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CRITICALITY FOR BRANCHING PROCESSES
IN RANDOM ENVIRONMENT1
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Steklov Institute, University Kaiserslautern,
University Frankfurt/Main and Steklov Institute

We study branching processes in an i.i.d. random environment, where
the associated random walk is of the oscillating type. This class of processes
generalizes the classical notion of criticality. The main properties of such
branching processes are developed under a general assumption, known
as Spitzer’s condition in fluctuation theory of random walks, and some
additional moment condition. We determine the exact asymptotic behavior of
the survival probability and prove conditional functional limit theorems for
the generation size process and the associated random walk. The results rely
on a stimulating interplay between branching process theory and fluctuation
theory of random walks.

1. Introduction and main results. In this paper fundamental properties of
branching processes in a critical random environment are developed. In such a
process individuals reproduce independently of each other according to random
offspring distributions which vary from one generation to the other. To give a
formal definition let� be the space of probability measures onN0 := {0,1, . . . }.
Equipped with the metric of total variation,� becomes a Polish space. LetQ be a
random variable taking values in�. Then, an infinite sequence� = (Q1,Q2, . . . )

of i.i.d. copies ofQ is said to form arandom environment. A sequence of
N0-valued random variablesZ0,Z1, . . . is called abranching process in the
random environment �, if Z0 is independent of� and given� the process
Z = (Z0,Z1, . . . ) is a Markov chain with

L
(
Zn|Zn−1 = z,� = (q1, q2, . . . )

) = L(ξ1 + · · · + ξz)(1.1)

for every n ≥ 1, z ∈ N0 and q1, q2, . . . ∈ �, whereξ1, ξ2, . . . are i.i.d. random
variables with distributionqn. In the language of branching processesZn is the
nth generation size of the population andQn is the distribution of the number of
children of an individual at generationn − 1.
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We will denote the corresponding probability measure on the underlying
probability space byP. (If we refer to other probability spaces, then we use
notation P and E for the respective probability measures and expectations.)
Property (1.1) can be equivalently expressed as

P{(Z1, . . . ,Zn) ∈ B|Z0 = z0,�} = κn,z0(Q1, . . . ,Qn;B), P-a.s.,(1.2)

whereB ⊂ N
n
0 andκn,z0 is the kernel

κn,z0(q1, . . . , qn;B) := ∑
(z1,...,zn)∈B

q
∗z0
1 ({z1}) · · ·q∗zn−1

n ({zn}),

built from thez-fold convolutionsq∗z
i of theqi . In the theorems below we assume

Z0 = 1 a.s. for convenience. Sometimes it will be necessary to allow other valuesz

for Z0. Then, as usual we writePz{·} andEz[·] for the corresponding probabilities
and expectations. For further details and background we refer the reader to Athreya
and Karlin (1971), Athreya and Ney (1972) and Smith and Wilkinson (1969).

As it turns out the properties ofZ are first of all determined by its associated
random walkS = (S0, S1, . . . ). This random walk has initial stateS0 = 0 and
incrementsXn = Sn − Sn−1, n ≥ 1, defined as

Xn := logm(Qn),

which are i.i.d. copies of the logarithmic mean offspring numberX := logm(Q)

with

m(Q) :=
∞∑

y=0

yQ({y}).

We assume thatX is a.s. finite. In view of (1.1) the conditional expectation ofZn,
given the environment�,

µn := E[Zn|Z0,�]
can be expressed by means ofS as

µn = Z0e
Sn, P-a.s.

According to fluctuation theory of random walks [cf. Chapter XII in Feller (1971)],
one may distinguish three different types of branching processes in a random
environment. First,S can be a random walk with positive drift, which means that
limn→∞ Sn = ∞ a.s. In this case one hasµn → ∞ a.s., providedZ0 ≥ 1, andZ is
called asupercritical branching process. Second,S can have negative drift, that is,
limn→∞ Sn = −∞ a.s. Thenµn → 0 a.s. andZ is called subcritical. Finally,
S may be an oscillating random walk, meaning that lim supn→∞ Sn = ∞ a.s. and,
at the same time, lim infn→∞ Sn = −∞ a.s., which implies lim supn→∞ µn = ∞
a.s. and lim infn→∞ µn = 0 a.s. Then we callZ a critical branching process. Our
classification extends the classical distinction of branching processes in random
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environment introduced in Athreya and Karlin (1971) and Smith and Wilkinson
(1969). There it is assumed that the random walk has finite mean. In this case
the branching processZ is supercritical, subcritical or critical, depending on
whetherEX > 0, EX < 0 or EX = 0. Here we do not require that the expectation
of X exists.

In this paper we focus on the critical case, where the population eventually
becomes extinct with probability 1. Indeed, note that the estimate

P{Zn > 0|Z0,�} = min
m≤n

P{Zm > 0|Z0,�}
(1.3)

≤ min
m≤n

µm = Z0 exp
(

min
m≤n

Sm

)
implies P{Zn > 0|Z0,�} → 0 a.s. in critical (as well as subcritical) cases and,
consequently,

P{Zn > 0} → 0 asn → ∞.

A main task in the investigation of critical branching processes consists in
determining the asymptotic probability of the event{Zn > 0} of nonextinction
at generationn and the asymptotic behavior ofZ on this event. To this end,
we impose an assumption on the random walkS, which is known asSpitzer’s
condition. This condition says that the expected proportion of time, which the
random walk spends within the positive real half line up to timen, stabilizes as
n → ∞ at some value other than 0 or 1.

ASSUMPTIONA1. There exists a number 0< ρ < 1 such that

1

n

n∑
m=1

P{Sm > 0} → ρ asn → ∞.

This condition plays an important role in fluctuation theory of random walks.
The summandsP{Sm > 0} may likewise be replaced byP{Sm ≥ 0}, since∑n

m=1 P{Sm = 0} = o(n) for every nondegenerate random walkS [cf. XII.9(c)
in Feller (1971)]. In fact, Doney (1995) proved that Assumption A1 is equivalent
to the convergence ofP{Sn > 0} to ρ. It is well known that any random walk
satisfying Assumption A1 is of the oscillating type [see, e.g., Section XII.7 in
Feller (1971)]. We note that Assumptions A1 covers nondegenerate random walks
with zero mean and finite variance increments, as well as all nondegenerate
symmetric random walks. In these casesρ = 1/2. Other examples are provided by
random walks in the domain of attraction of some stable law, see Assumption B1.

Our second assumption on the environment concerns the standardized truncated
second moment ofQ,

ζ(a) :=
∞∑

y=a

y2Q({y})/m(Q)2, a ∈ N0.
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To formulate the assumption let us introduce the renewal function

v(x) :=
1+

∞∑
i=1

P
{
Sγi

≥ −x
}
, if x ≥ 0,

0, else,

(1.4)

where 0=: γ0 < γ1 < · · · are the strict descending ladder epochs ofS,

γi := min
{
n > γi−1 :Sn < Sγi−1

}
, i ≥ 1.

The fundamental property ofv is

Ev(x + X) = v(x), x ≥ 0,(1.5)

which holds for any oscillating random walk [cf. Bertoin and Doney (1994) and
Kozlov (1976)].

ASSUMPTIONA2. For someε > 0 and somea ∈ N0,

E
(
log+ ζ(a)

)1/ρ+ε
< ∞ and E

[
v(X)

(
log+ ζ(a)

)1+ε]
< ∞.

EXAMPLES. Here are some instances where this assumption is fulfilled:

1. If the random offspring distributionQ has uniformly bounded support, that
is, if P{Q({0,1, . . . , a∗}) = 1} = 1 for somea∗, then ζ(a) = 0 P-a.s. for
all a > a∗. In this case Assumption A2 is redundant and we merely require
the random walkS to satisfy Spitzer’s condition. In particular, the results to
follow hold for any binary branching process in a random environment (where
individuals have either two children or none), which satisfies Assumption A1.

2. In view of relation (1.5), we haveEv(X) = v(0) < ∞. Therefore, Assump-
tion A2 is satisfied, ifζ(a) is a.s. bounded from above for somea. We note that
this is the case if the value ofQ is a.s. a Poisson distribution or a.s. a geometric
distribution onN0 (with random expectations). This follows from the estimate

ζ(2)

2
≤ η :=

∞∑
y=0

y(y − 1)Q({y})/m(Q)2

and the observation that for Poisson distributionsη = 1 a.s. and for geometric
distributions onN0, one hasη = 2 a.s.

