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CENTRAL LIMIT THEOREMS FOR SEQUENCES OF MULTIPLE
STOCHASTIC INTEGRALS

By DAVID NUALART AND GIOVANNI PECCATI

Universitat de Barcelona and Université de Paris VI

We characterize the convergence in distribution to a standard normal
law for a sequence of multiple stochastic integrals of a fixed order with
variance converging to 1. Some applications are given, in particular to study
the limiting behavior of quadratic functionals of Gaussian processes.

1. Introduction. Inthis paper, we characterize the convergence in distribution
to a normalN (0, 1) law for a sequence of random variablEg belonging to a
fixed Wiener chaos, and with variance tending to 1. We show that a necessary and
sufficient condition for this convergence is that the moment of fourth ordéf, of
converges to 3. Iff; is a multiple stochastic integral of orderof a symmetric
and square integrable kerng}, for instance on0, 11", another necessary and
sufficient condition for the above convergence is that, forpat: 1,...,n — 1,
the contractions of ordep (defined byfk®p = fk ®, fx) converge to zero in
L?([0, 1]2"—P)) ask tends to infinity.

In general, we call “central limit theorem” (CLT in the sequel) any result
describing the weak convergence of a sequence of nonlinear functionals of a
Gaussian process (or of a Gaussian measure) toward a standard normal law.
The reader is referred to Major (1981), Maruyama (1982, 1985), Giraitis and
Surgailis (1985) and the references therein for results in this direction. Here, we
shall observe that, in the above quoted references, the authors establish sufficient
conditions to have a CLT in the general case of sequences of functionals having a
possibly infinite Wiener—Itd expansion. A common technique used in such a study
is themethod of momen{see, e.g., Maruyama (1985)], requiring a determination
of all moments associated to a given functional, usually estimated by means of the
so-calleddiagram formula€g/see Surgailis (2000) for a detailed survey]. On the
other hand, our techniques (which are mainly based on a stochastic calculus result
due to Dambis, Dubins and Schwarz [see Revuz and Yor (1999), Chapter V and
Section 3.1]) naturally bring the need to estimate and control expressions related
uniquely to the fourth moment of each element of the sequéfcdo this end,
we apply extensively some version of theduct formulafor multiple stochastic
integrals, such as the one presented in Nualart [(1995), Proposition 1.1.3], and

Received April 2003; revised October 2003.

AMS 2000 subject classificatior&F05, 60HO5.

Key words and phrasebultiple stochastic integrals, Brownian motion, weak convergence,
fractional Brownian motion, Brownian sheet.

177



178 D. NUALART AND G. PECCATI

perform calculations that are very close in spirit to the ones contained in the first
part of Ustiinel and Zakai (1989).

Our results are specifically motivated by recent works on limit theorems for
quadratic functionals of Brownian motion and Brownian bridge [see Deheuvels
and Martynov (2004) and Peccati and Yor (2004a, b)], as well as Brownian
sheet and related processes [see Deheuvels, Peccati and Yor (2004)]. We provide
examples and applications, mainly related to quadratic functionals of a fractional
Brownian motion, with Hurst parametéf > % and of a standard Brownian sheet.

2. The main result. Consider a separable Hilbert spafle Let {e; :k > 1}
be a complete orthonormal system i For everyn > 1, we denoteH®" the
nth symmetric tensor product éf. For p =0, ..., n, and for everyf € H®", we
define thecontractionof f of order p to be the element aff ®2"—7) defined by

o0

=Y (fien® ®ei,)ger ®(f.ein ® - ®ei,) o,

and we denote byf®?), its symmetrization.
In what follows, we will write

X={X(h):heH)

for anisonormal Gaussian process H. This means thaX is a centered Gaussian
family indexed by the elements &f, defined on some probability space, £, P)
and such that, for every, h’ € H,

E(X(h)X (1)) = (h,h')u.

For everyn > 1, we will denote byl X the isometry betweed ©" equipped
with the normy/z!|| - || ye» and thenth Wiener chaos ok .

In the particular case whe® = L?(A, 4, 1), (A, 4) is a measurable space
andp is ao-finite and nonatomic measure, th&¥”" = L2(A", A®", u®") is the
space of symmetric and square integrable functiond’band for everyf € H®",
1X(f) is themultiple Wiener—Ito integrafof ordern) of f with respect toX, as
defined, for example, in Nualart [(1995), Section 1.1.2].

