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THE ARCTIC CIRCLE BOUNDARY AND THE AIRY PROCESS

BY KURT JOHANSSON
Royal Institute of Technology

We prove that the, appropriately rescaled, boundary of the north polar
region in the Aztec diamond converges to the Airy process. The proof uses
certain determinantal point processes given by the extended Krawtchouk
kernel. We also prove a version of Propp’s conjecture concerning the structure
of the tiling at the center of the Aztec diamond.

1. Introduction and results. Domino tilings of the Aztec diamond were
introduced in [8, 9]. Asymptotic properties of random domino tilings of the Aztec
diamond have been studied in [5, 12, 15]. In particular, in [12] the existence of the
so-called arctic circle was proved. The arctic circle is the asymptotic boundary of
the disordered so-called temperate region of the tiling. Outside this boundary the
tiling forms a completely regular brick wall pattern. The methods in [12] combined
with the results in [13] show that the fluctuations of the point of intersection of
the boundary of the temperate region with a line converge to the Tracy—Widom
distribution of random matrix theory. In this paper we extend this result to show
that the fluctuations of the boundary around the arctic circle converges to the
Airy process introduced in [23]. The paper is a continuation of the approach used
in [14] and [15], where certain point processes with determinantal correlation
functions [24] and the Krawtchouk ensemble, were used. We will use the general
techniques developed in [16] and investigate an extended point process which
also has determinantal correlation functions given by a kernel, which we call the
extended Krawtchouk kernel.

The Aztec diamond, A,,, of ordern is the union of all lattice squards:, m +
1] x [I,1 + 1], m, [ € Z, that lie inside the regiofi(x1, y1); |x1| + |y1| <n + 1}.

A dominois a closed Xk 2 or 2x 1 rectangle ifR? with corners inz2, and atiling

of a regionR < R? by dominoes is a set of dominoes whose interiors are disjoint
and whose union i®. Let 7 (A,) denote the set of all domino tilings of the Aztec
diamond. The basic coordinate system used here will be referred to as coordinate
system | (CS-I).

Color the Aztec diamond in a checkerboard fashion so that the leftmost square
in each row in the top half is white. A horizontal dominorierth-going (N) if
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its leftmost square is white, otherwise itdsuth-going (S). Similarly, a vertical
domino is west-going (W) if its upper square is white, otherwise it east-
going (E). Two dominoes aradjacent if they share an edge, and a domino is
adjacent to the boundary if it shares an edge with the boundary of the Aztec
diamond. Thenorth polar region (NPR) is defined to be the union of those
north-going dominoes that are connected to the boundary by a sequence of
adjacent north-going dominoes. The south, west and east polar regions are defined
analogously. In this way a domino tiling partitions the Aztec diamond into four
polar regions, where we have a regular brick wall pattern, and a fifth central region,
thetemperate region, where the tiling pattern is irregular.

LetT € 7 (A,) be atiling of the Aztec diamond and let7T) denote the number
of vertical dominoes ifl'. We can define a probability measure ©1{A,) by
letting vertical dominos have weightand horizontal dominos weight 1, that is,

av(T)

Yrera,at®’

In this paper we will prove the asymptotic results for the uniform case {) only
to keep the asymptotic analysis simpler.

We will study the part of the boundary of the NPR which lies above a neigh-
borhood ofx; = 0. To define the boundary we will use certain nonintersecting
paths which describe the domino configuration and which are also essential in
our analysis below. They were called DR-paths ([25], page 277) in [15]. On a
W-domino placed so that it has corners(@t0) and (1, 2), we draw a line from
(0,1/2) to (1, 3/2). On an E-domino placed in the same position, we draw a line
from (0, 3/2) to (1, 1/2), and on an S-domino placed so that it has corne(@, &
and(2, 1), we draw a line from0, 1/2) to (2, 1/2). We do not draw any line on an
N-domino. As discussed in [15], these lines will form nonintersecting paths from
Ar=(n—-14r,—r+1/2)t0B,=n+1—r,—r+1/2), 1<r <n. The top
curve, fromA1 to By, can be viewed as a function— X, (1), || < n, in CS-I. We
will call X, () the NPR-boundary process, see Figure 1. The NPR is exactly the
part of the domino tiling that lies abow&, (¢), and consits only of N-dominoes.
Between the nonintersecting paths there are other regions of N-dominos.

Before we formulate the limit theorem fof,, (¢), we recall the definition of the
Airy process. Thextended Airy kernel is defined by

A(r, &7, &)

(1.1) P[T]=

(1.2) /Oooe“”” Ai(5 + M) AIE + 1) dA, if > 7,

0 /
[ A D AIE i<
—00

forr,7/,6,8 e R. Fixty <--- <1, and letA,, = {t1,..., 1,}. Let u be the
product of counting measure ak, and Lebesgue measure & Define f on
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FiG. 1. AnNPR-boundary process.

Am x R Dy f(z),x) = 1, 00 (x) for given numberssy, ..., &,. It is proved
in [16] that fY2(t, x)A(z, x; 0, y) f/%(0, y) is the integral kernel of a trace
class operator ol2(A,, x R, u). The Airy process, t — (1), is the stationary
stochastic process whose finite-dimensional distributions are given by

(1.3)  PLA(T) <&1...., A(Tw) < Enl=detd — fY2AfY?) 2\ g

Itis proved in [23], see also [16], that(r) has continuous paths. The distribution
of A(t) is F2, the Tracy—Widom distribution for the largest eigenvalue of a GUE-
matrix [27]. It has recently been shown that the distribution function in (1.3)
satisfies certain differential equations [1, 28].

Our main result is the following:

THEOREM 1.1. Let X, (¢) be the NPR-boundary process and A (t) the Airy
process as defined above and let the weight a in (1.1) be equal to 1. Then,

X, (27Y6302/3t) —n//2
2-5/6,,1/3

asn — 00, in the sense of convergence of finite-dimensional distributions.

(1.4) — A1) — 12,
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The theorem could be extended to a general weight(1.1) by the same type
of argument. We restrict to = 1 for simplicity. Similarly, it is possible to show
convergence along other parts of the boundary, except right near the point where
the arctic circle is tangent to the asymptotic square containing the tiling where the
boundary behavior is different. See the remark in the last paragraph of Section 2.

As was done in [16] for the convergence of the interface of a polynuclear
growth model to the Airy process, it should be possible to extend Theorem 1.1 to a
functional limit theorem. It would then follow that maX,, (¢), suitably rescaled,
asymptotically hag fluctuations, wherd is the Tracy—Widom distribution for
the largest eigenvalue of a GOE-matrix [27].

The above result also has an interpretation as a convergence theorem for a
certain polynuclear growth model, see [15], Section 2.4. The polynuclear growth
model studied in [23] is a limiting version of this model & 0, n — oo at
appropriate tates). The NPR-boundary is also directly related to the shape in the
corner growth model studied in [13] and [15], Section 2.4, and, hence, also to
the totally asymmetric exclusion process@fM, N) is the last passage time as
in [13], the results of the present paper show that the fluctuations of the boundary
of the shape, = {(M,N); G(M,N)+ M + N — 1 <t} close to the diagonal
(N, N), wheng = 1/2, converges to the Airy process. This can be extended to the
other parts of the boundary, away from the axes, and to other valugsTdfis
extends the relation between the Meixner ensemble and the Krawtchouk ensemble
given in Lemma 2.9 in [15], see also [20].

