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EXTRA HEADS AND INVARIANT ALLOCATIONS

BY ALEXANDER E. HOLROYD1 AND YUVAL PERES2

University of British Columbia and University of California, Berkeley

Let � be an ergodic simple point process onR
d and let �∗ be its

Palm version. Thorisson [Ann. Probab. 24 (1996) 2057–2064] proved that
there exists ashift coupling of � and�∗; that is, one can select a (random)
point Y of � such that translating� by −Y yields a configuration whose
law is that of �∗. We construct shift couplings in whichY and �∗ are
functions of�, and prove that there is no shift coupling in which� is a
function of �∗. The key ingredient is a deterministic translation-invariant
rule to allocate sets of equal volume (forming a partition ofR

d ) to the
points of�. The construction is based on the Gale–Shapley stable marriage
algorithm [Amer. Math. Monthly 69 (1962) 9–15]. Next, let� be an ergodic

random element of{0,1}Zd
and let�∗ be� conditioned on�(0) = 1. A shift

coupling X of � and �∗ is called anextra head scheme. We show that
there exists an extra head scheme which is a function of� if and only if
the marginalE[�(0)] is the reciprocal of an integer. When the law of� is
product measure andd ≥ 3, we prove that there exists an extra head schemeX

satisfyingE expc‖X‖d < ∞; this answers a question of Holroyd and Liggett
[Ann. Probab. 29 (2001) 1405–1425].

1. Introduction. Let� be a translation-invariant ergodic simple point process
of unit intensity onRd , with law�. Let�∗ be the Palm version of�, with law�∗.
(Recall that if� is a Poisson process,�∗ is a Poisson process with an added point
at the origin.) We call elements ofR

d sites and we call integer-valued Borel mea-
sures onRd configurations (so� and�∗ are random configurations). For a con-
figurationπ and a sitey we writeT −yπ for the translated configuration given by
(T −y)π(·) = π(· + y). A (continuum) extra head scheme for � is anR

d -valued
random variableY such that the point processT −Y � has law�∗. Thorisson [13]
proved (in a more general setting) that for any� as above, there exists a contin-
uum extra head scheme. We may regard an extra head scheme as ashift-coupling,
that is, a coupling(�,�∗, Y ) in which �,�∗ have respective laws�,�∗, and
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�∗ = T −Y � almost surely. Anonrandomized extra head scheme is a shift cou-
pling in which Y (and therefore�∗) is almost surely a function of�. We shall
prove the following.

THEOREM 1. For any d ≥ 1 and any translation-invariant ergodic simple
point process � in R

d , there exists a nonrandomized extra head scheme.

Liggett [8] proved Theorem 1 in the cased = 1. In contrast, we have the
following.

PROPOSITION 2. Let d ≥ 1 and let � be any ergodic translation-invariant
simple point process on R

d . For any shift coupling of �,�∗ where � = T Y �∗,
the translation variable Y cannot be a function of �∗.

Given that extra head schemes exist, it is natural to ask how to construct an
extra head schemeY from the configuration�. The existence proof in [13] gives
little clue how to do this; on the other hand, in [8], an explicit construction
for a nonrandomized extra head scheme is given ford = 1. Our proof of
Theorem 1 will be based on the following construction. Thesupport of � is
the random set[�] = {x ∈ R

d :�({x}) = 1}. A balanced allocation rule for �

is a measurable function�� :Rd → [�], defined from� in a deterministic,
translation-invariant way, such that�−1

� (y) has Lebesgue measure 1 for each
y ∈ [�]. (We shall give a more careful definition later.) From a balanced allocation
rule�, we shall obtain a nonrandomized extra head scheme by takingY = ��(0).
We shall construct a balanced allocation rule using an approach based on the
Gale–Shapley stable marriage algorithm [2]. The resulting�� is illustrated in
Figure 1. Its properties are studied in detail in [4]. Related questions involving
stable matchings of point processes were studied in [6].

Consider now the following discrete setting. Letµ be a translation-invariant
ergodic measure on the productσ -algebra of{0,1}Z

d
. We call elements ofZd

sites and elements of{0,1}Z
d

configurations. Let� be a random configuration with
law µ. We say that a sitex is occupied if �(x) = 1 andunoccupied if �(x) = 0. Let
p be the marginal probability that the origin is occupied, and assumep ∈ (0,1).
Let µ∗ be the conditional law of� given that the origin is occupied. For a sitez

and a configurationγ we denote byT −zγ the translated configuration given by
(T −zγ )(y) = γ (y + z). A (discrete) extra head scheme for � is a Z

d -valued
random variableX such that the random configurationT −X� has lawµ∗. An extra
head scheme is callednonrandomized if it is almost surely equal to a deterministic
function of the configuration.

THEOREM3. Let d ≥ 1 and let µ be an ergodic translation-invariant measure
on {0,1}Z

d
.

(i) For all d, µ, there exists an extra head scheme.
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FIG. 1. A balanced allocation rule applied to a two-dimensional Poisson process (here on a
torus). The points of the process are the centers of the concentric circles. Each center is allocated
exactly one unit of area, indicated by concentric anulli in two colors. (If you are looking at
a greyscale image, color versions are available at www.math.ubc.ca/˜holroyd/stable.html and via
arXiv:math.PR/0306402.)

(ii) For all d, there exists a nonrandomized extra head scheme if and only if
the marginal probability p is the reciprocal of an integer.

(iii) For all d,µ and any shift coupling of �,�∗ where � = T X�∗, the
translation X cannot be a function of �∗.

