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SLE(x, p) MARTINGALES AND DUALITY
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Various features of the two-parameter family of Schramm-Loewner
evolutions SLEHKx, p) are studied. In particular, we derive certain restriction
properties that lead to a “strong duality” conjecture, which is an identity in
law between the outer boundary of a variant of the GhEprocess fok > 4
and a variant of the SLE6/«) process.

1. Introduction. Stochastic (or Schramm) Loewner evolutions (SLES) are
stochastic increasing families of plane compact sets. Loewner showed how to
parametrize an increasing family of compact sets (“hulls”) in a plane domain
with a real-valued continuous function (under a “local growth” condition). In other
words, Loewner equations transform a real path into an increasing family of hulls.
SLEs, which were first introduced by Schramm [21], are basically the image of
the Wiener measure under this transformation. It turns out that the measures on
compact sets obtained in this way have very different properties according to the
speed of the driving Brownian motion.

Since the SLEs give probability laws on hulls that have built-in conformal
invariance properties, they are the only possible candidates for the scaling limits
of various critical plane discrete models, which are conformally invariant in the
scaling limit. The cases for which the convergence to the scaling limit has been
proved are uniform spanning trees (UST), loop-erased random walks (LERW)
and critical percolation. Smirnov [23] proved that the scaling limit of critical
percolation clusters on the triangular lattice is described by (6LB awler,
Schramm and Werner [14], among numerous results on SLE, proved that the
scaling limit of the UST Peano curve (resp. the LERW) is &)Hresp. SLE2)].

For other critical models, conformal invariance is conjectured but not proved:
Double domino tiling paths are believed to converge to @l.Esee [20]), critical

FK percolation cluster interfaces are conjectured to converge to(«SL&he

g parameter of the FK percolation and thgarameter of SLE are linked by the
conjectural relation-,/q/2 = cog4r /), see [20]) and there is some evidence
that self-avoiding walks should converge to SBE3) [15].

There are two main variants of SLEs: chordal SLEs, which depend on a domain
and two points on the boundary (or prime ends), and radial SLEs, which depend
on a domain, an inner point and a point on the boundary. We are mainly interested
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in chordal SLE, but this is not so restrictive, since the radial and the chordal
constructions are “equivalent” in some appropriate sense for small enough times;
see [12], Proposition 4.2.

As we already mentioned, the value of thgparameter has a big influence on
the geometric properties of the SLE. Wher: 4, SLESs are a.s. simple paths [20].
If « > 4, this is no longer the case, but SLEs are generated by a continuous path,
the trace, that can have double points, but cannot cross its past (see [20]). When
k > 8, the trace becomes space-filling. The “phase transitior”-at4 separates
SLEs that are simple paths from SLEs that have a nontrivial boundary (for finite
times, since SLEs eventually swallow the whole space).

Conjectures on the Hausdorff dimensions of these SLE paths and their outer
boundaries prompted Duplantier and others to formulate the following concept.

CoONJECTUREL (Duality for SLE). Whenk > 4, the boundary of &5LE(x)
looks locally like aSLE(16/«).

We record a very loose formulation on purpose, since actually getting an
accurate statement is not straightforward. Note that it is not very difficult to guess
the dimension of the SLE paths and their outer boundary by roughly evaluating the
probability that a given point is on theneighborhood of these sets. Assuming that
this guess is correct and that the outer boundary of a SLE«(fed) also looks
like a SLE, it is then natural to conjecture that it should look like a SLF)6
which is the only one with the appropriate Hausdorff dimension.

In fact, the dimension of the Hausdorff dimension of a SU[Evas proved [2]
to be 1+ «’/8, while the result for the Hausdorff dimension of the outer boundary
of a SLE() for x > 4 is still conjectural. Hence, a proof of the duality conjecture
would, in particular, imply that wher > 4, the dimension of the outer boundary
of a SLEk) has dimension % 2/«. A direct proof of this fact might exist.

This duality conjecture actually was proved in the two special cases8
andx = 6. Fork = 8, 16/x = 2, the result follows by, respectively, identifying
the SLE8) with the scaling limit of the UST Peano curve and the &)Bwith
the scaling limit of the LERW. An exact relationship (Pemantle [18] or Wilson’s
[27] algorithm) is known between these two discrete models, which leads to a
relationship in the scaling limit, using the convergence derived in [14].

The relationship fox = 6 was established in [16] in a way that is closely related
to the approach of our paper. In [16], all the random subsets of a domain that
satisfy the “conformal restriction property” are described (we briefly recall this
property in Section 3; loosely speaking, the laws of these random sets are invariant
under a certain semigroup of conformal transformations). It turns out that the outer
boundaries of these sets are all variants of the LB process: the SL8B/3, p)
processes that all “look locally like” the SI(&/3) process. They can be viewed as
a SLE8/3) process with an additional drift away from (or toward) one part of the
boundary.
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Other sets can directly be shown to satisfy this restriction property: conditioned
Brownian motions and conditioned S processes. This yields a description
of their outer boundary in terms of a SI& 3, p) process [16]. The conditioned
SLE(6) can be understood as follows: It is a Sk from a to » in a domainD
that is conditioned “not to hit one of the two arcs betweandb.” Equivalently,
consider critical percolation in a domailh and condition it in such a way that no
cluster touches both boundary arcs between the two boundary panth. Then
the conditioned SLEb) is the scaling limit of the exploration process (exploring
the boundary of the clusters attached to one part of the boundary). It turns out
(see [16]) that this conditioned process is a $,2) process.

