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EXTREMES ON TREES

BY TAILEN HSING1 AND HOLGER ROOTZÉN2

Ohio State University and Chalmers University of Technology

This paper considers the asymptotic distribution of the longest edge of
the minimal spanning tree and nearest neighbor graph onX1, . . . ,XNn

where
X1,X2, . . . are i.i.d. in�2 with distribution F and Nn is independent of
theXi and satisfiesNn/n →p 1. A new approach based on spatial blocking
and a locally orthogonal coordinate system is developed to treat cases for
whichF has unbounded support. The general results are applied to a number
of special cases, including elliptically contoured distributions, distributions
with independent Weibull-like margins and distributions with parallel level
curves.

1. Introduction. Recall that the (Euclidean) minimal spanning tree (MST)
on a finite set of points(X1,X2, . . . ,XN) in �2 is the connected graph with these
points as vertices and with the minimum total edge length. The (Euclidean) nearest
neighbor graph (NNG) on(X1,X2, . . . ,XN) is the graph on which each pointXi

is connected to its nearest neighbor in the set. In this paper theXi are assumed to
be random and we are interested in the asymptotic distribution of the longest edge
on these graphs asN → ∞.

Penrose (1997, 1998) considered these problems by assuming that theXi are
uniformly distributed in a unit cube or symmetrically normally distributed in�d .
The essential ideas are that (a) the lengths of the edges at any location in space
depend primarily on theXi in the vicinity of that location and as a result are
asymptotically independent of the edges in other parts of the space and (b) the
presence of an extremely long edge is a rare event and hence the likelihood of
having multiple extremely long edges at any location is asymptotically negligible
compared with the likelihood of having one such edge there. Clearly (a) is also
essential in proving central limit theorems for the total edge lengths; see Kesten
and Lee (1996), Lee (1997) and Penrose (2000). In view of (a) and (b), the
asymptotic distribution of the longest edge of MST or NNG can be established
through a Poisson convergence of the number of extreme edges, which in Penrose
(1997, 1998) is achieved through the Chen–Stein method.
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Specifically, we will consider the case where the random graphs are based on
X1, . . . ,XNn whereX1,X2, . . . are i.i.d. with distributionF andNn is independent

of theXi with Nn/n
p→1. We are primarily interested in the case whereF has an

unbounded support (although our methodology works rather generally also ifF

has bounded support). In particular, we will focus on thoseF whose density is of
the form

f (x) = e−U(x),

whereU(x) is regularly varying in some sense and satisfies suitable regularity
conditions. This covers many elliptically contoured distributions, and in particular
correlated normal distributions and distributions with independent Weibull-like
marginals as special cases but also large classes of other distributions. Poisson
approximation is the key idea. However, we use a direct approach of spatial
blocking as opposed to the Chen–Stein method. Computations of integrals of the
type

∫
A e−nF(S(x;r)) dF (x), whereS(x; r) = {y : |y − x| ≤ r} is the sphere centered

at x with radiusr , are a key part of the solution for the problem on hand. One of
the novelties of our approach is the introduction of a locally orthogonal coordinate
system with respect to the level curves ofU , which enables particularly effective
handling of such integrals.

This paper is structured as follows. Section 2 introduces the notation and
a spatial blocking argument, as well as other preliminaries. The development of
a locally orthogonal system is made in Section 3. The main results are given in
Section 4. Sections 5 and 6 consider homogeneous level curves and parallel level
curves, respectively, and most of the proofs are given in Sections 7 and 8.

Possible extensions of the results in this paper include (a) allowing the
dimensiond to be general, (b) allowing the distance measure to be more general
(e.g., considering weighted edges on the graphs), (c) considering thek-nearest
neighbor graph in which each point is connected to itsk nearest neighbors. The
solutions for these involve additional technical details but probably few new
important ideas.

2. Fundamentals. For convenience of notation, denote by MST(N)

and NNG(N), respectively, the MST and NNG on two-dimensional random vari-
ablesX1, . . . ,XN for any random variableN defined on the same space as theXi .
Also letMG be the longest edge ofG, where in this paperG will be either a MST
or NNG.

As outlined in Section 1, the graphs of interest will be based on the points
X1, . . . ,XNn whereX1,X2, . . . are i.i.d. with distributionF , Nn is positive, integer-
valued with

Nn/n
p→1,

and Nn and theXi are independent. This assumption will hold throughout the
paper. The random quantities whose asymptotic distributions we study in this paper
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areMMST(Nn) andMNNG(Nn). We will first assume thatNn is Poisson distributed
with meann, in which case the pointsX1, . . . ,XNn can be thought of as the
points of a Poisson process with intensity measurenF . The independent-increment
property of the Poisson process offers an obvious advantage in proving Poisson
convergence. We will later show how the result based on the Poisson assumption
can be extended to the general class of point processes described here.

Temporal blocking is a common technique for proving limit theorems for
weakly dependent random variables. See Ibragimov and Linnik (1971) and
Leadbetter, Lindgren and Rootzén (1983). Our first theorem, which basically is a
Poisson convergence result forMNNG(Nn), for the caseNn ∼ Poisson(n), is based
on a spatial blocking argument. Forr > 0 and measurable setA, define

µ(1)
n (A, r) = n

∫
A

e−nF(S(x;r)) dF (x).(1)

Now, let us say that points with their nearest neighbor at leastr away are
r-separate. With this terminology,µ(1)

n (A, r) is the expected number ofr-separate
points inA. Similarly, let

µ(2)
n (A, r) = n2

∫
A

∫
A

I(r<|x−y|≤2r)e
−nF(S(x;r)∪S(y;r)) dF (x) dF (y)

be the expected number of pairs ofr-separate points such that the distance between
the points is larger thanr and smaller than 2r . Here and elsewhere,| · | denotes the
Euclidean norm.

In the theorem, for eachn, An,i,1 ≤ i ≤ kn, are suitably large and suitably
separated spatial blocks. The separation has to be large enough to make the
occurrences ofrn-separate points independent from block to block. This is ensured
by condition (a). Condition (c) says that nothing of importance happens on the
leftover parts between the blocks. Uniform asymptotic negligibility of the number
of rn-separate points in the individual blocks follows from (d). Condition (e)
prevents clustering ofrn-separate points. Finally, condition (b) is the basic norming
condition of convergence of the expected number ofrn-separate points to the mean
of the limiting Poisson distribution.

THEOREM 1. Let Nn have a Poisson distribution with mean n and let {kn} be
a sequence of positive constants tending to ∞. Suppose that {rn} is a sequence
of positive constants and for each n, An,1, . . . ,An,kn are disjoint measurable sets
in �2 such that:

(a) min1≤i �=j≤kn inf(|x − y| : x ∈ An,i,y ∈ An,j ) > 2rn for all large n,

(b) limn→∞ µ
(1)
n (�2, rn) = some τ ∈ (0,∞),

(c) limn→∞ µ
(1)
n ((

⋃kn

i=1 An,i)
c, rn) = 0,

(d) limn→∞ max1≤i≤kn µ
(1)
n (An,i, rn) = 0,

(e) limn→∞ max1≤i≤kn[µ(2)
n (An,i, rn)/µ

(1)
n (An,i, rn)] = 0.
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Then the number of rn-separate points asymptotically has a Poisson distribution
with mean τ , and thus in particular,

P
(
MNNG(Nn) ≤ rn

) → e−τ .(2)

PROOF. For convenience writePn = {X1, . . . ,XNn}. For any setA, define

N(x,A) = inf(|x − y| : y ∈ A \ {x}),
namely, the distance fromx to its nearest neighbor inA. We will show the stronger
result that

∑
x∈Pn

I(N(x,Pn)>rn) converges in distribution to the Poisson distribution
with meanτ , from which (2) follows at once. Let

µ̃(2)
n (A, r) = n2

∫
A

∫
A

I(|x−y|>r)e
−nF(S(x;r)∪S(y;r)) dF (x) dF (y)

be the expected number of pairs ofr-separate points inA with the points at least a
distancer apart. It is easy to check that

E

( ∑
x∈Pn∩A

I(N(x,Pn)>r)

)
= µ(1)

n (A, r)(3)

and

E

( ∑
x,y∈Pn∩A, x�=y

I(N(x,Pn)∧N(y,Pn)>r)

)
= µ̃(2)

n (A, r).(4)

Write

∑
x∈Pn

I(N(x,Pn)>rn) =
kn∑

i=1

∑
x∈Pn∩An,i

I(N(x,Pn)>rn) + ∑
x∈Pn∩(

⋃kn
i=1 An,i )

c

I(N(x,Pn)>rn).

