H+1/2

t − r

(
t − r

t2 − r
− 1

)

= (t − t2)
1/2−H (t2 − r)H−1/2

t − r
,

and the claim follows. �

We give now estimates ong2 in terms ofg1. To this end, givenα > 0, we
introduce the following norm on functionsg : R+ → Rn:

‖g‖2
α =

∫ ∞
0

(1+ t)2α‖g(t)‖2 dt.

The following proposition is essential to the coherence of our coupling construc-
tion:

PROPOSITION 4.4. Let t2 > 2t1 > 0, let g1 : [0, t1] → Rn be a square
integrable function, and define g2 : R+ → R+ by

g2(t) =
∫ t1

0

t1/2−H(t2 − s)H−1/2

t + t2 − s
‖g1(s)‖ds.

Then, for every α satisfying

0 < α < min
{1

2;H }
,

there exists a constant κ > 0 depending only on α and H such that the estimate

‖g2‖α ≤ κ

∣∣∣∣ t2t1
∣∣∣∣α−1/2

‖g1‖α(4.14)

holds.

REMARK 4.5. The important features of this proposition are that the constant
κ does not depend ont1 or t2 and that the exponent in (4.14) is negative.
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PROOF OFPROPOSITION4.4. We definer = t2/t1 to shorten notation. Using
(4.13) and Cauchy–Schwarz, we then have

‖g2(t)‖ ≤ C‖g1‖α

√∫ t1

0
(1+ s)−2α

(rt1 − s)2H−1t1−2H

(t + rt1 − s)2 ds

= C‖g1‖αt1
H−αt1−H−1/2

√∫ 1

0
s−2α

(r − s)2H−1

(t + rt1 − t1s)2 ds

≤ C‖g1‖α

t1
H−αt1/2−HrH−1/2

t + (r − 1)t1
,

where we made use of the assumptions that 2α < 1 andr ≥ 2. Therefore,‖g2‖α is
bounded by

‖g2‖α ≤ κ‖g1‖αt1
H−αrH−1/2

√∫ ∞
0

(1+ t)2αt1−2H

(t + (r − 1)t1)2 dt

≤ κ‖g1‖αrα−1/2

√∫ ∞
0

t2αt1−2H

(t + 1)2 dt,

for some constantκ , where the last inequality was obtained through the change
of variablest �→ (r − 1)t1t and used the fact thatr ≥ 2. The convergence of the
integral is obtained under the conditionα < H which is verified by assumption, so
the proof of Proposition 4.4 is complete.�

We will construct our coupling functionC in such a way that there always
exist functionsgw andgB satisfying (4.9) and (4.10), wherewx andwy denote
the noise components of our coupling process, andBx andBy are obtained by
applying the operatorDH to them. We have now all the necessary ingredients for
the construction ofC .

5. Definition of the coupling function. Our coupling construction depends
on a parameterα < min{1

2,H } which we fix once and for all. This parameter will
then be tuned in Section 6.

First of all, we define the auxiliary spaceA:

A = {0,1,2,3} × N × N × R+.(5.1)

Elements ofA will be denoted by

a = (S,N, Ñ, T3).(5.2)

The componentS denotes which step of (4.7) is going to be performed next (the
value 0 will be used only for the initial valuea0). The counterN is incremented
every time step 2 is performed and is reset to 0 every time another step is
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performed. The counter̃N is incremented every time step 1 or step 2 fails. If steps
1 or 2 fail, the timeT3 contains the duration of the upcoming step 3. We take

a0 = (0,1,1,0)

as initial condition for our coupling construction.
Remember that the coupling functionC is a function fromX2 × W2 × A,

representing the state of the system at the end of a step, intoR × M1(A × W2+),
representing the duration and the realization of the noise for the next step. We now
defineC for the four possible values ofS.

5.1. Initial stage (S = 0). Notice first that (A1) implies that

〈f (y) − f (x), y − x〉
‖y − x‖ ≤ C

(A1)
4 − C

(A1)
2 ‖y − x‖,(5.3)

where we setC(A1)
4 =

√
C

(A1)
1 (C

(A1)
2 + C

(A1)
3 ).

In the beginning, we just wait until the two copies of our process are within
distance 1+ (C

(A1)
4 /C

(A1)
2 ) of each other. Ifxt and yt satisfy (SDE) with the

same realization of the noise processBH , andρt = yt − xt , we have for‖ρt‖
the differential inequality

d‖ρt‖
dt

= 〈f (yt ) − f (xt ), ρt 〉
‖ρt‖ ≤ C

(A1)
4 − C

(A1)
2 ‖ρt‖,

and therefore by Gronwall’s lemma

‖ρt‖ ≤ ‖y0 − x0‖e−C
(A1)
2 t + C

(A1)
4

C
(A1)
2

(
1− e−C

(A1)
2 t ).

It is enough to wait for a timet = (log‖y0 − x0‖)/C(A1)
2 to ensure that‖ρt‖ ≤

1+ (C
(A1)
4 /C

(A1)
2 ), so we define the coupling functionC in this case by

T (Z,a0) = max
{

log‖y0 − x0‖
C

(A1)
2

,1
}
, W2(Z, a0) = �∗W × δa′,(5.4)

where the map� :W+ → W2+ is defined by�(w) = (w,w) and the elementa′ is
given by

a′ = (1,0,0,0).

In other terms, we wait until the two copies of the process are close to each other,
and then we proceed to step 1.
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5.2. Waiting stage (S = 3). In this stage, both copies evolve with the same
realization of the underlying Wiener process. Using notation (5.2) and (4.4), we
therefore define the coupling functionC in this case by

T (Z,a) = T3, W2(Z, a) = �∗W × δa′,(5.5)

where the map� is defined as above and the elementa′ is given by

a′ = (1,N, Ñ,0).

Notice that this definition is in accordance with (4.7); that is, the countersN

and Ñ remain unchanged, the dynamic evolves for a timeT3 with two identical
realizations of the Wiener process (note that the realizations of the FBM driving
the two copies of the system are in general different, since thepasts of the Wiener
processes may differ), and then proceeds to step 1.

5.3. Hitting stage (S = 1). In this section, we construct and then analyze the
map C corresponding to the step 1, which is the most important step for our
construction. We start with a few preliminary computations. DefineW1,1 as the
space of almost everywhere differentiable functionsg, such that the quantity

‖g‖1,1 =
∫ 1

0

∥∥∥∥dgB(t)

dt

∥∥∥∥dt + ‖g(0)‖,
is finite.

LEMMA 5.1. Let gB : [0,1] → Rn be in W1,1 and define gw by (4.11a)with
H ∈ (1

2,1). (The function gB is extended to R by setting it equal to 0 outside
of [0,1] and gw is considered as a function from R+ to Rn.) Then, for every
α ∈ (0,H), there exists a constant C such that

‖gw‖α ≤ C‖gB‖1,1.