Another way to construct the random sets that satisfy the restriction property
that was pointed out in [16] is to start with a StE process for < 8/3 and
add to this process a certain density of Brownian loops. Further properties of
these Brownian loops (and the Brownian loop soup) were studied in [17]. This
construction is also related to representation theory, as pointed out in [8].

In the present paper, largely based on ideas in [16], we investigate some natural
generalizations of certain “restriction formulas” introduced there. In particular,
we see that the properties that were derived for &GL.8) (the fact that adding
Brownian loops generates a set that satisfies the restriction property) on the one
hand, and for SLEB/3, p) (their relationship with the restriction measures) can
be generalized to Slf, p) processes. In particular, adding a certain loop soup to
SLE(k, p) processes far < 8/3 gives yet other ways to construct the random sets
that satisfy the conformal restriction property (this was derived in thexcas8/3
or p = 0 in [16]). Moreover, the same computation shows that when4, the
process SLEc, ¥ —4) has some special features. In particular, we prove an identity
in law (whenk > 4 and«’ = 16/« < 4) between the following hulls:

e The hull obtained when is a certain loop soup is added to(8LE&E— 4).
e The hull obtained when the same loop soup is added to the image of the
SLE(«’, (k' — 4)/2) process under symmetry with respect to the imaginary axis.

This leads to the “global duality” conjecture that the outer boundary of the
symmetric image of SL&, « — 4) is the SLE«’, (" — 4)/2) curve. We also prove
that SLE«k, x — 4) can be also viewed as a S process conditioned not to
intersect one part of the boundary (which was also the case whef).

The next step to understand is a path decomposition that gives the conditional
law of a SLE«) for x > 4, given its outer boundary. We investigate some aspects
of this question, based on restriction formulas, that lead to a stronger duality
conjecture on the (local) law of the law of the hull (of the SLE), given the boundary.

This paper is organized as follows: The next two sections are an overview
of SLE(x) and SLEk, p) processes, and of the restriction formalism introduced
in [16]. Section 4 presents natural generalizations of some of these results when
k # 8/3. In Section 5, we begin the study of the remarkable @&l.E — 4)
processesy > 4, including a path decomposition. To make this decomposition
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more explicit, we are led to define generalized $tbp) processes in Section 6,
before finally giving the stronger duality conjecture.

2. Chordal SLE and SLE(k, p) processes. We first briefly recall the
definition of chordal SLE in the upper half-plafiegoing from 0 toco (see, e.qg.,
[11, 20, 25] for more details). For anye H, ¢ > 0, defineg,(z) by go(z) =z and

081(2) = ———,
A R

where(W;) is a continuous real-valued process. This ordinary differential equation

(ODE) is well defined up to a random time. Define the hullK; as

K,={zeH:t, <t}

The family (K;);>0 is an increasing family of compact setdinin addition,g; is a
conformal equivalence @\ K, ontoH. The families of hullg{ K;) and associated
conformal equivalenceg;) constitute a Loewner chain. (¥, /./x ) is a standard
Brownian motion (starting from 0), this random Loewner chain defines chordal
SLE(x) in H. It has been proved [20] (see [14] for the case 8) that there exists
a continuous proces$,),>o With values inH such thatt \ K; is the unbounded
connected component &f \ yj0.;) a.s. This process is the trace of the SLE and it
can be recovered frogy (and therefore fronw,) by
; -1
V= 7— LIVTZEH 81 (Z)

For any simply connected domai with two boundary points (or prime ends)
a andb, chordal SLE in D froma to b is defined asKt(D’”’b) = h—l(K,(H’O’OO)),
WhereKt(H’O’oo) is as above and is a conformal equivalence @D, a, b) onto
(H, 0, o0). This definition is unambiguous up to a linear time change thanks to
the scaling property of SLE in the upper half-plane (inherited from the scaling
property of the driving procesg,).

We now turn to SLEKEx, p) processes, defined in [16]. LéW;, O;);>0 be a
two-dimensional semimartingale that satisfies the stochastic differential equations
(SDEs)

0

dw; = dB
r =k I+WI_OI

dt,

(2.1) ,

O — W;

whereB is a standard Brownian motion and the inequality> O; is valid for all
positive times. This process is well defined #or 0, p > —2. Indeed, we define
Z; = W; — O, and note that the procesg;/./k );>0 must be a Bessel process of
dimensiord =1+ 2(p + 2)/«k.

do, = dt,
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Hence, we can defing/./k to be such a Bessel process (see, e.g., [19]), then
define0; = -2 [§ du/Z, and finally defineW; = Z, + O;.

We may therefore define a SLE p) as a stochastic Loewner chain driven by
the procesgW,) defined above. The starting point (or rather state) of the process
is a couple(w, o) with w > o, usually set tq0, 0). ThenO, represents the image
under the conformal map, of the leftmost point 0fd K, U Og. Obviously, for
o =0, we recover a standard SUB process.

Later we need left as well as right SLE p) processes. We have just defined
left SLE(x, p) processes, which we denote SLE p) if there is any ambiguity.
Right processes are defined in the same fashion except for the cor#ijtigrO,
for all r > 0; they are denoted SL.Ec, p). Note that left processes starting from
(0, 0) are images of the corresponding right processes under the antiholomorphic
equivalence — —z.

