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ON THE STOCHASTIC CALCULUS METHOD
FOR SPINS SYSTEMS

BY SAMY TINDEL
Université Henri Poincar¢Nancy)

In this note we show how to generalize the stochastic calculus method
introduced by Comets and Nevedmm. Math. Physl66 (1995) 549-564]
for two models of spin glasses, namely, the SK model with external field
and the perceptron model. This method allows to derive quite easily some
fluctuation results for the free energy in those two cases.

1. Introduction. For N > 1, let Xy = {—1; 1}¥, and denote by = (o1,
...,on) a typical element of£y. In this paper we will first consider the usual
Sherrington—Kirkpatrick (SK) model with external field based on this space of
configurations, that is, a random measure DR induced by the following
Hamiltonian:

(1) —HN(U):$Z&JU,~JJ- +hY o

i<j i<N
In the previous equatiois, is a strictly positive parameter that stands for the inverse
of the temperature of the systefg; ;;1 <i < j} is a family of i.i.d. standard
Gaussian random variables, ahds a strictly positive coefficient representing
the external field, under which the spins tend to take the vallieThe measure
under consideration ol y is then the measuré y whose density with respect
to the counting measure is given By, e Hn(@) \whereZy is the normalization
constant given by

ZN = Z €_HN(U).
gEXN
Forn > 1 and a functiory : X% — R, we will setp(f) for the average of under
the measur& %", that is,

p(H=2Zy" > fh... 0" exp(— ZHN(01)>.
=1

At high temperature (i.e., whef is small enough), it has been shown (see,
e.g., [8]) that this classical SK model could be understood in its essential features
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562 S. TINDEL

if one could study the asymptotic behavior of the random variahleand of the
quantity (called overlap betweert ando?)

1
(2) Rl,Z = N Z 0','10','27
i<N

whereos! ando? are taken as two independent configurations ur@ler Then,
after the introduction and formalization of the cavity and smart path methods,
many limit theorems have been obtained #y and R1 »: we refer to [9] for the
self averaging property fak1 2 and the limit of% log(Zn), to [5] (resp. [13]) for
a central limit theorem for the fluctuations @fy (resp.R1.2), and to [10, 14] for
a (quenched) large deviation principle for the overiap.

On the other hand, it has been shown in [3] (and used extensively, e.g., in [2])
that in the case of the SK model without external field, that is, when0 in (1),
one could use some simple stochastic calculus tools in order to simplify the long
calculations involved in the asymptotic results mentioned above. This is achieved
by replacing the Gaussian path?g, ¢ € [0, 1], by a Brownian motions,, and
applying then Ité's formula, that gives immediately the differential along this path.
However, in case of the SK model with external field, the Gaussian paths are of
the form

3) Mg +r1-nY?x,  re[0,1]

whereg and X are two independent standard Gaussian random variables,iand
a positive coefficient. The stochastic calculus analogous of this path would then be

Bt+rﬂ1*ta te[ov 1]7

where B and 8 are now two independent Brownian motions. Dealing with these
two Brownian motions running in opposite directions has been seen as an obstacle
to the generalization of the Comets—Neveu method to the case wkeee In this
paper our aim is to show how to bypass this difficulty by just invoking the fact
that {81_; ¢ € [0, 1]} can also be seen as the solution to a stochastic differential
equation on which we can perform an integration by parts. Then, we will show that
the CLT for Zy can be obtained by applying Itd’s formula to the fluctuations of
this last quantity. This gives an alternative (and maybe easier) way to [5] to prove
this result. Notice, however, that we do not try to use here the nice path introduced
in [5], and, hence, the temperature region where our results hold is smaller than
in this last reference. The reason why we do not do it is twofold: first, we wish to
insist here on the simplicity of the tools we use rather than on the optimality of the
result, and on the other hand, one of our aims is to generalize our method to other
(and more complex) spin systems.