PROOF. We first bound theL2-norm ofgw on the interval[0,2]. Using (4.11f ),
we can bound‖gw(t)‖ by

‖gw(t)‖ ≤ C‖gB(0)‖t1/2−H + C

∫ t

0
‖ġB(s)‖(t − s)1/2−H ds.

Sincet1/2−H is square integrable at the origin, it remains to bound the termsI1
andI2 given by

I1 =
∫ 2

0

(∫ t

0
(t − s)1/2−H‖ġB(s)‖ds

∫ t

0
(t − r)1/2−H‖ġB(r)‖dr

)
dt,

I2 = ‖gB(0)‖
∫ 2

0
t1/2−H

∫ t

0
(t − s)1/2−H‖ġB(s)‖ds dt.
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We only show how to boundI1, asI2 can be bounded in a similar fashion. Writing
r ∨ s = max{r, s}, one has

I1 =
∫ 1

0

∫ 1

0

∫ 2

r∨s
(t − s)1/2−H(t − r)1/2−H dt ‖ġB(s)‖‖ġB(r)‖dr ds.

Since∫ 2

r∨s
(t − s)1/2−H(t − r)1/2−H dt ≤

∫ 2

r∨s

(
t − (r ∨ s)

)1−2H
dt ≤ 22−2H

2− 2H
,

I1 is bounded byC‖gB‖2
1,1.

It remains to bound the large-time tail ofgw. For t ≥ 2, one has, again by
Lemma 4.2,

‖gw(t)‖ ≤ (t − 1)−H−1/2 sup
s∈[0,1]

‖gB(s)‖ ≤ C(t − 1)−H−1/2‖gB‖1,1.(5.6)

It follows from the definition that the‖ · ‖α-norm of this function is bounded if
α < H . The proof of Lemma 5.1 is complete.�

In the caseH < 1
2, one has a similar result, but the regularity ofgB can be

weakened.

LEMMA 5.2. Let gB : [0,1] → Rn be a continuous function and define gw

as in Lemma 5.1, but with H ∈ (0, 1
2). Then, for every α ∈ (0,H), there exists a

constant C such that

‖gw‖α ≤ C sup
t∈[0,1]

‖gB(t)‖.

PROOF. SinceH < 1
2, one can move the derivative under the integral of the

first equation in Lemma 4.2 to get

‖gw(t)‖ ≤ C

∫ t

0
(t − s)−H−1/2‖gB(s)‖ds ≤ C sup

t∈[0,1]
‖gB(t)‖.

This shows that the restriction ofgw to [0,2] is square integrable. The large-time
tail can be bounded by (5.6) as before.�

We already hinted several times toward the notion of a “cost function” that
measures the difficulty of coupling the two copies of the process. This notion is
now made precise. Denote byZ = (x0, y0,wx,wy) an element ofX2 × W2 and
assume that there exists a square integrable functiongw : R− → Rn such that

wy(t) = wx(t) +
∫ 0

t
gw(s) ds ∀ t < 0.(5.7)
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In regard of (4.13), we introduce forT > 0 the operatorRT given by

(RT g)(t) = C

∫ 0

−∞
t1/2−H(T − s)H−1/2

t + T − s
‖g(s)‖ds,

whereC is the constant appearing in (4.13). The cost is then defined as follows.

DEFINITION 5.3. The cost functionKα : L2(R−) → [0,∞] is defined by

Kα(g) = sup
T >0

‖RT g‖α + CK

∫ 0

−∞
(−s)H−3/2‖g(s)‖ds,(5.8)

where, for convenience, we defineCK = |(2H − 1)γHα1−H |. GivenZ as above,
Kα(Z) is defined asKα(gw) if there exists a square integrable functiongw

satisfying (5.7) and as∞ otherwise.

REMARK 5.4. The cost functionKα defined above has the important property
that

Kα(θtg) ≤ Kα(g) for all t ≥ 0,(5.9)

where the shifted functionθtg is given by

(θtg)(s) =
{

g(s + t), if s < −t ,

0, otherwise.

Furthermore, it is a norm, and thus satisfies the triangle inequality.

REMARK 5.5. By (4.13), the first term in (5.8) measures by how much the
two realizations of the Wiener process have to differ in order to obtain identical
increments for the associated FBMs. By (4.11c), the second term in (5.8) measures
by how much the two realizations of the FBM differ if one lets the system evolve
with two identical realizations of the Wiener process.

We now turn to the construction of the process(xt , yt ) during step 1. We will
set up our coupling construction in such a way that, whenever step 1 is to be
performed, the initial conditionZ is admissible in the following sense:

DEFINITION 5.6. Let α satisfy 0< α < min{1
2;H }. We say thatZ =

(x0, y0,wx,wy) is admissible if one has

‖x0 − y0‖ ≤ 1+ 1+ C
(A1)
4

C
(A1)
2

,(5.10)

[the constantsC(A1)
i are as in (A1) and in (5.3)], and its cost satisfiesKα(Z) ≤ 1.
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Denote now by� the space of continuous functionsω : [0,1] → Rn which are
the restriction to[0,1] of an element of̃HH . Our aim is construct two measures
P1

Z andP2
Z on� × � satisfying the following conditions:

(B1) The marginals ofP1
Z + P2

Z onto the two components� of the product space
are both equal to the Wiener measureW.

(B2) Let Bκ ⊂ � × � denote the set of pairs(w̃x, w̃y) such that there exists a
functiongw : [0,1] → Rn satisfying

w̃y(t) = w̃x(t) +
∫ t

0
gw(s) ds,

∫ 1

0
‖gw(s)‖2 ds ≤ κ.

Then, there exists a value ofκ such that, for every admissible initial condition
Z0, we haveP1

Z(Bκ) + P2
Z(Bκ) = 1.

(B3) Let (xt , yt ) be the process constructed by solving (SDE) with respective
initial conditionsx0 andy0, and with respective noise processesPt(wx, w̃x)

andPt(wy, w̃y). Then, one hasx1 = y1 for P1
Z-almost every noise(w̃x, w̃y).

Furthermore, there exists a constantδ > 0 such thatP1
Z(�×�) ≥ δ for every

admissible initial conditionZ.

REMARK 5.7. Both measuresP1
Z andP2

Z can easily be extended to measures
on W2+ in such a way that (B1) holds. Since the dynamic constructed from
the coupling functionC will not depend on this extension, we just choose one
arbitrarily and denote again byP1

Z andP2
Z the corresponding measures onW2+.

GivenP1
Z andP2

Z , we construct the coupling functionC in the following way,
using notation (5.2) and (4.4):

T (Z,a) = 1, W2(Z, a) = P1
Z × δa1 + P2

Z × δa2,(5.11)

where the two elementsa1 anda2 are defined as

a1 = (2,0, Ñ,0),(5.12a)

a2 = (
3,0, Ñ + 1, t∗Ñ4/(1−2α)),(5.12b)

for some constantt∗ to be determined later in this section. Notice that this
definition reflects the algorithm (4.7) and the explanation following (5.2). The
reason behind the particular choice of the waiting time in (5.12b) will become
clear in Remark 5.11.