3. The renewal functionv(x) always satisfiesv(x) = O(x) as x → ∞ and
v(x) = 0 for x < 0. Therefore, as follows from Hölder’s inequality, Assump-
tion A2 is entailed by

E(X+)p < ∞ and E
(
log+ ζ(a)

)q
< ∞

for somep > 1 andq > max(ρ−1,p(p − 1)−1).
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If X has regular tails we can replace Assumptions A1 and A2 by the following
alternative set of conditions.

ASSUMPTION B1. The distribution ofX belongs without centering to the
domain of attraction of some stable lawλ with index α ∈ (0,2]. The limit law
λ is not a one-sided stable law, that is, 0< λ(R+) < 1.

Here it is assumed that there are numberscn > 0 such thatcnSn converges
in distribution toλ and, consequently,P(Sn > 0) → ρ := λ(R+). In particular,
Assumption B1 implies Assumption A1.

The gain of the stronger regularity condition B1 is that we can further relax the
integrability condition A2.

ASSUMPTIONB2. For someε > 0 and somea ∈ N0,

E
(
log+ ζ(a)

)α+ε
< ∞.

We note that Assumption A2 is indeed stronger than Assumption B2 since

ρ ≤ α−1.(1.6)

For further explanations the reader may consult Dyakonova, Geiger and Vatutin
(2004) or Chapter 8.9.2 in the monograph of Bingham, Goldie and Teugels (1987).

We now come to the main results of the paper. All our limit theorems are
under the lawP, which is what is called the annealed approach. The first theorem
describes the asymptotic behavior of the nonextinction probability at generationn.

THEOREM 1.1. Assume Assumptions A1 and A2 or B1 and B2. Then there
exists a positive finite number θ such that

P{Zn > 0} ∼ θP{min(S1, . . . , Sn) ≥ 0} as n → ∞.(1.7)

This theorem gives first evidence for our claim that the asymptotic behavior of
Z is primarily determined by the random walkS, since only the constantθ depends
on the fine structure of the random environment. The asymptotics (1.7) reflects the
following fact: If minm≤n Sm is low, then the probability of nonextinction atn is
very small as follows from (1.3). In fact, it turns out that on the event{Zn > 0},
the value of minm≤n Sm is only of constant order. A detailed description of this
phenomenon is given in Theorem 1.4.

Since the asymptotic behavior of the probability on the right-hand side of (1.7)
is well known under Assumption A1 (see Lemma 2.1), we obtain the following
corollary.

COROLLARY 1.2. Assume Assumptions A1 and A2 or B1 and B2. Then,

P{Zn > 0} ∼ θn−(1−ρ)l(n) as n → ∞,

where l(1), l(2), . . . is a sequence varying slowly at infinity.
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A probabilistic representation ofθ is contained in (4.10) and explained in the
remark thereafter. For a representation of the functionl, see Lemma 2.1.

The next theorem shows that conditioned on the event{Zn > 0}, the gener-
ation size processZ0,Z1, . . . ,Zn exhibits “supercritical” behavior. Supercritical
branching processes (whether classical or in a random environment) obey the
growth lawZn/µn → W a.s., whereW is some typically nondegenerate random
variable. However, in our situation this kind of behavior can no longer be formu-
lated as a statement on a.s. convergence, since the conditional distribution of the
environment�, given{Zn > 0}, changes withn.

Instead, let us, for integers 0≤ r ≤ n, consider the rescaled generation size
processXr,n = (X

r,n
t )0≤t≤1, given by

X
r,n
t := Zr+	(n−r)t


µr+	(n−r)t

, 0≤ t ≤ 1.(1.8)

THEOREM 1.3. Assume Assumptions A1 and A2 or B1 and B2. Let r1, r2, . . .

be a sequence of positive integers such that rn ≤ n and rn → ∞. Then,

L(Xrn,n
∣∣Zn > 0) �⇒ L

(
(Wt)0≤t≤1

)
as n → ∞,

where the limiting process is a stochastic process with a.s. constant paths, that is,
P{Wt = W for all t ∈ [0,1]} = 1 for some random variable W . Furthermore,

P{0 < W < ∞} = 1.

Here,�⇒ denotes weak convergence w.r.t. the Skorokhod topology in the space
D[0,1] of càdlàg functions on the unit interval. Again, the growth ofZ is in the
first place determined by the random walk [namely, the sequence(µn)n≥0]. The
fine structure of the random environment is reflected only in the distribution ofW .

Thus, first of all properties of the random walkS are important for the behavior
of Z. However, one also has to take into account that the random walk changes its
properties drastically, when conditioned on the event{Zn > 0}. The next theorem
illustrates this fact. Letτn be the first moment, when the minimum ofS0, . . . , Sn is
attained

τn := min{i ≤ n|Si = min(S0, . . . , Sn)}, n ≥ 0.(1.9)

THEOREM 1.4. Assume Assumptions A1 and A2 or B1 and B2. Then, as
n → ∞,

L
((

τn,min(S0, . . . , Sn)
)|Zn > 0

)
converges weakly to some probability measure on N0 × R

−
0 .

For a more detailed description of the conditioned random walk we confine
ourselves to the situation given in Assumption B1.
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THEOREM 1.5. Assume Assumptions B1 and B2. Then there exists a slowly
varying sequence �(1), �(2), . . . such that

L
((

n−1/α�(n)S	nt

)
0≤t≤1|Zn > 0

) �⇒ L(L+) as n → ∞,

where L+ denotes the meander of a strictly stable process with index α.

Shortly speaking, the meanderL+ = (L+
t )0≤t≤1 is a strictly stable Lévy process

conditioned to stay positive on the time interval(0,1] [for details see Doney (1985)
and Durrett (1978)].

In view of Theorem 1.3, the last theorem is equivalent to the following result.

COROLLARY 1.6. Assume Assumptions B1 and B2. Then,

L
((

n−1/α�(n) logZ	nt

)
0≤t≤1|Zn > 0

) �⇒ L(L+) as n → ∞
for some slowly varying sequence �(1), �(2), . . . .

Starting from the seminal paper of Kozlov (1976), the topic of branching
processes in a critical random environment has gone through quite a development.
For a fairly long time research was restricted to the special case of random
offspring distributions with a linear fractional generating function (including
geometric distributions) and to random walks with zero mean, finite variance
increments. Under these restrictions, fairly explicit (albeit tedious) calculations
of certain Laplace transforms are feasible, which then allow the proof of (most of )
the results above [cf. Afanasyev (1993, 1997)]. In recent years the assumption
of linear fractional offspring distributions could be dropped [see Afanasyev
(2001), Geiger and Kersting (2000), Kozlov (1995) and Vatutin (2002)], and
first steps to overcome the assumption of a finite variance random walk were
taken [see Dyakonova, Geiger and Vatutin (2004) and Vatutin and Dyakonova
(2003)].

Yet the significance of Spitzer’s condition as a suitable regularity condition for
branching processes in an i.i.d. random environment has not been recognized so
far. The use of Laplace transforms and generating functions is still indispensable
for our purposes (see Section 3), however, in our general situation it is to
be supported by other devices. In particular, we point out to the change
of measure, which is discussed in Section 2. It enables us to make use of
Tanaka’s path decomposition for conditioned random walks [Tanaka (1989)]. This
decomposition turns out to be an essential tool in the proof of Theorem 1.3. In
particular, it is used to establish the fact that the mean gives the right growth of
the population up to a random factor, which was an open problem [see Afanasyev
(2001)]. Tanaka’s decomposition also allows to substantially weaken the required
moment conditions to Assumption A2, respectively, Assumption B2.
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2. Auxiliary results for random walks. The proofs of our theorems rely
strongly on various results from the theory of random walks. In this section we
collect these results.

2.1. Results from fluctuation theory of random walks. The minima

Ln := min(S1, . . . , Sn), n ≥ 1,

play an important role in the fluctuation theory of random walks. Recall the
definition of the functionv(x) introduced in (1.4).

LEMMA 2.1. Assume Assumption A1. Then, for every x ≥ 0,

P{Ln ≥ −x} ∼ v(x)n−(1−ρ)l(n) as n → ∞,(2.1)

where the slowly varying function l is given by l(n) := h(1− n−1)/�(ρ) with

h(s) := exp

( ∞∑
n=1

sn

n
(P{Sn ≥ 0} − ρ)

)
, 0≤ s < 1.