The theorem will be proved using a certain determinantal point process. One
way of seeing this point process is to pugeeen particle at the center of the
black square on each S-domino and W-domino, amedgparticle at the center
of the white square of each S- and W-domino. These dots define a point process
and we will see below that it has determinantal correlation functions. It is directly
related to the nonintersecting paths defined above and also to the zig-zag paths
around black and white squares discussed in [8, 9, 14]. The precise definition of
this point process will be given in Section 2. The asymptotic results needed to
prove Theorem 1.1 will be discussed in Section 3. It has been conjectured in [12]
that at the center of a uniform random tiling of the Aztec diamond the tiling looks
like a random domino tiling of the plane under the Burton—Pemantle measure [4].
A proof of a version of this conjecture will be given in Section 4.

It is natural to conjecture that boundaries between irregular and regular tiling
regions in many other two-dimensional random tiling problems are also described
by the Airy process. In terms of the so-called height function, which we will not
define here, this would mean that we would see the Airy process where we have
a boundary between a flat surface and a curved surface. This type of result can
also be proved in the rhombus tiling problem discussed in [22]. This has been
done recently in [10]. In this problem it would also be possible to use the formulas
derived in [22], which would lead to computations very similar to those in the
present paper. Another candidate where it may be possible to prove convergence
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to the Airy process would be for fluctuations around the arctic circle (ellipse) in
rhombus tilings of hexagons [7, 15], but here the asymptotic analysis appears to be
more difficult [2].

2. Thepoint process. Introduce a new coordinate system (CS-II) with origin
at (—n,—1/2) and axese; = (1,1), fii = (—1,1), which gives the following
coordinate transformation between CS-l and CS-II,

2.1) X1=Xx2—Yy2—n,

yi=x2+y2—1/2
In CS-ll the nonintersecting paths defined in Section 1 go fAgm= (0, —j +1) to
Bj=m+1-j,—n), 1< j <n,and have three types of stefis0), (0, —1) and
(1, —1), see Figure 2. These nonintersecting paths specify the tiling uniquely. The
measure (1.1) is obtained by letting the stép®) and(0, —1), which correspond
to vertical dominos, have weightand the stegl, —1) weight 1.

To formalize this, leg = (V, E) be a directed graph with vertex Sét= N x Z
and directed edges fro@, j)to (i +1, j), (i, j —Dand(@ +1,j — 1) fori>1,
and from(0, j) to (1, j — 1) and(d, j). The edges front, j) to (i + 1, j — 1) have
weight 1, whereas all other edges have weight pathm fromA e VtoBeVis
a directed path along succesive directed edges startingaad ending aB. The
weightw (;r) of a pathr is the product of the weights of all the edges in the path.
Two pathsz andz’ are nonintersecting if they do not share a common vertex.

Y2

\ /1 /

Aq

B A§(\/

A5 BS
Ag Bg
Az B

N
yAVAV AV

V4
N
Fle

F

FiG. 2. CSHl and nonintersecting paths describing the tiling.
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If A=(A1,...,A,)andB = (By,..., B,,), whereA,, B, € V, then®,; (A; B)
denotes the set of all nonintersecting pathis. .., 7,,, wheren; goes fromA ;
to B;. The weight of a familyr = (71, ..., m,) of paths isw(z) = HTzlw(nJ-).
TakeN >nandsetd; = (0,1— j) andC; =(n,—n+1—j),1<j <N, see
Figure 3.

LEMMA 2.1. If (&, ..., y) are pathsin £nj. (A; C), then m; goes through
thevertex By =+ 1—k,—n), 1<k <n.

PROOF Sincem; ends atCi = Bj, the claim is true fork = 1. Eachmy,
1 < k < n, has to go through one of the poinks— 2, ..., B, sinceC»,...,C,
lie below the liney, = —n and all the paths are right/down directed. The
nonintersection constraint implies that, 1 has to pass this line to the left af,
and the claim follows. [J

By this lemma there are well-defined projections
and

Q:Q_> Q//i?n.i.(Bl’"'7B}’l7A}’l+la"‘1AN;C1""9CN)7

such thatw () = w(P(7))w(Q(x)). An event D in the dominoNtiIing of the
size n Aztec diamond corresponds, via the bijection, to an event Q'. Set

Al @ oo o o o o
A; (o . .
As s *
A4 IC L4

Ay @
A(i 8
A G
Ag

N

FiG. 3. Thenonintersecting pathsin the graph §.
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D% = {r € Q; P(w) € D}. Then,
ZneD* ()
ZEGQ ()
_ Cpep@(@N(Egreqr ()
e @ (7)) (X greqr 0 ()
The right-hand side in (2.2) is independentNdf> n and, hence,

Pn[Dy] =
(2.2)

=P[D].

(2.3) PID]= lim P}[D}].

We want to map, bijectively and preserving weights, the nonintersecting paths in
to a new family of nonintersecting paths which is appropriate for the application
of the general results in [16]. The idea is as follows. Each patfrom Aj to Cy
has a first and a last vertex on each vertical line= j. Thefirst and thelast
vertex could, of course, coincide. We want to put the first and the last vertex on
different vertical lines. These first and last vertices form the point process we are
interested in. Leg’ = (V’, E’) be the directed graph witi’ = N x Z and directed
edges from2i — 1, j) to (2i, j), i > 1, from (2, j) to (2i, j — 1), from (2i, j)
to (20 +1, ), from@2i,j)to2 +1,j+1),i>1, from (0, ) to (1, j) and
from (0, j) to (1, j + 1), j € Z. We put the weight: on the edges froni2i, j) to
(2i +1,j+1) and from(2i, j) to (2i, j — 1),i > 1, j € Z. All other edges have
weight=1

We can describe a path, from A, to Cy by giving the first, P, (j), and the
last, Qx(j), point on each verical line; = j, 0< j <n; P (0) = Q(0) always.
From Q:(j) to Pr(j + 1) we take either a stepl, 0) or a step(1, —1), and
from Pi(j) to Qx(j) we take a certain number; 0, of down stepq0, —1).
Map Q«(j) = (j,q) 10 Re(2j) = (2j,q9 + j), 0= j <n, and Pc(j) = (j, p) tO
Ri2j — 1) =(2j—1 p+ j). Astep fromQi(j) to P.(j + 1) is mapped to two
steps. One step from(2) to Ry (2j + 1), which is either(1, 0) or (1, 1), and
then a fixed step fronR,(2j +1) =(2j + 1, p+ j) to (2j + 2, p + j), that is,
a step(1, 0). The vertical steps fron® (j) to O (), if there are any, are mapped
to the same number of vertical steps fr@8y, p + j) to (2,9 + j). SetA, =
(2n, 1—k),1<k < N.Theabove procedure magy; (A1,..., Ay; C1,...,Cn)

Pni.(A1, ..., An; AY, ..., Aly) bijectively, see Figure 4. Also the welght of a

famlly of paths is preserved The probability of a family of pathsn Qy =

Pni(A;A)is
= _ ()
(2.4) Puzm) =520

An eventDy; in Q as above maps to an evemv in Qy using the bijection, and
from (2.3), we havé®[D] = lim y— oo Py (Dy).
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Fic. 4. The nonintersecting paths in the graph ¢’ corresponding to the tiling in Figure 2. The
particles in the determinantal process are the circled dots.

The paths m,...,7y are uniquely specified by the points
(Rk(j)1<j<2n—1,1<k<n- We will write Ry(j) = (j,x}), L<j<21—1,1<
k<N andg:(x,{); x,?zx,f"zl—k, k> 1; x{ >xé > ... >xN These
points define a particle configuration{h, ..., 2n — 1} x Z and we obtain a point
process on this space which we can think of as-21 copies ofZ. We see that
the NPR-boundary process is obtained by joinihg0), P1(0), P1(1), 01(2),.