We will illustrate this second point by considering an analogous fluctuation
result for the perceptron model. This spin glass system, motivated by some
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neural computing considerations, is still based on the configuration $pace
{—1; 1}V, and is induced by the random Hamiltonian

1
—Hy m(o) = Z M(W Z gi,k0i>,

k<M i<N

whereM = aN for a (small enough) proportional coefficiesaf « is a bounded
function and{g; «; i, kK > 1} is a family of independent standard Gaussian random
variables. We refer to [6] for the computational motivation of this model, and to
[13], Chapter 3, and [11] for the basic asymptotic results for the Gibbs measure
induced byHy . Since the limit theorems obtained for the perceptron model are
based again on the analysis of the overlap quamity defined by (2), and on the

use of some elaborated versions of the path (3), our stochastic calculus method still
applies here, and, indeed, it will allow us to get quite easily a central limit theorem
for the normalizing constant

ZN M= Z e Hyv.m(o)

gEXN

Our paper is divided as follows: in the next section we will treat the
Sherrington—Kirkpatrick case, for which we define the stochastic path in detail at
Section 2.1, and then get the fluctuation resultZ@r at Section 2.2. Section 3 is
devoted to the perceptron case: at Section 3.1 we introduce the model and state our
central limit theorem. Then, at Section 3.2, we apply the stochastic path method to
prove this last result.

Notice that, throughout thee paper,will designate a positive constant and
RN, ﬁN, Rm.N, and so on, some small remainders. The exact value of those
guantities are generally irrelevant, and can change from line to line.

2. The Sherrington—Kirkpatrick case. In this section we will try to explain
the stochastic calculus method and apply it to recover the fluctuations’ results
proved in [5] in a simple way.

2.1. Definition of the path. This section is devoted to the definition and
some basic properties of the interpolating path we will consider throughout the
paper: let{B; ;;1 <i < j} and {W;;i > 1} be two collections of independent
Brownian motions, andn;;i > 1} a family of independent standard Gaussian
random variables. All those objects will be defined on a complete stochastic basis
(2, F, (F1)iel0,1), P), and we will assume that all ths; ;, W; are ¥;-adapted,
and that all the random variables are £p-measurable. Far> 1, let X; be the
unique solution (see, e.g., [7]) to the stochastic differential equation

" Xi(s)
o l—s

(4) Xi(t)=mn; — ds + W; (1), t [0, 1].
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It is easily checked that, setting;; (r) = X; (1 — 1), the process$X; (¢); r € [0, 1]}

is a Brownian motion with respect to its natural filtration. Henkgcan be seen
as a reversed time Brownian motion. In the sequek iils a square integrable
continuous semi-martingaléy) will stand for the quadratic variation process
of Y. We will first label the following lemma for further use.

LEMMA 2.1. Letk>1, X =(Xq,...,Xs), whereX; is the solution tq4),
andg : R — R be aC? function having at most exponential growth together with
its first two derivativesSet alsa) = (11, ..., n¢). Then for any: € [0, 1],

t
Elo(X ()] =Elp()] - § [ ElBp(X(s)]ds.

ProoF According to Ité’s formula, we have

k ! X,' S
X =g -3 [ 00N ds
i=1

(5) )

t 1 rt

+ 3 [ asecx@)dwis) +3 [ Bex ) ds.
i=1
Recall now that for a Gaussian vectoe= (Y1, ..., Yx) and aC® functiony onR*
having at most exponential growth, we have,fer k,
k
(6) Ely (Y)Yi]= ZE[Yin]E[ax,-w(Y)]-
j=1

In particular, sinceX;(s) is aN (0, 1 — s) random variable independent from the
otherX;’s, we have, for € [0, 1],

X
E[a,0x6n T | = EZecx o))
Taking expectations in (5) and applying this last identity, we get the desired result.
O

Going back to our interpolating Hamiltonian, define, far [0, 1],
(7)  —Hy.(0)= % Y B j(Hoio; +Bg Y Xioi +h Y o;,
i<j i<N i<N

wheregq is the usualL?-limit of the overlap, that is, the solution to the implicit
equation

q = E[tant?(BqY?Y + )],
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whereY stands for a standard Gaussian random variable. Let us write then
Zn@)= Y exp(—Hy,(0)),
UGEN

and for anyf : % — R, set

p(H)=(2Zvm)™ Y. feh.., a")exp(— ZHNJ(al)).

=1

The following basic relation will be essential in order to get the fluctuation result
onZy:

PROPOSITION2.2. Assumes satisfies the following assumption

(H) B is smaller than the consta such that
162Y/24,01666 — 1.

