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DIFFERENCE PROPHET INEQUALITIES FOR [0, 1]-VALUED 1.1.D.
RANDOM VARIABLES WITH COST FOR OBSERVATIONS!

BY HOLGER KOSTERS
University of Minster

Let X1, X5, ... be a sequence gD, 1]-valued i.i.d. random variables,
let ¢ > 0 be a sampling cost for each observation andljet X; — ic,
i=12.... Forn=12,..., let M(Yq,..., Yy) = E(Max<;<, ¥;) and
V(ry,..., Yy) = sup.ccn E(Y7), whereC” denotes the set of all stopping
rules forYy, ..., Y,,. Sharp upper bounds for the differene&Yy, ..., Yn) —
V(Yy,..., Y,,) are given under various restrictions eandn.

1. Introduction. In her interesting paper, Samuel-Cahn (1992) investigated
“prophet ingualities” for [0, 1]-valued i.i.d. random variables with cost for
observations: LetXq, X»,... be i.i.d. random variables, 8 X; < 1, and let
¢ > 0 be a fixed sampling cost that is charged for each observation. Consider the
sequencd; = X; —ic,i=1,2,...,andforn =21,2,..., let M(Yy,...,Y,) =
E(Mmaxi<i<p, ¥;) andV (Y, ..., Y,) = Sup.cc» E(Y7), whereC" denotes the set
of stopping rules forYy,...,Y,. Then M(Yy,...,Y,) and V(Y1,...,Y,) can
be interpreted as the expected optimal return of a prophet and a statistician,
respectively. For any real number let [x] denote the largest integer strictly
smaller thanx. Samuel-Cahn (1992) stated her main result as follows:

Let X1, X», ... beii.d. random variables,9 X; < 1.

(a) ForO<c¢ <1 fixedandalk > 1,
MY1,...,Y) = V(Y1,...,Yy) <[1/clc(1 — ¢)t/e+L,
(b) Forn > 1 fixed and alk > 0,
MY1,....Y) —V(Y1,...,Y,) <(1—1/n)"tL
(c) Forallc>0andalln > 1,
MY1,....Y) = V(Y1,...,Y,) <e L.

All bounds are the best possible.
Unfortunately, Harten (1996) detected a gap in the proof (the argument for the
reduction to Bernoulli variables is incomplete) and even showed that the inequality
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in (a) fails to hold forc > 1/2 and that the inequality in (b) fails to hold faer> 2
(see also the remarks below). Moreover, because the original proof of result (c)
was based on result (b), a new proof for this part became necessary as well.
Harten gave the correct upper bound for part (a) and provided a new proof for
part (c) based on this result. With regard to part (b), Harten conjectured that the
correct upper bound ig: — 1)(1 — 1/(n + 1))"/(n + 1), but he proved this result
only for the special case of Bernoulli variables (see Lemma 2.1). The purpose
of the present note is to extend this result to arbitf@yi]-valued i.i.d. random
variables. To summarize, we present the following complete result:

THEOREM. LetX4q, Xo,...beii.d.random variablesO < X; < 1.
(@) ForO<c¢ < 1fixedandalln > 1,

[1/cle(l— )L for ¢ <1/2,

MY1,....Y,) = V(Xq,...,Y,) <
(Y1 ) — V(I ) (1—c)/4, for ¢ >1/2.

(b) Forn > 1fixed and allc > 0,
MY1,....Y) = V({Y1,....Y) <(n—=1(1-1/(n+1)"/(n+1).
(c) Forallc>0andalln > 1,
M(Y1,....Y,)—V(Y1,....,Y,) <e L.

All bounds are the best possible

The proof of part (a) can be found in the Ph.D. thesis of Harten (1996) or in
Section 8(c) of Harten, Meyerthole and Schmitz (1997). It proceeds roughly as
follows: In the cas& X1 < c, the problem can first be reduced to that for Bernoulli
variables [i.e., random variablg§; such thatP(X; =1)=p=1—- P(X; =0)
for some 0< p < 1] and then be solved by direct calculation. In the case
E X1 > c, the basic idea is to apply Theorem A from Jones (1990) to the sequence
V(Yo ..., Y,), Yo,..., Y, and to use some suitable estimates.