3. Hullsand restriction. In this section we recall some results of [16], which
is the basis of this work. Define & hull as a bounded set c H such that
A=ANH, ANR CR} andH \ A is (connected and) simply connected (as
in [16]). A smooth+ hull is a+ hull A such that there exists a simple smooth
curvey:[0,1] - C, y(0,1) c H, y(0),y() e RandHNdA =y(0,1). If Ais
a+ hull, we denote byp4 the conformal equivalence betweBn\ A andH that
satisfies the hydrodynamic normalization near infinity:

¢a(z) =z+0().

Then composition of conformal equivalences gives a semigroup law on hulls:

$A-B=PB o Pa.

Let (g,) be a Loewner chain with driving proceé®;) and letA be a hull. IfA C
g L(H) defineh, = ¢y, (a). Define alsoW, = h,(W,). Theng, = ¢, (a) 0 gr o ¢
is itself a time-changed Loewner chairriis small enough.
Suppose now that the driving procd$g,) of the chain is a semimartingale that
satisfies

dW[ =\/EdB[ +b[dt,

where B is a standard Brownian motion aridis some bounded progressive
process. Obviously, this is applicable to SkEp) processes. Lef be a point in
H\ g;(A) or in a punctured neighborhood ®f; in R. Then the following formulas
hold:

2h(W)?  2h(2)

ht(Z)—Wt Z—Wt’
2 (W)Phi(z) | 2h(2)  2h](2)

(he(z) — Wt)2 (z— Wt)2 - Wt’

(3-1) 0h(z) =

(3.2) dhy(z) =
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( 2h (W2 2h(2)
hi(z) — Wl‘ z—W;
h{(W)? 4] (W)
2h; (W) 3

(3-3) [0:h: 1(Wr) :z“m

lim ) =3/,

(3.4) [0:h 1(Wy) = Z|LfTle dhy(2) =

Now, using a suitable version of Itd’s formula (see [19], Exercise (IV.3.12)), we
can derive the SDEs

(3.5) AW, = h(W,) dW, + (% - 3)h;/(W,)dz,

/ o h;,(Wf)z K 4 "
(3.6) dh,(W;) = h; (W) dW; + <2h;(W,) + <§ - é)ht (W,)) dt.

Let us recall that the Schwarzian derivativehpfat z is given by

h;//(z) 3 3h;/(z)2
hi(z)  2hi(2)?

S]’lt(Z) =

Consider now the semimartingale

' Shy(W
(3.7) Y, = h,(W,)* exp(k/ S Sé s) ds).
0
Then 1t6’s formula yields
dyY, (W,
(3.8) o f,( ’)dwt,
Y hy (Wr)
where
6—«
O =0 =
K 2K ’
A=A, = w
2k

We also need results derived in [17] regarding Brewnian loop soupA loop
is a continuous map! — D, where D is a simply connected plane domain,
and is defined up to reparametrization; the filliig of a loop s is the simply
connected compact subset bfthat has the same outer boundarys&s!). The
Brownian loop soup is a loop-valued point process parametrized by its intensity
If A is a bounded hull ifH (i.e., A is a compact subset @, H \ A is simply
connected andt = ANH) and L is the random loop soup, we define a random
hull AL as the closure of the complement of the unbounded connected component

of H\ (AU User,sna20 9)-
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THEOREM 1 ([17]). (i) Let (K;)o<:<r be a(deterministi¢ Loewner chain
with driving procesgw;). Let A be a hull inH not intersectingk s and let(k,) be
defined as abovéf L is a Brownian loop soup il with intensityx, then

T
wd}/ %?m@m):@mymAngy
0

(i) Conformal invariancelet L be a Brownian loop soup in a domain with
intensityA and let¢ be a conformal equivalenag: D — D’. Theng (L) has the
law of a Brownian loop soup i®’ with intensitya.

(iii) Restriction Let L be a Brownian soup with intensityin a domainD and
let A be a hull Then

L'={eLisNA=0)
has the law of a Brownian soup i \ A with intensitya.

Finally, let us briefly recall from [16] the definition and constructions of one-
sided restriction probability measures. For more information, see [16]. For each
a > 0, there exists exactly one measure on simple cupvé®m 0 to oo in the
upper half-plane such that for afl hull A,

P(y NA=2)=¢,(0".

These are the only measures on curves that satisfy the “one-sided restriction
property.” The curvey is a sample of the one-sided restriction measure with
exponentr. For eachy, various equivalent ways to construct this random curve are
described in [16]: Firsty is a SLE8/3, p) process for a well-chosen value of
Alternatively, whena > 5/8, we can add to a Sl(k) for a well-chosen value

of k, the set of loops of a Brownian loop soup of intensity that it intersects,

and consider the right boundary of the obtained set. We generalize these two
constructions herein.

4. Restriction functionals for SLE(k, p) processes. The main goal of this
section is to derive suitable generalizations of the results in [16] that correspond to
the casac = 8/3 (in this case\., = 0, the “central charge” is null). Interpretations
of this formula in terms of conditioning were discussed in [26].