Our main result is the following.

THEOREM 1. Letthe above notation and assumptions preaild fixn > 2.
Then for any sequence of elemert : k > 1} such thatf; € H®" for everyk,
and

1) im n!l fill5en = lim E[LX(f)? =1,
k—400 k— 400
the following conditions are equivalent
() limi oo EILX (fi)=3;
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(iiy foreveryp=1,....n— 1, Mo yoo I 7 13000 p) = O;
(iii) ask goes to infinitythe sequencl X () 1k > 1} converges in distribution
to a standard Gaussian random variable

As a consequence of this result we obtain

COROLLARY 2. Fixn >2and f € H®" such thatE[7X (f)?] = 1. Then the
distribution of 1.X (f) cannot be normal aniL[1X (f)*] # 3.

ProoOFR If InX(f) had a normal distribution c}E[InX(f)“] = 3, then, according
to Theorem 1, foreveryp =1, ...,n — 1, we would havef®? = 0. Thus, for each
v e H®"=P) we obtain

0= (f®p, v U)H®2(n—p) = H (f, U>H®(n—p) ”i[@p,
which impliesf =0. O
REMARK 1. The fact that a random variable with the fom;fﬁ(f), n>1,

cannot be Gaussian is well known. See, for example, the discussion contained in
Janson [(1997), Chapter VI].

To prove Theorem 1 in its most general form, we shall first deal with the case
of X being the Gaussian family generated by a standard Brownian motid) bin
To this end, some further notation is needed.

2.1. The Brownian case.For everyn > 1 andT > 0, given a permutation
of (1,...,n), we set
Z’T:{(tl,...,tn)ER”2T>tn(1) > >t > 0},
and we define
Alori=Ar={(t1,....tn) eER":T>11>--->1,>0}

to be the simplex contained ifD, 71". Now, for a givenn > 1, take f €
L2(AL,dty ---dty) = L?(A%). To such anf we associate the symmetric function
on[O, T]",

.f(tlv ’t}’l) :Zf(tﬂ(l)a 7t71(n))1A’7’T’T([1’ 7[}’!)7
s

wherer runs over all permutations o1, ..., n). Forp =0, ..., n, the contraction
of f of orderp on [0, T] is the application

o T
(t1, .. ton—2p) > FEP (11, ... ton—2p)

= f(ula"'vu 9t17"'atn—)

/[o,m P g

X fuy, ... ,up, ty_pi1, ... t2on—2p)duy---duy
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and we notef®»-T(.), the symmetrization of ®»- .

In this section, we noteV = {W,:< [0, 1]} a standard Brownian motion
initialized at zero. Note that, in the terminology of the previous paragraph, the
centered Gaussian space generatedibygan be identified with an isonormal
Gaussian process ai = L2([0, 1], dt). For everyn, for every f € L2(A}) and
everyr € (0, 1], we put

t Sn—1
I = [Caws e [T aws o)
and alsol! (f) =n!J!(f), so that

X =X,

whereX is once again the isonormal process generateidl byhe following result
translates the content of Theorem 1 in the context of this section.

ProOPOSITION3. Let the above notation prevaifix n > 2 and consider a
collection{g; : k > 1} of elements oLZ(A’l’) such that

2 lim ny = lim n=1.
@ Jm gkl agag = im gl
Then the following conditions are equivalent

(i) liMi— 00 E[J 1 (804 = 3; .
(i) foreveryp=1,....n = L, iMoo 12712 1 202y =0

(i) ask — oo, the sequencé],}(gk) k > 1} converges in distribution to a
standard Gaussian random variable
(iv) foreveryp=0,...,n—2,

1 2
. ~Qp,t
3 lim 2(n—1—p) dsy---dso(n-1-p) (/51 dt gk,; (52, S2(n—1—p))s> =0,
1

k—o0 JA
where for every fixed € [0, 1], gk, stands for the function on?_l given by

(Sl, R} Sn—l) = gk(t7 S]_, R} S}’l—l)'