The proof of part (b), presented in the following section, is somewhat similar in
that we also distinguish the casEX'1 < ¢ andE X; > ¢. However, in the second
case we use a completely different argument.

Part (c) follows easily from part (a) or part (b), sinee! is the supremum of
the respective upper bounds.

REMARKS. (@) The following examples, taken from Harten (1996), show that
the upper bounds are attained in the cases (a) and (b): In (aptakd/c] + 1
and i.i.d. random variableXq,..., X, with P(X1=1) =c=1—- P(X1=0)
forc <1/2,andP(X1=1)=1/2=1—- P(X1=0) for ¢ > 1/2. In (b) take
c=1/(n+1) andi.i.d. random variableXy, ..., X, with P(X1=1)=1/(n +
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1) =1- P(X1=0). We note without proof that, exceptfo=1in (a) andh = 1
in (b), the upper bounds are attained only in these cases.

(b) The inequalities in parts (a) and (c) remain true for infinite sequences of
[0, 1]-valued i.i.d. random variables. See Harten (1996), Harten, Meyerthole and
Schmitz (1997) or Saint-Mont (1999) for a more general presentation.

(c) It seems natural to look also for ratio prophet inequalities, that is, for
inequalities of the typeV (Y1,...,Y,)/V(Y1,...,Y,) < C. However, this ratio
turns out to be unbounded for all> 1 and all O< ¢ < 1, as already observed by
Samuel-Cahn (1992).

(d) The caser = 0 was treated by Hill and Kertz (1982), who showed that
MYq,....Y)/V(XY1,...,Y,) <a,andM(Y1,...,Y,) = V(¥1,...,Y,) <b, for
alln=2,3,..., with certain constants.1 < a, < 1.6 and O< b, < 1/4. These
results are markedly different from those for the case0 and seemingly cannot
be obtained from them. Quite on the contrary, the second inequality is a key
ingredient in our proof of part (b).

2. Proving part (b). Throughout this section, assume that 2 (otherwise
the assertion is trivial), and l€?(Y1, ..., Y,) =M Y1, ..., Y,) — V(Y1,...,Yn)
andd, . =(mn—-1)(1—-1/(n+1)"/(n+1). It remains to prove that

The examples given at the end of the Introduction then show that this bound is also
the best possible.

In two special cases, the Bernoulli case and the zero-cost case, (1) can easily be
deduced from existing results:

LEMMA 2.1. For all ¢ > 0 and all i.i.d. random variablesXy, ..., X,, with
P(X1=1)=1—-P(X1=0),D(Yy,...,Y,) <d,.

PROOE Forc=0andc=>1, D(Y1,...,Y,) =0 <d,, since the statistician
can secure the same return as the prophet by using the stoppingrrates
inf{i|X; =1 ori =n}andr =1, respectively. For & ¢ < 1, the result is obtained
by direct calculation, and can be found in Harten [(1996), pages 142 and 143] or
Harten, Meyerthole and Schmitz [(1997), pages 194-198].

LEMMA 2.2. Suppose thatt = 0. Then for all ii.d. random variables
X1, ..., X, taking values if0, 1], D(Y1, ..., Y;) < d,.
PROOF Forc =0, Theorem B in Hill and Kertz (1982) states that

for certain constants & b, < 1/4 [see Hill and Kertz (1982) for definitions].
Hence it remains to show tha} < d,: Forn > 5 this follows fromd,, > 1/4. For
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n < 4, we can go back to the definitions to verify the inequaliies 0.063 <
0.148= do, b3 = 0.077 < 0.211= d3 and by = 0.085 < 0.246 = d, [see also
Example 3.9 in Hill and Kertz (1982)].03

We now show that (1) remains true for any>= 0 and any{0, 1]-valued i.i.d.
random valuesXy, ..., X,, by relating the general case to the abovementioned
special cases.

In doing so, we use that, from Theorem 3.2 in Chow, Robbins and Siegmund
(1971),

(2) V(Y]_,...,Yi)=E(maX{X1,V(Y]_,...,Yi_l)})—c

for all i > 1. Furthermore, we use the usual balayage technique [the reduction to
distributions with maximum variance; see Section 2 in Hill and Kertz (1982)].
For any integrable random variableé and any—oco <a < b < o0, let Yf
denote a random variable wit) =Y for Y ¢ [a, b], = a with probability (b —

@) fycrapy(® — Y)d P and= b with probability (b — a)™* [y ¢y (Y — @) d P.
ThenEY? = EY and if X is any random variable independentibbndY?,

(3) E(max(X,Y}) < E(maxX, Y)}.