Throughout this paper, we use the following constants that deperdaad p:

6—«
a(k, p) = o
P
b(Kv 10) = E(IO +4_K)v
C(K,p)=§,
o 8—3k)(6—«K)
L 2k '

Note thatz depends only or.
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LEMMA 1. Suppose thatt > 0 and p > —2. Let (W,, O;) generate a
SLE(k, p) process and le# be a+ hull. Consider the semimartingale

— 7 ap/ b e (W) —hi (O)\© ’S_hs
%—MMMMM( T— )@%Mﬁ60mm>

Then with the previous choice of constantsh, ¢ and A, the processM,), which
is well defined up to an.sa positive stopping time, is a local martingale

ProoOF This lemma is the natural generalization of [16], Lemma 8.9. The
proof is a straightforward application of Ité’s formula, which we write down for
the sake of completeness. Recall (3.8) and (2.1):

dy,  h'(W,)
—=a
Y, m(W)
hﬂm% p )
= dB dt.
Gy VKBt g

Standard differential calculus yields [see (3.1), (3.2) and (2.1)]

o 2n(Wp)?
00 = Oon— T,
and
dh;(o,)_< 2 22mwW)? )
(0 \(Or—Wp)2  (h(Or) — h(Wy))2)

From (3.5) and (2.1), using Itd’s formula, we get [we wriltg = (h,(W;) —
hl(Ot))/(Wt - Ot)]

du, ( R (W,) 1 >
—_—= — dB
0, = \inown —icon ~ W, =0, ) V¥4
+[ (p — OB (W) b2
(W, — 00 (i (W) — i (01) | (Wi — 0)2
K B (Wy) 2h,(W;)?
K _3 f f }d.
+(2 )hxwo—hxao*'wxwa—hxoaﬂ ’

Then

(Ur) | d{Yi,Ur)

am dy, dh’ (0 dU
c_dh (O) t Yo
Ut Y, Uy

1 d
= +c—+ zc(c—-1
o, =y, Pwon T Tt
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By substituting,
dM; [ hy (W) ( hy (Wy) 1 )]
=|a +c — kdB
M, h, (W) he(Wp) —he(0) Wi — O ViedB;
[ h;/(Wl) (ap —ack)
hy (W) (W; — Oy)

- h,(vvljé/(—wii(oa (e(5—3) +ea)

1 1
h;(WI)Z 1
(hs(Oy) — ht(Wz))Z (_Zb + 2c + EC(C — 1)/()
hy(Wy) }
—«) —clc—Dx)|dr.
+ (W, — 0,)(h,(W,) — h;(0,)) (c(p —Kk) —c(c — D) | dt

It is then easy to see that the drift terms vanish for our specific choice of constants
a,bandc. O

To apply the optional stopping theorem, we need two more lemmas. It is
convenient to define
(P+2(p+6-«)
i '
Note that («, 0) = a(k, p) = a, = (6—«)/2«. We now assume that is a smooth
+ hull and(M;) is as above.

a(k, p) =a(k, p) + bk, p) + c(k, p) =

LEMMA 2. () Ifk < %, for a left SLE(«, p), the associated local martingale
(M;) is bounded0 < M, < 1.

(i) If « >6 and p > k — 4, for a right SLE(«, p), the associated local
martingale(M;) is bounded0 < M, < 1.

PROOF (i) Note that for allk <4 and p > —2, the exponent(x, p) is
positive. Moreover, if« < 8/3, theni, > 0, so that the exponential term is
bounded by 1 (since the Schwarzian derivatives are negative in the present case;
see, e.g., equation (5.5) in [16]).

Generally speaking, iB is a smootht hull, andx andy are two real numbers
such thatt < y <infRN B, then (see the proof of Lemma 8.10 in [16])

1> ¢p(x) = dp(y).
SinceO, < W; (left SLE), it follows that
hi (W) — h(Or)

h(0;) >
t( t)_ Wt—O[

> hy (Wy).
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We split the proof into different cases, according to the signs of the constants
b andc:

e Suppose first thai(x, p) < 0. Then, alsog(k, p) < 0. Recall thatt +b+ ¢ > 0.
Then,

My < hy(Wo)*hy (W) Ry (Wi)© < hj(W)*®” < 1.
e Suppose now that(x, p) > 0 andc(x, p) > 0. Then, trivially,
M; < h;(Wt)a <1l

e Suppose finally thab(k, o) > 0 andc(x, p) < 0. The hullg,(A) is a smooth
hull, so it has a Loewner parametrization, that is, there is a continuous real-
valued function(x,)o<s<s such thatg;(A) = K, the Loewner hull associated
with x at time S. Let (g5)o<s<s be the corresponding conformal equivalences.
Then, ifoy = g,(0,) andw, = g,(W,), we get (see [16], proof of Theorem 8.4)

_ S(_alk.p) (k. p) b, p)
M = exp<_2/;) ((xs - ws)2 * (x5 — wy) (x5 — 05) * (x5 — Os)2> ds)

S Shy, (W)
x exp(x,{/ Tdu)'
0

Lety = (x; — wy)/(xs — 05). Then it is sufficient to prove that
bk, p)y* +c(k, p)y+ak,p) >0  Vyel[0,1],
but in this case;-c/(2b) > 1 and, hence,

min (a+cy+by2)=a+b+c=oz(/c,p) > 0.
y€l[0,1]

We can conclude that 8 M, < 1. A slight modification of the argument gives,
in fact, that for some positive,
0< M, <h'(W)°.