Roughly speaking, in the following we will establish that the second sum is
negligible and for the first sum that its expectation tends toτ , the summands are
infinitesimal and the probability that any summand is bigger than 1 is negligible
compared with that of it being bigger than 0. More precisely, we will show that∑

x∈Pn∩An,i

I(N(x,Pn)>rn), 1≤ i ≤ kn,

(5)
are independent random variables for eachn,

P

( ∑
x∈Pn∩(

⋃kn
i=1 An,i )

c

I(N(x,Pn)>rn) > 0

)
→ 0,(6)

max
1≤i≤kn

P

( ∑
x∈Pn∩An,i

I(N(x,Pn)>rn) > 0

)
→ 0,(7)
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kn∑
i=1

P

( ∑
x∈Pn∩An,i

I(N(x,Pn)>rn) > 0

)
→ τ,(8)

max
1≤i≤kn

P (
∑

x∈Pn∩An,i
I(N(x,Pn)>rn) > 1)

P (
∑

x∈Pn∩An,i
I(N(x,Pn)>rn) > 0)

→ 0.(9)

It is straightforward to see [cf. Corollary 7.5 of Kallenberg (1983)] that (5)–(9)
imply that

∑
x∈Pn

I(N(x,Pn)>rn) converges in distribution to the Poisson distribution
with meanτ .

We now show (5)–(9). First, it is clear that
∑

x∈Pn∩An,i
I(N(x,Pn)>rn) is

completely determined by the setPn ∩ (An,i)rn where(A)δ = {x :d(x,A) ≤ δ}.
Hence, by the independent-increment property of the Poisson process and
condition (a) of Theorem 1, we conclude that (5) holds. To show (6)–(9), we first
note the Bonferroni inequality:

µ(1)
n (A, rn) − µ̃(2)

n (A, rn) ≤ P

( ∑
x∈Pn∩A

I(N(x,Pn)>rn) > 0

)
≤ µ(1)

n (A, rn).(10)

Using the rightmost inequality withA = (
⋃kn

i=1 An,i)
c andA = An,i , respectively,

(6) and (7) follow from conditions (c) and (d), respectively.
Next, note that sinceF(S(x; rn) ∪ S(y; rn)) = F(S(x; rn)) + F(S(y; rn)) for

|x − y| > 2rn,

µ̃(2)
n (A, rn) − µ(2)

n (A, rn) = n2
∫
A

∫
A

I(|x−y|>2rn)e
−nF(S(x;rn)∪S(y;rn)) dF (x) dF (y)

≤ (
µ(1)

n (A, rn)
)2

.

Hence, by conditions (d) and (e),

lim
n→∞ max

1≤i≤kn

µ̃
(2)
n (An,i, rn)

µ
(1)
n (An,i, rn)

= 0.(11)

By (10) and (11), conditions (b) and (c) now imply

lim
n→∞

kn∑
i=1

P

( ∑
x∈Pn∩An,i

I(N(x,Pn)>rn) > 0

)
= lim

n→∞
kn∑

i=1

µ(1)
n (An,i, rn)

= lim
n→∞µ(1)

n (�, rn) = τ.

Finally, since

P

( ∑
x∈Pn∩A

I(N(x,Pn)>rn) > 1

)
≤ P

( ∑
x,y∈Pn∩A,x�=y

I(N(x,Pn)∧N(y,Pn)>rn) > 0

)

≤ µ̃(2)
n (A, rn),
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(9) follows from (10) and (11). �

As a simple example, ifF is the uniform distribution on[0,1] × [0,1], then
it is straightforward to verify (a)–(e) of Theorem 1 by takingrn = (

logn−logτ
nπ

)1/2

[cf. (1) of Penrose (1997)] and theAn,i to be the sets[(j − 1)n−1/4, jn−1/4 −
n−1/3] × [(k − 1)n−1/4, kn−1/4 − n−1/3], j, k = 1, . . . , [n1/4]. The advantage of
this approach will be more obvious for more complicated distributions.

The next result shows how to generalize Theorem 1 by removing the Poisson
assumption onNn.

THEOREM 2. Suppose that

sup
n

n

∫
F̄ n(S(x; rn)) dF (x) < ∞(12)

and for some δ < 1,

sup
n

n2
∫

F(S(x; rn))F̄ δn(S(x; rn)) dF (x) < ∞,(13)

where F̄ = 1− F . Then

P
(
MNNG(Nn) ≤ rn < MNNG(n)

) + P
(
MNNG(n) ≤ rn < MNNG(Nn)

) → 0

for any sequence of positive, integer-valued random variables Nn with Nn/n
p→1.

PROOF. First for any positive constantεn,

P
(
MNNG(Nn) ≤ rn < MNNG(n)

) + P
(
MNNG(n) ≤ rn < MNNG(Nn)

)
≤ P(|Nn − n| > nεn) + ∑

|j−n|≤nεn

P (Nn = j)

×
(
P

(
MNNG(j) ≤ rn < MNNG(n)

)
+ P

(
MNNG(n) ≤ rn < MNNG(j)

))
.

Pick εn to tend to 0 slowly enough so that the first term tends to 0 and so we only
have to deal with the second term. It suffices to show that

max
j∈[n(1−εn),n(1+εn)]P

(
MNNG(j) ≤ rn < MNNG(n)

) → 0(14)

and

max
j∈[n(1−εn),n(1+εn)]P

(
MNNG(n) ≤ rn < MNNG(j)

) → 0.(15)
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To show (14), suppose first thatj ∈ [n(1 − εn), n − 1]. Observe that if
MNNG(j) ≤ rn < MNNG(n), then there existsi ∈ {j + 1, . . . , n − 1} such that∧

1≤s≤n,s �=i |Xi − Xs | > rn. Hence

max
j∈[n(1−εn),n−1]P

(
MNNG(j) ≤ rn < MNNG(n)

) ≤ nεn

∫
F̄ n−1(S(x; rn)) dF (x) → 0

by (12). Next, letj ∈ [n + 1, n(1 + εn)]. Suppose thatMNNG(j) ≤ rn < MNNG(n)

and that the longest edge on NNG(n) initiates fromXk so that
∧

1≤s≤n,s �=k |Xk −
Xs | > rn. Since the longest edge becomes≤ rn by adding pointsXn+1, . . . ,Xj to
the graph, one of those additional points must be within a distance ofrn from Xk .
Thus,

P
(
MNNG(j) ≤ rn < MNNG(n)

)
≤ P

(
for somek ∈ {1, . . . , n} and� ∈ {n + 1, . . . , j},

∧
1≤s≤n,s �=k

|Xk − Xs | > rn but |Xk − X�| ≤ rn

)

≤ n2εn

∫
F(S(x; rn))F̄ n−1(S(x; rn)) dF (x) → 0

uniformly for j ∈ [n + 1, n(1 + εn)] by (13). This proves (14). The proof of (15)
is similar, where the main difference is that forj ∈ [n(1− εn), n − 1],

P
(
MNNG(n) ≤ rn < MNNG(j)

) ≤ n2εn

∫
F(S(x; rn))F̄ j−1(S(x; rn)) dF (x),

which, again by (13), tends to 0 uniformly forj ∈ [n(1− εn), n − 1]. �

We note that (12) follows readily from (b) of Theorem 1 sinceF̄ (S(x; rn))n ≤
e−nF(S(x;rn)). Indeed, for the cases that we will consider, the conditions (12) and
(13) are both naturally satisfied. Thus, once we have the asymptotic distribution of
the extreme edge length for the Poisson NNG, we can extend that at once to a more
general class of NNGs.

The following result gives an argument for deriving the asymptotic distribution
of MMST(Nn) from that of MNNG(Nn), in light of the fact thatMMST(Nn) ≥
MNNG(Nn) (see proof below).

THEOREM 3. Suppose that for any sequence of positive constants mn with
mn/n → 1, we have

n

∫ [
F̄ mn

(
S(x; rn) ∩ S(0; |x|)) − F̄ mn(S(x; rn))]I (|x| > rn/2) dF (x) → 0.(16)

Then

P
(
MNNG(Nn) ≤ rn < MMST(Nn)

) → 0
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for any sequence of positive, integer-valued random variables Nn with Nn/n
p→1.

PROOF. The proof is basically the same as that of Lemma 4 of Penrose (1998).
For completeness, the essential ideas are reproduced here. Again write

P
(
MNNG(Nn) ≤ rn < MMST(Nn)

)
≤ P(|Nn/n − 1| > εn)(17)

+ ∑
|m/n−1|≤εn

P (Nn = m)P
(
MNNG(m) ≤ rn < MMST(m)

)
,

whereεn tends to zero slowly enough so that the first term tends to 0. Now make
X1, . . . ,Xm a graph by including an edge between each pair of points at a distance
at most r . Denote the resulting graph byGr . Clearly, for a small enoughr ,
Gr comprises connected subgraphs, calledr-clusters, which are disconnected with
one another. Observe that

MMST(m) = inf{r :Gr is connected},
MNNG(m) = inf{r :Gr does not contain anr-cluster which is a singleton}.