Furthermore, there exists a constant 0 < c1 < ∞ such that for all x ≥ 0 and
n ∈ N,

P{Ln ≥ −x} ≤ c1v(x)n−(1−ρ)l(n).(2.2)

Similarly, for all n and some 0 < c2 < ∞, we have

P{max(S1, . . . , Sn) ≤ 0} ≤ c2n
−ρl(n)−1.(2.3)

PROOF. For the asymptotics (2.1) apply Theorem 8.9.12 in Bingham, Goldie
and Teugels (1987) to the random walkS := −S and note that thereρ has to be
replaced byρ̄ := 1− ρ.

For the second claim [which has been established already by Kozlov (1976) for
finite variance random walks] we use the inequality

∞∑
m=0

smP{Lm ≥ −x} ≤ v(x)exp

( ∞∑
n=1

sn

n
P{Sn ≥ 0}

)

= v(x)(1− s)−ρh(s)

following from Lemma 8.9.11 and a formula contained in the proof of Theo-
rem 8.9.12 in Bingham, Goldie and Teugels (1987). SinceP{Ln ≥ −x} is non-
increasing withn, it follows that

n

2

(
1− 1

n

)n

P{Ln ≥ −x} ≤ ∑
n/2≤m≤n

(
1− 1

n

)m

P{Lm ≥ −x}

≤ v(x)nρh(1− n−1),
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which implies the bound (2.2). Finally, (2.3) follows by applying (2.2) to the
random walkS. Thenρ has to be replaced bȳρ = 1− ρ, andh(s) by

h̄(s) := exp

( ∞∑
n=1

sn

n
(P{Sn ≤ 0} − ρ̄)

)
= exp

( ∞∑
n=1

sn

n
(ρ − P{Sn > 0})

)
.

As s ↑ 1, we obtain

h(s)h̄(s) = exp

( ∞∑
n=1

sn

n
P{Sn = 0}

)
→ exp

( ∞∑
n=1

1

n
P{Sn = 0}

)
=: γ.

Sinceγ is positive and finite [see XII.9(c) in Feller (1971)], we havel(n)l̄(n) ∼
γ /(�(ρ)�(1− ρ)), and the upper bound (2.3) follows.�

Next we study the random timeτn defined in (1.9). The following technical
lemma will be used at various places.

LEMMA 2.2. Let u(x), x ≥ 0, be a nonnegative, nonincreasing function with∫ ∞
0 u(x) dx < ∞. Then, under Assumption A1, for every ε > 0, there exists a

positive integer l such that for all n ≥ l,
n∑

k=l

E[u(−Sk); τk = k]P{Ln−k ≥ 0} ≤ εP{Ln ≥ 0}.

PROOF. We first show
∞∑

k=0

E[u(−Sk); τk = k] < ∞.(2.4)

Let x ≥ 0. Since [recall (1.4) and note thatP{Sγ0 ≥ −x} = 1 for x ≥ 0]

v(x) =
∞∑

k=0

∞∑
i=0

P{Sk ≥ −x, γi = k}
(2.5)

=
∞∑

k=0

P{−Sk ≤ x, τk = k},

we have
∞∑

k=0

E[u(−Sk); τk = k] =
∫ ∞

0
u(x) dv(x).

In view of the fact thatv(x) = O(x) asx → ∞, assertion (2.4) now follows from
the integrability and monotonicity assumptions onu. Next we prove

E[u(−Sn); τn = n] = O(n−1).(2.6)
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Clearly,τn = n impliesSn ≤ 0. Hence,

E[u(−Sn); τn = n]

≤
∞∑

k=0

u(2k − 1)P{−(2k+1 − 1) < Sn ≤ −(2k − 1), τn = n}

≤
∞∑

k=0

u(2k − 1)P
{
S0, . . . , S	n/2
 ≥ −2k+1,

Sm − S	(n+1)/2
 ≥ Sn − S	(n+1)/2
, 	(n + 1)/2
 ≤ m < n
}

=
∞∑

k=0

u(2k − 1)P
{
L	n/2
 ≥ −2k+1}P

{
S0, . . . , S	n/2
−1 ≥ S	n/2


}
.

By duality, P{S0, . . . , Sm−1 ≥ Sm} = P{max(S1, . . . , Sm) ≤ 0}. Therefore, using
the upper bounds (2.2) and (2.3), we deduce

E[u(−Sn); τn = n]

≤ c1c2	n/2
ρ−1l(	n/2
)	n/2
−ρl(	n/2
)−1
∞∑

k=0

u(2k − 1)v(2k+1).

Since v(x) = O(x), the series is convergent by the assumption onu, and
assertion (2.6) follows. Now observe that, by (2.6) and monotonicity ofLj , we
have for any 0< δ < 1,

n∑
k=l

E[u(−Sk); τk = k]P{Ln−k ≥ 0}

≤ P
{
L	δn
 ≥ 0

} ∑
l≤k≤(1−δ)n

E[u(−Sk); τk = k] + c

(1− δ)n

∑
j≤δn

P{Lj ≥ 0},

wherec is some positive finite constant. By Lemma 2.1,P{Ln ≥ 0} is regularly
varying with exponent−(1− ρ) ∈ (−1,0). An application of Karamata’s theorem
[see, e.g., Theorem 1.5.11 in Bingham, Goldie and Teugels (1987)] gives∑

j≤δn

P{Lj ≥ 0} ∼ δn

ρ
P

{
L	δn
 ≥ 0

} ∼ δρ

ρ
nP{Ln ≥ 0} asn → ∞.

Consequently,
n∑

k=l

E[u(−Sk); τk = k]P{Ln−k ≥ 0}

≤ cP{Ln ≥ 0}
(
δ−(1−ρ)

∞∑
k=l

E[u(−Sk); τk = k] + δρ

1− δ

)
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for sufficiently largec. By (2.4), the sum on the right-hand side above is finite.
Hence, the claim of the lemma follows by a suitable choice ofδ andl. �

As an application of Lemma 2.2 we generalize a functional limit theorem
for random walks satisfying Assumption B1, which is due to Doney (1985) and
Durrett (1978).

LEMMA 2.3. Assume Assumption B1 and let x ≥ 0.Then, there exists a slowly
varying sequence �(1), �(2), . . . such that

L
((

n−1/α�(n)S	nt

)
0≤t≤1|Ln ≥ −x

) �⇒ L(L+) as n → ∞,

where L+ is the meander of a strictly stable Lévy process.

PROOF. Doney and Durrett proved this theorem forx = 0. To treat the general
case let us consider the processesSk,n andS̃k,n,0≤ k ≤ n, given by

S
k,n
t := n−1/α�(n)S	nt
∧k,

(2.7)
S̃

k,n
t := n−1/α�(n)

(
S	nt
 − S	nt
∧k

)
, 0≤ t ≤ 1.

Then Sn := Sk,n + S̃k,n is the process under consideration. For 0≤ k ≤ n, we
define

Lk,n := min
0≤j≤n−k

(Sk+j − Sk).(2.8)

Let φ be a bounded continuous function on the spaceD[0,1] of càdlàg functions
equipped with the Skorokhod metric. Since

{τn = k} = {τk = k} ∩ {Lk,n ≥ 0},(2.9)

a decomposition according toτn gives

E[φ(Sn);Ln ≥ −x] =
n∑

k=0

E[φ(Sn); τk = k, Sk ≥ −x,Lk,n ≥ 0].(2.10)

Observe that, for 0≤ k ≤ n, we have

E[φ(Sn); τk = k, Sk ≥ −x,Lk,n ≥ 0]
(2.11)

= E
[
E[φ(Sk,n + S̃k,n);Lk,n ≥ 0|X1, . . . ,Xk]; τk = k, Sk ≥ −x

]
.