PROOF  We will prove the following implications:
(iv) = (iii) = (i) = (ii) = (iv).
(iv) = (iii). Suppose that (3) holds. According to the Dambis—Dubins—Schwarz
theorem [see Revuz and Yor (1999), Chapter V], for evethyere exists a standard
Brownian motionW ® such that

4 JHg =w =w® | .
“) n (8k) J&dt(I! 4 (gk.))? [(n=D!172 [§ di(I'_1(Gk.0))?
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We can expand the stochastic time-change in (4) by means of a multiplication
formula for multiple Wiener integrals [see, e.g., Nualart (1995), Proposition 1.1.3]
to obtain that

1 } ) 1 n—1 _@pt
/o dt (Iy_1(8k.0)) 2/0 dit| Y cn1plhp 1 (&0 Os) |
p=0

wherec, 1, = p!(”;l)z, and therefore
3 n ®
) f&dr(l,i_1<gk,t)>2_” 2. 4 Zom Z0en-1p Jo dt U1 ) @i )
[n—D2 A [ — DI

Moreover, thanks to a stochastic Fubini theorem for multiple integrals, we
obtain that foranyp =0, ...,n — 2,

Jodt (L1 @l ()5))

[2(n —1—p)]!
/ dt(Jyu_1-p) 8k ()5))
=/ aw. / dt §®" (s1 s )
Ai(n,l,p) s1° 52(11 1-p) k,t y o0 82(n=1-p))s |-

Now take theL2-norm of the right-hand side of (5), lét go to infinity and
observe that if (2) and (3) are verified, then the pair

1
(W.(k), [((n— D12 /0 dt (1,3_1(gk,,))2)

converges weakly teW., 1), so that the conclusion is immediately achieved by
using, for example, Theorem 3.1 in Whitt (1980), as well as formula (4).

(iii) = (i). Trivial, given condition (2).

(i) = (ii). Observe first that, for every,

ElJ(g)* = ()T EIIL (&)™)

Now, as

1% = (P aent
@7 =>_ p! » I 2p(8 " ()s)
p=0

n—1 2
~ 1 ~®p,,1
=l + @00+ X (1) Bap @00
p=1
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due again to the multiplication formula, we obtain immediately

(271) ~®0 1

(n!)4||
n-l n\? ®

+(n!>‘4Z[p!( p) } @1 = 201557 O 1 12
p=1

Now call Ty, the set of the(2r)! permutations of the s€tl, ..., 2n), whose
generic elements will be denoted by z’, and so on. On such a set, we introduce
the following notation: forp =0, ..., n, we write

E[V; (80" = kIl Ay + Osllio 12

by
T ~7T

if the set(z (1), ...,7(n)) N (x'(1),..., 7' (n)) contains exactly elements. Note
that, for a givenr € Iy,, there are(Z)z(n!)2 permutationsr’ such that

7 Lx
. : ., 0
Moreover, it is easily seen thatif ~ or =’ ~ x, then
~®0.1 ~®0,1
/[o yon 20142 87 Ar s - an )8 (@, - o)

= &Iy = D2l gklh .
[0.1] 1

so that
(2n)!
8Osl
1
:W Z |:||gk||A1< Z (n)? + Z (n!) )
' " welly, 2 7_[ o
+Z Z aig - --da2ngk (aﬂ)~®o l(an/) ’
1]2;1
rr/fvn
wherea,; = (az (), ..., az2n)). Since, forp=1,...,n — 1,
@) (2n)
®0.1 ®0.1 n\? 2=9p1,2
> /o o - daz, B ) ) = ( p) D21EE7 M1 1020
s ’\'JI
we get
(2]’1) ~®0,1 n-l ” ”[O 1]2n 2p
( ')4 || ()S”[o 1]211 - 2||gk||Al + Z (p'(l’l _ )')2 )

p=1
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and therefore
E[J; (g0 = 3llgkl 3,
n—1

+Y (pln—p))~?

p=1
~®p,1 2n—2 ~®p,1
< (185 g+ (2 22 ) 185 Ol g |

This yields in particular that, i£[J(gx)*] converges to 3, and (2) holds, then

necessarily, foreverp=1,...,n — 1,
. ~®p.1 2
(6) Il]I;n ”gk 8 ||[071]2n72p =0.