PrRoOOF OF PART(D). Forc =0, the assertion has just been established.

For ¢ > 0 and EX; < ¢, we follow Harten [(1996), Proposition 12.4] and
reduce the problem directly to that for Bernoulli variables.f(gi. e f(n bei.i.d.
random variables, wher€; := (Xl)% is a 0-1 balayage of1 and independent of
X1,..., Xy, and letY; = X; —ic, i =1,...,n. Then it follows from (2) and (3)
that V(Y1,...,Y;)) = V(Y1,...,Y;)) forall i =1,...,n and M(Y1,...,Y,) >
M(Y1,...,Y,). Therefore,D(Y1,...,Y,) < D(Y1,...,Y,), but nowXy, ..., X,
are Bernoulli variables, so referring to Lemma 2.1 yields (1).

Forc > 0 andE X1 > ¢, a direct reduction to Bernoulli variables does not seem
possible, so we have to take a different approach. For better clarity, we split the
proof into several steps:

First of all we show that we may restrict ourselves to i.jaj1]-valued random
variablesXy, ..., X, such that

Xy = inf{x e RIP(X1<x)>0}=0,
x*:=supx e R|IP(X1<x)<1}=1,
that is, the length of the interv@), 1] is fully exhausted:

(4)

LEMMA 2.3. LetXjy,..., X, beii.d. [0, 1]-valued random variables and let
¢ > 0. Then there existiid. [0, 1]-valued random variableXq, ..., X,, with

o= inf{f e RIP(X1<%) >0} =0,
Fi=supfeR|IP(X1<%) <1l}=1
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and ¢ > 0 such thatD(¥1, ..., Y,) < D(Y1,...,Y,). Here letY; be defined by
Y,' ::X,-—iE,i:l,...,n.

PROOF Letx,, x* be defined as in (4).

For x, = x*, we haveM(Yy,...,Y,) — V(Y1,...,Y,) = 0, and choosing
i.i.d. random variable(y, ..., X, with P(X; =1) =1/2=1— P(X; = 0) and
¢ := c yields the assertion.

For x, < x*, consider the random variable$y, ..., X,, defined byX; :=
(X; —x4)/(x* — x4). These are obviously a.®, 1]-valued i.i.d. random variables
with x, =0 andx* =1, and setting := ¢/ (x* — x,) [> 0], we also have

M@, ....Y) —V(Y1,...,Y,)
=M1, ....Y) —x:)/(xXF —x) = (V(Y1, ..., Yp) — x4) /(X" — x)
>MY1,...,Y,)—V({X,...,Y,).

Thus, after a modification on a null set if necessary, the random variﬁbllaave
the desired properties ]

Note that in the preceding reduction step, we possibly get from theccas®
EX1 > c to the cas€ > 0, EX; < é&. This being supposed, the first part of the
proof yields the assertion. Hence it remains to consider theicas® EX1 > ¢.

Next we follow Hill and Kertz [(1982), Lemma 2.4] and show that we may
restrict attention to special discrete distributions. Indeed, it suffices to consider
i.i.d. [0, 1]-valued random variable®y, ..., X, such that

P(Xl € {1’ U}’l—l’ Un—Z, LR UZ’ Ul! O}) = 1’
P(X1=1)>0, P(X1=0) >0,
wherev; =V (Y1,...,Y),i=1,...,n—1.

®)

LEMMA 2.4. LetXy,..., X, beii.d. [0, 1]-valued random variables satisfy-
ing condition(4), let ¢ > 0 and suppose thak X1 > c. Letv; := V(Y1,...,Y;),
i=1...,n—1.Thenl>v,_1 > v,_2>--- > v2 > v1 > 0 and there exist.i.d.
[0, 1]-valued random variableX 1, ..., X,, with