Then for anyt € [0, 1], we have
L
E[Pt((Rl,Z - Q)Z)] =< N

PROOF In order to show this proposition, we will use a stochastic version of
the cavity method: fix € [0, 1], and forv € [0, ¢], set

—Hn,1v(0) =—Hn-1,(0)

B

Vi Z Bi,N(v)a,‘crj+(,3q1/2XN(v)+h)aN.

i<N-1

+

We will call Zy ,(v) [resp. p;(-)] the associated normalizing constant (resp.
average with respect to the Gibbs measure). Let #lb@ a real-valued function
defined onX}, for N,n > 1. Thenp, ,(f) can be seen as a deterministié
function of {B; y;i < N — 1} and X . Applying It6’s formula and Lemma 2.1
to this function, we get, for any € [0, ¢],

3 (Eloro(H) =82 Y. Elpru(fokok Ry — )]

1<i<l'<n
n
— B> Elpro(fonon ™ (Rinsr— )]
=1

,BZn(n + l)E

2 [pt,v(fajr\l/+101’;l/+2(Rn+l,n+2 - Q))]-

Notice also that:

1. Forv =t, the symmetry among sites property holds true.
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2. Forv=0,if f7: X% — R depends only on th& — 1 first coordinates, anl
is a subset ofl, ..., n}, then

[p’o(f HON)} E[(tanhBg Y2y + ) "|ELpr.0(F 1.

lel

Hence, the proof of the announced result can proceed as in [13], Section 2.4.
O

2.2. Central limit theorem for the free energyFor r € [0, 1], set py(t) =
% log(Zy(¢)). This quantity is usually called the free energy of the spin system.
In this section we will get the announced central limit theoremgg(z), with a
strategy that can be briefly described as follows:

(i) We will compute the evolution of exp-Hy ;(0)).
(i) We will get the equation followed by the renormalized fluctuations
of Zy(¢), namely,

B2t (1—q)?

Yn(1) = Nl/z(pw) —log(2) — :

(®)
— E[log(coshBq?z + h))]).

(i) We will calculate E[exp(tuYy (¢))] through the application of 1t6’s for-

mula, foru € R and¢ = (—1)%/2, and show that this quantity tends &0**7°/2
for a positive constanj?.

Let us turn now to the first point of this program:

LEMMA 2.3. Foranyr €[0,1] ando € Xy, we have

e (@) = exp( Y oi(Bq i+ h))

i<N

t
Nl/ZZG‘UJ/O e Ns@) qB; i(s)

i<j
Ba2Y o / ~HN5©) gy (s)
i<N

1/22 / —Hy.s (a) t(S)
i<N

NpZ (N -1 ! —Hy.()
R 1@ g,
+ 1 ( N +2q)'/oe s
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PROOF  The exponential being @2 function, thanks to relation (7) and Itd’s
formula, we get

o HN.1(0) _ y—Hy o) _ /’ e~ HV©) G Hy (o)
0

t
+%/0 e NS d(Hy (0))s.

In order to get the announced result, it is enough to compute the quantity
(Hy..(0));. But, invoking the fact that all finite variation processes have a null
quadratic variation, and using the independence of alBihe W;, we have

NB2/N —1
(Hy .(0)); Z<a,a,)2+ﬂ gy (01)? ——ﬂ(— 2q>.

l<j i<N N

We can now get the differential dfy (z), whereYy is defined by (8). Define
first, for x € R, the function® by
@ (x) = log(coshBgY/?x + h)).

Then we have the following:

PROPOSITION2.4. The quantityYy (¢) defined by(8) satisfiesfor ¢ € [0, 1],
YN =Un+ Y Mun@) — (Vin@) — Van @) — Van (@),
m<2

with

Uy = N1/2< Y @) — [d><Y)]),

i<N

My =L Z/ py(0i0)) By j (s),

i<j

Moy () = évl/z Z/ ps(01) AW (s),

i<N

12 X
viw =505 / pu(o T2 d

i<N

vmn—ﬁqu (1- py(otod) ds,

i<N
2Nl/2

) /Ps((Rlz—CI))

Van(t) =
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REMARK 2.5. As we will see in the proof of Proposition 2W, y is obtained
as the term makind/1 y (r) — V2, n(¢) a zero mean random variable.