Thus,MMST(m) ≥ MNNG(m). SupposeMNNG(m) ≤ rn < MMST(m). Then it means
that Grn is disconnected and eachrn-cluster has at least two points. Take an
rn-cluster and letx be the vertex in the cluster which is closest to 0. Write
Ix

m = {X1, . . . ,Xm} \ {x}. Clearly

Ix
m ∩ S(x; rn) �= ∅ and Ix

m ∩ S(x; rn) ∩ S(0; |x|) = ∅

sinceS(x; rn) contains points and only points belonging to the samern-cluster
while S(0; |x|) \ {x} does not contain points from the samern-cluster. This means
that if MNNG(m) ≤ rn < MMST(m), then there are at least two points belonging to
different rn-clusters having the described property, where one of them must have
modulus bigger thanrn/2. Thus,

P
(
MNNG(m) ≤ rn < MMST(m)

)
≤ P

(
m∑

i=1

I
(|Xi | > rn/2,IXi

m ∩ S(Xi; rn) �= ∅

andIXi
m ∩ S(Xi; rn) ∩ S(0; |Xi |) = ∅

) ≥ 1

)

≤ E

(
m∑

i=1

I
(|Xi | > rn/2,IXi

m ∩ S(Xi; rn) �= ∅

andIXi
m ∩ S(Xi; rn) ∩ S(0; |Xi |) = ∅

))
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= E

(
m∑

i=1

I
(|Xi | > rn/2,IXi

m ∩ S(Xi; rn) ∩ S(0; |Xi |) = ∅

))

− E

(
m∑

i=1

I
(|Xi | > rn/2,IXi

m ∩ S(Xi; rn) = ∅

))

= m

∫ [
F̄ m−1(S(x; rn) ∩ S(0; |x|)) − F̄ m−1(S(x; rn))]I (|x| > rn/2) dF (x),

which tends to 0 by (16). The result follows from this in view of (17).�

While it may not be easy to make an intuitive connection between the
condition (16) and its conclusion in Theorem 3, (16) holds quite naturally for the
cases that we study in this paper.

It might also be worth noting that it is easy to find examples where the Poisson
convergence which is used for Theorem 1 does not hold. In fact, this is the
rule rather than the exception in the one-dimensional case, and for example can
be seen to be the case for the one-dimensional densitye−|x|/2. A simple two-
dimensional example is then obtained by letting the two-dimensional distribution
be concentrated on thex1-axis and have this density. If this distribution is
mixed with, say, the standard bivariate normal distribution, a more genuine two-
dimensional example where Poisson convergence does not occur is obtained. This
example can also be simply modified to have a smooth density.

3. Time-varying, locally orthogonal coordinate system. In the remaining
part of the paper, we will focus on densities of the form

f (x) = e−U(x),

whereU(x) is continuous and each level curve(U = u) := {x :U(x) = u} is a
closed and convex curve. This guarantees thatf is monotonically decreasing
in some sense. We first introduce a “locally orthogonal” coordinate system
which is useful for our computations, in particular for computations of the basic
quantityµ

(1)
n (A, r) defined by (1). Let

∇U(x) = (
U(1,0)(x),U(0,1)(x)

)
be the gradient ofU(x) atx. This gradient is throughout assumed to be continuous.

For pointsx for which U(x) is large, we define the transformationx → (�, u)

whereu = U(x) and� is determined in the following manner. We use a level curve
(U = w), with w specified below, as a reference. Ifx belongs to the reference
curve (U = w), let �(x) be the arc length from an arbitrary but fixed pointxo

to x, measured counterclockwise, say, on the curve(U = w). In general, ifx is
on the level curve(U = u), where u �= w we let �(x) = �(x′) where x′ lies
on (U(x) = w) and x and x′ are connected by a curve which is orthogonal to
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each level curve between(U = w) and(U = u), in the sense that the normal of
any intersecting level curve at the point of intersection is in the same direction
(moduloπ ) as the tangent on the connecting curve at the point. The assumption
that∇(x) is continuous assures that the transformationx → (�, u) is one-to-one.
The reason for this choice of the second coordinate,�, is that it gives the Jacobian
for the transformation to the new coordinate system a relatively simple form.
The important thing to keep in mind is that this coordinate system depends on
the reference curve. In what follows we refer to the indexn in Nn as “time.”
In the computations that follow, we see that at timen when n is large, all the
action takes place in a neighborhood of the level curve(U = logn) (see proof of
Theorem 4). Hence at timen it is natural to setw = logn and use(U = logn) as
the reference curve in defining�. For this reason we shall throughout the rest of this
paper adhere to this particular coordinate system. In doing so, here and elsewhere,
the reference of� to time will be suppressed (i.e., instead of�n we simply write�)
for convenience of notation. Also, whenever there is no ambiguity the notation�,x
will denote the functions�(x),x(�, u) as well as their possible values.

We now derive the Jacobian for the coordinate change fromx to (u, �). Note
that the unit normal vector atx on the corresponding level curve is

∇U(x)

|∇U(x)| .

By the way in which the transformation is defined,

∂x
∂u

= 1

|∇U(x)|
∇U(x)

|∇U(x)| = ∇U(x)

|∇U(x)|2 .(18)

We now derive( ∂x1
∂�

, ∂x2
∂�

). Clearly the unit tangent vector atx on the corresponding
level curve is

1

|∇U(x)|
(
U(0,1)(x),−U(1,0)(x)

)
.

If x is such thatU(x) = logn, then� corresponds to the actual arc length and so

∂x
∂�

= unit tangent atx = 1

|∇U(x)|
(
U(0,1)(x),−U(1,0)(x)

)
,(19)

in which case the Jacobian is equal to∣∣∣∣ ∂x
∂(�,u)

∣∣∣∣ =
∣∣∣∣∂x1

∂u

∂x2

∂�
− ∂x1

∂�

∂x2

∂u

∣∣∣∣ = 1

|∇U(x)| .

In general, the arc length fromx(�1, u) to x(�2, u) is computed as∫ �2

�1

∣∣x(1,0)(�, u)
∣∣d�.(20)
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Thus, if � changes byd�, then the arc length changes by|x(1,0)(�, u)|d� and
therefore

∂x
∂�

= |x(1,0)(�, u)|
|∇U(x)|

(
U(0,1)(x),−U(1,0)(x)

)
.

Consequently the Jacobian is∣∣∣∣ ∂x
∂(�,u)

∣∣∣∣ = |x(1,0)(�, u)|
|∇U(x(�, u))| .(21)

For convenience write

ξ(�, u) = |∇U(x(�, u))|(22)

and

λ(u) = length of the level curve(U = u).(23)

Thus, changing variablesx → (�, u) gives

µ(1)
n (A, r) =

∫
A

e−nF(S(x;r)) dF (x)

(24)

=
∫
Ã

e−nF(S(x(�,u);r))e−u |x(1,0)(�, u)|
ξ(�, u)

d�du,

sincedF(x) = e−U(x) dx, whereÃ is the image ofA under the transformation
from x to (�, u).

4. Main results. In this section we formulate conditions directly in terms
of U(x), the negative logarithm of the densityf (x) = e−U(x), which lead to
convergence of the longest edges of the nearest neighbor graph and the minimal
spanning tree. As stated in the beginning of Section 3, we focus on functionsU

for which the gradient is continuous and the level curves are convex. Additional
conditions on smoothness and other aspects ofU will be stated below in
Assumptions A1–A6. The conditions are rather technical. Some discussion of their
meaning is given after the statement of Theorem 5.

The core of the problem is to find sequencesrn for which the mean number
of rn-separate points converges, that is, which satisfy limn→∞ µ

(1)
n (�2, rn) =

someτ ∈ (0,∞). Denote by�o = �n,o any point for which

ξn := ξ(�o, logn) = min
�

ξ(�, logn).(25)

We assume that there exist finite positive constantsc1, c2 and a sequenceηn

which satisfy Assumption A5, forrn defined as

rn := ηn − c1 logηn − log(c−1
2 τ

√
2π )

ξn

.(26)

Throughout assume thatrn is given by this expression.
For convenience write log2 = log log and log3 = log log log. The following set

of assumptions are needed:
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ASSUMPTIONA1. For each largeu, given anyε > 0 there existsδ > 0 such
that |∇U(x)/|∇U(x)| − ∇U(x′)/|∇U(x′)|| < ε for all x,x′ on U = u with their
distance on the curve less thanδλ(u).

ASSUMPTIONA2. lim supu→∞
supx : U(x)=u |∇U(x)|
infx : U(x)=u |∇U(x)| < ∞.

ASSUMPTIONA3. For all largeu, bothλ(u) and infx : U(x)=u |∇U(x)| belong
to the range[u−ρ, uρ] for someρ ∈ (0,∞).

ASSUMPTIONA4. limU(x)→∞ |U(i,j)(x)|
|∇U(x)|2 (logU(x))2 = 0 for anyi, j ≥ 0 with

i + j = 2.

ASSUMPTION A5. There exist positive constantsc1, c2 and a sequence
of constantsηn → ∞ with ηn = O(log2 n) such that [with ξ(�, logn) =
|∇U(x(�, logn))|, as before]:

(a) limn→∞ e−ηn η
c1−1/2
n

∫ λ(logn)
�=0 e−[ξ(�, logn)−ξ(�o, logn)] rn [ξ(�, logn) ξ(�o,

logn)]1/2 d� = c2,
(b) limn→∞ e−ηn η

c1−1/2
n sup�

∫ �+rn
t=� e−[ξ(t,logn)−ξ(�o,logn)]rn [ξ(t, logn) ξ(�o,

logn)]1/2 dt = 0.

ASSUMPTIONA6. limu→∞ infx : U(x)>u〈x/|x|,∇U(x)/|∇U(x)|〉 > 0.

In the following theorems letNn be a positive integer-valued random variable

such thatNn/n
p→1. Also define

µn = ηn − c1 logηn − logc−1
2

√
2π

ξn

and σn = 1/ξn,(27)

and denote by

�(x) = exp{−e−x}, −∞ < x < ∞,

the Gumbel distribution function.