P(Xq€ {1, v,-1,v,-2,...,v2,v1,0}) =1,
P(X1=1)>0, P(X1=0>0
and
V(Y1,...,Y)=v;=V(¥y,....Y;)) foralli=1,...,n—1

suchthatD(Ys, ..., Y,) < D(Y4,...,Y,). Here letY; be defined by; := X; —ic,
i=1...,n.
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PROOF We begin by proving the inequality * v,_1 > v, 2 > ---
>uwvp >uv1 > 0. Clearly,v; <1—c<1lforalli=1,...,n — 1. Furthermore,
v1 = EX7 — ¢ > 0 by assumption. Moreover, if; > v;_1 holds for some
iefl,...,n— 2} (wherevg :=0), (2) yieldsv;11 = E(maxXy,v;}) — ¢ >
E(max X1, v;_1}) — ¢ = v;, where the strict inequality follows from the assump-
tion x, = 0.

Now, using the balayage technique, choose i.i.d. random variéhl;es. , f(n
with the same distribution &g - - (X1)g")¥2 - )ui_3)s .- Then itis obvious that

P(X1€{L,vp-1,V4-2,...,02,v1,0}) =1,
P(X1=1) >0, P(X1=0) > 0.

(For the inequalities, we need the assumptiohs- 1 andx, = 0.) Furthermore,

the same argument as in the proof of Lemma 2.4 in Hill and Kertz (1982) shows
that V(Y1,...,Y;)) = V(Y1,....Y;)) forall i =1,...,n and M(Y1,...,Y,) >
M(Y1,...,Y,),whenceD(Y1,...,Y,) <D(Y1,...,Y,). O

Note that in this reduction step, passing from tkig to the X; leaves the
expectation unchanged, so that we stay in the cas@, EX;1 > c.

Whereas in the i.i.d. case without observation costs, the reduction to special
discrete distributions leads to a tractable formula for compulifi@s, ..., Y;)
with the aid of the distribution function o¥X; [see Hill and Kertz (1982),
Lemma 2.5], such a procedure does not seem to be possible in the i.i.d. case with
observation costs. The reason for this is that we do not know enough about the
order relationships between the— hc,i=1,...,n—1,h=1,...,n.

To circumvent this problem, we embed the random varialilgs. ., Y;, into
a whole family of random variableg;(8), ..., Y, (B) in such a way that (i) we
can easily bound the differend@(Y1(8), ..., Y,(B8)) from above for two special
values of the paramet@rand (ii) the resulting bounds lead to an upper bound for
the original differenceD (Y1, ..., Y,).

LEMMA 2.5. LetXy,..., X, beii.d. [0, 1]-valued random variables and let
¢ > 0 such that the conditiong X1 > ¢ and (5) are satisfiedThen
c=c—PX1=1 <0O.
PROOFR Suppose by way of contradiction thdt> 0, that is,P (X1 =1) <c.

Since with probability 1 X1 takes on the valuesQv; < --- <v,_1 <1 only, we
obtain

Up—1 = E(mMax X1, v,—2}) — ¢
=vp-2- P(X1<vy-1)+vp-1- PX1=v,-1) + P(X1=1) —c

<vp—1- PXi<vp—1) + v PX1=v4-1) <vp—1,



3330 H. KOSTERS

where the last inequality follows from® (X1 = 1) > 0. This contradiction proves
the lemma. O

CONSTRUCTIONZ2.6. LetXjy,..., X, bei.i.d.[0, 1]-valued random variables,
let ¢ > 0 such that the conditiong X1 > ¢ and (5) are satisfied, and Igt :=
—P(X1=1)/c (> 0) (with ¢/ as in Lemma 2.5). We now construct a family of

random variable$X1(8), ..., X,(B)}ge[o0,p+] With corresponding sampling costs
{C(ﬁ)}ﬁe[O,ﬁ*]- For allﬂ € [O, ,3*], let U,‘(,B) = ,3 SV, 1= 1,....,n—1,
1, on {X; =1},
Xn(B) =1 vi(B), on {X,=v}, h=1,...,n,
0, on {X; =0},

andc(B) :=B -+ P(X1=1). Finally, let
Yi(B):=Xn(B)—h-c(B), h=1,...,n.

Note thatg* = — P (X1 =1)/c’ is the (uniquely determined) zero of the strictly
decreasing functiof > B-¢’+ P(X1=1).Since L'+ P(X1 =1) = ¢ > 0, this
implies 8* > 1 > 0. In particular,8 = 1 is an admissible parameter. Furthermore,
c(B) = 0forall 8 € [0, 8*], with equality holding if and only iB = g*.