PROOF OFPROPOSITION2.4. Recall thatZy (1) = 3,5, EXH(—Hn (o))
is almost surely a strictly positive random variable. Hence, Ité’s formula can be
applied to obtain

()] log(Zn (1)) =109(Zn(0)) + An (1),
with
t t
Ax0) = [[(Zn©) " azns) =3 [ (Zn(s) 2 d(Zw)s.
It is easily checked that
log(Zn (0)) = Nlog(2) + 3 log(coshBg/?n; + h)).
i<N

Now, Lemma 2.3 vyields thaZy(r) is a continuous semi-martingale, whose
martingale part is

~ B r
MN(t)=WZ > a,-/o e INs©@ g, i(s)

i<j{I€EN
t
—I—,Bql/zz Z oi/ e Vs @) gwi(s).
i<Noeszy 70

Hence,

! -2
/0 (Zn () 2d(Zn);s
t _9 N
- /O (Zn(s)) " 2d(My)s

B2 ! t
=N Z./o ,Os(UilUle,-Zsz) ds + B%q Z ./o ,os(ailaiz) ds.

i<j i<N
Observing that

N? 1
S putototato? = 5 (s ki) - 3 ):

— 2
1<jJ
(20) 10
Y ps(oi07) = Nps(Ry,2)
i<N

yields the following identity:

t _ 2N [t 1
/0 (Zn(s)) 2d<ZN>s=57 fo (ps<Ri2>+2qps(R1,z)—N)ds.
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The same kind of considerations can be used to obtain an expression for
(Zn(s))"1dZn(s). Then, plugging those relations into (9), using Lemma 2.3 and
a little algebra, we get

ﬁ t
A =S X [ potoiopdB )
i<j
t
#8472 Y [ ponawi)
i<n 0
! Xi(s)
_gB,1/2 .
,Bq lg]/(; ps(az) 1, ds
2N t
- ﬂT 0 [(Ps(Rjz_,z) - 1) + 2‘](,05(R1,2) - 1)]ds

Let us center now on the third term of this sum: according to (6), we have, for any
s € [0, 1], with obvious notation,

E[,Os(ai) }1(1_(?] = E[dx;5)(0s(01))].
But
Yoty oL eXp—Hy (1) + BgY2 Y,y Xi(s)o})
prlon) = Y o2exy EXU—Hy (02 + BgY2 Yy Xi(s)0?)
where

- B
—Hy (o) = W Z B,-,j(s)cr,-crj +h Z oj,

i<j i<N
and it is easily seen from that expression that
(11) 0x;(9) (s (1)) = Bg 2 ps (L= o).
Hence,
NB*(1—q)t

log(Zn (1)) = Nlog(2) + ) ®(n;) + 2

i<N
+ NY2[ M1y (1) + Moy (1) — (Vi () = Van (1) + Van ()],

Now, we get the desired result by substracting
NB*(1— @)%t

log(2) + n

+ E[®(Y)],
and renormalizing this expression]

We are now ready to state the main result of this section:



570 S. TINDEL

THEOREM 2.6. Let Yy(¢) be defined by@8) for ¢ € [0,1]. Then Yx(1)
converges in distribution to & (0, t2) variable, with

22
2=12— ﬁTq wherev? = Var(log(coshBq2Y + h))).

PrROOF Letu € R. Once we know the differential of 5, given by Proposi-
tion 2.4, we can apply It6’s formula to the (complex-valued) functior ¢"“* to
obtain, forz € [0, 1],

6
"N =Di(N)+ > Dy n(0),
m=2
with
D1(N) = e™Uv,
Doy () = —Zf WING) p (6161 d B (s)
1<j
1/2
wpq
> / NG (07) AW (s),
i<N
1/2
twBq ( )
Dan(t) = ——=75" N12 Z/ )
i<N
and

Day =1 > / N1~ p(ata?)ds,
i<N

2a71/2 4t
PN
D5,N(¢)Z—T/O e"™O) p ((Ri2 — g)%) ds
Dg y (1) = 2N2 Z / RN CA A
i<j

202 t
u“Bcq
i) =-"21 fo NG o (Ry ) ds.