For k ≥ 0 fixed the result of Doney and Durrett implies that, givenLk,n ≥ 0,
the processS̃k,n converges in distribution to the specified meander. Also,
given X1, . . . ,Xk , the processSk,n vanishes asymptoticallyP-a.s. Hence, by
independence and the dominated convergence theorem, we have

E[φ(Sn); τk = k, Sk ≥ −x,Lk,n ≥ 0]
(2.12)

= P{Ln ≥ 0}P{τk = k, Sk ≥ −x}(Eφ(L+) + o(1)
)
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for everyk ≥ 0. Now letε > 0. Takingu = 1[0,x] in Lemma 2.2 gives

n∑
k=l

E[φ(Sn); τk = k, Sk ≥ −x,Lk,n ≥ 0]
(2.13)

≤ sup|φ|
n∑

k=l

E[u(−Sk); τk = k]P{Ln−k ≥ 0} ≤ εP{Ln ≥ 0},

if only l is large enough. Combining formulas (2.10), (2.12) and (2.13) with (2.5)
gives

E[φ(Sn);Ln ≥ −x] = P{Ln ≥ 0}v(x)
(
Eφ(L+) + o(1)

)
.

In particular, choosingφ ≡ 1, we obtain the asymptotics forP{Ln ≥ −x} and the
claim of the lemma follows. �

2.2. A change of measure. Following Geiger and Kersting (2000), it is helpful
to consider, besidesP, another probability measureP+. In order to define this
measure letFn, n ≥ 0, be theσ -field of events generated by the random variables
Q1, . . . ,Qn andZ0, . . . ,Zn. Theseσ -fields form a filtrationF .

LEMMA 2.4. The random variables v(Sn)I{Ln≥0}, n = 0,1, . . . form a
martingale with respect to F under P.

PROOF. Let B and D be Borel sets inN
n
0 and �n, respectively. Recall

identities (1.2) and (1.5) and the fact thatv(x) = 0 for x < 0. Conditioning first on
the environment� and then onFn and using the independence ofQ1,Q2, . . . , we
obtain

E[v(Sn+1);Ln+1 ≥ 0,Z0 = z, (Q1, . . . ,Qn) ∈ D,(Z1, . . . ,Zn) ∈ B]
= E[v(Xn+1 + Sn)κn,z(Q1, . . . ,Qn;B);

Ln ≥ 0,Z0 = z, (Q1, . . . ,Qn) ∈ D](2.14)

= E[v(Sn)κn,z(Q1, . . . ,Qn;B);Ln ≥ 0,Z0 = z, (Q1, . . . ,Qn) ∈ D]
= E[v(Sn);Ln ≥ 0,Z0 = z, (Q1, . . . ,Qn) ∈ D,(Z1, . . . ,Zn) ∈ B].

By definition of conditional expectation, (2.14) implies

E
[
v(Sn+1)I{Ln+1≥0}|Fn

] = v(Sn)I{Ln≥0}, P-a.s.,

which is the desired martingale property.�

Taking into accountv(0) = 1, we may introduce probability measuresP+
n on

theσ -fieldsFn by means of the densities

dP+
n := v(Sn)I{Ln≥0} dP.



BRANCHING PROCESSES 657

Because of the martingale property, the measures are consistent, that is,P+
n+1|Fn =

P+
n . Therefore (choosing a suitable underlying probability space), there exists a

probability measureP+ on theσ -field F∞ := ∨
n Fn such that

P+|Fn = P+
n , n ≥ 0.(2.15)

We note that (2.15) can be rewritten as

E+Yn = E[Ynv(Sn);Ln ≥ 0](2.16)

for everyFn-measurable nonnegative random variableYn. This change of measure
is the well-known Doobh-transform from the theory of Markov processes. In
particular, underP+, the processS becomes a Markov chain with state spaceR

+
0

and transition kernel

P +(x;dy) := 1

v(x)
P{x + X ∈ dy}v(y), x ≥ 0.

In our contextP+ arises from conditioning:

LEMMA 2.5. Assume Assumption A1. For k ∈ N, let Yk be a bounded real-
valued Fk-measurable random variable. Then, as n → ∞,

E[Yk|Ln ≥ 0] → E+Yk.

More generally, let Y1, Y2, . . . be a uniformly bounded sequence of real-valued
random variables adapted to the filtration F , which converges P+-a.s. to some
random variable Y∞. Then, as n → ∞,

E[Yn|Ln ≥ 0] → E+Y∞.

PROOF. For x ≥ 0, write mn(x) := P{Ln ≥ −x}. Then, fork ≤ n, condition-
ing onFk gives

E[Yk|Ln ≥ 0] = E
[
Yk

mn−k(Sk)

mn(0)
;Lk ≥ 0

]
.

The first claim now follows from the asymptotics (2.1) and (2.2), the dominated
convergence theorem and relation (2.16). For the second claim letγ > 1. Using
again (2.1), (2.2) and (2.16), we obtain, fork ≤ n,∣∣E[

Yn − Yk|L	γ n
 ≥ 0
]∣∣ ≤ E

[
|Yn − Yk|m	(γ−1)n
(Sn)

m	γ n
(0)
;Ln ≥ 0

]

≤ c

(
γ − 1

γ

)−(1−ρ)

E[|Yn − Yk|v(Sn);Ln ≥ 0]

= c

(
γ − 1

γ

)−(1−ρ)

E+|Yn − Yk|,



658 V. I. AFANASYEV, J. GEIGER, G. KERSTING AND V. A. VATUTIN

wherec is some positive constant. Letting firstn → ∞ and thenk → ∞, the
right-hand side vanishes by the dominated convergence theorem. Thus, using the
first part of the lemma, we conclude

E
[
Yn;L	γ n
 ≥ 0

] = (
E+Y∞ + o(1)

)
P

{
L	γ n
 ≥ 0

}
.

Consequently, for somec > 0,∣∣E[Yn;Ln ≥ 0] − E+Y∞P{Ln ≥ 0}∣∣
≤ ∣∣E[

Yn;L	γ n
 ≥ 0
] − E+Y∞P

{
L	γ n
 ≥ 0

}∣∣ + cP
{
Ln ≥ 0,L	γ n
 < 0

}
≤ (

o(1) + c
(
1− γ −(1−ρ)))P{Ln ≥ 0},

where for the last inequality we also used (2.1) again. Sinceγ may be chosen
arbitrarily close to 1, we have

E[Yn;Ln ≥ 0] − E+Y∞P{Ln ≥ 0} = o(P{Ln ≥ 0}),
which is the second claim of the lemma.�

The change of measure has a natural interpretation, as is known from Bertoin
and Doney (1994) and others: UnderP+, the chainS can be viewed as a random
walk conditioned to never hit the strictly negative half line. ThenS gains an
important renewal property, which is a consequence of theTanaka decomposition
for oscillating random walks. We recall only those aspects of the decomposition,
which will be needed in the sequel and which, in our context, have to be extended
to the entire environment. The original decomposition in Tanaka (1989) is not fully
suitable for our purposes, since it concerns random works conditioned to never
leave the strictly (!) positive real half line, meaning that it is based on a somewhat
different harmonic function thanv(x). For these reasons, as well as for the readers
convenience, we briefly recall the decomposition and its proof.

Let ν ≥ 1 be the time of the firstprospective minimal value of S, that is,
a minimal value with respect to the future development of the walk,

ν := min{m ≥ 1 :Sm+i ≥ Sm for all i ≥ 0}.
Moreover, letι ≥ 1 be the first weak ascending ladder epoch ofS,

ι := min{m ≥ 1 :Sm ≥ 0}.
We denote

Q̃n := Qν+n and S̃n := Sν+n − Sν, n ≥ 1.

LEMMA 2.6. Suppose that ι < ∞ P-a.s. Then ν < ∞ P+-a.s. and:

(i) (Q1,Q2, . . . ) and (Q̃1, Q̃2, . . . ) are identically distributed with respect
to P+;
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(ii) (ν,Q1, . . . ,Qν) and (Q̃1, Q̃2, . . . ) are independent with respect to P+;
(iii) P+{ν = k, Sν ∈ dx} = P{ι = k, Sι ∈ dx} for all k ≥ 1.

PROOF. By monotonicity ofv and relation (2.16), we have

E+
[ ∞∑

n=0

I{Sn≤x}
]

≤ v(x)E

[ ∞∑
n=0

I{0≤Sn≤x,Ln≥0}
]

for everyx ≥ 0. The Markov property of the random walk(Sn)n≥0 implies that the
random sum on the right-hand side above has a geometrically decaying tail. Hence,
its expectation is finite, which shows that underP+ the Markov chain(Sn)n≥0 is
transient. Consequently,P+{ν < ∞} = 1.