(i) = (iv). We introduce some notation: for any > 1, x,, is shorthand
for a vector(x1, ..., x,) € R", X,, = max (x;), anddx,, stands for Lebesgue
measure ofiR™. To conclude the proof, we shall show that, foe=1,...,n — 1,
condition (6) implies necessarily that

1 2
i ~Qp_1,t
lim ds,_ / dt (/ dt g P (8=, T )) =0.
k- Jio,1j=p P (0,177 n—p S k,t p> Tn—p

Now, since for everyr, so, ..., s,) € [0, 1]",
gk,l‘(S27 R Sl’l) = 1[07[]”_1(*5‘29 ceey Sﬂ)gk(t7 82,44, sn),

we obtain that

1 2
~Qp_1,t
dSnfv/ dr(f dt 327 (Sn,‘t))
f[O,l]"P P [0,1]*—P np S pVin_p 8.1 pr»tn—p
= fldt// dv,,l/ldt/ dup a1l <19, 1<t
0 [0,¢/]p—1 0 [0,7]7—1 p—1=t,Vp_1=<

2
X (/ dsn—p gk(tv up—l’ Sn—p)gk(t/avp—L Sl—p))
[0, s At/ ]P—P

1 1
< dt’/ dv _1/ dt/ du,_1
/0 oyt T Jo o St P

2
X (f ds,—p 8kt Up_1,5—p) 8kt Vp_1, sqp))
[O,tnt')P—P

= ds,— / dt,—
oap-r Lo "

1 2
X dt/ du,_18r(t, Up_1,S—p)8k(, Up_1, Ty— )
(/: (0.1]7-1 )4 gk( p S p)gk( p n p)

S —pVin—p
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Now, since condition (6) holds by assumption, we know that

Ak) = Is / 2
/ / (f - ’ 5. (U Ty )
( ) [0.1]r=» P [0,1)—P nh [0,1]7 pé k( p>=n p)gk( p 17)

converges to zero, &sgoes to infinity. We may expand the above expression and
write

Ak zf das,_ / dt,—
( ) [Ovl]f’l—p S’l 14 [O’l]n—p n—p

(/g"”ﬁ"”d/ dup 1 2 )2 )
X t Up—18k(f,Up—1,S—p)8k (I, Up—1, Tp— )
0 oyp-1 P 8 p p)8 P n—p

+ das,_ / dt, —
ap-r D Joap-r TP

1 2
X dtf du,_18k(t,Up_1,S—p)8k(t, Up_1, Ty )
(/: (0,171 p-18 ( p p)g ( p n p)

Sn—pV%n—p

+2 das,— / dt,_
oap-r Lo "

(/g"_”w"_pd/ dup-1 i )
X 4 Up—18k(t,Up—1,8—p)&8k(f,Up—_1, Ty— )
0 o1 P 8 P p)8 P n—p

1
X (/: dt/ '/[.0 ]_],D—l dvp—l gk(t/v Vp—17 Sn—p)gk(t/’ Vp—ly Tn—p))

Si—pVin—p

= A1(k) + Aa(k) + Az(k).

In particular, the Fubini theorem yields
As(k) = f dtdu,_ f di' dvy_y
[0,1]7 [0,1]7
2
X (/[0 1-» dSi—p L ni<s, ,<rvn 8kt Up—1,Si—p)&k (', Vp-1, Sn—p))
+2 dtdup_lf dl‘/de_]_
[0,1]7 [0,1]7
X d I 2 ’
(/[0’1],”, Sn—p L' 1<, p<t'v1)
X Bt U1, Sum B V1.8 p) )

X (/[O e dt,—p 1(%,,,pgt//\z)§k(f, up—1, Tn—p)gk(t/a Vp—1, Tn—p))-
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Since

A2@)=i/ dtdup_y/ di'dv, 1
(0,117 [0,1]7

2
X </£O 1 dTn—p 1(%,,_,,51’At)§k(ta Up—1, Tn—p)gk(t/» Vp—1, Tn—p)) s

we obtain that, for everg, A2(k) + A3(k) > 0, and therefore thati1(k) must
converge to zero a% tends to infinity. This gives immediately the desired
conclusion. O