Thorisson [13] proved Theorem 3(i). The “if” part of (ii) follows from [8],
where appropriate nonrandomized extra head schemes are constructed. We shall
present a construction which gives extra head schemes for alld,µ, and also
extends to arbitrary countable groups in place ofZ

d . When p is rational our
construction will yield an extra head scheme which is a deterministic function of�

and an independent roll of au-sided die, whereu is thenumerator of p expressed
in its lowest terms.

Consider now the special case whenµ is product measure with parameter
p ∈ (0,1). It is natural to ask how large the random variable‖X‖ must be when
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X is an extra head scheme (where‖ · ‖ is the Euclidean norm, say). This was
essentially answered in dimensionsd = 1,2 by Liggett [8] and Holroyd and
Liggett [5].

THEOREM 4 ([8], d = 1 and [5], d ≥ 2). Let µ be product measure with
parameter p on Z

d .

(i) For all d, there exists an extra head scheme X satisfying

P(‖X‖ > r) ≤ cr−d/2,

where c = c(d,p) < ∞.
(ii) For d = 1,2, any extra head scheme satisfies

E‖X‖d/2 = ∞.

It was also shown in [5] that for alld ≥ 1, any extra head scheme must
involve theexamination of sites at distance at leastZ from O, whereP(Z > r) ≥
c′(d,p)r−d/2. In the light of the above results, one might guess that any extra
head scheme must satisfyE‖X‖d/2 = ∞ for d ≥ 3 also. In fact, this is very far
from the truth.

THEOREM 5. Let µ be product measure with parameter p on Z
d . If d ≥ 3,

then there exists an extra head scheme satisfying

E exp(C‖X‖d) < ∞
for some C = C(d,p) > 0.

(An analogous result also applies to continuum extra head schemes for the
Poisson process ind ≥ 3.) The above result is the best possible up to the value
of C. Indeed, ifX is an extra head scheme, then‖X‖ must be at least as large as the
distance to the closest occupied site to the origin, soP(‖X‖ > r) ≥ exp(−C′rd)

for some C′ = C′(d,p) > 0. The proof of Theorem 5 relies on a result of
Talagrand [11] on transportation cost.

Consider now the case whend = 1 andµ is an ergodic translation-invariant
measure on{0,1}Z. The following natural measure-theoretic construction of an
extra head scheme is due to Thorisson [12, 13], and is also presented in [8]. For two
measuresα,β on {0,1}Z, defineα ∧ β to be the measure whose Radon–Nikodym
derivative with respect toα+β is the minimum of the Radon–Nikodym derivatives
of α andβ with respect toα + β. Define measuresαn,βn,χn on {0,1}Z for n ≥ 0
as follows:

α0 = µ, β0 = µ∗

and forn ≥ 0:

χn = αn ∧ T nβn, αn+1 = αn − χn, βn+1 = βn − T −nχn.
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Let Xmeasbe such that

P(Xmeas= n,� ∈ A) = χn(A).

It follows from results in [12, 13] thatXmeas< ∞ and thatXmeasis an extra head
scheme. However, the above description gives little clue about how to explicitly
constructXmeasfrom the configuration�.

In contrast, the extra head schemes described in [8] forZ involve an explicit
construction ofX from �, and this construction enabled computation of tail
behavior. Liggett [8] commented that such solutions were “completely different”
from Xmeas above. In fact, it turns out that they are identical whenp is the
reciprocal of an integer. Moreover, we can give a simple explicit construction
of Xmeasfor generalp.

Let � have lawµ, and letU be a Uniform(0,1) random variable, independent
of �. DefineXwalk by

Xwalk = min

{
n ≥ 0 :

n∑
i=0

(
1− p−1�(i)

)
< U

}
.

(See Figure 2.)

PROPOSITION6. Xmeasand Xwalk are extra head schemes, and the joint laws
of (Xmeas,�) and (Xwalk,�) are identical.

It is easy to check thatXwalk is the same as the extra head scheme constructed
by Liggett [8] whenp is the reciprocal of an integer.

FIG. 2. An illustration of the construction of Xwalk. The walk
∑n

i=0(1 − p−1�(i)) is plotted as

a function of n. In this example p = 2
5, so the walk takes an up-step of 1 for an unoccupied site and

a down-step of 3
2 for an occupied site. Conditional on this configuration, Xwalk takes the values 2,9

each with probability 1
2.
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Our main tool will be a bijective correspondence between extra head schemes
and balanced transport rules (to be defined later). In the special case of
nonrandomized extra head schemes, the correspondence becomes simpler, and
can be expressed instead in terms ofbalanced allocation rules. We describe this
case below.

Let µ be a translation-invariant ergodic measure on{0,1}Z
d
, and suppose that

the marginal probabilityp is the reciprocal of an integer. A (discrete) balanced
allocation rule for µ is a measurable map� which assigns toµ-almost-every
configurationγ and every sitex a site�γ (x), such that the following properties
hold. First, we have|(�γ )−1(y)| = p−1γ (y) for µ-almost-allγ and ally; that is,
almost surely the range of�� is the set of occupied sites, and each occupied site
has exactlyp−1 pre-images. Second,� is translation-invariant in the sense that if
�γ (x) = y, then�T zγ (T zx) = T zy.

PROPOSITION 7. Let � have law µ, and suppose p is the reciprocal of an
integer. If � is a balanced allocation rule for µ, then the random variable X

given by

X = ��(0)(1)

is a nonrandomized extra head scheme for µ. Conversely, if X is a nonrandomized
extra head scheme, then there exists a µ-almost-everywhere unique balanced
allocation rule � satisfying (1).