The way the construction ofP1
Z and P2

Z works is very close to the binding
construction in [11]. The main difference is that the construction presented in [11]
does not allow to satisfy (B2) above. We will therefore introduce a symmetrized
version of the binding construction that allows to gain a better control overgw.
If µ1 andµ2 are two positive measures with densitiesD1 andD2 with respect to
some common measureµ, we define the measureµ1 ∧ µ2 by

(µ1 ∧ µ2)(dw) = min{D1(w),D2(w)}µ(dw).
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The key ingredient for the construction ofP1
Z andP2

Z is the following lemma, the
proof of which will be given later in this section.

LEMMA 5.8. Let Z = (x0, y0,wx,wy) be an admissible initial condition and
let H , σ and f satisfy the hypotheses of either Theorem 1.2or Theorem 1.3.Then,
there exists a measurable map �Z :� → � with measurable inverse, having the
following properties.

(B1′) There exists a constant δ > 0 such that W ∧ �∗
ZW has mass bigger than 2δ

for every admissible initial condition Z.
(B2′) There exists a constant κ such that {(w̃x, w̃y)|w̃y = �Z(w̃x)} ⊂ Bκ for

every admissible initial condition Z.
(B3′) Let (xt , yt ) be the process constructed by solving (SDE) with respective

initial conditions x0 and y0, and with noise processes Pt(wx, w̃x) and
Pt(wy,�Z(w̃x)). Then, one has x1 = y1 for every w̃x ∈ � and every
admissible initial condition Z.

Furthermore, the maps �Z and �−1
Z are measurable with respect to Z.

Given such a�Z , we first define the maps�↑ and�→ from � to � × � by

�↑(w̃x) = (
w̃x,�Z(w̃x)

)
, �→(w̃y) = (

�−1
Z (w̃y), w̃y

)
.

(See also Figure 1.) We also define the “switch map”S :� × � → � × � by
S(w̃x, w̃y) = (w̃y, w̃x).

With these definitions at hand, we construct two measuresP1
Z and P̃1

Z on
� × � by

P1
Z = 1

2(�∗↑W ∧ �∗→W), P̃1
Z = P1

Z + S∗P1
Z.(5.13)

In Figure 1, P1
Z lives on the boldfaced curve and̃P1

Z is its symmetrized
version which lives on both the boldfaced and the dashed curve. Denote by

FIG. 1. Construction of PZ .
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	i :� × � → � the projectors onto theith component and by� :� → � × �

the lift onto the diagonal�(w) = (w,w). Then, we define the measureP2
Z by

P2
Z = S∗P1

Z + �∗(W − 	∗
1P̃1

Z).(5.14)

By (5.13), W > 	1P̃1
Z , so P1

Z and P2
Z are both positive and their sum is a

probability measure. Furthermore, one has by definition

P1
Z + P2

Z = P̃1
Z + �∗(W − 	∗

1P̃1
Z).

Since	∗
1�

∗ is the identity, this immediately implies

	∗
1P1

Z + 	∗
1P2

Z = W.

The symmetryS∗P̃1
Z = P̃1

Z then implies that the second marginal is also equal
to W, that is, (B1) is satisfied. Furthermore, the set{(w̃x, w̃y)|w̃y = �Z(w̃x)} has
PZ-measure bigger thanδ by (B1′), so (B3) is satisfied as well. Finally, (B2) is an
immediate consequence of (B2′). It remains to construct the function�Z .

PROOF OFLEMMA 5.8. As previously, we writeZ as

Z = (x0, y0,wx,wy).(5.15)

In order to construct�Z , we proceed as in [11], Section 5, except that we want the
solutionsxt andyt to become equal after time 1. Letw̃x ∈ � be given and define

BH(t) = (
DHP1(wx, w̃x)

)
(t − 1),(5.16)

whereW denotes the corresponding part of the initial conditionZ0 in (5.15). We
write the solutions to (SDE) as

dxt = f (xt ) dt + σ dBH(t),(5.17a)

dyt = f (yt ) dt + σ dBH(t) + σ g̃B(t) dt,(5.17b)

whereg̃B(t) is a function to be determined. Notice thatxt is completely determined
by w̃x and by the initial conditionZ. We introduce the processρt = yt − xt , so
we get

dρt

dt
= f (xt + ρt ) − f (xt ) + σ g̃B(t).(5.18)

We now definẽgB(t) by

g̃B(t) = −σ−1
(
κ1ρt + κ2

ρt√‖ρt‖
)
,(5.19)

for two constantsκ1 and κ2 to be specified. This yields for the norm ofρt the
estimate

d‖ρt‖2

dt
≤ 2

(
C

(A1)
3 − κ1

)‖ρt‖2 − 2κ2‖ρt‖3/2.
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We chooseκ1 = C
(A1)
3 and so

‖ρt‖ ≤
{(

6κ2t − √‖ρ0‖ )2
, for t <

√‖ρ0‖/(6κ2),

0, for t ≥ √‖ρ0‖/(6κ2).
(5.20)

We can then chooseκ2 sufficiently large, so that‖ρt‖ = 0 for t > 1/2. Since the
initial condition was admissible by assumption, the constantκ2 can be chosen as
a function of the constantsC(A1)

i only. Notice also that the preceding construction
yields g̃B as a function ofZ andw̃x only.

We then construct̃wy = �Z(w̃x) in such a way that (5.17) is satisfied with
the function g̃B we just constructed. Definegw by (5.7) and constructgB by
applying (4.11b). Then, we extend̃gB to (−∞,1] by simply putting it equal
to gB on (−∞,0]. Applying the inverse formula (4.11a), we obtain a functiong̃w

on (−∞,1], which is equal togw on (−∞,0] and which is such that(
�Z(w̃x)

)
(t) ≡ w̃x(t) +

∫ t

0
g̃w(s) ds

has precisely the required property.
It remains to check that the family of maps�Z constructed this way has the

properties stated in Lemma 5.8. The inverse of�Z is constructed in the following
way. Choosew̃y ∈ � and consider the solution to the equation

dyt = f (yt ) dt + σ dB ′
H (t),

whereBH is defined as in (5.16) withx replaced byy. Onceyt is obtained, one
can construct the processρt as before, but this time by solving

dρt

dt
= f (yt ) − f (yt − ρt ) −

(
κ1ρt + κ2

ρt√‖ρt‖
)
.

This allows to definẽgB as in (5.19). The element̃wx ≡ �−1
Z (w̃y) is then obtained

by the same procedure as before.
Before turning to the proof of properties (B1′)–(B3′), we give some estimate on

the functiong̃w that we just constructed.

LEMMA 5.9. Assume that the conditions of Lemma 5.8hold. Then, there exists
a constant K such that the function g̃w(Z, w̃x) constructed above satisfies∫ 1

0
‖g̃w(Z, w̃x)(s)‖2 ds < K,

for every admissible initial condition Z and for every w̃x ∈ W+.