To prove assertions (i) and (ii), we will first establish the corresponding
statements forS. Forz ≥ 0, let

hz(x) := v(x − z)

v(x)
, x ≥ 0.

Note that 0≤ hz ≤ 1, hz(x) = 0 for x < z andhz(x) → 1 asx → ∞ [since the
renewal functionv(x) satisfiesv(x) → ∞ andv(x)−v(x−z) = O(1) asx → ∞].
Moreover, from (1.5) we see thathz is harmonic with respect to the transition
kernelP + ∫

P +(x;dy)hz(y) = hz(x), x ≥ z.

Since σz,k := min{n ≥ k :Sn < z}, k ≥ 0 is a stopping time, the process
(hz(Sn∧σz,k

))n≥k is a martingale. Consequently, forn ≥ k, we have

E+[
hz

(
Sn∧σz,k

)|Sk = x
] = hz(x).

SinceSn → ∞ P+-a.s. asn → ∞, the dominated convergence theorem entails

P+{Sk, Sk+1, . . . ≥ z|Sk = x} = E+
[

lim
n→∞hz

(
Sn∧σz,k

)|Sk = x

]
= hz(x).

It follows (with x0 = y0 = 0)

P+{ν = k, S1 ∈ dx1, . . . , Sk ∈ dxk, S̃1 ∈ dy1, . . . , S̃m ∈ dym}

= 1{x1,...,xk−1>xk}1{y1,...,ym≥0}
k∏

i=1

P +(xi−1;dxi)

×
(

m∏
j=1

P +(yj−1 + xk;dyj + xk)

)
hxk

(ym + xk)

= 1{x1,...,xk−1>xk}
(

k∏
i=1

P +(xi−1;dxi)

)
hxk

(xk)

m∏
j=1

P +(yj−1;dyj )

= P+{ν = k, S1 ∈ dx1, . . . , Sk ∈ dxk}P+{S1 ∈ dy1, . . . , Sm ∈ dym}.
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Thus,(S1, S2, . . . ) and(S̃1, S̃2, . . . ) are identical in distribution and(ν, S1, . . . , Sν)

and(S̃1, S̃2, . . . ) are independent (both with respect toP+).
Now we show that these properties carry over to the entire environment. By

independence under the original measure, we have

P{Q1 ∈ dq1, . . . ,Qk ∈ dqk|S} = k(X1;dq1) · · ·k(Xk;dqk), P-a.s.,(2.17)

with k(x;dq) := P{Q ∈ dq|X = x}. By definition of conditional expectation,
using (2.16), we may conclude from (2.17) that

P+{Q1 ∈ dq1, . . . ,Qk ∈ dqk|S} = k(X1;dq1) · · ·k(Xk;dqk), P+-a.s.

For Borel setsBi ⊂ �, the properties ofS established above imply

P+{ν = k,Q1 ∈ B1, . . . ,Qk ∈ Bk, Q̃1 ∈ Bk+1, . . . , Q̃m ∈ Bk+m}

= E+
[

k∏
i=1

k(Xi;Bi)

m∏
j=1

k(X̃j ;Bk+j );ν = k

]

= E+
[

k∏
i=1

k(Xi;Bi);ν = k

]
E+

[
m∏

j=1

k(Xj ;Bk+j )

]

= P+{ν = k,Q1 ∈ B1, . . . ,Qk ∈ Bk}P+{Q1 ∈ Bk+1, . . . ,Qm ∈ Bk+m}.
Thus, we have proved (i) and (ii). As to (iii), using duality of random walks, we
conclude

P+{ν = k, Sν ∈ dx}
= P+{Sk ∈ dx,Sk − Sk−1 < 0, . . . , Sk − S1 < 0}hx(x)

= P{Sk ∈ dx,Sk − Sk−1 < 0, . . . , Sk − S1 < 0}
= P{Sk ∈ dx,S1 < 0, . . . , Sk−1 < 0}
= P{ι = k, Sι ∈ dx}.

This completes the proof of Lemma 2.6.�

2.3. A convergent series theorem. As an application of Tanaka’s decomposi-
tion, we now prove a result, which previously had been obtained only under con-
siderably stronger moment conditions [see Geiger and Kersting (2000), Kozlov
(1976) and Vatutin and Dyakonova (2003)]. Let

ηk :=
∞∑

y=0

y(y − 1)Qk({y})
/( ∞∑

y=0

yQk({y})
)2

, k ≥ 1.
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LEMMA 2.7. Assume Assumptions A1 and A2 or B1 and B2. Then
∞∑

k=0

ηk+1e
−Sk < ∞, P+-a.s.

PROOF. We will first estimate theSk from below. To this end, let 0:= ν(0) <

ν(1) < · · · be the times of prospective minima ofS,

ν( j) := min{m > ν(j − 1) :Sm+i ≥ Sm for all i ≥ 0}, j ≥ 1.(2.18)

Clearly,

Sk ≥ Sν( j) if k ≥ ν( j).(2.19)

By Lemma 2.6(i) and (ii), the random variableSν( j) is the sum ofj nonnegative
i.i.d. random variables with positive mean. Thus, there exists somec > 0 such that

Sν( j) ≥ cj eventuallyP+-a.s.(2.20)

To get a lower bound onν( j), observe that, by Lemma 2.6(i) and (ii),ν( j) is also
the sum ofj nonnegative i.i.d. random variables, each with distributionν = ν(1).
Lemma 2.6(iii) and (2.3) imply

P+{ν > k} = P{ι > k} ≤ P{max(S1, . . . , Sk) ≤ 0} = o(k−ρ+δ)

for everyδ > 0. Therefore, we have

E+νρ−δ < ∞ for all δ > 0.

Hence, an application of Theorem 13 in Chapter IX.3 in Petrov (1975) gives

ν( j) = O
(
jρ−1+δ), P+-a.s.(2.21)

for everyδ > 0. Combining (2.19) and (2.20) with (2.21) gives

Sk ≥ Sν(	kρ−δ
) ≥ ckρ−δ eventuallyP+-a.s.

for everyδ > 0, which implies

e−Sk = O
(
e−kρ−δ )

, P+-a.s.(2.22)

for all δ > 0. To obtain this estimate, we have only used Assumption A1. Thus, it
also holds under the stronger condition B1. However, under Assumption B1 it can
be improved to

e−Sk = O
(
e−kα−1−δ )

, P+-a.s.(2.23)

for all δ > 0. Recall from (1.6) thatρ ≤ α−1. Hence, in view of (2.22), we may
for the proof of (2.23) assume 0< αρ < 1. For this case Rogozin proved [cf.
Chapter 8.9.2 in Bingham, Goldie and Teugels (1987), see also Doney (1995)] that
the distribution ofSι underP belongs to the domain of attraction of a stable law
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with indexαρ. (We note that this holds for strict increasing ladder heights, as well
as for weak increasing ladder heights, since the tails of both are identical up to a
multiplicative constant.) Consequently, by Lemma 2.6(iii), for anyδ > 0, we have

P+{Sν > x} = P{Sι > x} ≥ x−αρ(1+δ),

if only x is chosen large enough. SinceYi := Sν(i) −Sν(i−1), i ≥ 1, are independent
nonnegative random variables with the same distribution asSν , we have

P+{
Sν( j) ≤ j (1−δ)/(αρ)}
≤ P+

{
max

1≤i≤j
Yi ≤ j (1−δ)/(αρ)

}
= P+{

Sν ≤ j (1−δ)/(αρ)}j

≤ exp
(−jP+{

Sν > j(1−δ)/(αρ)}) ≤ exp
(−jδ2)

,

if only j is large enough. The Borel–Cantelli lemma implies

Sν( j) ≥ j (1−δ)/(αρ) eventuallyP+-a.s.

for all δ > 0. Replacing (2.20) by this estimate assertion, (2.23) follows in much
the same way as we derived (2.22).