REMARK 2. There exists an elegant explanation of the implication
(i) = (iv) for the casern = 2. To do this, consider for simplicity a fam-
ily {Izl(gk)}kzl of multiple integrals with symmetric kernelgi}i>1 such that
lgkllj0,112 = 1. Then, by using the formula

E[exp(iuzl(gk))]:exp[Z( 1)J+l( ; 2 Tr( k)]

j=2

Whereg,{ is the jth power of the Hilbert—Schmidt operator associated to the kernel

gr(-,+), it is easy to show that ile(gk) converges in law to a standard Gaussian
random variable ak goes to infinity, then necessarily

npngpzo

for everyj > 2. In particular, by taking = 4, we obtain that

1 1 1 2
lim Tr(g,?) =|im/ a’t/ du(/ gk(t,r)gk(u,r)dr) =0.
k k Jo 0 0

But some calculations (analogous to the ones at the end of the proof of
Proposition 3) yield

/Oldz /oldu</olgk(t,r)gk(u,r)dr>2
Z/ldtfldu(/’\/” gk(t,r)gk(u,r)dr)z
+/ dr/ dr’ (f dtgk(l ekt ,))2
—I—/C; dr/o dr’(/;:j/r dtgk(t’r)gk(t,r’))z
) Z/OIdr /01 dr,(/r:/r/ At s r,)) (fomr/ dr gi(t, r)gr(t, r’)),

thus giving the desired conclusion.
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A slight refinement of Proposition 3 is the following.

PROPOSITION4. Let {Jnl(gk) .k > 1} be a sequence of iterated integrals as
in the statement of Propositiodi satisfying either conditiori), (ii), (ii) or (iv).
Supposemoreoverthat the sequence

{/Oldru,z_l@k,m =1
converges to zero in probability &sgoes to infinityThen the pair
(J1(gK). W)
converges in distribution to
(N, W),
whereN is a standard Gaussian random variable independewof

ProoFr We shall only prove the asymptotic independence, which in this case
is given by an application of an asymptotic version of Knight's theorem, such as
the one stated, for instance, in Revuz and Yor [(1999), Chapter XII].

2.2. Proof of Theoreml. Let the assumptions and notation of Theorem 1
prevail. SinceH is a separable Hilbert space, for every> 1 there exists an
applicationi,(-) from H®" onto Lf,([o, 11%,dr - - -dt,), such that, for every,
i,(-) is an isometry and, moreover, the following equality holds for every
feHO":

1 "
() =t [ [T AW Wy i () 1) B LX),

where W is a standard Brownian motion dg, 1]. It is therefore clear that the
sequencé fi : k > 1} in the statement of Theorem 1 is such that:

L1 o0 1! lin (fi)l1fg 0 = 1.
2. limy B[1X(fi)*1 = 3 if, and only if,

(mﬂgmﬁwumﬁza
3. Foreveryp=0,....n — 1, limg || £ 112,05, 2, = 0 if, and only if,
lim i (fi) 7 g g2 = O.

4. Fork — 400, the convergence

(law)
IX(f)= N,

whereN is a standard Gaussian random variable, takes place if, and only if,

I (in (i) BE N

The proof is easily concluded.
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3. Examplesand applications.

3.1. Quadratic functionals of a fractional Brownian motionConsider a
fractional Brownian motion (fBm)8* = {B/,t ¢ [0, 1]} of Hurst parameter
H € (0,1). That is, Bf is a centered Gaussian process with the covariance
function

@) Rp(t,5) = 5?4121 — |t — 521,

According to the so-calledeulins lemma[see Jeulin (1980), Lemma 1,
page 44], with probability 1, and for every,

(8) f (B! gy = oo.

In what follows, we shall use the results of the previous sections to characterize
the speed at which the two quantities

1 1 dt
2 H\2 H\2
9) Fﬁzfo P (B?dr  and LE:/S(B ) s

diverge to infinity, respectively, whef tends to— H — 2, and where tends to 0.
In particular, to be able to apply Theorem 1, we will mainly concentrate on the
caseH > 3.

We will first find the Wiener chaos expansion 8. Clearly,
E(Fg)= ———.