PROOF. We writeg̃w(t) for t > 0 as

g̃w(t) = C

∫ 0

−∞
t1/2−H (−s)H−1/2

t − s
gw(s) ds + αH

d

dt

∫ t

0
(t − s)1/2−H g̃B(s) ds

≡ g̃(1)
w (t) + g̃(2)

w (t),
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where gw is defined by (5.7),gB is given by (5.19) and the constantC is
the constant appearing in (4.13). TheL2-norm of g̃

(1)
w is bounded by 1 by the

assumption thatZ is admissible. To bound the norm ofg̃
(2)
w , we treat the cases

H < 1
2 andH > 1

2 separately.

The case H < 1
2 . For this case, we simply combine Lemma 5.2 with the

definition (5.19) and the estimate (5.20).

The case H > 1
2 . For this case, we apply Lemma 5.1, so we bound the‖ · ‖1,1-

norm of g̃B . By (5.19), one has∥∥∥∥ d

dt
g̃B(t)

∥∥∥∥ ≤ C

∥∥∥∥dρt

dt

∥∥∥∥(1+ ‖ρt‖−1/2),(5.21)

for some positive constantC. Using (5.18), the assumption about the boundedness
of the derivative off and the definition (5.19), we get∥∥∥∥dρt

dt

∥∥∥∥ ≤ C
(‖ρt‖ + √‖ρt‖ )

.

Combining this with (5.21) and (5.20), the required bound on‖g̃B‖1,1 follows. �

Property (B1′) now follows from Lemma 5.9 and Girsanov’s theorem in the
following way. Denote byDZ the density of�∗

ZW with respect toW, that is,
(�∗

ZW)(dw̃x) = DZ(w̃x)W(dw̃x). It is given by Girsanov’s formula

DZ(w̃x) = exp
(∫ 1

0

〈(
g̃w(Z, w̃x)

)
(t), dw̃x(t)

〉 − 1
2

∫ 1

0
‖g̃w(Z, w̃x)‖2(t) dt

)
.

One can check (see, e.g., [20]) that‖W ∧ �∗
ZW‖TV is bounded from below by

‖W ∧ �∗
ZW‖TV ≥

(
4

∫
�

DZ(w)−2W(dw)

)
.

Property (B1′) thus follows immediately from Lemma 5.9, using the fact that∫
�

exp
(
−2

∫ 1

0

〈(
g̃w(Z, w̃x)

)
(t), dw̃x(t)

〉 − 2
∫ 1

0
‖g̃w(Z, w̃x)‖2(t) dt

)
W(dw) = 1.

Property (B2′) is also an immediate consequence of Lemma 5.9, and property (B3′)
follows by construction from (5.20). The proof of Lemma 5.8 is complete.�

Before concluding this section we show that, if step 1 fails,t∗ can be chosen
in such a way that the waiting timet∗Ñ4/(1−2α) in (5.12b) is long enough so that
(5.10) holds again after step 3 and so that the cost function does not increase by
more than 1/(2Ñ2). By the triangle inequality, the second claim follows if we
show that

Kα

(
θt g̃w(Z, w̃x)

) ≤ 1

2Ñ2
,(5.22)
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whenever t is large enough [the shiftθt is as in (5.9)]. Combining (4.14),
Lemma 5.9 and the definition ofKα , we get, for some constantC,

Kα

(
θt g̃w(Z, w̃x)

) ≤ Ctα−1/2 + CtH−3/2 for t ≥ 2.

There thus exists a constantt∗ such that the bound (5.22) is satisfied if the waiting
time is longer thant∗Ñ4/(1−2α). It remains to show that (5.10) holds after the
waiting time is over. If step 1 failed, the realizationsw̃x andw̃y are drawn either
in the set

�̃1 = {(w̃x, w̃y) ∈ �2|w̃x = w̃y}
or in the set

�̃2 = {(w̃x, w̃y) ∈ �2|w̃x = �Z(w̃y)}
(see Figure 1). In order to describe the dynamics also during the waiting time (i.e.,
step 3), we extend those sets toW2+ by

�i = {
(w̃x, w̃y) ∈ W2+|(w̃x |[0,1], w̃y |[0,1]

) ∈ �̃i

andw̃x(t) − w̃y(t) = const fort > 1
}
.

Given an admissible initial conditionZ = (x0, y0,wx,wy) and a pair
(w̃x, w̃y) ∈ W2+, we consider the solutionsxt andyt to (SDE) given by

dxt = f (xt ) dt + σ dBx
H (t),

(5.23)
dyt = f (yt ) dt + σ dB

y
H (t),

whereBx
H (and similarly forBy

H ) is constructed as usual by concatenatingwx and
w̃x and applying the operatorDH . The key observation is the following lemma.

LEMMA 5.10. Let Z be an admissible initial condition as above, let
(w̃x, w̃y) ∈ �1 ∪ �2, and let xt and yt be given by (5.23) for t > 0. Then, there
exists a constant t∗ > 0 such that

‖xt − yt‖ ≤ 1+ 1+ C
(A1)
4

C
(A1)
2

holds again for t > t∗.

PROOF. Fix an admissible initial conditionZ and consider the case when
(w̃x, w̃y) ∈ �2 first. Letgw : R− → Rn be as in (5.7) and definẽgw : R+ → Rn by

w̃y(t) = w̃x(t) +
∫ t

0
g̃w(s) ds.

Introducingρt = yt − xt , we see that it satisfies the equation

dρt

dt
= f (yt ) − f (xt ) + σGt ,(5.24)
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where the functionGt is given by

Gt = c1

∫ 0

−∞
(t − s)H−3/2gw(s) ds + c2

d

dt

∫ t

0
(t − s)H−1/2g̃w(s) ds,(5.25)

with some constantsc1 andc2 depending only onH . It follows from (5.24), (5.3)
and Gronwall’s lemma that the Euclidean norm‖ρt‖ satisfies the inequality

‖ρt‖ ≤ e−C
(A1)
2 t‖ρ0‖ +

∫ t

0
e−C

(A1)
2 (t−s)(C(A1)

4 + ‖Gs‖)
ds.(5.26)

Consider first the time interval[0,1] and define

G̃t = c1

∫ 0

−∞
(t − s)H−3/2gw(s) ds − c2

d

dt

∫ t

0
(t − s)H−1/2g̃w(s) ds;

that is, we simply reversed the sign ofg̃w. This corresponds to the case where
(w̃x, w̃y) are interchanged, and thus satisfỹwy = �Z(w̃x) instead of w̃x =
�Z(w̃y). We thus deduce from (5.19) and (5.20) that

‖G̃s‖ ≤ ‖σ−1‖(
κ1‖ρ0‖ + κ2

√‖ρ0‖ )
,(5.27)

for s ∈ [0,1]. This yields for‖Gs‖ the estimate

‖Gs‖ ≤ ‖σ−1‖(
κ1‖ρ0‖ + κ2

√‖ρ0‖ ) + 2c1

∫ 0

−∞
(t − s)H−3/2‖gw(s)‖ds

(5.28)
≤ ‖σ−1‖(

κ1‖ρ0‖ + κ2
√‖ρ0‖ ) + 1,

where we used the fact thatZ is admissible for the second step. Notice that (5.28)
only holds fors ∈ [0,1], so we consider now the cases > 1. In this case, we can
write Gt as

Gt = c1

∫ 0

−∞
(t − s)H−3/2gw(s) ds + c1

∫ 1

0
(t − s)H−3/2g̃w(s) ds.