P1(n), Q1(n) with straight lines in this order 101(j) has coordinates§;, qj) |n
CS-ll, thenR1(2j) = (2/,q; + ), SOqJ _xl — j. Similarly, if P1(j) has coor-
dinates(j, p;) in CS-ll, thenp; _xf — j. We see from (2.1) that

01() = 2j —xi’ —n.x7) —1/2),

Pi(j) = (2j —x2 7t —n xZ7_1)2)

(2.5)

in CS-I.

The red points described in the introduction & ;) + (—1/2, 0) in CS-l and
the green points ar@(j) + (1/2, 0); note that we can hav@ (j) = Px(j). This
is seen from how we defined the nonintersecting paths and the red and green points
in Section 1.

We can definezig-zag paths around white and black squares as in
[8, 9, 14, 15]. Consider the sequence of white squares in the Aztec diamond
with opposite corner®); = (—r +k,n+1—k —r),k=0,...,n 4+ 1, wherer,
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1 <r <n, is fixed. The zig-zag steps fro@; to Q;_, go either one unit step to
the right and then one unit step down (ES-step) or the other way around (SE-step),
and in such a way that it does not intersect a domino. Similarly, we can define
zZig-zag paths around black squares betweenn — r) and(n — r, —r). It is not
hard to see, compare the proof of Lemma 2.2 in [15], that the zig-zag paths around
white squares have a red dot exactly when we have an ES-step around it, and that
Zig-zag paths around black squares have SE-steps around squares with green dots.
In this way each zig-zag path corresponds to a unique particle configuration, and
we can view the point process as the totality of all zig-zag particles.

It was proved in [14] and [15] that the zig-zag particles along a single line define
a point process described by the Krawtchouk ensemble. The possible positions of
the red particles can be taken toffel, ..., n} and therth zig-zag path hasred
particles ati1, ..., h, (no ordering). The probability of having particles at exactly
these points is [15], Theorem 2.2,

1 4 ok
Ar(h)zl_[(}:l_>thpn hj’
Zr,n,q j=1 J

whereqg = a?(1+ 4?1, p=1— g andA,(h) is the Vandermonde determinant.
This Krawtchouk ensemble has determinantal correlation functions given by the
Krawtchouk kernel,

(2.6) Plh] =

r—1 1/2
(2.7) Kr,n,q(x,y)=Zpk(x;q,n)pk(y;,q,n)[c)qxp"‘x <n>qyp”‘y] ,

k=0 Y
where

-1/2 x Hex
(2.8) pk(x;q,n)=<Z) (gn) 21— L /(1+PZ) (1 q2)" " dz
< b4

are multiples of the ordinary Krawtchouk polynomiajs;is a circle centered at
the origin with radius< min(1/p, 1/q). px(x; q.n) = (} )1/2(q/p)k/2Kk(x q,n),
whereK; are the standard Krawtchouk polynomials, see, for example, [19].

Next, we want to show that the fact that we have a determinantal point
process when we restrict to a single line can be extended to show that the whole
point process is determinantal. Using the Lindstrém—-Gessel-Viennot method,
the combinatorial version of the Karlin-McGregor theorem (see, e.g., [26]) we
can write the probability for a certain particle configuratioras a product of
determinants

2n—-1

1_[ det(¢r r+l(xj > xr—i—l))J k=1’

(2-9) PN,n(£)= 7

9

where the transition functiow, ,;+1(x, y) gives the weight of all paths going
from x on the vertical line- to y on the vertical line- + 1. The right-hand side
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of (2.9) is a symmetric function off, ..., x}, for anyr, so we need not consider
the variables on a single vertical line as ordered. From the definitions of the
directed graplg’ and its weights, we see that we can describe the nonintersecting
paths using two types of transitions between different vertical lines. From vertical
line 2 to 2 + 1, we can go from(2i, j) to (2i + 1, j), with weight 1, or from

(2i, j)to (2i + 1, j + 1), with weighta. From line 2 + 1 to 2 + 2, we have to
take a step to the right, with weight 1, and then a certain nurmb@rof down
steps, with weight:. This leads to the following transition functions:

a, ify—x=1,
(2.10) $2i2i+1(x, ) =a(y—x)=11,  ify—x=0,

0, otherwise,
and

a O, if y—x <0,

(211)  ¢oipr2i42(x, ) =By —x) = { 0, otherwise.

Set f2i(z) = az + 1 and foiz1(z) = (1 — a/z)~! so thata(n) = foi(n) and
B(n) = foi11(n), where f.(n) is the nth Fourier coefficient off,. We assume
that O<a < 1. The caseu = 1 will be handled by taking a limiz — 1—.
Note that f, has a Wiener—Hopf factorizatiorf, = f,* f,~, where f;m =
az+ 1, fy = fi1=1and f5 ;1(z) = (1 —a/z)"L. It follows from [16],
Theorem 17, that the point process Bn= {1, ..., 2n — 1} x Z defined by (2.9)
has determinantal correlation functions. The probability of finding particles at
7j=(rj,y;),1<j<m,where O<r; <2n andy; € Z, is

(2-12) del(KN,n(Zj; Zk))j‘ik:l?
where the kernel is given by the formula
(2.13) Knn(r,x;s,9) = Kna(r, x5, 3) — @5 (x, ).

Hereg, s = ¢r 41 % - x ¢ps_15 if s > r ande, ; =0 if r > 5. Furthermore,

N
214)  Kya(rnxis,y)= Y ¢ron(x, xP)(A g0, ),
i,j=1
whereA = (a;j)N;_y, aij = $0.21(x, sz."). This is a consequence of the following
formula, Proposition 2.1 in [16]. Assume thatV,, — R is a bounded function.
Then,

1N
(2_15) EN |: 1_[ 1_[ 1+ g@, x" ) :| :det(l-l—gKN,n)Lz(me,
r=1 j=1

where v is counting measure oi,,. HereEy , is expectation with respect to
the probability measure (2.9). H(r,x) =0, for x < —n + [r/2], then the left-
hand side of (2.15) depends only on the part of the particle configuration that
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corresponds to the Aztec diamond. We know that this is independei, of
compare (2.3), and we can replace the kekigl, by its limit asN — oo. This
limit is given by, Proposition 1.8 in [16],

(2.16) Kn(r,x;s,y) = Kn(r,x;8,y) — brs(x, ),
where
~ 1 dz dw wY Z
(217) Ky(r,x;s,y)= —2/ _/ __Gn,r,s(z, w)——o,
(2ri)e Jizl=rs 2 Jiwl=r, w Z* Z—w

a<ri<1l/a,0<ry<ry,

n—1 - s—1 o+
(2.18) Gp.rs(z, w) = Jr /DT fi (H/w)

T A A w)

and
1/ . L
(219) Grs(x,y) = — f el(y_x)an rs(elgv ele)de
B 271_ —x ELE)
for r <s and¢, s (x, y) = 0 otherwise.
Inserting the formulas fof,* into (2.18) we see that, withy, > € {0, 1},
A—aw)" T2 +a/w)’
(1—az)"re1(14a/z)"
Using Cauchy’s theorem, we can deform the integration contourg given
by w(t) = a1e'’, —w <t < m, andT given by z(t) = ay + it, t € R, where
0 < a1 <az < 1/a. We can then lett — 1— to get the case = 1 using the
continuity of all expressions involved. Then,
I?,,(Zr,x; ,25,9)