The other part of the proof consists in estimating theηk . First note that

ηk ≤ ζk(a) +
a−1∑
y=0

ayQk({y})
/( ∞∑

y=0

yQk({y})
)2

≤ ζk(a) + a exp(−Xk)

for every a ∈ N0, whereζk(a) is the analogue ofζ(a) defined in terms ofQk .
Hence,

∞∑
k=0

ηk+1e
−Sk ≤

∞∑
k=0

ζk+1(a)e−Sk + a

∞∑
k=0

e−Sk+1

(2.24)

≤
∞∑

k=0

(
ζk+1(a) + a

)
e−Sk ,

and we are left with estimating the tail ofζk(a) underP+ for a suitable choice
of a. Now note that the zero-delayed renewal functionv(x) satisfies the inequality
v(x + y) ≤ v(x) + v(y). Therefore, by independence of theQj under P and
repeatedly using (2.16), we get

P+{ζk(a) > x}
= E[v(Sk); ζk(a) > x,Lk ≥ 0]
≤ E[v(Sk−1) + v(Xk); ζk(a) > x,Lk−1 ≥ 0]

(2.25) = E[v(Sk−1);Lk−1 ≥ 0]P{ζk(a) > x}
+ E[v(Xk); ζk(a) > x]P{Lk−1 ≥ 0}

= P{ζ(a) > x} + E[v(X); ζ(a) > x]P{Lk−1 ≥ 0}.
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Now let a ∈ N0 and ε > 0 be such that Assumption A2 is satisfied. By means
of (2.25) and the Markov inequality, it follows that, for everyx > 1,

P+{ζk(a) > x} ≤ c

(logx)(1/ρ)+ε
+ c

(logx)1+ε
P{Lk−1 ≥ 0}(2.26)

for some finite constantc. From the first part of Lemma 2.1 we see that

P+{
ζk(a) > ekρ−δ′ }
= O

(
k−(ρ−δ′)(1/ρ+ε)) + O

(
k−(ρ−δ′)(1+ε)k−(1−ρ)+δ′)

= O(k−1−ρε/2),

if only δ′ > 0 is chosen small enough. The Borel–Cantelli lemma implies

ζk(a) = O
(
ekρ−δ′ )

, P+-a.s.

for suchδ′. Combining this estimate with (2.22) and (2.24), the claim of the lemma
follows under Assumptions A1 and A2.

Under Assumptions B1 and B2, the last estimate can again be further elaborated.
Then, asx → ∞,

v(x) = o
(
xα(1−ρ)+δ)(2.27)

for any δ > 0. For the proof of (2.27) note that in analogy to (1.6) we have
α(1− ρ) ≤ 1. Since in any casev(x) = O(x), we may assume 0< α(1− ρ) < 1.
Then, by Rogozin’s result, the distribution ofSγ1 belongs to the domain of
attraction of a stable law with indexα(1− ρ). This implies thatv(x) is a regularly
varying function with indexα(1 − ρ) [see Chapter 8.6.2 in Bingham, Goldie and
Teugels (1987)], and (2.27) follows. Moreover,E|X|α−δ < ∞ for all δ > 0, since
by Assumption B1 the distribution ofX belongs to the domain of attraction of a
stable law with indexα. Combining these two estimates gives

Ev(X)1/(1−ρ)−δ < ∞
for all δ > 0. By means of Assumption B2 and Hölder’s inequality, we obtain

E
[
v(X)

(
log+ ζ(a)

)αρ+ε]
< ∞,

if only ε > 0 is small enough anda ∈ N0 is sufficiently large. In view of
Assumption B1, (2.25) and the Markov inequality, we get

P+{ζk(a) > x} ≤ c

(logx)α+ε
+ c

(logx)αρ+ε
P{Lk−1 ≥ 0},

replacing the upper bound (2.26). Proceeding as above, we conclude

P+{
ζk(a) > ekα−1−δ′ }
= O

(
k−(1/α−δ′)(α+ε)) + O

(
k−(1/α−δ′)(αρ+ε)k−(1−ρ)+δ′)

= O
(
k−1−ε/(2α)),
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if δ′ > 0 is small enough. The Borel–Cantelli lemma implies

ζk(a) = O
(
ekα−1−δ′ )

, P+-a.s.

for suchδ′. The claim of the lemma under Assumptions B1 and B2 follows from
this estimate combined with (2.23) and (2.24).�

3. Branching in conditioned environment. Property (1.1) is unaffected
under the change of measure, that is,

P+{(Z1, . . . ,Zn) ∈ B|Z0 = z0,�} = κn,z0(Q1, . . . ,Qn;B), P+-a.s.

This is an easy consequence of (1.2) and (2.16). Thus,Z0,Z1, . . . is still a branch-
ing process in a randomly fluctuating environment, however, the environment
Q1,Q2, . . . is no longer built up from i.i.d. components. Let us call this abranch-
ing process in conditioned environment. Such processes exhibit a behavior, which
is typical for supercritical branching processes. The following theorem states that,
with respect toP+, the population has positive probability to survive forever. The
statement holds for any initial distribution as long asZ0 ≥ 1 with positive proba-
bility.

PROPOSITION3.1. Assume Assumptions A1 and A2 or B1 and B2. Then

P+{Zn > 0 for all n|�} > 0, P+-a.s.

In particular,

P+{Zn > 0 for all n} > 0.

Moreover, as n → ∞,

e−SnZn → W+, P+-a.s.,

where the random variable W+ has the property

{W+ > 0} = {Zn > 0 for all n}, P+-a.s.

PROOF. In view of property (1.1),Zn is stochastically increasing withZ0.
Hence, for the proof of the first claim we may assumeZ0 = 1 P+-a.s. with no loss
of generality. Consider the (random) generating functions

fj (s) :=
∞∑
i=0

siQj ({i}), 0≤ s ≤ 1,

j = 1,2, . . . and their compositions

fk,n(s) := fk+1
(
fk+2

(· · ·fn(s) · · ·)), 0≤ k < n.(3.1)
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We note that the distributional identity (1.1) can be expressed as

E+[sZn |�,Zk] = fk,n(s)
Zk , P+-a.s.(3.2)

We shall use an estimate onfk,n due to Agresti (1975) (see his Lemma 2), which
was originally obtained through a comparison argument with linear fractional
generating functions. A more direct proof may be given using the elementary
identity

1

1− fk,n(s)
= e−(Sn−Sk)

1− s
+

n−1∑
j=k

gj+1
(
fj+1,n(s)

)
e−(Sj−Sk),

(3.3)
0 ≤ s < 1,

with

gj (s) := 1

1− fj (s)
− 1

f ′
j (1)(1− s)

, 0 ≤ s < 1,

and gj (1) := lims→1 gj (s) = ηj/2. Apparently, identity (3.3) has first been
utilized by Jirina (1976). The coefficients possess the favorable property

0 ≤ gj (s) ≤ ηj , 0≤ s ≤ 1,

which has been noticed by Geiger and Kersting (2000) (see their Lemma 2.6).
Combining these formulas, we obtain Agresti’s estimate

fk,n(s) ≤ 1−
(

e−(Sn−Sk)

1− s
+

n−1∑
j=k

ηj+1e
−(Sj−Sk)

)−1

.(3.4)

From (3.2) it follows that under the assumptionP+{Z0 = 1} = 1, we have

P+{Zn > 0|�} = 1− f0,n(0), P+-a.s.

Recall thatSn → ∞ P+-a.s. Hence, if we letn → ∞, then (3.4) implies

P+{Zn > 0 for all n|�} ≥
( ∞∑

j=0

ηj+1e
−Sj

)−1

, P+-a.s.

Applying Lemma 2.7, we obtain

P+{Zn > 0 for all n|�} > 0, P+-a.s.

This is the first claim of the proposition. The second claim is a well-known
consequence of the martingale convergence theorem: Given the environment�,
(Zn/µn)n≥0 is a martingale with respect toP+ and the filtrationF .

As to the proof of the third claim, note thatP+{W+ = 0} ≥ P+{Zn → 0},
since{Zn → 0} ⊂ {W+ = 0}. For the proof of the opposite inequality, we will
use Tanaka’s decomposition as an essential tool. To begin with, we show that

P+{Zn → 0|�} + P+{Zn → ∞|�} = 1, P+-a.s.(3.5)
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A sufficient condition for (3.5) is the following criterion [see Theorem 1 in Jagers
(1974)]:

∞∑
j=0

(
1− Qj({1})) = ∞, P+-a.s.(3.6)

To verify (3.6), note that, by Lemma 2.6, theQν(k)+1({1}), k = 0,1, . . . are
i.i.d. random variables. Also, since{Qj({1}) = 1} ⊂ {Xj = 0} and the case of a
degenerate random walkS is excluded by Spitzer’s condition A1, we have

P+{
Qν(0)+1({1}) = 1

} ≤ P+{X1 = 0} < 1.