The first term is bounded by 1 as before. In order to bound the second term, we
use Lemma 5.9, so we get

‖Gt‖ ≤ 1+
√

K

2H − 2

(
(t − 1)2H−2 − t2H−2

)
.(5.29)

This function has a singularity att = 1, but this singularity is always integrable.
For t > 2, say, it behaves liketH−3/2. Putting the estimates (5.28) and (5.29)
into (5.26), we see that there exists a constantC depending only onH and on
the parameters in assumption (A1) such that, fort > 2, one has the estimate

‖ρt‖ ≤ e−C
(A1)
2 t‖ρ0‖ + 1+ C

(A1)
4

C
(A1)
2

+ CtH−3/2.

The claim follows at once. �
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REMARK 5.11. To summarize, we have shown the following in this section:

1. There exists a positive constantδ such that if the stateZ of the coupled system
is admissible, step 1 has a probability larger thanδ to succeed.

2. If step 1 fails and the waiting time for step 3 is chosen larger thant∗Ñ4/(1−2α),
then the state of the coupled system is again admissible after the end of step 3,
provided the costKα(Z) at the beginning of step 1 was smaller than 1− 1

2Ñ2 .
3. The increase in the cost given between the beginning of step 1 and the end of

step 3 is smaller than1
2Ñ2 .

In the following section, we will define step 2 and so conclude the construction
and the analysis of the coupling functionC .

5.4. Coupling stage (S = 2). In this section, we construct and analyze the
coupling mapC corresponding to step 2. Following (4.7), we construct it in such a
way that, with positive probability, the two copies of the process (SDE) are driven
with the same noise. In other terms, ifZ = (x0, y0,wx,wy) denotes the state of
our coupled system at the beginning of step 2, we construct a measurePZ on W2+
such that if(w̃x, w̃y) is drawn according toPZ , then one has(

DH(wx � w̃x)
)
(t) = (

DH(wy � w̃y)
)
(t), t > 0,(5.30)

with positive probability. Here,� denotes the concatenation operator given by

(w � w̃)(t) =
{

w(t), for t < 0,

w̃(t), for t ≥ 0.

In the notation (5.2), step 2 will have a duration 2N andN will be incremented
by 1 every time step 2 succeeds.

The construction ofPZ will be similar in spirit to the construction of the
previous section. We therefore introduce as before the functiong̃w given by

w̃y(t) = w̃x(t) +
∫ t

0
g̃w(s) ds.(5.31)

Our main concern is of course to get good bounds on this functiong̃w. This is
achieved by the following lemma, which is crucial in the process of showing that
step 2 will eventually succeed infinitely often.

LEMMA 5.12. Let Z0 be an admissible initial condition and denote by T
the measure on X2 × W2 obtained by evolving Z0 according to the successful
realization of step 1. Then, there exists a constant K̃ > 0 depending only on H ,
α and the parameters appearing in (A1), such that for T-almost every Z =
(x, y,wx,wy), and for every pair (w̃x, w̃y) satisfying (5.30),we have the bounds

‖g̃w‖α ≤ K̃,

∥∥∥∥dg̃w

dt

∥∥∥∥
α+1

≤ K̃.(5.32)

Furthermore, one has x = y, T-almost surely.
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PROOF. It is clear from Lemma 5.8 thatx = y. Let now Z be an element
drawn according toT and denote bygw : R− → Rn the function formally defined
by

dwy(t) = dwx(t) + gw(t) dt.(5.33)

We also denote bygb : R− → Rn the function such that

dBy(t) = dBx(t) + gb(t) dt,(5.34)

whereBx = DHwx andBy = DHwy . (Note thatgw andgb are almost surely well
defined, so we discard elementsZ for which they cannot be defined.) SinceZ

corresponds almost surely to a successful realization of step 1,gb is equal on the
interval[−1,0] (up to translation in time) to the functioñgB constructed in (5.19).
By (5.20), there exists therefore a constantCg such that

‖gb(s)‖ ≤
{

Cg, for s ∈ [−1,−1
2

)
,

0, for s ∈ [−1
2,0

]
.

(5.35)

Combining the linearity ofDH with (4.13), one can see that if(w̃x, w̃y)

satisfy (5.30), then the functioñgw is given by the formula

g̃w(t) = C1

∫ −1

−∞
|t + 1|1/2−H |s + 1|H−1/2

t − s
gw(s) ds

(5.36)

+ C2

∫ −1/2

−1
(t − s)−H−1/2gb(s) ds,

for some constantsC1 andC2 depending only onH . Notice that the second integral
only goes up to 1/2 because of (5.35).

Since the initial conditionZ0 is admissible by assumption, the‖ · ‖α-norm of
the first term is bounded by 1. The‖ · ‖α-norm of the second term is also bounded
by a constant, using (5.35) and the assumptionα < H .

Deriving (5.36) with respect tot , we see that there exists a constantK such that∥∥∥∥dg̃w(t)

dt

∥∥∥∥ ≤ K

t + 1

(∫ −1

−∞
|t + 1|1/2−H |s + 1|H−1/2

t − s
‖gw(s)‖ds

(5.37)

+
∫ −1/2

−1
(t − s)−H−1/2‖gb(s)‖ds

)
,

and the bound on the derivative follows as previously.�

The definition of our coupling function will be based on the following lemma:

LEMMA 5.13. Let N be the normal distribution on R, choose a ∈ R, b ≥ |a|,
and define M = max{4b,2 log(8/b)}. Then, there exists a measure N2

a,b on R2

satisfying the following properties:
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1. Both marginals of N2
a,b are equal to N.

2. If |b| ≤ 1, one has

N2
a,b

({(x, y)|y = x + a}) > 1− b.

Furthermore, the above quantity is always positive.
3. One has

N2
a,b

({(x, y)||y − x| ≤ M}) = 1.

PROOF. Consider the following figure:

Denote byNx the normal distribution on the setLx = {(x, y)|y = 0} and byNy the
normal distribution on the setLy = {(x, y)|x = 0}. We also define the mapsπi,x

(resp.πi,y ) from Lx (resp.Ly ) to Li , obtained by only modifying they (resp.x)
coordinate. Notice that these maps are invertible and denote their inverses byπ̃i,x

(resp.π̃i,y). We also denote byNx |M (resp.Ny |M ) the restriction ofNx (resp.Ny )
to the square[−M

2 , M
2 ]2.

With these notation, we define the measureN3 onL3 as

N3 = π∗
3,x(Nx |M) ∧ π∗

3,y(Ny |M).

The measureN2
a,b is then defined as

N2
a,b = N3 + π∗

2,x

(
(Nx |M) − π̃∗

3,xN3
) + π∗

1,x

(
Nx − (Nx |M)

)
.