(i) In the case where > 6 andp >« — 4, a(x, p) andc(k, p) are positive,
a(k, p) is nonpositive and(x, p) is nonnegative. We are now dealing with a right
SLE processW; < O;; hence,
hi(Wy) — hi(Oy)

W[ - Ot
Again, A, is positive, so that the exponential factor is bounded by 1. It readily
follows that

hy(Oy) <

< hy(Wp).

hy (W) — hs (O
M, < < (W) —h(Oy)
W, — Oy
This concludes the proof. Note that we have, in fact, proved in all these cases the
existence of a positive such thatM, < h;(W,)*. O

a+b+c
) = hwe,
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Recall thaty denotes the trace of a SLE. Somewhat loosely, we alsoyuse
to designate the closed sgb ~o[. For a smootht+ hull A, we define a bounded
martingale(M;) as in Lemma 1.

LEmMmA 3. () If k < %, for a left SLE(x, p), the martingale(M,) converges

a.s..
0 Shy (W,
M; — 1,na=o exp()»,(/(; Sé ») ds).

(i) If « > 6, p =« — 4, for a right SLE(x, p), the martingale(M,) converges

a.s.:
o Shy(W.
M, — Lna-p exp(xK / (W) ds).
0

6

PrROOF. (i) In this case, we have proved théf, < h;(W,)® for somee > 0.
From [16], Lemma 8.3, the trace a.s. does not interse¢d, co). Then we can
apply Lemmas 6.2 and 6.3 of [16] to get the result.

(ii) If © > 6 andp =« — 4, we have seen thatd M, < h,(W,)*-*). Moreover,
(0, — W)) is a transient Bessel process of dimensi@n- 4/«x), so the trace/
a.s. does not interse@, co). Then Lemma 6.3 of [16] tells us that on the event
{y NA#a}, My — 0 asr / 14, the first time for which the trace encounters the
hull. On the evenfy N A = &} or {t4 = oo}, as beforel;(W;) — 1 ast goes to
infinity. Note thatb(x, k — 4) = 0, so we have to prove that

W) — (0

4.1 .
( ) W, — Ot t—00

Here we need to adapt the proof of Lemma 6.2 in [16]. Heuristically, seen from
A, W, goes to infinity whileO, stays bounded [in particulah, (O;) tends to a
nondegenerate limit, which is why we do not consider the gasex — 4]. Let

A; = g1(A), Z, be the leftmost point ofs; and letd, = inf(r, A, C D(Z;,r)). We

also defineD, = {z e H, |z — Z;| < d;} and O/ = min(O,, Z, — d,). The extremal
distance betweep, 1((—co, W;)) anddA in H\ (K; U A) goes to infinity, while

the extremal distance betweg;Tl((—oo, 0,)) anddA stays bounded. Indeed,
since we are dealing with a right SLIB; is the right image of 0 undey;. This

can be translated into

d L. d
L o, liminf !
Zi— W, Z; — O

which implies that; /(O; — W;) — 0. We have already seen that

hi(0) = hi(Wo) _
0; - Wt -

>0,

1
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However,¢p, = ¢n,(p,) © ht, SO
ép,(0)) — ¢p,(W;) <1
hi(Of) —hy(Wy) —

Now, by scalinggp, (z) = d:¢p((z — Z;)/d;) + Z, for a fixed functionpp which
satisfies the hydrodynamic normalization at infiniy; (z) = z + 0(1). Hence,

Or — Wi > hi(Of) — hy(Wy)

0, - W,

dy

> 60,(0)) = #0,(W) =i +ow).
so we can conclude that (4.1) holdg.]
From the previous lemmas, we get immediately:

ProPOSITIONL. (i) Consider aSLE (x, p), x < %, and a smootht+ hull A.

Then
© She(W,
¢§;(0)°‘("’p)=E<1ymA:gexp<AK/ é )ds)).
0

(i) Consider aSLE; (k, k — 4), « > 6, and a smootht hull A. Then

o0
P )21k — E(lyﬁAZQ exp</\,(/0 Sh“éw“) ds)).

In the casec > 6 andp > « — 4, we can derive a formula that involves the
nondegenerate value bf(O;); for more on this topic, see [26].

The first statement shows that for all> 0, we can construct a sample of
the one-sided restriction measure by adding to a (8Lk) a Poisson cloud of
Brownian bubbles of intensity,, whenk < 8/3 anda = a/(«, p).

We now enunciate a corollary that provides important support for a duality
conjecture. Consider a Sl.E, p) with k > 6 andp >« — 4. Then it is easy to
see from the previous results that for aryhull A, Koo N A = & with positive
probability. Thus it makes sense to define the right bounda®.ef The purpose
of duality is to identify this boundary as a process.

COROLLARY 1. Letk > 6 and«’ = 16/«. Let§ be the right boundary of a
SLE, («x, k —4) and lety’ be the trace of &LE; («/, "'2‘4). LetL be an independent
Brownian loop soup ifH with intensityA,. Then for any+ hull A,

PN AL =)= P(]// N AL =)= ¢14(0)1/2—1/K.