(2.21) 1 /@ dww’(1—w)" 1+ 1L/w)* ¢
_(27'[i)2 r zJy

(220) Gn,Zr—el,Zs—sz(Z, w) =

w ZXA-2""A+1/z2) z—w

It follows that the probability of finding particles at positiong = (v}, y;),
wherey; > —n +[r;/2], 1< j <m, is given by (2.12) withk,, instead ofK y ,,.
Consequently, for all our computations we will usg given by (2.16). We will call
this kernel thextended Krawtchouk kernel. For future use we record the following
consequence of (2.14). Let < --- < r,, and letéy, ..., £, be given real numbers
such thatty > —n + [r¢/2]. Then, forN > n,

P [max;c”<£-,1<'<m]
N.n 15k eN K St =

(2.22) 2-1 N
— I['Z'N,n|:

[T [1@+sa, x;))i| = detl/ +gKn)2(a,,,):
r=1 j=1
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whereg(r,x) = =1y 00)(x) If r =1, 1<k <m, andg(r, x) = 0 otherwise.
Sincex] = max <<y x; When the variables are ordered, we can combine (2.22)
with (2.5) to study the boundary of the NPR. To use it to prove Theorem 1.1 we
need some asymptotic results for the extended Krawtchouk kernel. These will be
proved in the next section.

To justify calling (2.16) the extended Krawtchouk kernel we should show how
it is related to the Krawtchouk kernel defined by (2.7). lgtbe the normalized
Krawtchouk polynomials given by (2.8) and ggt=0 if k < 0 ork > n. Define,
O<g<1l,p=1—g,

-1

n Y2/, \1/2
Lyg(rox;s,y)= ( ) ( )
(2.23) a k:X—:oo k+s k+r

X Prr (3 ¢, 1) Preps (3 @, W) [wy (x)wy ()12

if r <s,and

i 0 \"Y2, . \Y2
Ly (r,x;s,y)=— ( ) ( )
(224) n.q =0 k+s k+r

X Pr4r (X5 q, 1) Prts (¥ g, n)[wg (X)wg (y)
if r>s, wherewy(x) = (7)g*p*~*. Note thatL, ,(r,x:r,y) = Krn4(x, ),
wherek, , , is the Krawtchouk kernel given by (2.7).4f= a?(1+a?)~1, then

Kp(2n—r)+1,x—r+L2n—s)+1,y—s+1)

(2.25) 112
:|:<’;> (Z) i| (_1)r_SLn,q(7‘,x;s,y),

where K,, is the extended Krawtchouk kernel defined by (2.16)—(2.20). The
prefactor in (2.25) cancels in all determinants and is not important. Hence, we can
just as well think ofL,, , as an extended Krawtchouk kernel. We will prove (2.25)

in Section 5.

Let us briefly comment on some asymptotic results related to the behavior of
the domino tiling of the Aztec diamond close to the point of tangency of the
Arctic circle, that is, we consider the positions of the zig-zag particles ontthe
line wherer stays fixed as — oco. The corresponding limit for the normalized
Krawtchouk polynomials is [19],

(2.26) lim_pi(gn +&v/2npg; q.n) = (=D*he©)n 4,

112

wherehy (x) = 27%/2(k!)=1/27 =14 g, (x) are the normalized Hermite polynomi-
als. Define an extended Hermite kernel by

(227)  Kni(n&:s,m) = Z Esij). i sy j(me™EHTN2

j_OO
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if r <s,

(2.28)  Kni(r.&is.n) = Z Eji’), i j €y j (e E T2

if r >s. Hereh, =0 if k < 0. Note that (2.27) is the ordinary Hermite kernel of
GUE(r) if r =s. Taking the limit (2.26) formally in (2.23) and (2.24) gives

020y AT V2L g+ €205, n + 127

= Kn,1(r, &;5,m).
The kernelKy | also occurs in the following problem. Consider a random matrix
from GUE@), and letA; be thek x k upper left corner ofdA, 1 < k <n. The
kernel Ky then describes the correlations between the eigenvalp@sn) of
Ay, 1< j <k, 1<k <n,which form a determinantal process. This follows with
some work from [3] and [16]. For the Aztec diamond this leads to the result that
the zig-zag particles along the lines. 1., r, r fixed, n — oo, behave like these
eigenvalues, see [21]. Note that there is also a different extended Hermite kernel
which describes the correlations of the eigenvalues of Dyson’s Brownian motion
at different times, namely,

-1
2 2
(230)  Kun(m.xio,y)= Y T hy  (Ohyp(y)e” 2

k=—00

if T >0, and

o0
— _(v212
(231)  Kun(z,x;0,9) ==Y Ty (b (e T2
k=0

if T < o. Again, (2.30) reduces to the ordinary Hermite kernel for GiJE{
T=0.
3. Asymptotics. The rescaled variablés &', andz’ are defined by
2r = by (1) =n(141/v2) + 27 YV8n?P = n(p 4+ 1),
2s =b,(t) =n(p’ +1),
x=n(p+Vp?=1)/2+27%%n*3 = na(p) + 27%/%n*3,
y=n(p' +Vp2—1)/24 2 %5'n1/3,

If we write a,, (1) = n/v/2 —2-%6121/3 thenn(p +vp? —1)/2=a,(x) +---.
Set

Ky(2r, x;2s,y)

3.1
(3.1) _ (ﬁ _ 1)x—y+2(s—r)eétfé/r’f(1/3)t3+(1/3)t/3Kn 2r, x: 25, y),



14 K. JOHANSSON

where K, is given by (2.16). We can usk, as our correlation kernel instead
of K,, since all determinants are unchanged. Set 2-%6,1/3 and define the
rescaled kernel

(3.2) Li(r,& 1, &) =cuK,)(bn(),an(z) + cn&; bp(t'), an(t’) + cn&’).

The basic asymptotic result is contained in the next lemma which will be proved
below.

LEMMA 3.1. (a)Uniformly for &, &7, 7, ' in a compact set,
(3.3) Jim Lh(z.8:7,8) = AG w8, 7)),
where A isthe Airy kernel defined by (1.2).

(b) Fix M > 0. There are positive constants d1, d2, N, which depend only on M
such that if T > 7/,

(3.4) IL¥(z, &1, E)| < dye™2EFE)

andifr <7/,

(3.5) |L*(z,&: 7, &) < Le—dzu'—r)(s%’)
nrTrer e - m

foraln>N,7,v"e[-M,M]and &,&’ € [—M, c0).

The convergence of Fredholm determinants will be proved using their Fredholm
expansions.

LEMMA 3.2. Let 11 <--- <71y and y1,...,¥n € R be given. Sat A, =
{r1,..., T} andlet v be the counting measureon A, x Z. Also, write g, (t;, x) =
_]l(an(‘[j)-i-yjcn,oo)(x)’ x € Z. Then

n—>ooZk1/ WX Tk det(K (Z”ZJ) i,j= 11_[gn(2])d V(z)
(3.6)

- Z k, f e ) l_[lf(Zj)dku(z),
]:

where 1 = 1 ® uo, (1 iSa counting measure on A,,, 12 is a Lebesgue measure
onRand f(rj,x) = —L(y;.00(x), 1< j <m.