Denote alscE[¢“"V D] by vy, (t). We will now estimate the previous terms
separately (in the sequet, will stand for a positive constant that can change
from line to line): first, from the classical central limit theorem for i.i.d. random
variables, we have

22 K
(12) DyN) =L RyN). IRUN)| = 7.
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The term D, y(¢) being of zero mean, we will turn now to the estimation of
E[D3 n(1)]: just as in the proof of Proposition 2.4, an integration by parts yields

wpgt?
E[D3n(®)] = N1/2 Z/ ax ( ) LMYN(S)IO (0 ))]
i<N

2841/ .
D) / [(Ox,6) Yo ()" p (07)] ds — E[Dan ()],
i<N

Observe now that, following the lines of the proof of (11), we have

Ix,0Zn(s) _ BgY?
Nl/ZZN(S) N1/2

Ox,;(s)Yn(s) = ps(0i),

and, hence,
2,2 ' Y
ELDa (1) + Dan (D] =262 [ E[e"™ O py(Ry.2)]ds

It is now easily seen, thanks to Proposition 2.2, that

t
(13)  E[Dan()+ Dan(®] = wpq)? fo Unu(s)ds + Ra (N,
with

K

|R3,(N)| < W’

uniformly in ¢ € [0, 1]. A direct application of Proposition 2.2 also gives that, for
anyt € [0, 1],

(14) E[Dsx ()] = 7175

Invoking now (10), we have
242
usps [t 1
E[DQN(I)] — T/C; eLMYN(S) (/0?(Ri2) — N) ds,

and by Proposition 2.2 again, we get

2
E[De v (1)] = (”ﬁ 9)

f U .u(s)ds + R (N),
(15)
|Re,: (N)| < W,

and the same type of arguments give

2
E(D7 ()] = — 1P Q)

/ Un.u(s)ds + Ry, (N),
(16)
|R7,:(N)| < W
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Putting together (12)—(16), we have, finally,

2.2 (u )2 t A
lpN,u(l‘) =e " /2+ ’Bff/(; 1//N,u(s)ds +fRN,u(l‘)a
with
A K
| RNu()] < N2’

which ends the proof by a Gronwall type argumerii]

3. The perceptron case. The aim of this section is to show that our method
can be applied in various contexts. We will illustrate this point by showing a
CLT for the free energy of another canonical model of spin glasses, namely, the
perceptron model.

3.1. Statement of the resultsThe perceptron model is still based on the state
spaceXy = {—1, 1}V, for N > 1, and can be described as follows: consider
a positive integerM = o N such thatM = aN for a givena > 0; u will be
a continuous function defined dR satisfying |u| < D for a strictly positive
constantD (some additional assumption will be made enfurther on), and
{gik; i =1,k > 1} is afamily of independent standard Gaussian random variables.
The random measure we will consider By will be of the form

(Zn.m) "~ texp(—Hy m(0))un(do),
whereuy is the uniform measure oBy, and for anym > 1,
—Hym(0) =Y u(Sp),

k<m
where, forl > 1 and a replicarl, we have

1
(17) S]l( = S]l((O'l) = W Z gl"kO'l-l.

i<N
The normalization constant associated to this modghis,, with Zy ,, defined,
form > 1, by
ZNm= Z exp(—Hy,m(0)),
gEXN

and for anyM > 1, f: X% — R, m < M, the average off with respect to the
measure defined b¥y ,, will be

em(F)=2Zy" . f(al,...,a”>exp(—ZHN,m<a’)).