PrROOE The result is immediate using the properties of the loop soup. Indeed,
if 7 is any loop inH that intersects, for obvious topological reasons,

(IN8#£ D) ={IN Ko # D).
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Moreover,s (resp.K ) intersectsA’ if and only if it intersects a loope L. Then
for a smootht+ hull A, almost surely

eXpQK fO“M >_exp( / Shy (wy) )

where the left-hand side corresponds to the Skkc — 4) process itself, while

the right-hand side corresponds to its right boundary process with Loewner
parametrization. This implies the result for genesalhulls (see Lemma 2.1

of [16]). O

This suggests the following conjecture (with the same notation):
CONJECTURE2. The simple curve§andy’ have the same law

This conjecture should also hold fere (4, 6). Note that wher = 4, it trivially
holds.

5. Somepropertiesof SLE(k, x — 4) processes. We have just seen a precise
duality conjecture that involves SKk « — 4) processes. We now study these
processes, which satisfy particular properties. In some sense, we may see
what follows as a rephrasing of the following well-known properties of Bessel
processes: Wheti < 2, a Bessel process conditioned never to hit the origin has
the law of a Bessel process of dimension 4. Here, this is translated into the fact
that SLE («, k — 4) is a SLEk) conditioned not to hit the positive half-line.

PROPOSITION2. Letk > 4. A SLE(x) conditioned not to absork > 0 has
the law of aSLE, («, k — 4) starting from(0, x).

This conditioning with respect to a zero probability event holds only under an
appropriate limiting procedure (see the proof).

PROOF OFPROPOSITION2. Let(W;) be the driving process of the SLE),
let dW; = \/k dB;, and letL be a (large) negative number. LEf = g,(L) and
x; = g:(x); these processes are defined up to timet which eitherL or x is
swallowed. Let: be a function o0, 1) that satisfies the ODE

. 1 1
@+ (- =
z 1-
Then, according to [25], Proposition 3.8((W, — L,)/(x; — L;)) is a (local)
martingale. Now letz(1) =0, h(0) =1 and Z, = (W, — L;)/(x; — L;). The
following SDE holds:

dth

L (1 1>

— L (v—L)2\Z, 1-2
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Suppose that the processBsW, L. andx. are defined on a filtered probability
space(2, #;, P), so B is a standard Brownian motion undey and letQ be the
conditional measur® = P(-|L is swallowed befora). Then
dQ  h(Z)lezi +Liciy=L _ D
dP |7, h(=L/(x = L)) "
According to Girsanov's theorem, § satisfiesd B, = d B, — D; 'd(B, D),,
then undeQ, B is a continuous local martingale with quadratic variatioB), =
(B); =t, SOB is a standard Brownian motion und@r So we have

VK h—/(Z,)a’t.
xt—L; h
As L goes to—oo, Z, converges to 1. It is easily seen thatas 1,
h'(2) 1-4/k
he  d1-z
Indeed 7'(z) = c(z(1 — z))~%*, so thath'(z) ~ c¢(1 — z)~¥* and h(z) ~

—(¢/(1—4/k))(1—z7)}~#* asz — 1. So whenL — —o0, which corresponds to
conditioning by the event of zero probabiliti~, N (x, co) = &}, we get the SDE

dB, =dB; +

Kk —4

th:\/Edgt—F dt

t — Xt
andx, satisfies the Loewner equation, which is the definition of a Gl.E — 4)
process unde®. O

ProPOSITION 3. Let ¥ > 4. A SLE(,x — 4) starting from (0, x) and
conditioned not to absorlp, 0 < y < x, has the law of &5LE, («, « — 4) starting
from (0, y).

PROOE Making use of the previous result, we can formally interpret this
result as
SLEq,y)(k, k — 4) = (SLE(x)|y is not absorbed
= (SLE(x)|x andy are not absorbgd
= ((SLE(x)|x is not absorbedy is not absorbex
= (SLE,x) (k, k — 4)|y is not absorbex

We can derive a proof for this fact along the lines of the previous proposition, that
is, using Girsanov’s theorem. It is easy to check thatWf, O,) is the driving
process of a SL&, « — 4) starting from(0, x), and O< y < x, then

(gt<y> — W,>1—4/K
gt(x) - W
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is a bounded martingale. Consequentlyd W, = /k d B; + W g( 5 dt, where

B is a standard Brownian motion defined on the filtered probability space
(2, ¥, P), and ifQ denotes the conditional measu@e:= P(:|y is not swallowed,

then

dQ (gt(y) - Wt>l_4/K
== =D,
dP ¥, g&r(x)—

wherec = (x/y)1¥%. If B satisfiesd B, = dB, — D;*d(B, D),, then B is a
standard Brownian motion und€. We can compute

iD, —6(1_ _)(g:(y) — Wt) Y g (y) — g1 (x) JEdB,

gi(x) —W; (gr(x) — Wy)2
so that
K —4
AW, = \/<dB, + —dt
gt(x)
. ~ , l‘ Kk—4
_ﬁdBt+ﬁ Dz +Wt—gt(x)dt
~ 1 g (y) — g:(x)
— JidB + —4( n )d
VidBi+ =B\ S e S o) — o) ¢
= ViedB + —* _a
—g(y)

UnderQ, this defines a SL&, « — 4) starting from(0, y), which concludes the
proof. O

Consider now a SLHk,« — 4) starting from (0,0") with trace y, right
boundarys and driving processW,, O,). Let (¥;) be the natural filtration of the
Brownian motion(B;) that drives the SDE ofW;). Now § is a simple curve that
can be parametrized so that ¢&p.)) = 2u, where cap is the half-space capacity
seen from infinity (in the terminology of [11]). Let, be the first time at which the
portion §jo ., of the boundary is completed; obviously this is not a stopping time.
Formally, we can defineD, ), >0 as the filtration generated k§y, ), >0, as well as
a finer filtration(D,,) >0 = (Fz, )u=0.