ProoOF The proof has many similarities with the proof of Lemma 3.1 in [13],
where more details can be found. The sum in the left-hand side of (3.6) can be
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written
"1 1 . L X(@) —an(t(zi)) |
,;;E/(A XZ)kC—kdet<L”(r(z,), : ;
(z)) — an (@) |\
(3.7) T(Zj)’xzj ci = >)ij=l

n

k AN .
<1 f(r(Zj), *ey) C"”(I(Z’)))dkv(z),
j=1

wherer(z;) =7, x(zj) =x; if z; = (7, x;). Find M > 0 so thatr; € [-M, M],
yj =—M, j=1,...,m. Then, by (3.4), (3.5) and the Hadamard inequality, the
determinant in (3.7) isf3, d4 > 0,

ko[ k 12
< d- H(Z exp(_2d4<x(zz’) —an(t(zi)) 4 x(zj) — an(‘[(zj))>>)
i=1

Cn Cn

< dikMdagk/2 ﬁ eXp(—d4<x(Zi) — an(7(2i)) ))

i=1 Cn

for thosez; that contribute to the integral in (3.7). Using this estimate, we see that,
givene > 0, the part of the sum in (3.7) wheke> N is

00 1 k
< Z k_ k/2< Z Z —d4(x—an(rj))/c,,> <e

k=N J=lx=a,(t;)—Mcy,

if N is chosen large enough. Similarly, using the estimates (3.4), (3.5) and the
Hadamard inequality again, we can restrict the integration in (3.7)\tox
((—o0, Lcy]1 N Z), with an error< ¢ by choosingL large enough. We can then
use (3.3) to see that what remains converges to

k
z N l—[ N gk
(3.8) k' fAmX( oo, L)¥ detAG, ZJ))i’j:1 j:lf(zj)d He:

The extended Airy kernel satisfies estimates like (3.4) and (3.5), as can be proved
using standard estimates of the Airy function. The same type of argument as above
then shows that (3.8) approximates the right-hand side of (3.6), with an-error
providedN andL are chosen large enough. This completes the prdgf.

We can now give the proof of Theorem 1.1.
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PROOF OFTHEOREM1.1. From (2.22) it follows that, with/2 = b, (1)),

2’,-.
P| max x, ' <a,(z; cp,l< i<
|:1SkSka < an( ])+V]Cn =J _m]

(3.9) = det/ + gK”)LZ(AmXZ,v)
"1 . k )
k=0 m =1

with g as in Lemma 3.2. Now the right-hand side of (3.9) converges to

= det(A(zi, z))); i— () d* ()
(3.10) 271 Jiay nys 9CTAGE 2 )”‘ljljlf !
=det/ — f2AfY?) 20, )

where f (7, x) = 1(y,.00)(x). Combining (3.9), (3.10) and (1.3), we see that,
N >n,

@311) N [ 192’1%’65” =n/N2+270 0y — Tt 1< ) < m]
=P[A(Tj) <y;,1<j<m].
To conclude the proof we use (2.5). Note that in (2.5) the variables are ordered
S0 thatx2” = maxg<i<y x.. Write x27 = n/v/2 + cu¢j. Since 2; = n(1 +
1/4/2) 4 2767023, we get
X, (27Y0n2/3(z; — 272307 13¢ )y —n /2 + 1/2
2-5/6,,1/3 J

Combining (3.11) and (3.12), we obtain (1.4) and the theorem is proved. Note that
the variation in the argument of, due to¢; is negligible. To be more precise, we
could use the uniformity iy, ..., 7, in our convegence estimated.]

(3.12)

We still have to prove our basic asymptotic lemma.

PROOF OFLEMMA 3.1. Set
Frx@=2""1-2""1+2) .
Then, by (2.21),

dw Fy y(w) z
(3.13) Ki(2r,x:25.y) = (zm)Z/r f w Frx(@ z—w

and, furthermore,

(3.14) b2, 3) = 5 / yoxr- (

1_Z)r SdZ
1+z z’
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if r <s.Set
1+p —p 1+p
f@=alp) -~ —— logz + 5 log(1—2z) + 5 log(1+ z)
so that
(315) Fr,(z) = 82—5/6§n1/3logz+nf(z).

A straightforward computation shows that(z) has a double zerg. = z.(p) =
o1+ +1—p2)~1 It is this double zero condition that specifiegp), and
corresponds to the arctic circle. The geometrical considerations and the choice
of the place where we want to show convergence to the Airy process leads to
1/v/2 4+ 27167, =13 (The exact number2/® comes out of the computations
below.) We get. = +/2 — 1+ t/dn/3 + ..., whered = 2-5/6(1 + +/2). Also,
we writez,, = z.(p’).

As our paths of integration we will take

n—+it
Z(f):Zc‘i‘m, teR,
w(t') = (Z/c T4 771/3)e”,/d/n1/3’ 1| <7d'n'/3,
n

whered’ = d(+/2—1) =27%6 andn > 0 is such that — ¢/ 4+ 2 > 0.

CLAIM 3.3. St

Fy (2, —n/(dn3) —y42(s—r)
3.16 Ap(n) = —222¢ V2 — )Tyt
(419 = e+ nfan ) V27
Then with the choices of r, s, x, y as above:
0)
i _ g —Er413/3-7"%/3
(3.17) nll_)moo A,(n)=e

uniformly for &, &/, 7, ©/, n in a compact set, and
(i) forany&,&" > —M, |7|,|t'| <M, 0<n < 3M, thereis a constant, which
only depends on M, such that

(3.18) |An(n)| < Ceb'T 6T nE+ED,

PROOF  Write
we =z +n/dn*P=v2 -1+ (t +p)/dn'P + ..,
wl=z,—n/dnP=v2 -1+ —n)/dn*P+ ...

C



18 K. JOHANSSON

The higher-order contributions can be included jr’ by slightly changing their
values. Then,

(‘/é - 1)2r—x Frx(we)
= wf_r(l - wc)n_r(l + we)"
— (1+ 25/6(1' + 77)n—1/3)x—r2n/2(1 . 21/3(1' + n)n—1/3)n—r
x (1+ (v2-1)2Y3x + N3,

We can now insertc = n/+/2 + 2796 — t2n1/3 + ... and r = n(1/2 +
1/2/2) + 27"/6tn?/3 into this expression. Also, we can write an exactly
analogous expression fo/2 — 1)~ Fy y(w,). A straightforward, but somewhat
lengthy, computation now gives (3.17) and (3.18)J

CLAIM 3.4. Letr,s,x,y beasabove and set
Q= {(t,1) €R x [—xd'n®3, xd'n"3]; |t] = n¥/372 || = n1/37%)
for somefixed § > 0. Then, uniformly for &, &/, 7, ¢/ in a compact set,

(3.19) lim LOWE)  Feyw(e),

2 _ q)¥yF2As—) "—o.
n=00 Jo, wt')(z(t) —w()) Frx(z(t)) (vV2-1) drdi'=0

The claim will follow from the estimates used to prove Lemma 3.1(b) below.
Let us accept it for the moment. Expandifigz) aroundz., we get

(3.20) Frr(z(t) = e—is(—r+ir;)—(i/3)(—r+i,,)3+r,§1) (I)Fr,x(zc),

whererY (1) — 0 asn — oo uniformly for |¢| < nY/3~3 and, 7 in a compact set.
Similarly,

sl N (s /i3 ,.(2)
(3.21) Fs,y(w(t/)) — 1 (W HIM— (/3 +in) +ry (Z)Fs,y(zé)s

wherer'? (1) — 0 asn — oo uniformly for |¢/| < n¥/3~% andé’, t’ in a compact
set. If we insert this into (3.13) and use Claims 3.3 and 3.4, we obtain, after
changing to —¢,