A straightforward calculation, using the symmetries of the problem, shows
that property 1 is indeed satisfied. Property 3 follows immediately from the
construction, so it remains to check that property 2 holds, that is, that

N3(L3) ≥ 1− b
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for |b| < 1, andN3(L3) > 0 otherwise. It follows from the definition of the total
variation distance‖ · ‖TV that

N3(L3) = 1− 1
2‖(Nx |M) − τ ∗

a (Nx |M)‖TV,

whereτa(x) = x − a. SinceM ≥ 4b ≥ 4a, it is clear from the figure and from
the fact that the density of the normal distribution is everywhere positive, that
N3(L3) > 0 for everya ∈ R. It therefore suffices to consider the case|b| ≤ 1.
Since

∫ ∞
M e−x2/2 dx < b/8, one has‖Nx |M − Nx‖TV ≤ b/4, which implies

N3(L3) ≥ 1− b

4
− 1

2
‖Nx − τ ∗

a Nx‖TV .

A straightforward computation shows that, for|a| ≤ 1,

‖Nx − τ ∗
a Nx‖TV ≤

√
ea2 − 1≤ √

2a,

and the claim follows. �

We will use the following corollary:

COROLLARY 5.14. LetW be the Wiener measure onW+, let g ∈ L2(R+)

with ‖g‖ ≤ b, let M = max{4b,2 log(8/b)}, and define the map�g :W+ → W+
by

(�gw)(t) = w(t) +
∫ t

0
g(s) ds.

Then, there exists a measureW2
g,b onW2+ such that the following properties hold:

1. Both marginals ofW2
g,b are equal to the Wiener measureW.

2. If b ≤ 1, one has the bound

W2
g,b

({(w̃x, w̃y)|w̃y = �g(w̃x)}) ≥ 1− b.(5.38)

Furthermore, at fixedb > 0, the above quantity is always positive and a
decreasing function of‖g‖.

3. The set {
(w̃x, w̃y)|∃κ : w̃y(t) = w̃x(t) + κ

∫ t

0
g(s) ds, |κ|‖g‖ ≤ M

}
has fullW2

g,b-measure.

PROOF. This is an immediate consequence of theL2-expansion of white noise,
usingg as one of the basis functions and applying Lemma 5.13 on that component.

�
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Given this result (and using the same notation as above), we turn to the
construction of the coupling functionC for step 2. Given an initial condition
Z = (x0, y0,wx,wy), remember thatgw is defined by (5.7). We furthermore define
the functiong̃w : R+ → Rn by

g̃w(t) = C

∫ 0

−∞
t1/2−H(−s)H−1/2

t − s
gw(s) ds,(5.39)

with C the constant appearing in (4.13). By (4.13),g̃w is the only function
that ensures that (5.30) holds if̃wx and w̃y are related by (5.31). [Notice that,
although (5.36) seems to differ substantially from (5.39), they do actually define
the same function.] GivenZ as above anda ∈ A, denote byga,Z the restriction
of g̃w to the interval[0,2N ] (prolonged by 0 outside). It follows from Lemma 5.12
that there exists a constantK such that if the coupled process was in an admissible
state at the beginning of step 1, then the a priori estimate

‖ga,Z‖2 ≡
∫ 2N

0
‖ga,Z(s)‖2 ds ≤ C2−2αN ≡ b2

N(5.40)

holds for some constantC. We thus defineb = max{bN,‖ga,Z‖} and denote by
W2

Z,a the restriction ofW2
ga,Z,b to the “good” set (5.38) and bỹW2

Z,a its restriction
to the complementary set.

We choose furthermore an arbitrary exponentβ satisfying the condition

β >
1

1− 2α
.(5.41)

With these notation at hand, we define the coupling function for step 2:

T (Z,a) = 2N, W2(Z, a) = W2
Z,a × δa′ + W̃2

Z,a × δa′′,

where

a′ = (2,N + 1, Ñ,0), a′′ = (
3,0, Ñ + 1, t̃∗2βNÑ4/(1−2α)),(5.42)

for some constant̃t∗ to be determined in the remainder of this section. The waiting
time in (5.42) has been chosen in such a way that the following holds.

LEMMA 5.15. Let (Z0, a0) ∈ X2 × W2 × A with Z0 admissible and denote
by T the measure on X2 × W2 obtained by evolving it according to the successful
realization of step 1, followed by N successful realizations of step 2, one failed
realization of step 2 and one waiting period 3. There exists a constant t̃∗ such that
T-almost every Z = (x, y,wx,wy) satisfies

‖x − y‖ ≤ 1+ 1+ C
(A1)
4

C
(A1)
2

, Kα(Z) ≤ Kα(Z0) + 1

2Ñ2
,

where Ñ denotes the value of the corresponding component of a0.
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PROOF. We first show the bound on the cost function. GivenZ distributed
according toT as in the statement, we definegw by (5.33) as usual. The bounds
we get on the functiongw are schematically depicted in the following figure, where
the time interval[t̃2, t3] corresponds to the failed realization of step 2:

(5.43)

Notice that, except for the contribution coming from times smaller thant1, we
are exactly in the situation of (4.12). Since the cost of a function is decreasing
under time shifts, the contribution toKα(Z) coming from(−∞, t1] is bounded
by Kα(Z0). Denote byg the function defined by

g(t) =
{

gw(t + t1), for t ∈ [0, t3 − t1],
0, otherwise.

Using the definition of the cost function together with Proposition 4.4 and the
Cauchy–Schwarz inequality, we obtain for some constantsC1 andC2 the bound

Kα(Z) ≤ Kα(Z0) + C1

√
|t3|2H−2 − |t1|2H−2‖g‖ + C2

∣∣∣∣ t1

t3 − t1

∣∣∣∣α−1/2

‖g‖α,

where‖ · ‖ denotes theL2-norm. Since step 1 has length 1 and theN th occurrence
of step 2 has length 2N−1, we have

|t3 − t1| = 2N+1, |t3| = t̃∗2βNÑ4/(1−2α).

In particular, one has|t3| > |t3 − t1| if t̃∗ is larger than 1. Since√
|t3|2H−2 − |t1|2H−2 ≤ |t3|H−3/2|t3 − t1|1/2 ≤

∣∣∣∣ t3

t3 − t1

∣∣∣∣−1/2

,

this yields (for a different constantC1) the bound

Kα(Z) ≤ Kα(Z0) + C1

∣∣∣∣ t3

t3 − t1

∣∣∣∣α−1/2

‖g‖α ≤ Kα(Z0) + C1
t̃
α−1/2∗ 2−γN

Ñ2
‖g‖α,

where we definedγ = (β − 1)(1
2 − α). Notice that (5.41) guarantees thatγ > α.