THEOREM 4. Assume that for each τ > 0, Assumptions A1–A5 hold with rn
defined by (26).Then

(
MNNG(Nn) − µn

)
/σn

d→�.

THEOREM 5. Assume that for each τ > 0, Assumptions A1–A6 hold with rn
defined by (26).Then

(
MMST(Nn) − µn

)
/σn

d→�.
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Clearly, if the conclusions of the theorems hold, then by weak convergence one
has some flexibility in choosing the normalization; indeed, anyη̃n andξ̃n with

η̃n − ηn → 0 and ξ̃n/ξn → 1

can replaceηn andξn.
Assumptions A1–A6 are designed to meet not only analytic but also geometric

considerations in the proofs, but still are quite general. Assumption A1 means that
the normalized gradient ofU on a level curveU(x) = u, whereu is large, will
change gradually when the location changes gradually relative to the total length
of the level curve. Assumptions A2 and A6 imply that the level curves are not
highly asymmetrically shaped. Assumption A3 says that bothλ(u) and |∇(u)|
are O-regularly varying functions [cf. Bingham, Goldie and Teugels (1987)].
Assumption A4 is a very weak technical condition on the smoothness ofU .
Assumption A5 is the most significant condition in this group, which is aimed
at connecting the normalizations for the longest edges on the graphs to the second-
order Taylor expansion ofξ(�, logn) in areas whereξ(�, logn) is close to its
minimum valueξ(�o, logn). To further illustrate what these conditions mean and
how to verify them, we proceed to examples in the next two sections.

5. Homogeneous exponents. The first general example considers distribu-
tions with exponents which are homogeneous in the sense thatf (x) = e−U(x) =
e−V (x)−c with V (kx) = kαV (x), where the level curves forV are convex. In this
case it is far more natural to use polar coordinates than the time-varying, lo-
cally orthogonal coordinate system in the general theory. In polar coordinates,
x = (r cosθ, r sinθ); we may then writeV (x) = rαg(θ), so that

f (x) = e−U(x) = e−rαg(θ)−c.(28)

Straightforward computations show that

∇U(x) = rα−1A(θ)

[
cosθ
sinθ

]
,

(29)
|∇U(x)| = rα−1|A(θ)|1/2 =: rα−1h(θ),

where

A(θ) =
[
αg(θ) −g′(θ)

g′(θ) αg(θ)

]
and |A(θ)| = α2g(θ)2 + g′(θ)2.

Defining vc(n) = logn − c, we have thatU(x) = logn is equivalent to
V (x) = vc(n). Hence, writingr(θ, logn) for the solution toU(x) = rαg(θ) +
c = logn and x(θ, logn) for the correspondingx, we have thatr(θ, logn) =
vc(n)1/αg(θ)−1/α , and

ξ̃ (θ, logn) = |∇U(x(θ, logn))|
(30)

= vc(n)1−1/αg(θ)−1+1/αh(θ) =: vc(n)1−1/αk(θ).
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The final ingredient needed to treat distributions of the form (28) is to note that
∂�(θ)
∂θ

= | ∂x(θ)
∂θ

| and use

x(θ, logn) = r(θ, logn)(cosθ,sinθ) = vc(n)1/αg(θ)−1/α(cosθ,sinθ)

to obtain

∂�(θ)

∂θ
= vc(n)1/αg(θ)−1/α

[(
g′(θ)

αg(θ)

)2

+ 1
]1/2

=: vc(n)1/αm(θ).(31)

THEOREM 6. Assume that the density is of the form (28) with α > 1 and
g(θ) bounded away from zero and three times continuously differentiable on
the torus [0,2π]. Suppose further that k(θ) assumes its minimum value at d

distinct points θ0, . . . , θd−1. Then Assumptions A1–A6 hold with ξn/ξ̃n → 1 for
ξ̃n = (logn)1−1/αk(θ0), ηn = log2 n, c1 = 1 and

c2 = √
2πk(θ0)

3/2
d−1∑
i=0

k′′(θi)
−1/2m(θi).

PROOF. If follows from (29) that

∇U(x)

|∇U(x)| = A(θ)

|A(θ)|1/2

[
cosθ
sinθ

]
.(32)

It is clear that Assumption A1 is equivalent to the continuity of the function on the
right-hand side of (32), which follows from the assumptions. That Assumptions
A2 and A3 hold are immediate consequences of (29). It may be seen that
U(i,j) = V (i,j) = rα−(i+j)gi,j (θ) for i + j = 2 and suitable functionsgi,j (θ).
Assumption A4 follows from this and (30). To show Assumption A6, note that
by (32) we have 〈

x
|x| ,

∇U(x)

|∇U(x)|
〉
= αg(θ)

|A(θ)|1/2 ,

which is bounded away from zero sinceg is.
We now verify Assumption A5. Using in order (31), (30) and Erdelyi [(1956),

page 37],

In :=
∫
�
e−[ξ(�,logn)−ξ(�o,logn)]rn[ξ(�, logn)ξ(�o, logn)]1/2 d�

=
∫ 2π

0
e−[ξ̃ (θ,logn)−ξ̃ (θ0,logn)]rn[ξ̃ (θ, logn)ξ̃ (θ0, logn)]1/2vc(n)1/αm(θ) dθ

= vc(n)

∫ 2π

0
e−rnvc(n)1−1/α[k(θ)−k(θ0)][k(θ)k(θ0)]1/2m(θ)dθ

∼ vc(n)k(θ0)
√

2π

d−1∑
i=0

(
rnvc(n)1−1/αk′′(θi)

)−1/2
m(θi).
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Clearlyvc(n) ∼ logn and by (25), (26) and (30),

rnvc(n)1−1/αk(θ0) = rnξ(�0, logn) ∼ ηn.

Hence

In ∼ √
2π(logn)k(θ0)

3/2η−1/2
n

d−1∑
i=0

(k′′(θi))
−1/2m(θi)

and Assumption A5(a) follows. Similar considerations prove Assumption A5(b).
�

We next apply the result to classes of elliptically contoured distributions and to
Weibull-type distributions.

EXAMPLE 1. Consider elliptically contoured distributions with log density

U(x) = rα(
(cosθ)2 − 2ρ cosθ sinθ + (sinθ)2)/d + c.

In particular, this includes the bivariate normal with standardized marginals and
correlationρ ∈ (−1,1), butρ �= 0, which is obtained forα = 2,c2 = − log(2π(1−
ρ2)1/2), andd = 2(1− ρ2). These distributions are of the form (28) with

g(θ) = (
(cosθ)2 − 2ρ cosθ sinθ + (sinθ)2)/d = (1− 2ρ cosθ sinθ)/d,

and hence with

k(θ) = (1− 2ρ cosθ sinθ)−1+1/α

×
√

α2(1− 2ρ cosθ sinθ)2 + (2ρ − 4ρ cos2 θ)2
/
d1/α.

The conditions of Theorem 6 are satisfied, and hence the results of Theorems
4 and 5 hold with

µn = log2 n − log3 n − log(c−1
2

√
2π )

(logn)1−1/αk(θ0)
and σn = 1

(logn)1−1/αk(θ0)
.(33)

Computation ofk(θ0) and c2 requires computer algebra, with a slight simplifi-
cation obtained by noting that the constantc2 is independent of the value ofd.
We consider the normal case, which hasα = 2 andd = 2(1− ρ2), and present the
results for a few values ofρ in Table 1. By symmetry, the values for−ρ are the
same as forρ.

TABLE 1

ρ 0.1 0.3 0.5 0.7 0.9
k(θ0) 1.348837 1.240718 1.153867 1.084742 1.026251
c2 19.2383720 7.9460116 4.0933240 1.9501568 0.5414317
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TABLE 2

α 5 6 7 8
k(θ0) 0.769 0.472 0.280 0.162
c2 0.631 0.307 0.151 0.072

EXAMPLE 2. In this example we consider independent marginals with
Weibull-type densities const× e−|x1|α−|x2|α . The log density then is

U(x) = rα(|cosθ |α + |sinθ |α) + c

and is of the form (28) with

g(θ) = (|cosθ |α + |sinθ |α).

Hence,

k(θ) = α(|cosθ |α + |sinθ |α)1−1/α

× {
(|cosθ |α + |sinθ |α)2

× (−sign(cosθ)sinθ |cosθ |α−1 + sign(sinθ)cosθ |sinθ |α−1)2}1/2
.

To assure three times differentiability we assume thatα > 4.
Again the conditions of Theorem 6 are satisfied, and hence the results of

Theorems 4 and 5 hold withµn,σn given by (33) in the previous example. A few
examples of values ofk(θ0), c2, obtained with Maple, are given in Table 2.

It might be noted that even if the result requiresα > 4, it can be shown to hold
also for 2< α ≤ 4.