Let u > 0 be fixed. Consider a time > 0. A SLE. (x,x — 4) starting
from (0, 0%) is the concatenation of the huk, with the hull produced by an
independent SLE«x, x — 4) startlng from(W;, O,). Thent, < if and only if
the right boundary oK, [i.e., g, Yws, 0,])] has capacity larger tharu2and if
the future hull does not swallog; (6,,). So conditionally oW, O;, 7, <1t), the
future is a SLE(x, « — 4) starting from(W;, g;(8,)), independent from the past.
Then (g, (K+,+1)):>0 has the law of a SLE«, x — 4) starting from(W-,, W;:)
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and is independent from,, conditionally onW., . Denote byK’ the closed subset
of H swallowed by this procesk’ = g;, (K« \ K,), SO thatKo, = ;>0 K; IS
the concatenation ok, andK’, and (K’ — W) is a copy of K independent
from #;,. Thust, can be called a regeneration time (it is a splitting time in
Williams’ terminology). To get a full path decomposition, we need to desdtipe
We have conjectured tha&8,)o<,<, is a SLE(x’, "'2‘4) starting from(0,07)
stopped at a fixed time. Let (W,, O,), be its driving process and 1€§,)o<y<u
be the associated conformal equivalences. Now we can \xife= 8j0,,] - Hy,
where H, = g, 1(K+, \ 8j0..)- We use the (loose) notatialy = 5o, Invoking
“conformal invariance,” we can conjecture that, is independent fromD,
conditionally on (W,, O,). Then, if A is a smooth+ hull, L and L’ are
independent loop soups IH with intensity A, and as usuak; = ¢,,4) and
hy = ®3.(4), Using the restriction property of the loop soup and restriction formulas
for SLE, (k, « —4) and SLE(«’, k'/2 — 2), we get

¢, (Y2 =P((5, - H, - K')N AL = @) = E(lau-HmAL=@1K/ng,u (A)L/)

=E(L,.5,nal)=oh, (W, )21y

1/2-1
:E(leuﬂAL:@lH“ﬂgu(A)U:@ /r,,(qu) / /K)

and
POV =P8, - §u(Bpu,00n) N AL = 2)
- E(l&tﬂALﬂlgu (6[u,m]>m§u(A>U=@)

7 7 =~ ~ (N2 /
:E(l&mngh;(Wu)ak/h;(ou) (' =4H=/(16¢")

(fzu(% - ﬁu<5u)>(“/—4>/<2“>)

X ~ ~ .
Wu - Ou

This computation leads us to conjecture thaBifis any + hull [in particular,

B = g,(A)], then, conditionally onW,, 0,) = (w, 0), H, satisfies

¢5(w) — g5 (o))W—“)/ @

(A2 /
P ()™ P (o)~ Y /“6"’(
w o

= E(lHuﬂBLzzh/((bHu (w+))1/2_1/K)’

whereh = ¢¢Hu (B)-
In the next section we define random hulls that satisfy this particular restriction
formula.
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6. Generalized SL E(k, p) processes. Letx >0 and letp be a multi-index,

that is,
pE U R,
i>0
Let k be the length ofp; if kK = 0, we simply define SL&, @) as a standard

SLE(x). If kK > 0, suppose the existence of process®Bs),~o and (Zfi))tzo,
i €{1,...,k}, that satisfy the SDEs

th dez+Z Z(l)
(6.1) )
() _
dz," = — dt
z,"” — W,

and such that the processé#; — Z,(’)) do not change sign. Then we define
the SLE«, p) process that starts frortw, z1,...,zx) as a Schramm-Loewner
evolution, the driving process of which has the same lawVgs defined above,
with Wo = 0 and Z(’) = z;. Obviously, fork =1, p = (p), we recover the
definition of a SLE«, ,o) process. B

LEMMA 4. Letk >0 and p = (p1,..., pr). Suppose that th&LE(k, p)
process exists up to timeand let
1 k
W, zP,....z")

be its driving mechanisniet A be a+ hull and let(%;) be the associated family
of conformal equivalencebori € {1, ...,k}, t < 7, define

(i) /K
. i i \Pi — h W, —h,(Z Pi
MO = (zD)Pi i+ K>/<4K)< (W) ,(E), )) .
W, — Z,
Fori,je{l,...,k},i < j, define also
D (ht(Z,(i)) hy (z(f)))p,p,/@o
’ 20— 70

Finally, let

I Shg(W.
MP = h(W;)% exp(AK / % ds).
0
Then the semimartingale
Mt :Ml‘@ 1_[ Mt(i) l_[ Mt(lv])
1<i<k 1<i<j<k

is a local martingale Moreovey the sum of all exponents in this local martingale
equalsx(k, p1 + -+ - + pr)-
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PrROOE This generalization of Lemma 1 relies on the results recalled in
Section 3. FirstM? is the semimartingale formerly denoted Byso

dM? h”(W,)

= dWw;.
Mg Wy
Standard differential calculus yields
dm;"” . pin( 1
M Nz —wz - w

h (W) ) J
- N TN
(h(Z;7) = Wi (h(Z;7) — W)
Applying Ité’s formula, we get

de”_pl( (W)
M h(Wy) —h(Z9D) W, — 7

+pl[<__3> Ry (W) .
K [\2 he(Wy) — hi(Z,")

Z N W) = (PN W, = 2

(z))def

1
- ® 0 )} di
W: = Z; YW = Z;7)
Since the “rectangular” semimartingalw"’f) have no quadratic variation, we get

@) @,J)

dM, dM! dM!