Suppose thatp = 1
2 and consider the natural special case of a nonrandomized

extra head schemeX such thatX = 0 whenever�(0) = 1. We call such anX lazy.
This corresponds via Proposition 7 to a balanced allocation rule� in which for
every occupied sitex we have��(x) = x almost surely. Such a� amounts to an
translation-invariantmatching rule of occupied sites to unoccupied sites, in which
unoccupied sitex is matched to occupied site��(x). ThenX equals the origin if
it is occupied, or the partner of the origin otherwise.

We shall use Proposition 7 and its generalizations to deduce results about
extra head schemes from results about allocations. The reverse implication is also
potentially useful. As an illustration, we note that the following are consequences
of Theorem 4(ii) combined with our results.

COROLLARY 8. Let µ be product measure on Z
d with parameter p the

reciprocal of an integer. If d = 1,2, then any balanced allocation rule � for µ

satisfies

E‖��(0)‖d/2 = ∞.

We shall also state a continuum analogue of Corollary 8.
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COROLLARY 9. Let �,�′ be two independent Poisson processes of unit
intensity in R

d and consider any translation-invariant random perfect matching
between the points of � and the points of �′. If d = 1,2, then the total distance L

from points in [0,1)d to the points they are matched to satisfies

ELd/2 = ∞.

Consider the extra head schemeXwalk in Proposition 6 whend = 1 and
p = 1

2. Note Xwalk is lazy, therefore it corresponds to a matching rule. It is
easy to see that the matching rule has the following simple description. Wher-
ever the sequence. . . ,�(−1),�(0),�(1), . . . has an adjacent pair of the form
(�(i),�(i + 1)) = (0,1), match them to each other. Then remove all such pairs
from the sequence and repeat indefinitely. This matching was used earlier by
Meshalkin [10] in the context of finitary isomorphisms.

Whend = 1, one might guess thatXmeasis optimal in the sense that any other
nonnegative extra head scheme stochastically dominates it; Srinivasa Varadhan
asked whether this was the case (personal communication). The answer is no.
For a counterexample, letµ be product measure with parameter1

2. Wherever the
configuration contains a sequence of the form(�(i), . . . ,�(i + 3)) = (0,0,1,1),
the allocation rule (Meshalkin matching) corresponding toXwalk = Xmeasabove
has��(i) = i +3 and��(i +1) = i +2. Consider modifying the matching rule so
that instead��(i) = i +2 and��(i +1) = i +3 in this situation. By Proposition 7
this results in an extra head schemeX′ satisfyingP(X′ ≤ 2) > P(Xmeas≤ 2), so
Xmeaswas not stochastically optimal. On the other hand, one may similarly show
(by induction) that no nonnegative extra head scheme can be strictly stochastically
dominated byXwalk. Hence there is no stochastically optimal extra head scheme.

The article is organized as follows. In Sections 2 and 3 we establish correspon-
dences of extra head schemes with transports and allocations, and prove Proposi-
tion 7 and Corollaries 8 and 9. In Sections 4 and 5 we construct allocations and
transports, and prove Theorem 1 and Theorem 3(i) and (ii). In Section 6 we prove
Proposition 2 and Theorem 3(iii) regarding shift coupling in the reverse direction.
In Section 7 we prove Proposition 6 about one-dimensional constructions, and in
Section 8 we prove the tail estimate Theorem 5.

2. Discrete equivalence. In this section we state and prove an equivalence
between discrete extra head schemes and balanced transport rules, of which
Proposition 7 is a special case.

Let G be an infinite countable group with identityi, and letµ be a measure on
the productσ -algebra of{0,1}G. Elements ofG are calledsites and elements
of {0,1}G are calledconfigurations. A site g acts on other sitesx via left
multiplication g :x 
→ gx, and hence on configurations via(gγ )(x) = γ (g−1x),
on measurable functionsf : {0,1}G → R via (gf )(γ ) = f (g−1γ ), on events
A ⊆ {0,1}G via gA = {gγ :γ ∈ A} (whence1[gA] = g1[A] where1[A] denotes
the indicator ofA), and on measures via(gµ)(f ) = µ(g−1f ). We suppose
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that µ is invariant and ergodic under the action ofG. We write p for the
marginal probability

p = µ
(
�(i) = 1

)
.

We assume that 0< p < 1, and we writeµ∗ for the conditional law of� given
�(i) = 1:

µ∗(·) = µ
(
� ∈ ·|�(i) = 1

)
.

Let X be a discreteG-valued random variable on some joint probability space
with �, with probability measureP and expectation operatorE. We call X

a (discrete) extra head scheme for µ if X−1� has lawµ∗ underP.
A (discrete) transport rule for µ is a measurable function� which assigns to

µ-almost-every configurationγ and every pair of sitesx, y a nonnegative real
number�γ (x, y), with properties (2), (3) as follows. We think of�γ (x, y) as the
amount of mass transported fromx to y when the configuration isγ , and we write

�γ (A,B) = ∑
x∈A,y∈B

�γ (x, y).

We require the following properties. First,

��(x,G) = 1(2)

for µ-almost-all� and ally (i.e., each site sends out exactly one unit in total).
Second,� is G-invariant in the sense that

�gγ (gx, gy) = �γ (x, y)(3)

for all γ and allx, y, g ∈ G.
We call a transport rule� balanced if it satisfies in addition

��(G,y) = p−1�(y),(4)

for µ-almost-all� and allx, y (i.e., unoccupied sites receive nothing, all occupied
sites receive equal mass, which must then necessarily bep−1).

We are now ready to state the equivalence result. Fixµ, let � be a transport
rule, letX be aG-valued random variable and suppose that

��(i, x) = P(X = x|�)(5)

for µ-almost-all� and all x (i.e., conditional on the configuration, the identity
distributes one unit of mass according to the conditional distribution ofX). Note
that by summing overx and using (3), (5) implies (2). For anyX, (5) determines
� uniquely up to aP-null event, and conversely for any�, (5) uniquely determines
the joint law ofX, �.