Hence,
∞∑

j=1

(
1− Qj({1})) ≥

∞∑
k=0

(
1− Qν(k)+1({1})) = ∞, P+-a.s.

Clearly, (3.5) implies

P+{Zn → 0} + P+{Zn → ∞} = 1.(3.7)

Now observe that from (3.2) and (3.4) we get

E+[exp(−λe−SnZn)|Zk = 1,�]
= fk,n

(
exp(−λe−Sn)

)
(3.8)

≤ 1−
(

e−(Sn−Sk )

1− exp(−λe−Sn)
+

n−1∑
j=k

ηj+1e
−(Sj−Sk)

)−1

, P+-a.s.

for everyλ ≥ 0 andk < n. Recall thatSn → ∞ ande−SnZn → W+ P+-a.s. Hence,
letting firstn → ∞ and thenλ → ∞ gives

P+{W+ = 0|Zk = 1,�} ≤ 1−
( ∞∑

j=k

ηj+1e
−(Sj−Sk)

)−1

, P+-a.s.

Since the timesν(k) of prospective minima are determined by the environment
only, we may replacek by ν(k) in the last estimate. Moreover, identity (1.1)
implies

P+{
W+ = 0|Zν(k) = j,�

} = P+{
W+ = 0|Zν(k) = 1,�

}j
.

Combining these observations gives

P+{W+ = 0|�}
= E+[

P+{
W+ = 0|Zν(k),�

}|�]
≤ E+

[(
1− 1∑∞

j=ν(k) ηj+1e
−(Sj−Sν(k))

)Zν(k) ∣∣∣�]

≤ P+{Zν(k) ≤ z|�} +
(

1− 1∑∞
j=ν(k) ηj+1e

−(Sj−Sν(k))

)z

, P+-a.s.
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for every z ≥ 0. By Lemma 2.6, the law of the second term on the right-hand
side above does not depend onk. Hence, taking first expectations and then letting
k → ∞, we see from (3.7) that

P+{W+ = 0} ≤ P+{Zn → 0} + E+
(

1− 1∑∞
j=0 ηj+1e

−Sj

)z

.

Finally, lettingz → ∞, an application of Lemma 2.7 yields

P+{W+ = 0} − P+{Zn → 0} ≤ P+
( ∞∑

j=0

ηj+1e
−Sj = ∞

)
= 0,

which completes the proof of Proposition 3.1.�

4. Proofs of Theorems 1.1 and 1.3–1.5. The general approach of our proofs
is to replace the conditioning event{Zn > 0} by other events, which are easier to
handle. This strategy has been used before: Kozlov (1976) considered the event
that only a few descending ladder epochs of the random walkS occur before
time n and Geiger and Kersting (2000) conditioned on the event that the random
walk has a high minimumLn. We follow the approach of Dyakonova, Geiger
and Vatutin (2004) and condition on the event thatS attains its minimal value
extraordinarily early, which is conceptually more appealing and also allows some
simplifications in the proofs. The next lemma presents a main argument, which will
be used throughout the proofs of our theorems. Recall the definitions ofτn andLk,n

from (1.9) and (2.8).

LEMMA 4.1. Assume Assumption A1 and let m ∈ N0. Suppose V1,V2, . . . is
a uniformly bounded sequence of real-valued random variables, which, for every
k ≥ 0, satisfy

E[Vn;Zk+m > 0,Lk,n ≥ 0|Fk] = P{Ln ≥ 0}(Vk,∞ + o(1)
)
, P-a.s.(4.1)

with random variables V1,∞ = V1,∞(m), V2,∞ = V2,∞(m), . . . . Then

E
[
Vn;Zτn+m > 0

] = P{Ln ≥ 0}
( ∞∑

k=0

E[Vk,∞; τk = k] + o(1)

)
,(4.2)

where the right-hand side series is absolutely convergent.

In our applications of Lemma 4.1, theVn will be typically of the formVn =
UnI{Zn>0} with randomUn. Relation (4.2) then reflects the fact that, given survival
at generationn, the history of the branching process splits into two independent
pieces. The summands display the evolution of the branching process up to timek

when τn = k, whereas the common factorP{Ln ≥ 0} arises from the evolution
after timeτn.



668 V. I. AFANASYEV, J. GEIGER, G. KERSTING AND V. A. VATUTIN

PROOF OF LEMMA 4.1. Fix m ∈ N0. We may assume 0≤ Vn ≤ 1 since
assumption (4.1) implies the corresponding statements for the positive and the
negative part of theVn. Using first (2.9) and then the independence of theXj and
the estimate (1.3), we obtain

E
[
Vn;Zτn+m > 0, τn > l

] ≤ P
{
Zτn > 0, τn > l

}
=

n∑
k=l+1

P{Zk > 0, τk = k,Lk,n ≥ 0}

≤
n∑

k=l+1

E[eSk ; τk = k]P{Ln−k ≥ 0}

for everyl ∈ N0. Applying Lemma 2.2 withu(x) := e−x gives

lim
l→∞ lim sup

n→∞
(P{Ln ≥ 0})−1E

[
Vn;Zτn+m > 0, τn > l

] = 0.(4.3)

On the other hand, using (2.9) again, we have

E
[
Vn;Zτn+m > 0, τn = k

]
= E[Vn;Zk+m > 0, τk = k,Lk,n ≥ 0](4.4)

= E
[
E[Vn;Zk+m > 0,Lk,n ≥ 0|Fk]; τk = k

]
for everyk ≤ n. Now observe that, by independence of theXj , we get

E[Vn;Zk+m > 0,Lk,n ≥ 0|Fk]
≤ P{Lk,n ≥ 0|Fk} = P{Ln−k ≥ 0}, P-a.s.

Since P{Ln−k ≥ 0} ∼ P{Ln ≥ 0} for fixed k, relation (4.4) and the dominated
convergence theorem, combined with the assumption of the lemma, imply

lim
n→∞(P{Ln ≥ 0})−1E

[
Vn;Zτn+m > 0, τn = k

] = E[Vk,∞; τk = k](4.5)

for everyk ∈ N0. Consequently,
∞∑

k=l+1

E[Vk,∞; τk = k] ≤ lim sup
n→∞

(P{Ln ≥ 0})−1E
[
Vn;Zτn+m > 0, τn > l

]
(4.6)

for everyl ∈ N0. By means of the triangle inequality, we obtain from (4.5) and (4.6)

lim sup
n→∞

∣∣∣∣∣(P{Ln ≥ 0})−1E
[
Vn;Zτn+m > 0

] −
∞∑

k=0

E[Vk,∞; τk = k]
∣∣∣∣∣

(4.7)
≤ 2 lim sup

n→∞
(P{Ln ≥ 0})−1E

[
Vn;Zτn+m > 0, τn > l

]
for everyl ∈ N0. Since the left-hand side of (4.7) does not depend onl, the claim
of the lemma follows from (4.3) by lettingl → ∞ in (4.7). �
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For convenience we introduce the notation

Au.s. := {Zn > 0 for all n ≥ 0}
for the event of ultimate survival.

PROOF OFTHEOREM 1.1. Forz, n ∈ N0, we write

ψ(z,n) := Pz{Zn > 0,Ln ≥ 0}.
Note thatψ(0, n) = 0. ChoosingYn = I{Zn>0} andY∞ = IAu.s. in Lemma 2.5, we
get, forz ≥ 1,

ψ(z,n) ∼ P{Ln ≥ 0}P+
z {Au.s.} asn → ∞.(4.8)

Furthermore, fork ≤ n, we have

P{Zn > 0,Lk,n ≥ 0|Fk} = ψ(Zk,n − k), P-a.s.(4.9)

Relations (4.8) and (4.9) show that we may apply Lemma 4.1 toVn = I{Zn>0},
Vk,∞ = P+

Zk
{Au.s.} andm = 0 to obtain

P{Zn > 0} ∼ θP{Ln ≥ 0} asn → ∞,

where

θ :=
∞∑

k=0

E
[
P+

Zk
{Au.s.}; τk = k

]
< ∞.(4.10)

Forθ being strictly positive, note that Proposition 3.1 impliesP+
z {Au.s.} > 0 for all

z ≥ 1. �

REMARK. It is interesting to note that the sum in representation (4.10)
of θ can be interpreted as follows: Call a strict descending ladder epoch of the
associated random walk an unfavorable generation (at such epochs the probability
of survival is particularly low). If the members of each unfavorable generation are
transfered into a conditioned random environment and branch according to this
new environment, thenθ is the expected number of such clans, which survive
forever.