6. Parallel level curves. Consider the situation where the level curves are
parallel, namely they are given by

{x :U(x) = u} = {c(t) + ω(u)n(t) : t ∈ [0,L)}, u ≥ someuo > 0,(34)

where L is a finite positive constant,c(t) is a closed, strictly convex curve
parameterized clockwise by length,ω(u) is an increasing function withω(uo) = 0
and ω(∞) = ∞, and n(t) is the unit normal ofc at the parametert . Assume
that ω(u) is differentiable andc(t) is twice continuously differentiable with
|c̈(t)| ∈ (0,∞), where “·” refers to differentiation with respect tot . Since
|ċ(t)| ≡ 1, it is easy to see that

ṅ(t) = |c̈(t)|ċ(t).(35)

Also it is clear that

ξ(�, u) = |∇U(x(�, u))| = 1

ω′(u)
for all �,(36)
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so that the asymptotic results here are different in nature from what was considered
in Theorem 6. Sinceξ(�, u) does not depend on� we will denote it byξ(u)

henceforth. Definet (�) to be the inverse function of

�(t) = arc length of the level curve(u = logn)

from c(0) + ω(logn)n(0) to c(t) + ω(logn)n(t)

=
∫ t

0
|ċ(v) + ω(logn)ṅ(v)|dv =

∫ t

0
[1+ ω(logn)|c̈(v)|]dv,

where the rightmost equality follows from (35) in conjunction with|ċ(v)| ≡ 1.
Hence,

x(1,0)(�, u) = [ċ(t (�)) + ω(u)ṅ(t (�))]t ′(�)
= [1+ ω(u)|c̈(t (�))|]t ′(�)ċ(t (�))(37)

= 1+ ω(u)|c̈(t (�))|
1+ ω(logn)|c̈(t (�))| ċ(t (�)).

Also

λ(u) =
∫ L

0
[1+ ω(u)|c̈(t)|]dt

(38)

= L + ω(u)

∫ L

0
|c̈(t)|dt ∼ ω(u)

∫ L

0
|c̈(t)|dt.

THEOREM 7. Assume that (34) holds, where c(t) is twice continuously
differentiable, and ω(u) = uα exp(

∫ u
yo

a(y)
y

dy) for some α > 0, a(y) → 0 and
ya′(y) → 0 as y → ∞. Then Assumptions A1–A6 hold with ηn = log[ξ(logn) ×
λ(logn)], c1 = 1/2 and c2 = 1.

PROOF. Since∇U(x)/|∇U(x)| = n(t), it is not difficult to see that Assump-
tion A1 follows from the continuity ofn(t). Both Assumptions A2 and A3 hold
trivially in view of (36) and the assumption onω. We next verify Assumption A5.
By (36) again,

e−ηnηc1−1/2
n

∫ λ(logn)

�=0
e−[ξ(�,logn)−ξ(�o,logn)]rn[ξ(�, logn)ξ(�o, logn)]1/2 d�

= e−ηnηc1−1/2
n λ(logn)ξ(logn).

Hence, Assumption A5(a) is satisfied for the choice of constants in this theorem.
The verification of Assumption A5(b) is entirely similar and therefore omitted. To
verify Assumption A6, note that〈

x
|x| ,

∇U(x)

|∇U(x)|
〉
=

〈
c(t) + ω(u)n(t)

|c(t) + ω(u)n(t)| ,n(t)

〉
∼ |n(t)|2 = 1 asu → ∞.
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Hence Assumption A6 holds.
We finally verify Assumption A4. Solving( ∂u

∂x1
, ∂u

∂x2
) and ( ∂t

∂x1
, ∂t

∂x2
) in the

following in terms ofx1, x2:

1 = ∂x1

∂x1
= (ċ1 + ωṅ1)

∂t

∂x1
+ ω′n1

∂u

∂x1
,

0 = ∂x1

∂x2
= (ċ1 + ωṅ1)

∂t

∂x2
+ ω′n1

∂u

∂x2
,

0 = ∂x2

∂x1
= (ċ2 + ωṅ2)

∂t

∂x1
+ ω′n2

∂u

∂x1
,

1 = ∂x2

∂x2
= (ċ2 + ωṅ2)

∂t

∂x2
+ ω′n2

∂u

∂x2
,

we get(
∂u

∂x1
,

∂u

∂x2

)
= 1

ω′ (−ċ2, ċ1) and
(

∂t

∂x1
,

∂t

∂x2

)
= 1

1+ ω|c̈|(ċ1, ċ2).

Hence

∂2u

∂x2
1

= −ω(2)ċ2(∂u/∂x1) − ω′c̈2(∂t/∂x1)

(ω′)2 = ω(2)ċ2
2

(ω′)3 + ċ1c̈2

ω′(1+ ω|c̈|) ,

∂2u

∂x2
2

= ω(2)ċ1(∂u/∂x2) − ω′c̈1(∂t/∂x2)

(ω′)2 = ω(2)ċ2
1

(ω′)3 + c̈1ċ2

ω′(1+ ω|c̈|) ,

∂2u

∂x1 ∂x2
= ω(2)ċ1(∂u/∂x1) − ω′c̈1(∂t/∂x1)

(ω′)2 = −ω(2)ċ1ċ2

(ω′)3 − ċ1c̈1

ω′(1+ ω|c̈|) .
To show Assumption A4, by the computations above and the fact that|ċ| and|c̈|
are bounded, it suffices to show that

lim
u→∞

( |ω(2)(u)|
[ω′(u)]3 + 1

ω(u)ω′(u)

)
(ω′(u) logu)2 = 0.(39)

The assumption of the theorem implies that bothω andω′ are regularly varying
and in fact

ω′(u) = (
α + a(yo)

)
uα−1 exp

(∫ u

yo

ã(y)

y
dy

)
,

where

ã(y) = a(y) + ya′(y)

α + a(y)
→ 0 asy → ∞.

It is easily seen that

ω′(u)

ω(u)
= α + a(u)

u
and

ω(2)(u)

ω′(u)
= α − 1+ ã(u)

u
,
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from which (39) is straightforward.�

EXAMPLE 3. An example of such a distribution is the bivariate normal
distribution with independent standard normal marginals, in which case we can
takec(t) = n(t) = (cost,sint), t ∈ [0,2π), and

ω(u) = √
2[u − log(2π)] − 1, u ≥ log(2π) + 1/2.

The conditions of Theorem 7 are satisfied and so Assumptions A1–A6 hold with

ξn = (2 logn)1/2, ηn = log 4π + log2 n, c1 = 1/2, c2 = 1.

Hence the results of Theorems 4 and 5 hold with

µn = log2 n − (1/2) log3 n + log(2
√

2π )

(2 logn)1/2 and σn = 1

(2 logn)1/2 .

This is consistent with the normalization obtained in Penrose (1998).

7. Technical lemmas. In this section we present three technical lemmas
which are essential for Theorems 4 and 5. No significant continuity will be lost
if a reader postpones the details in the proofs of these lemmas during the first
reading.

The first one, Lemma 8, deduces three consequences of Assumption A4
which are more directly usable in the proofs of the theorems. Lemma 10
takes one step toward evaluating integrals like (1) and the last one, Lemma 9,
approximatesF(S(x; rn)), and in particular shows that appropriate sectors
of S(x; rn) may be neglected asymptotically.

In addition to previous notation, we will use in the proofs

un,−b = logn − b log2 n, un,b = logn + b log2 n, b > 0.(40)

LEMMA 8. Assume that Assumption A4 holds, namely limU(x)→∞(|U(i,j)(x)|/
|∇U(x)|2)(logU(x))2 = 0 for any i, j ≥ 0 with i + j = 2, and consider the coor-
dinate system based on the level curve U(x) = logn. Then, for any finite constant
b > 0,

lim
n→∞ sup

x : |U(x)−logn|≤b log2 n

|U(i,j)(x)|
|∇U(x)|2

∣∣∣(log2 n)2 = 0

(A4a)
for any i, j with i + j = 2.

lim
n→∞ sup

|v−logn|≤b log2 n

∣∣∣∣ ξ(�, v)

ξ(�, logn)
− 1

∣∣∣∣ log2 n = 0.(A4b)

lim
n→∞ sup

|v−logn|≤b log2 n

∣∣∣∣x(1,0)(�, v)
∣∣ − 1

∣∣ = 0.(A4c)



432 T. HSING AND H. ROOTZÉN

PROOF. Equation (A4a) is an immediate consequence of Assumption A4
since logU(x)/ log2 n → 1 in the indicated range.

The proof of parts (A4b) and (A4c) uses the relation (18), that∂x
∂u

=
∇U(x)/|∇U(x)|2, in two ways. First, this relation implies that∣∣∣∣∂x1(�, v)

∂v

∣∣∣∣ ≤ 1

|∇U(x)| and
∣∣∣∣∂x2(�, v)

∂v

∣∣∣∣ ≤ 1

|∇U(x)| ,(41)

and second, it is equivalent to

x(�, v) − x(�, logn) =
∫ v

logn

∇U(x(�, s))

|∇U(x(�, s))|2 ds.(42)

Let

Mn = sup
|v−logn|≤b log2 n,i+j=2

|U(i,j)(x(�, v))|
|∇U(x(�, v))|2 ,

so thatMn(log2 n)2 → 0 by (A4a). Now, to prove (A4b), note that, by straightfor-
ward differentiation,∣∣∣∣∂ξ(�, v)

∂v

∣∣∣∣ =
∣∣∣∣∂|∇U(x(�, v))|

∂v

∣∣∣∣
=

∣∣∣∣ ∂

∂x1
|∇U(x(�, v))|∂x1

∂v
+ ∂

∂x2
|∇U(x(�, v))|∂x2

∂v

∣∣∣∣
= |〈∇U, (U(2,0),U(1,1))〉(∂x1/∂v) + 〈∇U, (U(1,1),U(0,2))〉(∂x2/∂v)|

|∇U | .