THEOREM 10. Suppose that X and � are related by (5). Then X is an extra
head scheme if and only if � is balanced.
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PROOF OFPROPOSITION7. This is an immediate special case of Theorem 10,
whereG is Z

d under addition, and we identify a balanced allocation rule� with
the balanced transport rule given by�γ (x, y) = 1[�γ (x) = y]. �

PROOF OF COROLLARY 8. Immediate from Proposition 7 and Theorem 4.
�

We shall make use of the following lemma.

LEMMA 11 (Mass transport principle).Let m :G × G → [0,∞] be such that
m(gx,gy) = m(x, y) for all x, y, g. Then∑

y∈G

m(x, y) = ∑
y∈G

m(y, x).

For a proof see [1] or [3].
The proof of Theorem 10 is based on the following lemma. LetJ be the total

mass received by the identity:

J = J (�) = ��(G, i).

LEMMA 12. Suppose X and � are related by (5). For any nonnegative
measurable function f on {0,1}G, we have

E
(
f (X−1�)

) = E
(
J (�)f (�)

)
.

[In the above,J (�)f (�) denotes ordinary multiplication.]

PROOF OF LEMMA 12. The following device will be useful. Enlarging the
probability space if necessary, we may assume thatX is a deterministic function
of � and an independent Uniform(0,1) random variableU ; thus,X = ξ(�,U).
(U represents any “additional randomization” in the choice ofX; see [5] for a more
detailed explanation.)

We have the chain of equalities

E
(
f (X−1�)

) =
∫

dµ(γ )

∫ 1

0
duf

(
ξ(γ,u)−1γ

)

=
∫

dµ(γ )

∫ 1

0
du

∑
x∈G

1[ξ(γ,u) = x]f (x−1γ )

=
∫

dµ(γ )
∑
x∈G

�γ (i, x)f (x−1γ )(6)

=
∫

dµ(γ )�γ (G, i)f (γ )(7)

= E
(
J (�)f (�)

)
.
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In (6) we have used (5), and in (7) we have used Lemma 11 withm(x, y) =
E��(x, y)f (y−1�). �

PROOF OF THEOREM 10. Suppose that� is a balanced transport rule. For
any nonnegative measurablef , by Lemma 12 and (4) we have

E
(
f (X−1�)

) = E
(
J (�)f (�)

) = p−1E
(
�(i)f (�)

)
= E

(
f (�)|�(i) = 1

) = µ∗(f ).

SoX−1� has lawµ∗, thusX is an extra head scheme.
Conversely, suppose thatX is an extra head scheme. We must check that� is

balanced. Since(X−1�)(i) = 1 almost surely, it is immediate from (5) and (3) that
every unoccupied site receives zero mass, so it is sufficient to check that every
occupied site receives massp−1 almost surely. By (3) it is enough to check this
for i, so we must check that underµ∗ we haveJ = p−1 almost surely.

SinceX is an extra head scheme, for anyf we haveE(f (X−1�)) = µ∗(f ).
Note also thatE(Jf ) = pE(Jf |�(i) = 1) + (1 − p)E(Jf |�(i) = 0) = pµ∗(Jf )

[sinceJ = 0 on{�(i) = 0}]. Thus Lemma 12 yields

µ∗(f ) = pµ∗(Jf ).

Applying this first with f ≡ 1 and then withf = J shows that underµ∗,
the random variableJ has meanp−1 and variance 0; hence,µ∗-almost-surely
we haveJ = p−1. �

3. Continuum equivalence. The equivalence between extra head schemes
and balanced transport rules in Theorem 10 has an analogue in the continuum
setting, which we shall state (without proof ) at the end of this section. Since the
full continuum result is somewhat technical and is not required for any of our main
results, we shall instead prove the special case involving nonrandomized extra head
schemes and allocations (the analogue of Theorem 7).

Let � be a translation-invariant ergodic simple point process of intensity 1
onR

d , with law�. Elements ofRd are calledsites. Integer-valued Borel measures
on R

d are calledconfigurations. Let L denote Lebesgue measure onR
d . For

any z ∈ R
d , we define the translationT z, which acts on sites viaT zx = x + z,

on functions h :Rd → R via (T zh)x = h(T −zx) and on configurations via
(T zπ)(h) = π(T −zh).

Let �∗ be the Palm version of�, with law �∗. The following is a standard
property of the Palm process. For any bounded measurable functionf on
configurations and any Borel setB ⊆ R

d , we have

E
∫
B

f (T −s�)�(ds) = L(B)Ef (�∗).(8)

Note that the integral on the left-hand side can be written as
∑

s∈[�]∩B f (T −s�).
See, for example, [7] for details.
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A (continuum) allocation rule for � is a measurable function� which as-
signs to�-almost-every configurationπ and every sitex a site�π(x), and which
is translation-invariant in the sense that if�π(x) = y, then�T zπ(T zx) = T zy.
(It is important that we require the preceding statement to hold forall configu-
rationsπ ; in particular, it is thus understood that�T zπ is defined if and only if
�π is.) Let L denote Lebesgue measure onR

d . An allocation rule� is called
balanced if �-almost-surely for eachs ∈ [�] we haveL(�−1

� (s)) = 1, while
L(�−1

� (Rd \ [�])) = 0.

THEOREM 13. Let � be an allocation rule for �. The random variable
Y = ��(0) is a nonrandomized extra head scheme for � if and only if � is
balanced.

We shall prove Theorem 13 via Lemma 14. Let� be an allocation rule.
For z ∈ Z

d , define the unit cubeQz = z + [0,1)d ⊆ R
d . For s ∈ R

d , write
J�(s) = L(�−1

� (s)) and�s = T −��(s)�.