Fp) =g om 11
If D denotes the derivative operator [see Alos and Nualart (2003)], we have

1
Dy Fg =2f P BH dy
N

and
D,DsFg = 1— 2641y,
=gt vT)
Stroock’s formula [see Stroock (1987)] yields
1 1
(10) Fg= + L(1— (v )2,

26+2H+1 " 28+1

wherel, denotes the double stochastic integral with respetito
The following result is another CLT.

PROPOSITIONS. IfH> , then

2
11 28 +2H+1) | PB4 “9 1
CEY @s+ar+n [ Awha T o
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and

Law
—> CH
Bl—H-1/2

’

1
(12) (28+2H + 1)—1/2((2ﬂ +2H +1) /0 1?8 (B2 dr — 1)

where N is a random variable with distributioiv(0, 1) and cy is a constant
depending orH.

PrROOF We denote by¢ the set of step functions of®), 1]. Let # be the
Hilbert space defined as the closuresoivith respect to the scalar product

t S
(Liout Loul)ye = Ri(t.5) = o /O /0 i — w22 du dr,

whereay = H(2H — 1). The mappindljo,,] — B can be extended to an isometry
between# and the first chaos a8 ”’.
Let us compute

E(I2(1— (- v )2+ ))2 = 21— (- v %2,
52 . 28+1y(1 _ 26+1
=20, /[‘0’1]4(1 (sVr) )= Vu) )

x |t — 5|21 =2)r —u)?"=2dsdtdr du.
Simple computations lead to

. 2 (. N28+1)\2 _
m_l;r}ll/z(Zﬂ+2H+l) E(I2(1— (v )7 =0,

becauseE(l>(1 — (s v r)2#*1))2 behaves a2 +2H + 1)L asp | —H — 3.
Therefore, (11) follows. In order to show (12), set

Gp=2B+2H +1)"Y?((28+2H + )Fs — 1)

(2B + 2H + 1)1/? )
= L(1— (- v )2,
g1 2= CvoT)
We have
; 2
m—hﬂm—l/zE(Gﬂ)
2(25 +2H + Da?

TpoH2t 2B+ 1)
_ 28+1y(1 _ 2+1
x/{o,l]ll(l (s v 2L (1= (1 v u)2PHY)

x |t —s/P22r —uP 2 dsdt dr du

2
OlH .

=—"= |im 2 2H +1
2H? 5¢—H—1/2( A+ +D
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X / (s Vv r)2ﬂ+1(t \Y, u)2‘3"'l
[0,1]4

X |t — s|2H_2|r — u|2H_2ds dtdrdu

_ 2
=cy.

Taking into account Theorem 1, it suffices to show that condition (ii) holds, that is,

- (28 + 2H + 1)?
pl-H-1/2 (2B8+ 14

_{. 28+1
/[O’l]z(l (- v )2+

X

2
X (1_ ( V. r/)2/3+l)|r _ r/|2H—2dr dr/ —0.

HQOH

The above norm can be written as
4 28+1 nN2B+1
o 1—(sVvr 1—-(vVvr
O (SO e

% (1 . (s/ v M)Zﬂ—i-l)(l _ (t/ v M/)Zﬁ-i-l)

2H—2),, _ ,/|2H~2

X |s — s/|2H_2|t — t/|2H_2dr dr' dudu’dsds'dtdt’,

x |r—7|
and itis of the order of28 +2H +1)"tasg | —H — % which implies the desired
result. [

Note that we have also the following noncentral limit theorem.
PROPOSITIONG6. ForanyH € (0, 1),
1 2
(13) (2B + 2H + 1) [ 28 (BHY2 a1 =D (BH)2.
0 B1r+oo
ProoOF The convergence (13) follows from (10) and the fact that
Ix(1) = (B{")* - 1. O
REMARK 3. The combination of Propositions 5 and 6 generalizes results
previously obtained for a standard Brownian motion and a standard Brownian
bridge. In particular, analogs of formulae (11) and (13) for the ddse % are

proved in Deheuvels and Martynov (2004) and Peccati and Yor (2004a), whereas
a version of (12) folH = % is obtained in Peccati and Yor (2004a).
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Next, simple calculations yield that the Wiener chaos decompositidn dbr
anye > 0, is given by

1 1
L. = Iogg — ﬁ12(1— (e v-v .2,

where the second summand on the right-hand side is the double stochastic integral,

with respect taB*, of the symmetric function
(s,0)>1—(evitvs)2H,

This yields the following CLT.