(\/E . 1)x—y+2(s—r)2—5/6,11/3[2"(2},.’ X; 2S, y)

O e T S 1

lim
n—oo

(3.22)

472
PHEUHIM+IE (W +in)+i ((+in)3+(1' +in)3)/3
X / dt/ dt’ ,
R JR T —t4i(t+1t +2n)
3_.73 Il o~
— e(1/3)(r —1)=&r+&'t A, &; _L,/’S/)’
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by Proposition 2.3 in [16]. In order to prove Lemma 3.1(b) and also Claim 3.4, we
need some estimates.
Write

—5/6¢1/3
(3.23) |Frx(z(0)] = 2()|? 75" | Frxo(2(1))
wherexg = na(p) =n/~2 — 27561213 ... Now,

El

|Froig 4 i) |2 = 02 4+ 1?0 (L= )2+ u?)" " (L4 12+ u?)
and, hence,

p(u)
q)’

d 2
au log| F xo (X + iu)|"=2u

where
p) = (xo — NI = 2%+ u?l[(L+1)* + u?]
+ (= DDZ+ U A+ D2+ u?] +r[2 + u?A 1)+ u?)
and
q) = 0Z +u®) (L + 12+ u?) (L - 22+ u?).
We can now inser{xg — r)/n = —1/2 + 1/2/2 — 2= %tn=13 4 ... y/n =
1/2 4+ 1/2V2+ 27 8tn= Y3 anda = V2 — 1+ 27%8(/2 — 1)(x + n)n~1/3
into p(u). After some computation, we get
%p(u) =23(v2 - 1% Y3 (V2 - VP + (1/1/V2)u?,

up to negligible contributions. Assume first thak@ < 1; the case-1<u <0is
analogous. Then there is a numerical constarsuch that

d .
Tn l0g| Fy 1o (. 4 iu)| > 2conn®3u,
and, consequently,
| Froxg O+ )| = | Frg (1) |e0m ™,

for |u] < 1. (Belowcg denotes a positive numerical constant the value of which
may change.) This giveg,| < dnl/3,

(3-24) |Fr,xo(Z(t))| = ‘Fr,xo(z(o))‘ecomz-

If u>1, we usep(u) > nu® andq(u) < cou® and, hence,

d
71091 (h + i) = con/u.
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Combining this with (3.24), we obtain

con
n2/3

(325) ’Fr,xo(z(t))’ = |Fr,xo(z(0))‘econ

dnl/3
for |t| > dn'/3. Looking back at (3.23), we see that we must also consider
z(1) 2750/
z(0)

If €] < M, the factor (3.26) can be absorbed into the other factors in the estimates
above by slightly changing the constant If £ > M > 0, then the expression

in (3.26) is> 1 and we use just this trivial estimate. Combining the estimates, we
obtain

—1/6,2¢,,—1/3 ...
— 62 tén + )

(3.26)

(3.27) | Frx (z(0))] = | Frx(2(0)|gn (1),
where
explcont?), if |¢] <dnl/3,
10 =) axpconnd)|e /dn M3 i |1 > dnd/3.

We also have to estimate theintegral. Consider
|Fs,y()| = w1 —w|" |1+ wl’,
setw = ae'? and defingg(9) = (n — s) log|1 — ae'? |2 + slog|1 + ae'?|2. Then,

(1—2B8)(1+ «?) + 2 cosd
1+ a?)2 — 4a2co20
where B =2s/n =1+ 1/v/2+2-Y6¢/4=1/3 The numerator in (3.28) is 0 for

all 0 if o <z =+2—1+2756(y/2—-1)'n"1/3. Hence, this will be satisfied if
we choose

(3.28) g'(0) = 2ansiné

ity a.1/3
wie) = <Z/c - dnnl'/'s)e” e,

with n > 0 as above. A computation givg$d) — g(0) < —co#%n%/3n and, thus,

r_ M —cot?n
FS,y <ZC dnl/3)‘e ’

for |¢'| < wd'nY/3. Combining the estimates (3.27) and ( 3.29), we get
K, (2r, x5 25, )]

C |Fy.y(z. —n/(dn*? o0 wd'n/3 ,
< |Fs,y(z, —n/( nl 3))| (/ gn(t)_ldt) (/ o—coi’? dﬂ),
nY3 | Fy x(ze +n/@dnt/3) | \J o —md'n/3

< T TG,

(329) |Fs,y(w(t/))| =<
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where we have used (3.18) in the last inequality. het 2ng. Then,&'(t/ —
n) —&(T+n) <—no&+&), for&, & >0, if we chooseyg so thatt’ — g < 0,
T + 1o > 0. This proves (3.4) for th& part, and we also use the same estimates
to show Claim 3.4. Notice that — 7 — 2 < 0 if ng is chosen large enough.

It remains to consider the, (x, y) part of K,, in (2.16). Letr, x,s,y be as
above witht’ > . We want to show that, faf, &£/, 7, r’ in a compact set, we have

Cn (\/é - 1)x—y+2(S—r)¢2r’2s (x’ )7)

(330) _ 1 _(s/_$+r2_7:/2)2/4(r/_t)
VA (t' — 1)

uniformly asn — oo, and that, giveriM > 0,

—y2(s— gl co ’_ ’
(331) [eu(v2— 1) P TRTETE gy o (1, )| < VAT DER)

for |z|, |t/| < M andn sulfficiently large (depending orf — 7).
To prove this we use the integral representation

1 d 1 s=r
(3:32) bralr =5 [ T ()
21i Jizl=a z 1-¢
where O< « < 1. Setz = we'? and £ (9) =log(|1 + «e'? |2|1 — ae'?|~2). Then
1+ a?
(14 a2+ 20 cosf)(1+ a? — 2a cosh)’

so we have a maximum wheén= 0, and

£/ (0) = —4a sing

(3.33) () — £(0) < —cob?

for 16| < w. We can use this estimate to localize the integral to a small
neighborhood o6 = 0 and a standard argument then proves (3.30). From (3.33),
we obtain

|¢2r,2s(x’ | < Zidy’wrrs(l—i_—a)s_r /ﬂ efconz/s(r/fr)é)z de
JT

1-— (07 —7T
< ay—X-l—r—S<1+a>sr 1
- l-—« n3/Arco(z' — 1)

Hence,

C”(ﬁ _ 1)x—y+2(s—r)e§t—$/‘[,|¢2r,2s(x’ )’)|

3.34 —xtr— -
( ) < co ( o )y xX+r 5(14-0[(\/2_1))5 regr—g-"r/'
Ji—t\J2-1 l-«
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Choosea = (v/2 — 1)(1 + 2-6,=1/3(¢ + ¢')). Inserting the expressions for
x,y,r, s into (3.34), a computation shows that the right-hand side of (3.34) is

<O @ -0E+EN 24P IHIED

TVt -1
for |z|,|t'| < M, whereci depends onM. Hence, ifn is large enough, this
expression is

<0 —-nE+E)/4

VA4
sincet’ — t > 0. This completes the proof of Lemma 3.1(b) and, hence, of the
whole lemma. [