LEMMA 14. For any z ∈ Z
d and any nonnegative measurable f , we have

Ef (�0) = E
∫
Qz

J�(s)f (T −s�)�(ds).

PROOF. The translation-invariance of� and� implies that�x has the same
law for eachx ∈ R

d . Indeed, write�′ for T −x�. Then��(x) = x + ��′(0),
so thatT −��(x)� = T −��′ (0)(�′) = �′

0, which has the law of�0. Therefore,
Ef (�0) = Ef (�x) for anyf . Fix f andx, and define

m(z,w) = E
∫
Qz

f (�x)1[��(x) ∈ Qw]L(dx).

Applying the mass transport principle (Lemma 11) yields∑
w∈Zd

m(z,w) = ∑
w∈Zd

m(w, z).

The left-hand side equalsEf (�0), and the right-hand side equals

E
∫

Rd
f

(
T −��(x)�

)
1[��(x) ∈ Qz]L(dx) = E

∫
Qz

J�(s)f (T −s�)�(ds). �

PROOF OF THEOREM 13. If � is balanced, then Lemma 14 immediately
gives that��(0) is an extra head scheme. For the converse, apply the lemma to
f ≡ 1 andf (π) = Jπ(0). �

The following is the continuum analogue of Corollary 8.
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COROLLARY 15. Let � be a Poisson process of unit intensity on R
d . If

d = 1,2, then any balanced allocation rule � for � satisfies

E‖��(0)‖d/2 = ∞.

PROOF. One possible proof is to deduce the result from Theorem 13 together
with Theorem 2(B) of [5], which is the continuum analogue of Theorem 4(ii).
Alternatively, we may proceed via discrete transports as follows.

Denote the unit cubeQz = z + [0,1)d . Let � be a balanced allocation rule
for �, and define a discrete configuration� by

�(z) = 1∧ �(Qz),

so that the law of� is product measure with parameter 1− e−1 on Z
d . Now

define� by

��(x, y) = E
(
L[�−1

� (Qy) ∩ Qx]|�)
.

It is elementary to check that� is a balanced transport rule for�, so by
Theorem 10 there is an associated extra head schemeX. It is furthermore easy to
check thatE‖��(0)‖d/2 < ∞ implies E‖X‖d/2 < ∞, so the result follows from
Theorem 4(ii). �

PROOF OF COROLLARY 9. The required statement may be formulated as
follows. LetM be a simple point process onRd ×R

d , invariant under the diagonal
action of translations ofRd . We writeM(A,B) = M(A×B), and suppose that the
marginals given by�(·) = M(Rd, ·) and�′(·) = M(·,R

d) are two independent
Poisson processes of unit intensity onR

d . [If M has an atom at(x, y), it means
that the pointx of �′ is matched to the pointy of �.] It is sufficient to prove that
for d = 1,2, any suchM must satisfy∫ ∫

‖x − y‖d/21[x ∈ Q0]M(dx, dy) = ∞.(9)

As in the preceding proof, we define

�(z) = 1∧ �(Qz),

and

��(x, y) = E
(
M(Qx,Qy)|�)

.

It is easy to check that the law of� is product measure onZd , and that� is
a balanced transport for�. Equation (9) may then be deduced from Theorem 10
and Theorem 4(ii). �

Finally in this section we shall state without proof the full continuum analogue
of Theorem 10. Atransport is a nonnegativeσ -finite Borel measureω onR

d × R
d .
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We writeω(A,B) = ω(A×B), and think of this as the mass sent fromA to B. The
marginals of ω are the measuresω(·,R

d),ω(Rd, ·) onR
d . Let � be a translation-

invariant, ergodic simple point process onRd with law �. A (continuum)
transport rule for � is a measurable map� which assigns to�-almost-every
configurationπ a transport�π , with the following properties. The first marginal
��(·,R

d) is Lebesgue measure�-almost-surely, and� is invariant in the sense
that �T zπ(T zA,T zB) = �π(A,B) for all π, z,A,B. A transport rule� is
balanced if the second marginal satisfies�-almost-surely��(Rd,A) = �(A) for
all A ⊆ R

d .
Let Y be anR

d -valued random variable and let� be a transport rule, and
supposeP admits conditional probabilities such that

d[��(·,A)]
dL(·) (0) = P(Y ∈ A|�).(10)

Here a specific version of the Radon–Nikodym derivative must be used, to ensure
that it is defined everywhere and translation-invariant. By the Lebesgue differenti-
ation theorem (see [9], Theorem 2.1.2), the upper density lim supr→0 ν(B(x, r))/

L(B(x, r)) is a suitable version of the Radon–Nikodym derivativedν/dL.

THEOREM 16. Suppose Y and � are related as in (10). Then Y is an extra
head scheme if and only if � is balanced.

We omit the proof of Theorem 16, which proceeds along the same lines as that
of Theorem 10. The proof involves no new ideas, but more technical notation.

4. Discrete allocations and transports. Let µ be an ergodicG-invariant
measure on{0,1}G. In this section we shall prove the following.

THEOREM 17. For any G, µ, there exists a balanced transport rule.

THEOREM 18. For any G, there exists an integer-valued balanced transport
rule if and only if p is the reciprocal of an integer.

THEOREM 19. For any G,µ, there exists an extra head scheme.

THEOREM 20. For any G, there exists a nonrandomized extra head scheme if
and only if p is the reciprocal of an integer.

PROOF OF THEOREM 18, “ONLY IF” PART. In an integer-valued transport
rule, the unit of mass sent out by a site all goes to a single site, while in a balanced
transport rule, occupied sites receive massp−1. Hencep−1 must be an integer.