=1
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The analysis of the perceptron model relies, as in the SK case, on the limiting
behavior of the overlaf; 2, and we recall the following result, taken from [13],
Chapter 3: forn < M anda,, = %;, consider the system of equations

(18) q= E[tanf?(rl/zz)], r = OlmE[lIJZ(ql/ZZ, (1- q)l/Z)]7

where z, £ are two independent standard normal random variables,Jand
defined by
_ E[§explu(x +£y))]

7 = .
) = S lexplux + £9))]

Then we have the following:

PrROPOSITION3.1. Assume: and« satisfy

(H1) ||#|| < D and for L > 0 large enoughL« exp(L D) < 1.
(H2) There exists a positive constalit and a small enough constasy such that
foranyl <6, [uP| < L*el"PecsN

Then for anym < M,
1. The systenil8) has a unique solutiofy,,, r,,) € [0, 1]°.
2. The followingL? convergence foR; » holds true

Elon ((RLz = 4m))] < 1

3. Setpy.m = ~E[log(Zy,m)] and
@ (m) = log(2) + E[log(coshr,/2Y))] — 3rm (1 — gm)
+ o E[log(E[exp(u(gy/?n + (1 — ga)7) )],

whereY, n, 7 are independentv (0, 1) random variablesand E designates the
expectation with respect @ Then

K
PN m = Pm)| = -

In the sequel of the section, we will use the following auxiliary random
variables, fof > 1 and 1<=m < M:
Oh = an*n+ (L — gm) /%7,

wheren and{#’; I > 1} are independent standard Gaussian random variables. We
will denote byE the expectation with respect to the random variablesnd also
setd,, = 9,,11 when only one replica is considered. Associated to those random
variables,, will be the quantity&,,, defined by

(19) Em = Iog(IAE[exp(u(em))]).
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It is then easily checked that

(20) Var(s,) = Q(%) sup E[£,] < oo,

m<M

whereQ:[0, ] — R, is aC? function.

Our aim, in this part of the paper, is to prove the following theorem by means
of the stochastic calculus method:

THEOREM3.2. Under assumptiongH1) and (H2), as N tends to infinity

N1/2[|09(ZN,M) .£)
N

— CD(M)} — Y,
whereY is a Gaussian random variable with variance
1 o
== [T 0w,
o Jo
with Q defined ai20).

3.2. Proof of the CLT. Let us begin the proof of our result by the following
elementary property, that we label for further use:
LEMMA 3.3. Letl<m < M, and set
Am_1m® = ®(m) — d(m — 1).
Then
El&n]

Am—l,mcb - - Rm,N’

with R, v < % for a positive constant, and wheres, is defined by19).

ProoOF The lector is referred to [13], Theorem 3.4.2, for a complete proof of
this fact. Let us just mention that this mysterious relation relies on the fact that,
since(gm, rm) is the solution to (18), thes (m) is a function ofu = %, say&)(oz),
and it can be shown by elementary computations that

30 ® (@) = E[log(E[¢*@])]. O

We will now write the quantity% l09(Zn m) — ©(M) in a convenient way in
order to compute its Fourier transform: it is easily checked thatnfer M,

1 1
N l0g(Zn, M) — P(M) = v log(Zn, m-1) — P(M — 1)

+ (log(pm—1(e“SM)) — Ap—1 m®),



STOCHASTIC CALCULUS FOR SPINS SYSTEMS 575

and iterating this decomposition, we get
1

(21) —10g(Zn.y) — (M) = ) Y,
N m<M

where

Yim= Iog(pm—l(eu(sm))) — Am-1,m®.

Our proof of the CLT will be based on getting some information on the
characteristic function of eachj, separately. This will be achieved by changing
the random variablé!, along the stochastic path

1 o
S0 = 375 2 Bin (o] + 432X (0) + A= gu) 72X}, 1),
i<N

defined fort € [0, 1], where Xm,f(fn are reversed time Brownian motions,
solutions to

X (s)
Xm(t):nm_ dS+Wm(t)v
0o 1—s
. t X! .
Rl (K)o,

mooJo 1—s
for ¢ € [0, 1], with some independent standard Brownian motions

(Bim i,m=>1),  (Wy,m=>1), (W

10

m, 1> 1).