4. The center of the Aztec diamond. It has been conjectured by Propp,
see [5, 6, 12], that in the limit — oo, a random domino tiling of the Aztec
diamond “looks like” a random domino tiling of the whole plane under the Burton—
Pemantle measure (the tiling measure with maximal entropy) [4]. In this section we
will discuss and outline a proof of a version of this conjecture. The version given
below is in terms of particle configurations and not directly in terms of dimers.
A domino tiling of the Aztec diamond or the whole plane can equivalently be
described as a dimer covering (perfect matching) of a certain graphV Liss
the set of verticesl/2+ j,1/2+ k), j,k € Z, in CS-l andE the set of edges
between nearest neighbors. A domino tiling of the whole plane is the same as
a dimer covering of(V, E). It will be convenient to write the coordinates as
complex numbers. Color the poinfd+ j + i(k + 1/2) black if j + k is even
and white otherwise. Leiy be a white vertex iV and give an edge between
andw + z, wherez = +1, +i, theweight z. Let D C E be a finite subset of edges
in E and assume that the edgeslincover the black vertices;, ..., b, and the
white verticesws, ..., w,. It is proved in [18], using techniques going back to
Kasteleyn [17], that under the Burton—Pemantle meaguthe probability of the
eventUp that the edges i belong to the dimers of a dimer covering @f, E)
equals

(4.1) uw(Up) =ap det(P(bj - wk))’;fk:la
whereaqy is the product of the weights of the edgedirand

4. 1 T T ei(x@—yqb) d0d
. P (V) = —5 0do.
(4.2) (r+iy) 472 /—7‘[ /_n 2i sinf + 2sing ¢

Let A, be the Aztec diamond region as before, Bgt= A, NV and letE, be

the edges between nearest neighbor&,jn Then dimer coverings of the graph
(Vu, Ep) are in one-to-one correspondence with domino tilingg ofAssume that

n is odd so that the square with cent¢lt- j +i(k + 1/2) is black if and only if

J +k is even. The case of everis analogous. The red and green particles defined
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in Section 1 lie inV,,. It follows from their definition that there is a red particlevat

if and only if v is white and there is a dimer from- 1 tov or fromv —i tov. There

is a green particle atif and only if v is black and there is a dimer fromto v +1 or
fromv tov+i. The discussion in Section 2 also shows that these particles uniquely
determine the domino tiling od,,. We can similarly associate a red/green particle
process with domino tilings of the whole plane by using the relation to dimers just
described. From (4.1) we can then compute the probability of seeing red/green
particles at specified points. Note that all particles on theine —x1 +2¢ + 1

have to be green, whereas all the particles on theline —x1 + 2¢ have to be red.
Consider, for simplicity, only green particles. We wish to compute the probability
of seeing green particlesat =u; +1/2+i(—u; +2¢; +1/2), 1< j <m.Then

all v; are black and there has to be a dimer betweeandv; + 1 or between;

andv; + i. Hence, this probability is given by, compare Theorem 2.10 in [15],

Z 21+ zmdeP(vj — (vj +Zk)))l;fk=1

zj=Llori
m
Z 1 Zm Z sgn(o) l_[ P(vj —vo(j) = Z0(j))

zj=1ori 0ESm j=1
(4.3) Yosgno) > [[ze(hP(vj = vo() = 20()

o€Sp zj=lorij=1

3" sgno) ]_[( > Pvj—vogy — Zc(j)))

O ESm Jj=1\zo(p=1ori

=detfP(v; — v — D +iP; —ve =)y

Set,v € C,
(4.4) Rw)=Pw—-D+iPw—i).

Consider now the probability of seeing green particlessat.., v, in the
Aztec diamond4,,, with » odd and sufficiently large to include these points. This
probability can be expressed in terms of the extended Krawtchouk kernel. A green
point corresponds to a poim® + (1/2,0) in CS-Il where Q is a last particle
position. In CS-I this corresponds to a position, compare (2%&)—n + 1/2 —

x% x¥ —1/2), which gives 2 =20 +n+1,x% = 2¢ —u+1. Hence, in terms of
the extended Krawtchouk kernel, (2.16), the probability of finding green particles
atvy, ..., v, IS

(45) defK,(2¢;+n+1,20 —u;+1;20+n+1,20, —ug + 1))’]7fk:l.
We can interpret Propp’s conjecture as saying that

lim det(K,(2¢; +n+1,20 —uj+ 1,20 +n+ 1, 20, —uy + l))"?k_1
n— 00 J K=
(4.6) . m
=det(R(u; —uk +i(uk —uj +2(¢; = €0))) =g



24 K. JOHANSSON

The proof of (4.6) consists of two steps. First, we must compute the asymptotics
of the kernelk,, for the appropriate values of the arguments corresponding to the
center of the Aztec diamond. We will do this using the approach in [22], but we will
not give the details, which are of a rather standard saddle-point argument nature.
We then have to show that the resulting limiting expression equals the right-hand
side of (4.6). These computations will be presented below. The cases of just red
particles or a combination of red and green particles can be treated completely
analogously.

It follows from (2.16), (2.21), (2.19) and the residue theorem that

K,(2r,x;2s,y)

(4.7) 1 /d—z dww'(1—w)"*(14+1/w)* z
S @ri2lrz )y w Q-+ 1)) z—w

k]

WithT:t —> ap +it, t €R, y it — aze'’, |t] <7, wherea > a1 > 0 if r > s and
ap<—ay,a01>0ifr<s. Writen=2N —1,x; =2(; —u; +1,1< j <m.
Then,

Kon_1(2(€; + N), xj; 2(x + N), xi)
(48) B 1 / dz dw wrk (1 _ w)N—l—fk (1+ 1/w)N+€k z
- (27-”)2 rzJyw ZXj(l_Z)N—l—Ej(1+1/Z)N+€j —w

Write (1 — w)V 1+ 1/w)Y = w1 — w?N = exp(NF(w)), where f(w) =
—logw + log(1 — w?). Then, f(w) = 0 if and only if w = +i. Assume that
£; > {i; the other case is similar. We can moWVeso that it goes through-i,
[o:t — it. We then pick up an extra contribution from the pole at w whenw
isony, it — €', —m/2 <t < /2. We obtain

Kon-1(2(¢; + N), xj; 2(¢x + N), xi)
1 dw ej—t G—t;
= — —_— 71— T+ 1 k=tj
(4.9) 2mi Jy, w v (1=w) (1+1/w)
N 1 f dz [ dww*(1—w)N 114+ 1/w)Ntt ¢
(27.”')2 o 2 Jy w ZXj(l_Z)N—l—Zj(l+1/Z)N+€j Z—w.

The second integral goes to zeroMs—> oo, compare [22], and we obtain
lim KZN_]_(Z(Zj + N), Zﬁj —uj+1 2y + N), 28; — uy + 1)
N—o00

(4.10) 1 dw 1—w \4
()

~ 2ni vy W w(l+ w)
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It follows from (4.4) and (4.10) that in order to prove (4.6) it suffices to show that

1 dw u_y( 1—w )e—m
—_— _w _—
2mi Jy, w w(l+w)
= VTP — v — 14 i(v — u+ 2(€ — m)))
+iPu—v+i(v—u—1+2(¢—m)))].
We will use the following formula. I + y > 1 andx + y is odd, then
l-x—l / (c—yi1))2 (w— l)(x+y—1)/2 a’w
Y (w+l)(x+y+1)/2 w

Assume that we have proved (4.12). Ifwesetu —v—1,y=v—u+2(£—m),
then the right-hand side of (4.11) is

(4.11)

(4.12) P(x+iy)= .
i

1)/2
(b L 1 (5L g L) (e yiyy2(w = DOHTDZ gy
12
:i/ w(x—y+1>/2(w—1)(x+y+ 2 dw
2ri Jy w+1 w

which is exactly the left-hand side of (4.11). It remains to prove (4.12).
Make the shify — 6 — ¢ in (4.2) to get