�
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PROOF OFTHEOREM 3(i), (ii) AND THEOREMS19, 20. Theorems 19 and 20
follow immediately from Theorems 17 and 18 together with Theorem 10. [A non-
randomized extra head scheme corresponds via (5) to an integer-valued balanced
transport rule.] Theorem 3(i), (ii) are Theorems 19 and 20 specialized toZ

d .
�

PROOF OFTHEOREM 17. We construct the required transport rule by a kind
of invariant greedy algorithm. Order the elements ofG as G = {g0, g1, . . . },
and fix a configurationγ . Informally, each site starts with mass 1 to distribute,
while a site y has the capacity to receive massp−1γ (y). At time n, every
site x sends as much mass as possible to sitegnx. Formally, inductively define
θn(x, y) = θn

γ (x, y) for n = 0,1, . . . as follows. For all sitesx, y,

θ0(x, y) = 0,

and forn ≥ 0,

θn+1(x, y) = θn(x, y) + δn(x, y),

where

δn(x, y) = 1[gnx = y]min{1− θn(x,G),p−1γ (y) − θn(G,y)}.
Finally, put�γ (x, y) = limn→∞ θγ n(x, y).

Clearly,� is G-invariant; we claim that it is a balanced transport rule. By the
construction, we have for allx

��(x,G) ≤ 1 and ��(G,x) ≤ p−1�(x).

We call a sitex unexhausted if the former inequality is strict, and we callx
unsated if the latter inequality is strict. We must show that almost surely there
are no unexhausted sites and no unsated sites. First, note that unexhausted sites
and unsated sites cannot exist simultaneously for the sameγ . For suppose
that x is unexhausted andy is unsated. Then consideringδn(x, y) wheren is
such thatgnx = y shows that eitherθn+1(x, y) = 1 or θn+1(x, y) = p−1γ (y),
a contradiction. Also, by ergodicity, the existence of unexhausted sites and the
existence of unsated sites are both zero–one events. Hence it remains only to
rule out the possibility that almost surely one occurs without the other. The mass
transport principle (Lemma 11) applied tom(x, y) = E��(x, y) yields

E��(0,G) = E��(G,0),

but the left-hand side is less that 1 if and only if there exist unexhausted sites, and
the right-hand side is less that 1 if and only if there exist unsated sites.�
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REMARK. In the case whenG = Z under addition, the above construction
also gives a balanced transport rule if we setgn = n for all n ≥ 0, even
though g0, g1, . . . no longer exhaustsG. (This will be relevant in the proof
of Proposition 6.) The above proof goes through, except for the argument that
unexhausted sites and unsated sites cannot exist simultaneously, which must be
modified as follows. By the previous argument, forx ≤ y it is impossible thatx is
unexhausted andy is unsated. Hence if with positive probability both unexhausted
and unsated sites existed, then by the invariance of the construction, the random
variable max{x :x is unsated} would take all integer values with equal positive
probabilities, which is impossible.

PROOF OFTHEOREM 18, “IF” PART. Consider the construction of� in the
proof of Theorem 17 above. Ifp−1 is an integer, then eachθn is integer-valued, so
the same applies to�. �

If p = u/v whereu, v are integers, the same argument shows thatu−1� is
integer-valued, and the corresponding extra head scheme can consequently be
written as a deterministic function of� and an independent roll of au-sided die,
as remarked in the Introduction.

Note also that if the ordering ofG satisfiesg0 = i, then the resulting extra head
scheme is lazy.

5. Continuum allocations. Let � be a translation-invariant ergodic simple
point process of unit intensity onRd . Denote the law of� by �.

THEOREM 21. For any d,�, there exists a balanced continuum alloca-
tion rule.

PROOF OFTHEOREM 1. Immediate from Theorems 21 and 13.�

It is natural to try to prove Theorem 21 by some continuous-time version of the
invariant greedy algorithm, in which sites ofR

d are ordered by Euclidean norm,
say. Although this is an appealing idea, it appears difficult to rigorize directly.
Instead, our construction will be based on the stable marriage algorithm of Gale
and Shapley [2].

PROOF OF THEOREM 21. In what follows, all distances are Euclidean.
Elements of[�] are called�-points. LetL be the (random) set of all sites ofR

d

which are equidistant from two or more�-points. Since� has intensity 1,[�] is
countable almost surely; hence,L(L) = 0 almost surely. For convenience we set
��(s) = s for all s ∈ L.

Consider the following algorithm. For each positive integern, stage n consists
of two parts as follows.
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(i) Each sites /∈ L applies to the closest�-point tos which has not rejecteds
at any earlier stage.

(ii) For each�-point x, let An(x) be the set of sites which applied tox in
stagen (i), and define therejection radius

rn(x) = inf
{
r :L

(
An(x) ∩ B(σ, r)

) ≥ 1
}
,

whereB(x, r) = {s ∈ R
d :‖s −x‖ < r} is the ball of radiusr atx, and the infimum

of the empty set is taken to be∞. Thenx shortlists all sites inAn(x)∩B(x, rn(x)),
andrejects all sites inAn(x) \ B(x, rn(x)).

We now describe�. Consider a sites /∈ L. Since any bounded set contains only
finitely many�-points almost surely, the following is clear. Eithers is rejected by
every�-point (in increasing order of distance froms), or, for some�-pointx and
some stagen, s is shortlisted byx at stagen and all later stages. In the former case
we calls unclaimed and put for convenience��(s) = s; in the latter case we put
��(s) = x.

We claim that� is a balanced allocation rule. Clearly, it satisfies the required
measurability and translation-invariance.