Using (41), for|v − logn| ≤ b log2 n we hence have that| ∂ logξ(�,v)
∂v

| ≤ 4Mn. Thus,
by integration,

(e−4Mnb log2 n − 1) log2 n ≤
∣∣∣∣ ξ(�, v)

ξ(�, logn)
− 1

∣∣∣∣ log2 n ≤ (e4Mnb log2 n − 1) log2 n

and (A4b) follows, sinceMn(log2 n)2 → 0.
Next, to prove (A4c), we note that similar calculations as for (43) give that∣∣∣∣ ∂

∂�

∇U(x(�, v))

|∇U(x(�, v))|2
∣∣∣∣ ≤ 5Mn

∣∣x(1,0)(�, v)
∣∣.

Hence, interchanging differentiation and integration in (42), we obtain

∣∣x(1,0)(�, v) − x(1,0)(�, logn)
∣∣ ≤ 5Mn

∫ v

logn

∣∣x(1,0)(�, s)
∣∣ds.

By (19), |x(1,0)(�, logn)| = 1, and hence

∣∣∣∣x(1,0)(�, v)
∣∣ − 1

∣∣ ≤ 5Mn

∫ v

logn

(∣∣∣∣x(1,0)(�, s)
∣∣ − 1

∣∣ + 1
)
ds.
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It then follows from a Grönvall inequality that for|v − logn| ≤ b log2 n,∣∣∣∣x(1,0)(�, v)
∣∣ − 1

∣∣ ≤ 5Mnb log2 nexp{5Mnb log2 n} → 0,

and (A4c) follows, sinceMn(log2 n) → 0. �

LEMMA 9. Suppose that U is differentiable with gradient ∇U and let, for
some x,

ε = sup
y∈S(x;r)

|U(y) − U(x) − 〈∇U(x),y − x〉|.(43)

Let ζ ∈ (−1,1]. Then, with ξ = |∇U(x)|, there exist constants θ1 = θ1(x, r) ∈
[−1,1] and 2

1+ζ
+ 1

2 ≤ θ2 = θ2(x, r) ≤ 0 and such that

F
(
S(x; r) ∩ {y : 〈y − x,∇U(x)/|∇U(x)|〉 ≤ ζ r})

= (2πr)1/2e−U(x)ξ−3/2eξreθ1ε[1+ θ2/(ξr)].

PROOF. Let B = {y : 〈y − x,∇U(x)/|∇U(x)|〉 ≤ ζ r}. By (43), we can write

F
(
S(x; r) ∩ B

) = e−U(x)eθ1ε
∫
S(x;r)∩B

e−〈∇U(x),y−x〉 dy.(44)

Then change variables withy − x = Av where

A =
[

b a

−a b

]

with (a, b)′ = ∇U(x)/|∇U(x)|. It is easy to see that∫
S(x;r)∩B

e−〈∇U(x),y−x〉 dy

=
∫
S(0;r)

I (v2 ≤ ζ r)e−ξv2 dv

= ξ−2
∫
S(0;ξr)

I (v2 ≤ ξζ r)e−v2 dv

= 2ξ−2
∫ ξζ r

−ξr
e−v[(ξr)2 − v2]1/2 dv.

Next, lettingz = v + ξr , the previous expression is equal to

2ξ−2eξr
∫ ξ(1+ζ )r

0
e−z(2ξrz − z2)1/2 dz

= 2ξ−2eξr(2ξr)1/2
∫ ξ(1+ζ )r

0
e−zz1/2(1− z/(2ξr)

)1/2
dz.
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Since 1− x/2 ≤ (1− x)1/2 ≤ 1 for x ∈ [0,1], we have∫ ξ(1+ζ )r

0
e−zz1/2 dz − 1

4ξr

∫ ξ(1+ζ )r

0
e−zz3/2 dz

≤
∫ ξ(1+ζ )r

0
e−zz1/2(1− z/(2ξr)

)1/2
dz

≤
∫ ∞

0
e−zz1/2 dz = �(3/2).

The lower bound is

�(3/2) −
∫ ∞
ξ(1+ζ )r

e−zz1/2 dz − 1

4ξr

∫ ξ(1+ζ )r

0
e−zz3/2 dz,

and since�(3/2) = π1/2/2, we obtain that

−
∫ ∞
ξ(1+ζ )r

e−zz1/2 dz − 1

4ξr

∫ ξ(1+ζ )r

0
e−zz3/2 dz

≤
∫ ξ(1+ζ )r

0
e−zz1/2(1− z/(2ξr)

)1/2
dz − π1/2/2 ≤ 0.

Now,∫ ∞
ξ(1+ζ )r

e−zz1/2 dz ≤ 1

(ξ(1+ ζ )r)

∫ ∞
ξ(1+ζ )r

e−z/2z3/2 dz ≤ 1

ξ(1+ ζ )r
�(5/2)

and

1

4ξr

∫ ξ(1+ζ )r

0
e−zz3/2 dz ≤ 1

4ξr
�(5/2).

Since�(5/2) = 3π1/2/4 and 3π1/2/8 ≤ 1, this concludes the proof.�

LEMMA 10. Assume that Assumptions A2–A5 hold. Let constants k ∈ [0,∞)

and δn ∈ [δ, δ] ⊂ (0,∞). Then for any sufficiently large fixed b ∈ (0,∞),

n

∫
x
I
(
U(x) /∈ [un,−b, un,b])e−δnnF(S(x;rn))[nF(S(x; rn))]k dF (x) → 0,(45)

and uniformly for �n,1 < �n,2 ∈ [0, λ(logn)],
n

∫
x
I
(
U(x) ∈ [un,−b, un,b], �(x) ∈ [�n,1, �n,2])

× e−δnnF(S(x;rn))[nF(S(x; rn))]k dF (x)(46)

∼ δ−1
n τ

∫ �n,2
�=�n,1

e−[ξ(�,logn)−ξ(�o,logn)]rnξ1/2(�, logn)d�∫ λ(logn)
�=0 e−[ξ(�,logn)−ξ(�o,logn)]rnξ1/2(�, logn)d�

.
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It follows from (45) and (46) that

n

∫
x
e−δnnF(S(x;rn))[nF(S(x; rn))]k dF (x) ∼ δ−1

n τ.(47)

PROOF. In this proof we will assume for convenience of notation thatk = 0
andδn ≡ 1, since the extension to the general case is straightforward. First note
that by Assumption A2, (A4b) of Lemma 8 and the definition ofrn,

sup
u∈[un,−b,un,b],�

|ξ(�, u) − ξ(�, logn)|rn
(48)

≤ sup
u∈[un,−b,un,b],�

∣∣∣∣ ξ(�, u)

ξ(�, logn)
− 1

∣∣∣∣O(log2 n) → 0

and

inf
u∈[un,−b,un,b],�

ξ(�, u)rn ≥ ξ(�o, logn)rn → ∞, b > 0.

By Assumptions A4 and A2,

lim
n→∞ sup

x : U(x)∈[un,−b,un,b]
sup

y∈S(x;rn)

|U(y) − U(x) − 〈∇U(x),y − x〉| = 0, b > 0.

Hence, by Lemma 9 withζ = 1, (48) and (A4b) of Lemma 8, we have uniformly
for all � andu ∈ [un,−b, un,b],

F
(
S(x(�, u); rn))

∼ √
2πe−uξ−3/2(�, u)r1/2

n eξ(�,u)rn

(49)
∼ √

2πe−uξ−3/2(�, logn)r1/2
n eξ(�o,logn)rne[ξ(�,logn)−ξ(�o,logn)]rn

= e−uχn(�),

where

χn(�) = c2τ
−1ξ−3/2(�, logn)r1/2

n eηnη−c1
n e[ξ(�,logn)−ξ(�o,logn)]rn .

Now pick a largeuo so that the bounds in Assumption A3 apply foru > uo. By the
nonintersection of level curves, Assumption A2 and (49), for all largen we have,
for some constantb1, b2 > 0,

inf
x : uo<U(x)<un,−b

F (S(x; rn))

≥ inf
�

F
(
S(x(�, un,−b); rn))

≥ b1 inf
�

e−un,−bξ−3/2(�, logn)r1/2
n eηnη−c1

n

≥ b2n
−1(logn)bξ−2(�o, logn)eηnη1/2−c1

n .
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It then follows from Assumption A3 that

inf
x : uo<U(x)<un,−b

F (S(x; rn)) ≥ b3n
−1(logn)b4

for some constantsb3, b4, whereb4 can be picked large provided thatb is large.
Now for x for whichU(x) ≤ uo, it is clear thatF(S(x; rn)) can be bounded below
by the same bound, since the density there is bounded away from 0. Combining the
two cases we conclude that ifb is large enough, we can pickb3 andb4 such that

n

∫
x : U(x)<un,−b

e−nF(S(x;rn)) dF (x) ≤ ne−b3(logn)b4 → 0.(50)

Next, by (20) and Assumption A3, there exists a constantb5 such that

n

∫
x : U(x)>un,b

dF (x) = n

∫
u>un,b

∫ λ(logn)

�=0
e−u |x(1,0)(�, u)|

ξ(�, u)
d�du

≤ n

∫
u>un,b

e−u λ(u)

ξ(�o, u)
du

(51)
≤ b5n

∫
u>un,b

e−uu2ρ du

∼ b5ne−un,bu
2ρ
n,b → 0.