We now bound the‖ · ‖α-norm of g. We know from Lemma 5.12 that
the contribution coming from the time interval[t1, t̃2] is bounded by some
constantK . Furthermore, by (5.40), we have for the contribution coming from
the interval[t̃2, t3] a bound of the type∫ t3

t̃2

‖g̃(s)‖2 ds ≤ C(N + 1)2,
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for some positive constantC. This yields forg the bound

‖g‖α ≤ C(N + 1)2αN,

for some other constantC. Sinceγ > α, there exists a constantC such that

Kα(Z) ≤ Kα(Z0) + C
t̃
α−1/2∗
Ñ2

.

By choosingt̃∗ sufficiently large, this proves the claim concerning the increase of
the total cost.

It remains to show that, at the end of step 3, the two realizations of (SDE) did
not drift too far apart. Definegb by (5.34) as usual and notice that, by construction,
xt = yt for t = t̃2. Writing as beforeρt = yt − xt , one has fort > t̃2 the estimate

‖ρt‖ ≤ C
(A1)
4

C
(A1)
2

+
∫ t

t̃2

e−C
(A1)
2 (t−s)‖gb(s)‖ds.(5.44)

We first estimate the contribution coming from the time interval[t̃2, t3]. Denote by
g̃ : [t̃2, t3] → Rn the valuegw would have taken, had the last occurrence of step 2
succeeded and not failed [this corresponds to the dashed curve in (5.43)]. Defining
ĝ = gw − g̃, we have by (4.11e) that, on the intervalt ∈ [t̃2, t3],

gb(t) = C1
ĝ(t̃2)

(t − t̃2)1/2−H
+ C2

∫ t

t̃2

(dĝ/ds)(s)

(t − s)1/2−H
ds.(5.45)

By Corollary 5.14 and the construction of the coupling function,ĝ is proportional
to gw and, by (5.40), we also have forĝ a bound of the type‖ĝ‖ ≤ C(N + 1) (the
norm is theL2-norm over the time interval[t̃2, t3]). Furthermore, (5.37) yields
‖dĝ

ds
‖ ≤ C(N + 1)2−N . Recall that every differentiable function defined on an

interval of lengthL satisfies

|f (t)| ≤ ‖f ‖√
L

+
∥∥∥∥df

dt

∥∥∥∥√L.

(The norms areL2-norms.) Using this to bound the first term in (5.45) and the
Cauchy–Schwarz inequality for the second term, we get a constantC such thatgb

is bounded by

‖gb(t)‖ ≤ C(N + 1)
(
1+ 2−N/2(t − t̃2)

H−1/2).
From this and (5.44), we get another constantC such that‖ρt‖ ≤ C(N + 1) at the
time t = t3. We finally turn to the interval[t3,0]. It follows from (4.11c) that, for
some constantC, we have

‖gb(t)‖ ≤ 1
2 + C|t − t3|H−1‖g‖,

where the term1
2 is the contribution from the times smaller thant1. Since we know

by (5.40) and Corollary 5.14 that theL2-norm of g is bounded byC(N + 1) for
some constantC, we obtain the required estimate by choosingt̃∗ sufficiently large.

�
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REMARK 5.16. To summarize this section, we have shown the following,
assuming that the coupled system was in an admissible state before performing
step 1 and that step 1 succeeded:

1. There exist constantsδ′ ∈ (0,1) and K > 0 such that theN th consecutive
occurrence of step 2 succeeds with probability larger than max{δ′,1−K2−αN }.
This occurrence has length 2N−1.

2. If the N th occurrence of step 2 fails and the waiting time for step 3 is chosen
longer thant̃∗2βNÑ4/(1−2α), then the state of the coupled system is again
admissible after the end of step 3, provided that the costKα(Z) at the beginning
of step 1 was smaller than 1− 1

2Ñ2 .

3. The increase in the cost given between the beginning of step 1 and the end of
step 3 is smaller than1

2Ñ2 .

Now that the construction of the coupling functionC is completed, we can
finally turn to the proof of the results announced in the Introduction.

6. Proof of the main result. Let us first reformulate Theorems 1.2 and 1.3 in
a more precise way, using the notation developed in this paper.

THEOREM 6.1. Let H ∈ (0,1) \ {1
2}, let f and σ satisfy (A1)–(A3) if H < 1

2
and (A1), (A2′), (A3) if H > 1

2, and let γ < maxα<H α(1 − 2α). Then, the SDS
defined in Proposition 3.11has a unique invariant measure µ∗. Furthermore, there
exist positive constants C and δ such that, for every generalized initial condition µ,
one has

‖QQtµ − Qµ∗‖TV ≤ 2µ({‖x0‖ > eδt }) + Ct−γ .(6.1)

PROOF. The existence of µ∗ follows from Proposition 3.12 and
Lemma 2.20. Furthermore, the assumptions of Proposition 2.18 hold by the in-
vertibility of σ , so the uniqueness ofµ∗ will follow from (6.1).

Denote byϕ the SDS constructed in Proposition 3.11, and consider the self-
coupling Q(µ,µ∗) for ϕ constructed in Section 5. We denote by(xt , yt ) the
canonical process associated toQ(µ,µ∗) and we define a random timẽτ∞ by

τ̃∞ = inf{t > 0|xs = ys ∀ s ≥ t}.
It then follows immediately from (4.2) that

‖QQtµ − Qµ∗‖TV ≤ 2P(τ̃∞ > t).

Remember thatQ(µ,µ∗) was constructed as the marginal of the law of a Markov
process with continuous time, living on an augmented phase spaceX . Since we
are only interested in bounds on the random timeτ̃∞ and since we know that
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xs = ys as long as the coupled system is in the state 2, it suffices to consider the
Markov chain(Zn, τn) constructed in (4.8). It is clear thatτ̃∞ is then dominated
by the random timeτ∞ defined as

τ∞ = inf{τn|Sm = 2 ∀m ≥ n},
whereSn is the component ofZn indicating the type of the corresponding step. Our
interest therefore only goes to the dynamic ofτn andSn. We define the sequence
of timest (n) by

t (0) = 1, t (n + 1) = inf{m > t(n)|Sm = 1},(6.2)

and the sequence of durations�τn by

�τn = τt (n+1) − τt (n),

with the convention�τn = +∞ if t (n) is infinite [i.e., if the set in (6.2) is empty].
Notice that we sett (0) = 1 and not 0 because we will treat step 0 of the coupled
process separately. The duration�τn therefore measures the time needed by the
coupled system starting in step 1 to come back again to step 1. We define the
sequenceξn by

ξ0 = 0, ξn+1 =
{−∞, if �τn = +∞,

ξn + �τn, otherwise.

By construction, one has

τ∞ = τ1 + sup
n≥0

ξn,(6.3)

so we study the tail distribution of the�τn.
For the moment, we leave the valueα appearing throughout the paper free; we

will tune it at the end of the proof. Notice also that, by Remarks 5.11 and 5.16, the
cost increases by less than1

2Ñ2 every time the counter̃N is increased by 1. Since
the initial condition has no cost [by the choice (4.6) of its distribution], this implies
that, with probability 1, the system is in an admissible state every time step 1 is
performed.