PROOF OF THEOREM 1.3. Letφ be a bounded continuous function on the
spaceD[0,1] of càdlàg functions on the unit interval. Fors ∈ R, letWs denote the
process with constant paths

Ws
t := e−sW+, 0 ≤ t ≤ 1,

whereW+ is specified in Proposition 3.1. For fixeds ∈ R, Proposition 3.1 shows
that, asn, rn → ∞ with rn ≤ n, the processe−sXrn,n converges toWs in the metric
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of uniform convergence and, consequently, in the Skorokhod-metric on the space
D[0,1] P+-a.s.,

Yn := φ(e−sXrn,n)I{Zn>0} → Y∞ := φ(Ws)I{W+>0}, P+-a.s.

(In fact, since the limiting processWs has continuous paths, convergence in the
two metrics is equivalent.) Forr ≤ n andz ∈ N0, define

ψ(z, s, r, n) := Ez[φ(e−sXr,n);Zn > 0,Ln ≥ 0].
Lemma 2.5 entails

ψ(z, s, rn, n) = P{Ln ≥ 0}(E+
z [φ(Ws);W+ > 0] + o(1)

)
.

Now observe that, fork ≤ r ≤ n,

E[φ(Xr,n);Zn > 0,Lk,n ≥ 0|Fk] = ψ(Zk,Sk, r − k,n − k), P-a.s.

Thus, we may apply Lemma 4.1 to the random variablesVn = φ(Xrn,n)I{Zn>0} and
Vk,∞ = E+

Zk
[φ(WSk);W+ > 0] with m = 0. Also using Theorem 1.1, we obtain

E[φ(Xrn,n)|Zn > 0] →
∫

φ(w)λ(dw) asn → ∞,

whereλ is the measure on the space of càdlàg functions on[0,1] given by

λ(dw) := 1

θ

∞∑
k=0

E
[
λZk,Sk

(dw);Zk > 0, τk = k
]

with

λz,s(dw) := P+
z [Ws ∈ dw,W+ > 0].

By Proposition 3.1, the total mass ofλz,s is P+{Au.s.}. Hence, the representation
of θ in (4.10) shows thatλ is a probability measure. Again using Proposition 3.1,
we see thatλz,s puts its entire mass on strictly positive constant functions and,
hence, so doesλ. This completes the proof of the theorem.�

PROOF OFTHEOREM 1.4. Note that min(S0, . . . , Sn) = Ln ∧ 0. We consider
Vn = φ(τn,Ln ∧ 0)I{Zn>0} for some bounded measurable functionφ onN0 × R

−
0 .

SinceLk,n ≥ 0 impliesτk = τn [cf. (2.9)], we have

E[Vn;Zk > 0,Lk,n ≥ 0|Fk] = E
[
φ

(
τk, Sτk

);Zn > 0,Lk,n ≥ 0|Fk

]
= φ

(
τk, Sτk

)
P{Zn > 0,Lk,n ≥ 0|Fk}, P-a.s.

Thus, we may apply Lemma 4.1 in just the same manner as in the proof of
Theorem 1.1 withVk,∞ = φ(τk, Sτk

)P+
Zk

{Au.s.} and obtain

E[φ(τn,Ln ∧ 0)|Zn > 0]

→ 1

θ

∞∑
k=0

E
[
φ(k,Sk)P

+
Zk

{Au.s.}; τk = k
]

asn → ∞.
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This entails the desired result.�

PROOF OFTHEOREM 1.5. Letk,m ≥ 0 andk + m ≤ n. Similar to the proof
of Lemma 2.3, we may, in view of (2.7), decompose the stochastic process under
consideration asSn = Sk+m,n + S̃k+m,n. Let φ be a bounded continuous function
onD[0,1] and define

ψ(w,x) := E[φ(w + S̃k+m,n);Lk+m,n ≥ −x]
for w ∈ D[0,1] and x ≥ 0. By Lemma 2.3, givenLk+m,n ≥ −x, the process
S̃k+m,n converges in distribution toL+ asn → ∞ for eachk andm. Hence, if
the càdlàg functionswn converge uniformly to the zero function, then

ψ(wn, x) = P
{
Ln−(k+m) ≥ −x

}(
Eφ(L+) + o(1)

)
= v(x)P{Ln ≥ 0}(Eφ(L+) + o(1)

)
,

where for the second equality we have used (2.1). Since

{Lk,n ≥ 0} = {Lk,k+m ≥ 0} ∩ {Lk+m,n ≥ −(Sk+m − Sk)}(4.11)

and sinceSk+m,n converges uniformly to zero asn → ∞ P-a.s., we obtain

E[φ(Sn);Zk+m > 0,Lk,n ≥ 0|Fk+m]
= ψ(Sk+m,n, Sk+m − Sk)I{Zk+m>0,Lk,k+m≥0}

(4.12) = v(Sk+m − Sk)P{Ln ≥ 0}
× (

Eφ(L+) + o(1)
)
I{Zk+m>0,Lk,k+m≥0}, P-a.s.

From (2.2) and (4.11) we deduce∣∣E[φ(Sn);Zk+m > 0,Lk,n ≥ 0|Fk+m]∣∣
≤ sup|φ|P{Lk,n ≥ 0|Fk+m}
= sup|φ|P{Lk+m,n ≥ −(Sk+m − Sk)|Fk+m}I{Lk,k+m≥0}
≤ cv(Sk+m − Sk)P

{
Ln−(k+m) ≥ 0

}
I{Lk,k+m≥0}, P-a.s.

for some c > 0. Also, E[v(Sk+m − Sk);Lk,k+m ≥ 0|Fk] = v(0) < ∞ P-a.s.,
by (1.5). Hence, by means of the dominated convergence theorem and (2.16), we
conclude from (4.12)

E[φ(Sn);Zk+m > 0,Lk,n ≥ 0|Fk]
= (

Eφ(L+) + o(1)
)
P{Ln ≥ 0}

× E[v(Sk+m − Sk);Zk+m > 0,Lk,k+m ≥ 0|Fk]
= (

Eφ(L+) + o(1)
)
P{Ln ≥ 0}P+

Zk
{Zm > 0}, P-a.s.



672 V. I. AFANASYEV, J. GEIGER, G. KERSTING AND V. A. VATUTIN

Applying Lemma 4.1 toVn = φ(Sn) gives

E
[
φ(Sn);Zτn+m > 0

] = (
Eφ(L+) + o(1)

)
P{Ln ≥ 0}

∞∑
k=0

E
[
P+

Zk
{Zm > 0}; τk = k

]
.

In particular, we have

P
{
Zτn+m > 0

} ∼ P{Ln ≥ 0}
∞∑

k=0

E
[
P+

Zk
{Zm > 0}; τk = k

]
,(4.13)

where the right-hand side series is convergent. Now observe that∣∣Eφ(L+)P{Zn > 0} − E[φ(Sn);Zn > 0]∣∣
≤ ∣∣Eφ(L+)P{Zn > 0} − E

[
φ(Sn);Zτn+m > 0

]∣∣
+ sup|φ|E∣∣I{Zn>0} − I{Zτn+m>0}

∣∣
and

E
∣∣I{Zn>0} − I{Zτn+m>0}

∣∣
≤ (P{Zn > 0} − P{Zn+m > 0}) + (

P
{
Zτn+m > 0

} − P{Zn+m > 0}).
Combining these estimates with Theorem 1.1 gives

|Eφ(L+) − E[φ(Sn)|Zn > 0]|
(4.14)

≤ 2sup|φ|
(

1

θ

∞∑
k=0

E
[
P+

Zk
{Zm > 0}; τk = k

] − 1

)
+ o(1).

By the dominated convergence theorem and (4.10),

∞∑
k=0

E
[
P+

Zk
{Zm > 0}; τk = k

] ↓ θ asm → ∞.

Since the left-hand side of (4.14) does not depend onm, the assertion of
Theorem 1.5 follows. �
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