Hence

n

∫
x : U(x)>un,b

e−nF(S(x;rn)) dF (x) → 0(52)

for a sufficiently largeb. Now, (50) and (52) imply (45).
It follows from (24), (49), and (A4b) and (A4c) of Lemma 8 that

n

∫
I
(
U(x) ∈ [un,−b, un,b], �(x) ∈ [�n,1, �n,2])e−nF(S(x;r)) dF (x)

∼ n

∫ un,b

u=un,−b

∫ �n,2

�=�n,1

e−n(1+o(1))e−uχn(�)e−u 1

ξ(�, logn)
d�du.

Make a change of variables in the above integral with

v = u − logn − logχn(�).

By Assumptions A2, A3 and the assumption thatηn = log2(n) in Assumption A5,
we conclude that logχn(�) = O(log2 n). As a result, it is possible to choose
large enoughb such thatvn,−b → −∞ andvn,b → ∞, wherevn,±b corresponds
to un,±b with respect to the above variable change. Since∫ ∞

−∞
e−e−v

e−v dv = 1,
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we have

n

∫
I
(
U(x) ∈ [un,−b, un,b], �(x) ∈ [�n,1, �n,2])e−nF(S(x;r)) dF (x)

∼
∫ vn,b

v=vn,−b

∫ �n,2

�=�n,1

e−(1+o(1))e−v

e−v 1

ξ(�, logn)χn(�)
d�dv

∼ c−1
2 τr−1/2

n e−ηnηc1
n

∫ �n,2

�=�n,1

e−[ξ(�,logn)−ξ(�o,logn)]rnξ1/2(�, logn)d�

∼ c−1
2 τe−ηnηc1−1/2

n

×
∫ �n,2

�=�n,1

e−[ξ(�,logn)−ξ(�o,logn)]rn[ξ(�, logn)ξ(�o, logn)]1/2 d�

∼ τ

∫ �n,2
�=�n,1

e−[ξ(�,logn)−ξ(�o,logn)]rnξ1/2(�, logn)d�∫ λ(logn)
�=0 e−[ξ(�,logn)−ξ(�o,logn)]rnξ1/2(�, logn)d�

by Assumption A5. This proves (46) fork = 0 andδn = 1. �

8. Proofs of Theorems 4 and 5. We continue to use below the notation
of un,±b defined in (40).

PROOF OFTHEOREM 4. First consider the caseNn ∼ Poisson(n). We start by
defining the setsAn,1, . . . ,An,kn in Theorem 1. For convenience write

In(�) = τ
∫ �
t=0 e−[ξ(t,logn)−ξ(�o,logn)]rnξ1/2(t, logn)dt∫ λ(logn)

t=0 e−[ξ(t,logn)−ξ(�o,logn)]rnξ1/2(t, logn)dt
, � ∈ [0, λ(logn)).

Thus, by (46) of Lemma 10 withk = 0 and δn ≡ 1, for someb > 0 we have
uniformly for 0≤ �n,1 < �n,2 < λ(logn),

µ(1)
n

({
x(�, u) :� ∈ [�n,1, �n,2), u ∈ [un,−b, un,b]}, rn) ∼ In(�n,2) − In(�n,1)(53)

whereµ
(1)
n is defined in (1). In the following we will continue to work with this

choice ofb. By Assumptions A5(a) and A5(b),

εn := sup
�

[In(� + rn) − In(�)] → 0.

Let kn be a sequence of integers such that

kn → ∞ and knεn → 0;
let j0 = 0 and, for i = 1, . . . , kn, let ji be the largest positive integerj such
that In(jrn) ≤ iτ/kn, where jkn is simply the largest positive integerj such
that jrn ≤ λ(logn). Note that sinceεn = o(1/kn), the differences between
successiveji ’s tend to∞ uniformly so thatji−1 < ji − 3 for all largen. Define

An,i = {
x(�, u) :� ∈ [

ji−1rn, (ji − 3)rn
)
, u ∈ [un,−b, un,b]}, 1≤ i ≤ kn,
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and

An,kn+1 = An,1.

Also let

Ān,i = {
x(�, u) :� ∈ [

(ji − 3)rn, jirn
)
, u ∈ [un,−b, un,b]}, 1 ≤ i ≤ kn − 1,

and

Ān,kn = {
x(�, u) :� ∈ [(

jkn − 3
)
rn, λ(logn)

)
, u ∈ [un,−b, un,b]}.

By the choice of the sets, it follows from (53) and the definition ofεn that

1/kn − 4εn ≤ µ(1)
n (An,i, rn) ≤ 1/kn + εn, 1≤ i ≤ kn,(54)

max
1≤i≤kn−1

µ(1)
n (Ān,i , rn) ≤ 3εn and µ(1)

n

(
Ān,kn, rn

) ≤ 3εn + 1/kn,(55)

and hence that

max
1≤i≤kn−1

µ
(1)
n (Ān,i , rn)

µ
(1)
n (An,i, rn)

≤ 3εn

1/kn − 4εn

→ 0.(56)

We now proceed to verify the conditions (a)–(e) of Theorem 1.
By convexity of the level curves,

cn,i := inf(|x − y| : x ∈ An,i,y ∈ An,i+1) = ∣∣x(
(ji − 3)rn, un,−b

) − x(jirn, un,−b)
∣∣.

By (20) and the condition (A4c) of Lemma 8, the lengthan,i of the arc that con-
nectsx((ji − 3)rn, un,−b) with x(jirn, un,−b) on {x :U(x) = un,−b} is asymptoti-
cally 3rn. By the same token,λ(un,−b) ∼ λ(logn). Let θn,i be the angle between
∇U(x((ji−3)rn,un,−b))

|∇U(x((ji−3)rn,un,−b))| and ∇U(x(ji rn,un,−b))

|∇U(x(ji rn,un,−b))| . Since rn = o(λ(logn)) by Assump-
tions A5(a) and A5(b), Assumption A1 then guarantees that maxi θn,i → 0. Con-
sider the triangle with base equal to the line that connectsx((ji − 3)rn, un,−b) and
x(jirn, un,−b), and with sides determined by the tangents at these two points on the
curveU(x) = un,−b; let the two base angles beθ1 andθ2, say, and the correspond-
ing two sides have lengthss1, s2, respectively. Figure 1 depicts what is described
here.

FIG. 1.
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Then
(s1 + s2)cosθn,i

cn,i

= (s1 + s2)cos(θ1 + θ2)

cn,i

≤ s1 cosθ1 + s2 cosθ2

cn,i

= 1,

and so
an,i

cn,i

≤ s1 + s2

cn,i

≤ 1

cosθn,i

→ 1 uniformly asn → ∞.

Consequently, mini cn,i > 2rn for large n. Hence we have shown that adja-
centAn,i ’s are at least 2rn apart for largen. That nonadjacentAn,i ’s are at least 2rn
apart for largen can also be established by the convexity of the level curves. Hence
the condition (a) of Theorem 1 is proved.

It follows from (47) of Lemma 10 withδn ≡ 1 andk = 0 that the condition (b)
of Theorem 1 holds. To prove (c) of Theorem 1, note that it suffices to show that

µ(1)
n {x(�, u) :u /∈ [un,−b, un,b]} → 0 and

kn∑
j=1

µ(1)
n (Ān,i , rn) → 0.

The first convergence follows from (45) of Lemma 10 withδn ≡ 1 andk = 0,
while the second convergence follows from (55) and (56), in conjunction with the
condition (b) already proved above. Condition (d) of Theorem 1 holds by (54).

Finally we prove (e) of Theorem 1. By the simple inequality

P(A ∪ B) ≥ (
P(A) + P(B)

)
/2

we have

µ(2)
n (A, rn) ≤

(
n

∫
A

e−nF(S(x;rn))/2 dF(x)

)2

so that

µ
(2)
n (An,i, rn)

µ
(1)
n (An,i, rn)

≤ (n
∫
An,i

e−nF(S(x;rn))/2 dF(x))2

n
∫
An,i

e−nF(S(x;rn)) dF (x)
.

By (46) of Lemma 10 withδn ≡ 1/2,1 andk = 0, and (54),

(n
∫
An,i

e−nF(S(x;rn))/2 dF(x))2

n
∫
An,i

e−nF(S(x;rn)) dF (x)
∼ 4τµ(1)

n (An,i, rn) → 0

uniformly in i, whereτ is the constant specified in the theorem in definingrn.
Hence (e) of Theorem 1 is proved. Replacingτ by e−x completes the proof for the
caseNn ∼ Poisson(n).