Let us first consider the probability of�τn being infinite. By Remark 5.11,
the probability for step 1 to succeed is always greater thanδ. After step 1,
the N th occurrence of step 2 has length 2N−1, and a probability greater than
max{δ′,1− K2−αN } of succeeding. Therefore, one has

P(�τn ≥ 2N) ≥ δ

N∏
k=0

max{δ′,1− K2−αk}.

This product always converges, so there exists a constantp∗ > 0 such that

P(�τn = ∞) ≥ p∗,
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for every n > 0. Since our estimates are uniform over all admissible initial
conditions and the coupling is chosen in such a way that the system is always
in an admissible state at the beginning of step 1, we actually just proved that the
conditional probability ofP(�τn = ∞) on any event involvingSm and�τm for
m < n is bounded from below byp∗.

For�τn to be finite, there has to be a failure of step 2 at some point [see (4.7)].
Recall that if step 2 succeeds exactlyN times, the corresponding value for�τn

will be equal to 2N + t̃∗2βN(1+ n)4/(1−2α) for N > 0 and tot∗(1+ n)4/(1−2α) for
N = 0. This follows from (5.12b) and (5.42), noticing that̃N in those formulae
counts the number of times step 1 occurred and is therefore equal ton. We also
know that the probability of theN th occurrence of step 2 to fail is bounded from
above byK2−αN . Therefore, a very crude estimate yields a constantC such that

P
(
(1+ n)−4/(1−2α)�τn ≥ C2βN and�τn �= ∞) ≤ K

∑
k>N

2−αk.

This immediately yields for some other constantC

P
(
(1+ n)−4/(1−2α)�τn ≥ T and�τn �= ∞) ≤ CT −α/β.(6.4)

As a consequence, the processξn is stochastically dominated by the Markov chain
ζn defined by

ζ0 = 0, ζn+1 =
{−∞, with probabilityp∗,

ζn + (n + 1)4/(1−2α)pn, with probability 1− p∗,

where thepn are positive i.i.d. random variables with tail distributionCT −α/β ,
that is,

P(pn ≥ T ) =
{

CT −α/β, if CT −α/β < 1,

1, otherwise.

With these notation and using the representation (6.3),τ∞ is bounded by

P(τ∞ > t) ≤ P(τ1 > t/2) + P

(
n∗∑

n=0

(n + 1)4/(1−2α)pn > t/2

)
,(6.5)

wheren∗ is a random variable independent of thepn and such that

P(n∗ = k) = p∗(1− p∗)k.(6.6)

In order to bound the second term in (6.5), it thus suffices to estimate terms of the
form

∑k
n=0(n + 1)4/(1−2α)pn for fixed values ofk. Using the Cauchy–Schwarz

inequality, one obtains the existence of positive constantsC andN such that

P

(
k∑

n=0

(n + 1)4/(1−2α)pn > t/2

)
≤ C(k + 1)N t−α/β.



ERGODICITY OF SDE DRIVEN BY FRACTIONAL BM 755

Combining this with (6.6) and (6.5) yields, for some other constantC,

P(τ∞ > t) ≤ P(τ1 > t/2) + Ct−α/β.

By the definition of step 0 (5.4), we get forτ1:

P(τ1 > t/2) ≤ µ
({‖x0‖ > eC

(A1)
2 t/2/2

}) + µ∗
({‖y0‖ > eC

(A1)
2 t/2/2

})
.

Since, by Proposition 3.12, the invariant measureµ∗ has bounded moments, the
second term decays exponentially fast. Sinceα < min{1

2,H } andβ > (1− 2α)−1

are arbitrary, one can realizeγ = α/β for γ as in the statement.
This concludes the proof of Theorem 6.1.�

We conclude this paper by discussing several possible extensions of our result.
The first two extensions are straightforward and can be obtained by simply
rereading the paper carefully and (in the second case) combining its results with
the ones obtained in the references. The two other extensions are less obvious and
merit further investigation.

6.1. Noise with multiple scalings. One can consider the case where the
equation is driven by several independent FBMs with different values of the Hurst
parameter:

dxt = f (xt ) dt +
m∑

i=1

σi dBi
Hi

(t).

It can be seen that in this case, the invertibility ofσ should be replaced by the
condition that the linear operator

σ = σ1 ⊕ σ2 ⊕ · · · ⊕ σm : Rmn → Rn

has rankn. The condition on the convergence exponentγ then becomes

γ < min{γ1, . . . , γm},
whereγi = maxα<Hi

α(1− 2α).

6.2. Infinite-dimensional case. In the case where the phase space for (SDE)
is infinite-dimensional, the question of global existence of solutions is technically
more involved and was tackled in [18]. Another technical difficulty arises from
the fact that one might want to take forσ an operator which is not boundedly
invertible, so (A3) would fail on a formal level. One expects to be able to overcome
this difficulty at least in the case where the equation is semilinear and parabolic,
that is, of the type

dx = Ax dt + F(x)dt + QdBH(t),
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with the domain ofF “larger” (in a sense to be quantified) than the domain of
A and BH a cylindrical FBM on some Hilbert spaceH on which the solution
is defined, provided the eigenvalues ofA and of Q satisfy some compatibility
condition as in [2, 6, 8].

On the other hand, it is possible in many cases to split the phase space into
a finite number of “unstable modes” and an infinite number of “stable modes”
that are slaved to the unstable ones. In this situation, it is sufficient to construct
step 1 in such a way that the unstable modes meet, since the stable ones will then
automatically converge toward each other. A slight drawback of this method is
that the convergence toward the stationary state no longer takes place in the total
variation distance. We refer to [11, 14, 20] for implementations of this idea in the
Markovian case.

6.3. Multiplicative noise. In this case, the problem of existence of global
solutions can already be hard. In the caseH > 1/2, the FBM is sufficiently regular,
so one obtains pathwise existence of solutions by rewriting (SDE) in integral form
and interpreting the stochastic integral pathwise as a Riemann–Stieltjes integral.
In the caseH ∈ (1

4, 1
2), it has been shown [3, 15, 16] that pathwise solutions

can also be obtained by realising the FBM as a geometric rough path. More
refined probabilistic estimates are required in the analysis of step 1 of our coupling
construction. The equivalent of (5.18) then indeed contains a multiplicative noise
term, so the deterministic estimate (5.20) fails.

6.4. Arbitrary Gaussian noise. Formally, white noise is a centered Gaussian
processξ with correlation function

Eξ(s)ξ(t) = Cw(t − s) = δ(t − s).

The derivative of the FBM with Hurst parameterH is formally also a centered
Gaussian process, but its correlation function is proportional to

CH(t − s) = |t − s|2H−2,

which should actually be interpreted as the second derivative of|t − s|2H in the
sense of distributions.

A natural question is whether the results of the present paper also apply
to differential equations driven by Gaussian noise with an arbitrary correlation
functionC(t − s). There is no conceptual obstruction to the use of the method of
proof presented in this paper in that situation, but new estimates are required. It
relies on the fact that the driving process is a FBM only to be able to explicitly
perform the computations of Section 5.
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