Let Sn(x) be the set of sites shortlisted by a�-point x at stagen. By the
construction in (ii) and the intermediate value theorem, we haveL(Sn(x)) ≤ 1.
But by the definition of� above we have�−1

� (x) = lim supn→∞ Sn(x) =
lim infn→∞ Sn(x), so Fatou’s lemma impliesL(�−1

� (x)) ≤ 1. We call a�-pointx
unsated if that inequality is strict. Note also that if a�-point x ever rejects any
sites (at stagen, say), then we must haveL(Sm(x)) = 1 for all later stagesm ≥ n.
Hence an unsated�-point never rejected any sites.

We must show that almost surely there are no unsated�-points and the set
of unclaimed sites isL-null. Unsated�-points and unclaimed sites cannot exist
simultaneously, since an unclaimed site is rejected by every�-point, but an
unsated�-point never rejects sites. Also, by ergodicity, the existence of unsated
�-points and of a positive measure of unclaimed sites are both zero–one events,
so it remains to rule out the possibility that almost surely one occurs without the
other. Forz ∈ Z

d , define the unit cubeQz = z + [0,1)d ⊆ R
d . Let

m(s, t) = E
∑

x∈[�]∩Qt

L
(
Qs ∩ �−1

� (x)
)
.

By the mass transport principle (Lemma 11), we have

E
∑

x∈[�]∩Q0

L
(
�−1

� (x)
) = ∑

s∈Zd

m(s,0)

= ∑
t∈Zd

m(0, t) = EL
(
Q0 ∩ �−1

� ([�])).
Since� has intensity 1, the left-hand side equals 1 if there are no unsated centers,
and is strictly less than 1 otherwise. And the right-hand side equals 1 if the set of
unclaimed sites isL-null, and is strictly less than 1 otherwise.�



EXTRA HEADS AND INVARIANT ALLOCATIONS 47

6. Reverse extra head schemes.

PROPOSITION22. Let µ be a G-invariant ergodic measure on {0,1}G, and
let � have law µ. For any discrete extra head scheme X we have almost surely

P(X = x|X−1�) ≤ p

for all x ∈ G.

PROPOSITION23. Let � be a translation-invariant ergodic point process of
unit intensity on R

d . For any continuum extra head scheme Y , the conditional law
of Y given T −Y � is absolutely continuous with respect to Lebesgue measure, with
density bounded above by 1.

PROOF OFTHEOREM 3(iii) AND PROPOSITION2. Immediate from Proposi-
tions 22 and 23. �

PROOF OFPROPOSITION22. LetX be an extra head scheme for�, and write
�∗ = X−1�. Fix β > p, and define forx ∈ G

Ax = {
γ ∗ ∈ {0,1}G : P(X = x|�∗)(γ ∗) ≥ β

}
.

Since{�∗ ∈ Ax, X = x} ⊆ {� ∈ xAx}, we have

βµ∗(Ax) ≤ P(�∗ ∈ Ax,X = x) ≤ µ(xAx) = pµ∗(Ax).

Therefore,µ∗(Ax) = 0. Taking a union over rationalβ > p completes the proof.
�

PROOF OFPROPOSITION23. LetY be an extra head scheme for�, and write
�∗ = T −Y �. It is sufficient to show that for every rational cubeW of positive
Lebesgue measure, almost surely

P(Y ∈ W |�∗) ≤ L(W).

Fix β > 1, and define the event

AW = {π∗ : P(Y ∈ W |�∗)(π∗) ≥ βL(W)}.
We have

βL(W)�∗(AW) ≤ P(�∗ ∈ AW,Y ∈ W)

≤
∫

�(d�)�

( ⋃
y∈[�]∩W

T yAW

)

≤
∫

�(d�)
∑

y∈[�]∩W

�(T yAW)

= L(W)�∗(AW).

Hence whenL(W) > 0, we have�∗(AW) = 0. �
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7. Measure-theoretic construction. The following is a variant of the con-
struction ofXmeas in the Introduction. Letµ be aG-invariant ergodic measure
on {0,1}G. Let G be ordered asG = {g0, g1, . . . }. Define measuresαn,βn,χn

on {0,1}G as follows:

α0 = µ, β0 = µ∗

and forn ≥ 0:

χn = αn ∧ (gnβn), αn+1 = αn − χn, βn+1 = βn − g−1
n χn.

Let �� be the balanced transport rule constructed in the proof of Theorem 17,
using the same ordering ofG as above. LetXgreedy be the corresponding extra
head scheme given by (5) and Theorem 10.

THEOREM 24. For any G,µ and any ordering g0, g1, . . . , we have

P(Xgreedy= gn,� ∈ ·) = χn(·)
for all n.

PROOF. By construction, the measuresαn,βn,χn are all absolutely continu-
ous with respect toµ. Denote the Radon–Nikodym derivatives

an = dαn

dµ
, bn = dβn

dµ
, cn = dχn

dµ
.

We have

α0 = 1, β0(γ ) = p−1γ (0).

And usingG-invariance ofµ,

cn = an ∧ (gnbn), an+1 = an − cn, bn+1 = bn − g−1
n cn.