PROPOSITION7. If H > 3, then

1\~Y2 1
(24) (Iog—) (LE — Iog—) Lay kg N,
€ g/ &l0

where N is a standard Gaussian random variablend kg is a real constant
depending exclusively oH.

PrROOF We keep the notation in the proof of Proposition 5. Since for every
¢ > 0 the Wiener chaos decomposition(@)? is given by

(B;H)z =2 4 I(1ev.<n),

it is easily verified that

1 4 1 4
E[L§]=/€ tZHtJrl/ 2Hs+1E[(BtH)2(BSH)2]

_ 2H 2H\2
—('09) -y e TS

and consequently that

2
E[L?] — E[L.]?> = E[L?] — (Iog }>
£

behaves like lo¢ll/s) whene tends to zero. Thanks to Theorem 1, to prove (14) it
is now sufficient to show that

lim[log(1/¢)]~2

8'[‘2,[ 0g(1/e)]

2
X

/ JA=Cvrv &)1 — (v ve)y ) r — P2 4r dr’
[0.1] HOH



SEQUENCES OF MULTIPLE STOCHASTIC INTEGRALS 191

Now, it is clear that

|

2

/ JL=Cvry A= (v ve)y ) r — ' PH24r dr'
[0.1]

HROH

=a;11/[ (1—(s\/er)_ZH)(l—(t\/r’\/s)_ZH)

x (1= (s'vuve)y 21— (' vu ve)~2H)

r/ 2H_2|M _ u/ 2H_2|S |2H—2

X |r— -

x|t —t' P2 dr dr' dudu' ds ds' dt dt’,

and one can show that the latter quantity is asymptotic t@llag for e converging
to zero. This concludes the proof(]

REMARK 4. An analog of Proposition 7 for the cageé = % is proved in
Peccati and Yor (2004b).

3.2. Quadratic functionals of a Brownian sheetWe now extend the results
of Deheuvels and Martynov (2004) and Peccati and Yor (2004a) to the case of a
Brownian sheeW on[0, 1]”, that is,

W ={W(x1,...,x2):(x1,...,x,) €0, 1]"}

is a centered Gaussian process with covariance function
n
EIW (1, .. X)W, -, vl = [ [ i A x).
i=1

Note that the Gaussian space generatedWycan be identified with an
isonormal Gaussian process bA([0, 11", dx1 - - - dxy,).

In particular, we are interested in the limiting behavior of the two functionals,
defined, respectively, for vectog = (81, ..., B,) such thatg; > —1 and for
>0,

n
Aﬂ:f dxl...dxn<1_[xi2’3i)W(x1,...,xn)z,
[0,1]"

i=1
dx1---dx
BS :f 7’;\/\/()619”-7)6}1)25
e.2]" (X1 Xn)
when 8 converges tq—1, ..., —1) ande converges to zero. We recall that, due
again to Jeulin’s lemma, with probability 1,

lim Ag = lim By = +4o00.
B—(—1,....,—-1) e—0
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REMARK 5. The law of the random variablég, for a fixed vector and for
n =2, is studied in detail in Deheuvels, Peccati and Yor (2004).

Now, for everyg and for every, we write the Wiener chaos decompositions of
Ag and B, which are given by

Aﬁ—l‘[<2ﬁl+2>* +1‘[2& (1‘[(1—<xivyi>2ﬂf“)),

B: = ('09 %)n + 12( H((xi vyive)t— 1))

i=1
where I> now stands for a double Wiener integral with respectWo Then,

calculations analogous to those performed in the previous section yield, thanks
to Theorem 1, another CLT.

ProOPOSITION8. Let the above notation and assumptions prevalil

(i) Wheng — (—1,...,-1),

[]eB + 2>1/2<Aﬂ — T8 + 2>1>

i=1 i=1

=[]@s + 2>1/2<1‘[(2ﬂ,- +2)Ag — 1)

i=1 i=1

converges in distribution ta/2"N(0, 1), where N(0, 1) indicates a standard
Gaussian random variableand also([]7_;(28; + 2)Ag — 1) converges to zero
in L2.

(i) Whene — 0,

converges in distribution te/2*N (0, 1).
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