We will also denote byE,, the expectation conditioned on all the randomness in
theg; j, Bi.j, X;,..., for j <m, and we still callE the expectation with respect
to the random variables of the forfin X, W. Next, we set

(22) Y, (1) = %Iog(é[pm_l(e”(s’”m))]) YN

Eventually, defing,, = £,, — E[£,,]. Notice that all those quantities are related by

S=S,1),  6,=5,0. & =IlogE[pn1(e"")]).
With all those notations in mind, we can now gather some information about
the Fourier transform of,,.
PROPOSITION3.4. Foranym < M andv € R, we have

EfeN"* Zazn Y] = E[N o B[N Dt ] 4 R, v,

With R, N | < 372
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PrROOE Notice first that
(23) EfeN"* Tk 4] = B[V Skam-1 Yk, [NV ]].
We will try now to get an expansion @f*N*Yn using It6’s formula.
STEP1l. WithY,,(¢) defined by (22), recall that we havg, = Y,,(1) and
Em1[e"V T O] = E,,_g[e?N"*En—Bn-1n®)],
Hence, on account of Lemma 3.3, we get
L L |
1/2% K
< [En-afe™ 5 (1~ expoN Y210 ® — ELEnD))]| < 1575-
STEP 2. The evolution in time oft,,(r) can be described as follows: first,
setting
Uy = u/eu, Uy = ((u/)Z + u//)eu

we get, by a simple application of Itd’s formula,

€M(Sm(t)) = eu(&) + — 1/2 Z (o] / U1 Sm(s)) dBt m(s)
i<N

t Xm
+q’711/2/() Ul(Sm(s))[dWm(s)_ 1—(2) ds}

.z
+@=an? [ s - 72 as]
t
+/0 Uz(Sp(s))ds

which gives immediately

pm—1(€Sn®)) = gu®) 4 N1/2 Z/ Pm—1(0iU1(Sm (5))) d B m ()
i<N

g2 / Pm—1(U1(Sm (s)))[dW (s) = 1m(S) ds}

— S

t 2 Xm
+@1- Qm)l/z_/o ,Om_]_(Ul(Sm (S)))[dWm(s) 1 —(i) dS:|

t
+ [ pnea(Ua(Si() ds
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Let us now compute the expectation with respect to the randomnesg ity
integration by parts with respect ﬁ%@ we get

A

E[pm_1(e" )] = E[¢“@] + 1/2 2}:\’/ [om—1(0iU1(Sm (5))) ] d Bj m (s)

r, Xm
+ 08 | Elpna(Ua(Su)][dWn ()~ T2 s

i fo E[pn1(Ua(Sw(s)))] ds

Now, like in the SK case, we will apply the functiof(x) = e'"¥"/?109() to the
quantity

Zim—1(t) = é|:pm—l(eu(sm(l‘)))]a
and, according to Itd’s formula, we get

elUN1/2Ym(t) :elUNl/z(Sm—Am—l.mq)) + ZA] (t) + Z B](f),

Jj=3 j=2
with
Aty = ;N [ o Elon O USa D) g
Az(ﬂ;fff}/z [ ewm/zymmé[pmZfﬁ((i?(sm] w0 — X204,
Astt) = L4 /0 ewNqum(s)é[w;;tﬁ(&@)))] is

and where the quantitie®; (r) and B2(¢) are given by

_w w2y, () Elom—1((R1,2 + @) U(S} (s))U1<SZ<s>>>
Bi) = 5175 / e e

and

Bo(t) = — / w121, 5) ELom-1((R1,2 = U1(S3 (D UL(SZ 6]
2N Jo (Zn-1(5))?
Taking now the conditional expectati@),_1, and integrating by parts with respect

to £28) [notice that one has to differentiateé?¥*Yn(®) 171 (S, (s)) andZ,,—1(s)],
the above expression simplifies into

(24) Ep1[e™V 0] = 1 — (1) — I5(0),
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with

1(t) = VN2 En—Bn1n®)
the quantitied>(¢) andI3(¢) being defined by

(VG /, Em_l[ewN”Ym<s> pm-1((R1,2 — Q) U1(Sp, () U1(SZ <s)))} s
0

L) =1 (Zm-1(5))2

and

_wP ot w2y, (5) Pm—1((R12 — Q) U1(SE () U1(S2 (5)))
10 = g B (Zn-1(6))? Js

STEP 3. Let us go back to expression (23), and note that, forranyo0, 1],
invoking relation (24), we have

(25) E[ele/z(stm*l Yk+Ym(t))] — E[e“’Nl/Zstmfl Yi (Il _ 12(1‘) _ 13(1‘))].