Next,

P
(
MNNG(Nn) ≤ rn

)
≤ P(MNNG(n) ≤ rn) + P

(
MNNG(Nn) ≤ rn < MNNG(n)

)
≤ P

(
MNNG(Nn) ≤ rn

) + P
(
MNNG(n) ≤ rn < MNNG(Nn)

)
+ P

(
MNNG(Nn) ≤ rn < MNNG(n)

)
.
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Using the inequality 1− x ≤ e−x , x ≤ 1, it follows from (47) of Lemma 10 with
k = 0, δn ≡ 1 andk = 1, δn ≡ δ, whereδ ∈ (0,1), that (12) and (13) hold. Taking
limits throughout the preceding inequalities, it follows from Theorem 2 and the
first part of the proof withNn ∼ Poisson(n) that

lim
n→∞P

(
MNNG(n) ≤ rn

) = lim
n→∞P

(
MNNG(Nn) ≤ rn

) = e−τ .

Applying the above argument again gives

lim
n→∞P

(
MNNG(Nn) ≤ rn

) = lim
n→∞P(MNNG(n) ≤ rn) = e−τ

for any generalNn satisfyingNn/n
p→1. Replacingτ by e−x completes the proof.

�

PROOF OFTHEOREM 5. It follows from Theorems 3 and 4 that

lim
n→∞P

(
MMST(Nn) ≤ rn

) = lim
n→∞P

(
MNNG(Nn) ≤ rn

) = e−τ

provided we show (16). To do that, it suffices to show that

n

∫
F̄ δnn(S(x; rn))I (|x| > rn/2) dF (x) → τ,(57)

and

n

∫
F̄ δnn(

S(x; rn) ∩ S(0; |x|))I (|x| > rn/2) dF (x) → τ(58)

for any sequenceδn → 1. For any fixedε > 1, it follows from Assumption A6 that
for all largen,

2|x(�, un,−b)| ≥ |x(�, un,−b)| + |x(�, un,−εb)|
(59)

≥ |x(�, un,−b) − x(�, un,−εb)|.
By (18) and (A4b) of Lemma 8,

|x(�, un,−b) − x(�, un,−εb)| =
∣∣∣∣
∫ un,−b

un,−εb

∇U(x(�, v))

|∇U(x(�, v))|2 dv

∣∣∣∣
∼ 1

ξ2(�, logn)

∣∣∣∣
∫ un,−b

un,−εb

∇U(x(�, v)) dv

∣∣∣∣.
Now write∫ un,−b

un,−εb

∇U(x(�, v)) dv =
∫ un,−b

un,−εb

∇U(x(�, logn)) dv

+
∫ un,−b

un,−εb

[∇U(x(�, v)) − ∇U(x(�, logn))]dv.
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Since ∣∣∣∣
∫ un,−b

un,−εb

∇U(x(�, logn)) dv

∣∣∣∣ = ξ(�, logn)(ε − 1)b log2 n,

if we can show

sup
v∈[un,−εb,un,−b]

|∇U(x(�, v)) − ∇U(x(�, logn))|
ξ(�, logn)

→ 0,(60)

then it follows at once that

|x(�, un,−b) − x(�, un,−εb)| ∼ (ε − 1)b log2 n

ξ(�, logn)
.(61)

We now show (60). By the mean value theorem,

sup
v∈[un,−εb,un,−b]

|∇U(x(�, v)) − ∇U(x(�, logn))|
ξ(�, logn)

≤ εb log2 n

ξ(�, logn)

(
sup

v∈[un,−εb,un,−b]

∣∣∣∣ ∂

∂v
U(1,0)(x(�, v))

∣∣∣∣(62)

+ sup
v∈[un,−εb,un,−b]

∣∣∣∣ ∂

∂v
U(0,1)(x(�, v))

∣∣∣∣
)
.

As in the proof of (A4b) in Lemma 8, by (41) we have∣∣∣∣ ∂

∂v
U(1,0)(x(�, v))

∣∣∣∣ =
∣∣∣∣U(2,0)(x(�, v))

∂x1(�, v)

∂v
+ U(1,1)(x(�, v))

∂x2(�, v)

∂v

∣∣∣∣
≤ 1

|∇U(x(�, v))|
(∣∣U(2,0)(x(�, v))

∣∣ + ∣∣U(1,1)(x(�, v))
∣∣),

which, by (A4a) and (A4b), gives

sup
v∈[un,−εb,un,−b]

∣∣∣∣ ∂

∂v
U(1,0)(x(�, v))

∣∣∣∣ = o

(
ξ(�, logn)

(log2 n)2

)
.

The same conclusion can be reached for supv∈[un,−εb,un,−b] | ∂
∂v

U(0,1)(x(�, v))|.
Thus, (60) follows from (62), and (61) is proved. Sincern ≤ ηn/ξn for largen

whereηn = O(log2 n), we conclude by (59), (60) and Assumption A2 that

lim inf
n→∞ inf

�
|x(�, un,−b)|/rn ≥ cb

for some finite constantc independent ofb. Hence we can chooseb sufficiently
large to ensure that inf� |x(�, un,−b)|/rn ≥ 1. By this and (45) of Lemma 10 it is
the case that for a large enoughb,

n

∫
F̄ δnn(S(x; rn))I (|x| ≤ rn/2) dF (x)

≤ n

∫
x : U(x)<un,−b

F̄ δnn(S(x; rn)) dF (x) → 0
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so that (57) follows from Lemma 10.
We next consider the proof of (58). We will do so by proving that for ab > 0,

sufficiently large,

n

∫
x : U(x)>un,b

F̄ δnn(
S(x; rn) ∩ S(0; |x|))I (|x| > rn/2) dF (x) → 0,(63)

n

∫
x : U(x)<un,−b

F̄ δnn(
S(x; rn) ∩ S(0; |x|))I (|x| > rn/2) dF (x) → 0(64)

and

n

∫
x : un,−b≤U(x)≤un,b

F̄ δnn(
S(x; rn) ∩ S(0; |x|))I (|x| > rn/2) dF (x) → τ.(65)

Clearly (63) follows from (51) in the proof of Lemma 10. To deal with (64), first
write

n

∫
x : U(x)<un,−b

F̄ δnn(
S(x; rn) ∩ S(0; |x|))I (|x| > rn/2) dF (x)

= n

∫
x : U(x)<un,−b/2

F̄ δnn(
S(x; rn) ∩ S(0; |x|))I (|x| > rn/2) dF (x)

+ n

∫
x : un,−b/2≤U(x)<un,−b

F̄ δnn(
S(x; rn) ∩ S(0; |x|))I (|x| > rn/2) dF (x).

We will show that both terms on the right-hand side tend to 0. Sincef (x) = e−U(x),
by Assumptions A2, A3 and the mean value theorem, there exists someb1 ∈ (0,∞)

such that

inf
y∈S(x;rn),U(x)<un,−b/2

f (y) ≥ e−un,−b/2−b1ξ(�o,logn)rn ≥ e−un,−b/2−b1ηn.

Also observe that forx such that|x| > rn/2,

area
(
S(x; rn) ∩ S(0; |x|)) ≥ b2πr2

n

for someb2 ∈ (0,1). Hence, for all largen,

inf
x : |x|>rn/2,U(x)<un,−b/2

F
(
S(x; rn) ∩ S(0; |x|)) ≥ b2πr2

ne−un,−b/2−b1ηn

and hence

n

∫
x : U(x)<un,−b/2

F̄ δnn(
S(x; rn) ∩ S(0; |x|))I (|x| > rn/2) dF (x)

(66)
≤ nexp{−δnnb2πr2

ne−un,−b/2−b1ηn} → 0.

By Assumption A6, there exists some constantζ ∈ (−1,0) such that for allx with
U(x) > un,−b/2,

S(x; rn) ∩
{

y :
〈
y − x,

∇U(x)

|∇U(x)|
〉
≤ ζ rn

}
⊂ S(x; rn) ∩ S(0; |x|).
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Hence

inf
x : un,−b/2≤U(x)<un,−b

F
(
S(x; rn) ∩ S(0; |x|))

≥ inf
x : un,−b/2≤U(x)<un,−b

F

(
S(x; rn) ∩

{
y :

〈
y − x,

∇U(x)

|∇U(x)|
〉
≤ ζ rn

})
(67)

≥ inf
�

F

(
S
(
x(�, un,−b); rn)

∩
{

y :
〈
y − x(�, un,−b),

∇U(x(�, un,−b))

|∇U(x(�, un,−b))|
〉
≤ ζ rn

})
.

It follows from Lemma 9 that uniformly foru ∈ [un,−b, un,b] and�,

F

(
S
(
x(�, u); rn) ∩

{
x :

〈
x − x(�, u),

∇U(x(�, u))

|∇U(x(�, u))|
〉
≤ ζ rn

})
(68)

∼ F
(
S
(
x(�, logn); rn))

.

By (67) and (68), the same proof that leads to (50) in Lemma 10 now proves

n

∫
x : un,−b/2≤U(x)<un,−b

F̄ δnn(
S(x; rn) ∩ S(0; |x|))

(69)
× I (rn/2 < |x| < un,−b) dF (x) → 0.

Hence (64) follows from (66) and (69). Making use of (68), the proof of (65)
mirrors that of (46) of Lemma 10 and is omitted.�
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