413 1 b1 T —i(x+y)¢ 20
. P [y) = — - —d 7 de.
(4.13) Pl +iy) 472 ./—71|: —x 2i Sin(0 — ¢) + 2sing 46

Since 2sin(® — ¢) + 2sing = [¢'? +i — (e7"? +i)e%?]e~ ¢, we obtain

. 1 T T ei((x+y—1)/2)2¢ ix0
Plctiy) = 472 /_n[/;n et +i— (e710 4i)e2d dd)]e d6

1 (7 eixd 1 7~ +y=1/2-1
Apge g s g,
2 J_x e +i|27i Jiz=1  1—az

wherea = (e~ 4+ i)(e!? 4+ i)~ L. If we make use of the integral, compare [22],

1 Z_k_l ak, |f k > 0, |a| < 1,
il dz=1__k ;
5] /|Z|:11_az Z a’, if k<(?,|a|>1,
0, otherwise,
we find
T eix@ e—i@ +i (x+y-1)/2
P . do,
¥ +iy) = o 0 e’9+z<e’9—|—i)

which is easily seen to equal the right-hand side of (4.12). A similar computation
should relate the Kasteleyn kernel for the finite Aztec diamond, computed in [11],
to the extended Krawtchouk kernk,.
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5. Extended Krawtchouk kernel and Krawtchouk polynomials. In this
section we will prove (2.25), which expresses the extended Krawtchouk kernel
in terms of Krawtchouk polynomials. We have the formula

Kn(2r —e1,x;25 — 2, y)
(5.1) 1 dzj dww” (1—aw)"T21+a/w)’ z
S @2y, 2y, wo e a4 a/o) c—w]

whereeq,e20€{0,1},a <ri <l/aandO<ro,r1if2r —e1>2s—e2,0<r1 <rp
if 2r — e1 < 25 — g2. Herey, denotes a circle of radiusaround the origin. This
follows from (2.16)—(2.20) and the residue theorem.

Consider first the case< s. Then

Ky(2m—r)+1Lx—r+L2n—s)+1,y—s+1)

(5.2) _(_1)Hf dz/ dw 2" (aw— 1w +a)" "+
= (27_”.)2 Yy 2y, W wh—y (az—l)’(z+a)”_’+l Z—w'

Since|w| < |z|, we have

i (w+a)/(aw =" (aw-1(z+a)
= (@+a)/(az—1) (@ +D(w—2)

and, hence, the integral in the right-hand side of (5.2) can be written

(_1)s—r(a2+1) 00 X dz
@y k;(/y T )

y < (aw — 1)s—k—l(w 4 a)n—f—k—s—i-l dw)
Vro '

wt—y w

(5.3)

In the z-integral we make the change of variables: (1 — a¢)(¢ +a)7 1, ¢ =
(1—az)(z+a)~ L This mapsy;, to a circle surrounding the origin but with the
opposite orientation. We can deform this circle)t9 using Cauchy’s theorem.
Hence, (5.3) equals

1 i 1 ( (1—a¢)"—)‘(¢+a)"d_c>
(5.4) (2ri)? [ (@ + D" Uy, groi-t ¢

< (1_ aw)sfkfl(a) +a)n+kfs+1 dw)

X — .

Vra "y w

Here we have also used the fact that, by Cauchy’s theoreng;ithiegral vanishes

if k>r. We now setw = w/a, { = a(l+ a®)~1z and usep = (1 + 4?1,
g = a’(1+a®~1. A computation, where we also replakéy r — 1 — k, shows
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that (5.4) equals

(27i)? k

a‘v—r(l_i_aZ)r—sax—y r—1< (1_ qz)n—X(1+pZ)x @)
(5.5) k=01 - -

( (1— w)s7r+k(pw + q)n+rfsfk dw)
X — .
Vrp wY w

By Cauchy’s integral formula, this is the coefficientwf~ in

— r—1
a s—r 1
x—y 1— s—r+k n+r—s—k
(1+a2) a 1;:0( w) (pw+q) o

(1—-¢2)" A+ p2)* dz

Yy z 4

This can be written

s—r s—1
( a ) Y A wpw g

2
l+a oyl 2mi
(1-¢g2)" "+ p2)* dz
Vit Zk—i—r—s z
a S—r s—1 n L L 1
_ (= x—y 1— n—k_—_
(l+a2) ¢ kz Zgyk( wrpw+q) 2mi
=s—r y=0
_ n—x X
(5.6) 8 (1 qz)k (14 p2)* dz
Yy AR z
s—r -1 -1
a ) x_ySZ(n) _k1/ dw
= a Pe) "5 | —3
(1+a2 Pl k 2mi Yo wk+1

—~(n RN Y.y n—yi
Xy;(y>(l W) (pg) e (pw+ )" 5

" / (1—g2)" A+ p2)* dz
Yy Zk—f—r—s z '
By the binomial theorem, thg-sum equals

(pgo — pquwow + pw +q)" = (pgo + g + w(p — pqw))"

=y (';) (pqo+ )’ (p — pgew)" > w" ™.
y=0
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Hence, the coefficient ab”~” in (5.6) equals, by (2.8),
s—1

> (Z)_1(pq)‘kwqm(ﬁ)ﬁraﬁy

k=s—r

12
DM (1) pel g (- g 2

[T

s=1 N 1/2 " 1/2
Xk2:<k> (k+r—s) Pktr—s (X3 q,n) pe(y5 g, n),
=s—r

which proves (2.25) when < s.
The case when > s will be handled by reducing to the previous case. In the
integral in

Ky(2n—r)+1lx—r+L2m—s)+1,y—s+1)

B (_1)s—r/- dZ/ dw 7 (aw 1)S(w+a)l’l —s+1 z
T (27i)? o p W WY (az =Dz +a)" T 2 —w

with a < r1 < 1/a, r2 > r1, we make the change of variables — —1/w,
z—> —1/z. If r3=1/r1, ra = 1/rp, we see that

K,2m—r)+1Lx—r+L2mn—s)+1,y—s+1)

( 1))7 x+r—s dz dw 7"~ (n—x)
@2 /, /, w wi—0=y

(1 _ aw)nfs+1(w +a)nf(nfs+1)+l z
(1 _ az)n—r-i—l(Z + a)n—(n—r+1)+l z—w
=—(-D)"" K2 —-n—-r+D)+Lln—x—(—r+1)+1
2n—(n—s+D)+1ln—y—(n—s+1)+1).
By our previous computation this equals

_(_1)y—x+r—s (”)(”)_1 1/2(_1)s—r nX_f (n)_1/2< n )1/2
[ v/ \x } Pl k k+s—r

(5.7) X Pkts—r(n —x;q,n)
X pr(n—y;q,n)

x [wg(n — x)wy(n — y)]l/z.
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Using the integral formula, (2.8), for the normalized Krawtchouk polynomials, it
is not difficult to show that

(5.8) pr(n — x5 q,n) = (=LK p/2=x g2 i (x; g, ).

If we use this formula in (5.7) we obtain, after some simplification,

A T e £

k=r—s

X Pn—ktr—s(Xx;q,n)

X pu—ik(y; ¢, W) [wy (x)wy (y)1Y?

(OO T g0 08

j=0
X pjtr(x;q,n)

X pitrs(v; @, m)[wg (X)wg (NIY2,

where we have puj =n — k — s and extended the summation usipg= 0 if
k <0 ork > n. This is what we wanted to prove.

Acknowledgments. | thank A. Borodin for a helpful discussion concerning
extended kernels and E. Nordenstam for help with the pictures.
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