Let us analyze now the three terms we have obtained: we have already shown
(see Step 1) that

1/25 K
(26) ‘[1—E[€LUN Em]’ < N2
which easily yields
1/2 2g v 3
|E[ewN Zkgmfl Ykll] _ E[etvN Em]E[elUN Zkgm—l Yk]| < N3/2.

On the other hand,
2 pt
(27) |E[6LUN1/2 D k<m—1Yk 13(1‘)]| = ZU_N ‘/(; E[ele/z(Zkgm—l Yi+Yn(s)) K, (S)] ds ,

with

Pm-1((R1,2 — ) U1(Sp () U1(S2(5)))
(Zm-1(s))? ’

and the right-hand side of (27) is bounded by

K (s) =

2 ot
2”— / EY2[(Ry,2 — q)Z]El/Z[(zm_us))“‘ I1 Ul(Sg',(s))} ds.

N Jo j=<4
Observe that the last of those terms seems to be potentially huge, since the
derivatives ofx are allowed to grow at exponential speed withHowever, under
assumptions (H1) and (H2), it is shown in [13], Lemma 3.3.4, by some integration
by parts arguments, that this kind of term is uniformly boundedvinHence,
invoking theL? estimate forR1 2 given at Proposition 3.1, for anye [0, 1],

1/2 K
(28) |E[eLUN Dk<m—1 Y"I3(t)]| < W
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We still have to handle the term
E[eLUNl/ZZkgmlek Iz(t)]

This is achieved by a long and tedious variation of Theorem 3.5.2 and Proposi-
tion 3.5.1 in [13]. Since no new idea is required, we will only sketch the proof of
that step: first, one has to show that

E[ele/z 2k=m-1Yk L(1)]

(29)
LgmyYmt 1/2
= j{]";/; E[eN " 2kzm1Ykp 1 (R12 — )]+ RN
with
1 2
_ WwNY2E, U(0)U1(69) K

This is obtained by a variation of the proof of [13], Theorem 3.5.2. The main
differences with this last proof are that:

1. One has to use the symmetry among sites to expigss(R12 — ¢) as a
function of the last spin only. Then it can be realized that the equivalent
contribution of the terms II, Il and IV in [13], Theorem 3.5.2, are of order!
when the functionf considered there is a function of the last spin.

2. We also have to keep track, in the computation of the derivatives, of the terms
¢?NY2Yu(s) \which increases the size of the computations. However, in the end,
those additional terms are all of ordsr 1. Notice that all the calculations can
be done again using Ité’s formula.

Then, it should also be checked that

(30) E[eN " Xksn-1Yip, 1 (Ryo—q)]| <

= »

To this purpose, the proof of Proposition 3.5.1 in [13] has to be followed, keeping
track again of the terms due &'V"'* Zk=n-1Yx that are still of ordev—.
Now, (29) and (30) easily yield

1/2 K
(31) E[ewN Z/“5’”_1}/1‘120)] =< N32
and plugging (26), (28) and (31) into (25), we get, for ary[O0, 1],
I[N Cksn-a Vet n )] — B[N 28| E[¢NY* Teem-1¥4]| < NI;/Z’

which implies the claim of our proposition.[]

Let us go back now to the main aim of this section:
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PROOF OFTHEOREM 3.2. Letv be an arbitrary real number. We have seen
[relation (21)] that

1
~ 109(Zn 1) — ®(M) = Y Yo

m<M

Now, Proposition 3.4 gives

Efe?N" Zre 1] = E[e 0N o |E[ 0V Rksn 1 Y]+ Ry

and, iterating this decomposition, we get
E[etle/ZZmSM Yk] — E[etle/ZZmSMém] + Z Rm N,
m<M
with | Ry, N| < # foranym < M. Thus,

K

12 1/2 E
}E[etvN > m<m Yk] o E[eLUN stMfm“ < N2’

for a positive constant. Now, the random variablds,,; m < M)} are centered and
independent, and we have seen that

Var(é,) = Varén) = Q (%)

whereQ :[0,a] — R4 is acl function. Hence, by Riemann sums approximation,

k11 Q10,1

<
- N

=Y var - - [ o ax

m<M 0

Taking into account inequality (20), the end of the proof easily follows now by
some classical CLT arguments for independent random variables (see, e.g., the
Lindeberg—Feller theorem in [4]).0
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