_ M’
Mt M@ Z Z

u® =y

+Zd<Mt@’M(l)> +Zd<Mt(l)th(])>
T oMPM?P i< M m?

There remains only to check that all the drift terms cancel olt.

The reader with a liking for generality will see that the lemma is a statement
on some cancellations for certain quadratic forms; hence, it formally holds for
more general SLE processes parametrized by a signed meagtiie case we
consider corresponds o=} p;§;). The main difficulty is establishing that the
computations actually make sense.

Let us mention a situation where such processes arise naturally. Consider a
chordal SLEx) in the half-plandH; let x < 0 < y. Then, conditioning the SLE
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never to swallow eithex or y, we get a SLE, «x — 4, — 4) starting from
(0, x, ). This is a consequence of [13], Theorem 3.1. Recall the discussion of
bilateral restriction measures in [16]. It is then straightforward to extend proofs of
Lemmas 2 and 3 to get a bilateral analogue to Proposition 1:

COROLLARY 2. Let K be the hull generated by 8LE(x,x — 4,k — 4)
starting from (0,0, 0") with x > 6. Let L be an independent loop soup with
intensityi,. Then the law oK © is the bilateral restriction measure with exponent
alk, 2 —8) = (k — 3)(k — 2)/(2«). In particular, for « = 6, K has the law of the
filling of a Brownian excursion

PROOF. By construction, the law oK’ is invariant under; — —Z. So, by
Proposition 3.3 of [16], we have only to check that

P(KE N A =2) = ¢/, (0?28

for all smooth+ hulls A. From the previous propositiot;) is a local martingale.
Ast\ 0, M; — Mo = ¢,(0)**2-8_ Adapting the proofs of Lemmas 2 and 3,
we get that'M,) is bounded and has a.s. limit

% Sho (W,
11mA:@exp<AK/0 %ds).

Given the interpretation of the Schwarzian integral in terms of loop soup, this
entails the restriction formula. Far= 6, a(x, 2« — 8) = 1 and it is known that

the filling of the path of the Brownian excursion b is the bilateral restriction
measure with exponent 1 ([16], Proposition 4.1)]

See also [24] for a geometric excursion theory for the Brownian excursion.
Recall the discussion at the end of the previous section. We can now make the
following statement:

PROPOSITION 4. Let (K;);>0 be aSLE, («x,«x — 4) starting from (0, 0™),

with driving procesgW,, 0,), and lett, be a corresponding regeneration time
Let (8,)v>0 be a SLE («/, "/2‘4) starting from (0,07), with driving process
(Wy, Oy)v=o0. Let (Hy) be a SLE(k, 5 — 4,—5%), independent of the former
conditionally on(W/, 0}, starting from(0,, (0/)™, W/). Denote byo the first
time at whichW, is swallowed[the chain(H;) is only defined up to time].
Finally, let K1 = K,, w1 = W, and K2 = §, - Hy, w2 = ¢k,(W,). Then for
j=12:

(i) The capacity of the right boundary &f; is 2u a.s.

(i) For any smootht hull 4, if « = 3 — 1 and L is an independent loop soup
with intensityi,,

¢4 (0)* = E(%Kj W) Lg nar—g)-
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This supports the following speculation:

CONJECTURE3. The random hullX1 and K> are identical in law(at least
in the Hausdorff sen3e

This last conjecture is more precise than the general duality conjecture for SLE.

Finally, let us discuss some ideas that will be developed in [7]. We have seen
that SLE«, x — 4) processes appear quite naturally in the study of restriction
formulas. Although their first properties, as presented in Section 5, are independent
of the restriction framework (and are valid in the whole rarge 4), the study of
SLE. (k, x — 4) can be carried a bit further. In particulareif denotes the first time
aftert spent by the trace on the final right boundatyn(the notation of Section 5;
o; is obviously not a stopping time), then we can prove tkiat= g,(v5,) — W;
defines a Bessel process of dimensi@n- 4/«). This process vanishes exactly
when the trace’ lies ond, so its local time at O provides an additive functional
that measures the size of the right boundary. Then we can translate the excursion
decomposition of the Bessel procegsaway from 0 into a decomposition of the
SLE. (k, x — 4) process in excursions away fraimWe also recover the dimension
of frontier times, proved to be equal tg2+ 2/« in [3]. It is also possible to
study a two-sided analogue of this situation, corresponding to the decomposition
for SLE(k, « — 4,k — 4) starting from(0, 0, 0") in excursions away from its
cutpoints. This is closely related to the bead decomposition for Brownian (half-
plane) excursions detailed in [24].
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