By induction onn, it is easy to verify that

an(γ ) = 1− θn
γ (0,G),

bn(γ ) = p−1γ (0) − θn
γ (G,0),

cn(γ ) = δn
γ (0, gn) = �γ (0, gn),

whereθn(x, y), δn(x, y) are as in the proof of Theorem 17. It follows that for any
eventA ⊆ {0,1}G,

P(Xgreedy= gn,� ∈ A) =
∫
A

µ(dγ )�γ (0, gn) =
∫
A

µ(dγ )cn(γ ) = χn(γ ),

as required. �
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PROOF OFPROPOSITION6. Letgn = n for n = 0,1, . . . (note thatg0, g1, . . .

does not exhaustG) and construct�, Xgreedy and χn as above. As remarked
after the proof of Theorem 17,� is a balanced transport rule in this case also,
and thereforeXgreedy is an extra head scheme. The statement of Proposition 24
above also holds, with the same proof. Therefore,(Xgreedy,�) and (Xmeas,�)

have identical joint laws. It remains to check that(Xgreedy,�) and(Xwalk,�) have
identical laws. This follows from the fact that for anyx ≤ y,

�γ (x, y) =
∫ 1

0
du1

[
y = min

{
z ≥ x :

z∑
i=x

(
1− p−1γ (i)

)
< u

}]
.

This is evident from Figure 2. More formally, it may be checked by induction
ony − x. �

8. Three-dimensional tail behavior. In this section we prove Theorem 5.

THEOREM 25. Let µ be product measure with parameter p on Z
d . If d ≥ 3,

then there exists a balanced discrete transport rule � satisfying

E exp
(
C‖��(0)‖d)

< ∞
for some C = C(d,p) > 0.

PROOF OFTHEOREM 5. Immediate from Theorem 25 and Theorem 10.�

PROOF OF THEOREM 25. It is convenient to work first in a continuum
setting, and then transfer toZd . A transport is a nonnegativeσ -finite measureω
on R

d × R
d . For Borel setsA,B ⊆ R

d we write ω(A,B) = ω(A × B), and
we think of this as the amount of mass transported fromA to B. By a random
transport we mean a random element in the space of all transports, this space
being equipped with the natural productσ -algebra. A random transportT is called
invariant if T (A+z,B +z) is equal in law toT (A,B) for any Borel setsA, B and
any sitez. We shall construct an invariant random transportT whose marginals are
Lebesgue measure onRd and a Poisson process.

The following is proved in [11]. Letd ≥ 3. For each positive integerm there
exists a random transportS = Sm with the following properties. The first marginal
S(·,R

d) is Lebesgue measure on the cube[0,1]d almost surely. The second
marginalS(Rd, ·) is equal in law tom−1 ∑m

i=1 δi , where theδi are point masses
whose locations are i.i.d. uniform on[0,1]d . Finally, for constantsc, c′ < ∞
depending only ond, we have the following “bound on transportation cost”:

E
∫ ∫

exp(cm‖x − y‖d)S(dx, dy) ≤ c′.

Here‖ · ‖ is the Euclidean norm andE denotes expectation with respect to the
random transport.



50 A. E. HOLROYD AND Y. PERES

We now define a random transportTm as follows. Informally, we rescaleSm

to cover a cube of volumem, and multiply bym so that the intensity is still 1;
then we tile space with identical copies of this transport, with the origin chosen
uniformly at random. Formally, leta be uniform on[0,1]d and independent ofSm,
and defineTm by

Tm(A,B) = m
∑
z∈Zd

Sm

(
m−1/d(A + a + z),m−1/d(B + a + z)

)
.

It is easy to check the following.Tm is invariant.Tm(·,R
d) is almost surely

Lebesgue measure onRd . As m → ∞, Tm(Rd, ·) converges weak* to a Poisson
point process of intensity 1 onRd . Finally, for any Borel setA ⊆ R

d with Lebesgue
measureL(A) ∈ (0,∞), we have

E
∫ ∫

exp(c‖x − y‖d)Tm(dx, dy)1[x ∈ A] ≤ c′L(A).(11)

[To check (11) we first use invariance to deduce that the left-hand side must be
a linear multiple ofL(A), and then takeA to be a cube of volumem to find
the constant.]

By (11), the sequence(Tm) is tight, so letT be a weak* limit point, and note the
following properties ofT . It is invariant, since invariant random transports form
a weak* closed set. ClearlyT (·,R

d) is Lebesgue measure onRd almost surely.
Writing �(·) = T (Rd, ·), we see that� is a Poisson point process of intensity 1
on R

d . And finally (11) holds withT in place ofTm, since the set of random
transports for which (11) holds is weak* closed.

Choose� such that 1− p = e−�d
, and for z ∈ Z

d define the unit cube
Qz = [0,1)d + z. Define a discrete configuration� by

�(z) = 1∧ �(�Qz).

The choice of� ensures that the law of� is product measure with parameterp

on {0,1}Z
d
. Now define� by

��(x, y) = E
(
T (�Qx, �Qy)|�)

.

It is elementary to check that� is a balanced transport rule for�, and (11) implies
that it satisfies the required bound.�

The following continuum analogue of Theorem 5 may be proved by applying
Theorem 16 to the continuum transport given by

��(A,B) = E
(
T (A,B)|�)

,

whereT ,� are as in the above proof. Alternatively, it may be deduced from
Theorem 5 by techniques similar to those used in [5], Section 4.



EXTRA HEADS AND INVARIANT ALLOCATIONS 51

THEOREM 26. Let � be a Poisson process of unit intensity on R
d . If d ≥ 3,

then there exists a continuum extra head scheme for � satisfying

E exp(C‖Y‖d) < ∞
for some C = C(d) > 0.

Open problems.

(i) In the case of product measure onZ
d or a Poisson process onRd , what

is the optimal tail behavior fornonrandomized extra schemes (or equivalently, for
balanced allocation rules)?

(ii) What is the tail behavior of the extra head schemes (or allocation rules)
constructed in Sections 4 and 5?

(iii) What is the optimal tail behavior of extra head schemes for product
measure on other groups (e.g., for a free group with distance measured according
to a Cayley graph)?

Acknowledgments. We thank Tom Liggett and Hermann Thorisson for
introducing us to the problems, and for valuable discussions.
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