LEMMA 2.7. Given the situation of Constructich6,we have

(a) For g =1,the X;(B) andc(B8) coincide with theX; andc.

(b) For eachg € (0, ), X1(B),..., X,(B) are ii.d. [0, 1]-valued random
variables such that conditiod) is satisfied with respect to the sampling cagt).

(c) For B =0, X1(B), ..., X,,(B) are ii.d. random variables withP (X1(8) =
1)=1-PX1(B)=0) andc(p) = P(X1=1).

(d) For g = B*, X1(B), ..., X,,(B) are ii.d. [0, 1]-valued random variables
andc(B) =0.

PROOF. ~ Statement (@) is obvious from the definitions.
To prove (b)—(d), lets := supB < [0, B*]|v,—1(B) < 1}. Since v,-1(1) =
v,—1 < 1, we haves > 1. Furthermore, it is obvious that

(6) O<vi(B) < - <vy—1(B) <1

for all 8 € [0, B], where the firsk — 1 equalities hold exactly fof = 0 and the
last equality holds at most fg = 8.
We now show by induction oh that

7 V(Y1(B), ..., Yn(B)) =vn(B)  forall B e[0,B]

forallh=1,...,n— 1. First note thaX1(f8), ..., X,(B8) are again i.i.d. random
variables and that with probability 1X:1(8) = 8 - X1 - Lix;<1y + Lix,=1)-
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Setting vo := 0, vo(B) := 0 for h =1 and using the inductive hypothesis
V(Y1(B), ..., Yp—1(B)) = vp—1(B) forh =2,...,n — 1, we therefore obtain
V(Y1i(B), ..., Yu(B))
= E(maxX1(B), vn-1(8)}) — c(B)
= E(maX{X1(8), vi-1(B)} - Lix,<1y) + P(X1=1D) —B-' — P(X1=1)
=B (E(maXxXy,vp—1} - Lx,<y) + P(X1=1) — ' — P(X1=1))
=B - (E(maxXy, vy_1}) —¢)
=p-V(¥1,....Yn) =B vy =vp(p),
which proves (7). ~
We now show thap = p*. By definition it is clear thap < g*. Suppose by
way of contradiction thag < *. Then for monotonicity and continuity reasons
we have O< v1(8) < --- < v,—1(B) = 1 andc(B) > 0 and therefore

1=v,—1(8) = V(Y1(B), ..., Yoo1(B)) <1—c(B) <1,

that is, a contradiction. Henge= B*.
It follows that (6) even holds for alB < [0, 8*]. Since the other properties
mentioned in (b)—(d) are obvious now, the proof is complefs.

LEMMA 2.8. The functiom8 — V(8) := V(Y1(B), ..., Y, (B)) is linear

PrRoOOF Similarly asin (7), we hav® (Y1(8), ..., Y,(8)) =B8-V(Y1,...,Yy)
forall 8 €[0, g*]. O

LEMMA 2.9. The function8 — M(B) := M (Y1(B), ..., Y,(B)) is convex

PROOFE For almost everw € €2, the “path”

B Y (B; 0) :=maxX¥i(B; w), Ya(B; @), ..., Ya(B; @)}

is convex, since it is the maximum of the affine-linear functigns> Y;(8; w).
Thus the functior8 — M (8) = E(Y*(B)) is also convex. [

CONTINUATION OF THE PROOF OF PART(b). We are now in a position to
complete the proof of part (b). LeXq, X2, ... and letc be such that > 0,
EX1 > c. By Lemmas 2.3 and 2.4, we may assume that condition (5) is satisfied
(see also the remarks below Lemmas 2.3 and 2.4) and that Construction 2.6 is
applicable. Then the functiof — D(B8) := M(B) — V(B) is convex, since it is
the difference of a convex and a linear function. Since a convex function defined
on a compact interval always attains its maximum on the boundary of its domain,
it follows that

(8) D(Y1, ..., Y,) = D(1) <maxD(0), D(BM}.
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Now, on the one hand, we have Bernoulli variables foe 0 [Lemma 2.7(c)],
which implies D(0) < d, by Lemma 2.1; on the other hand, we hav@) =0
for 8 = g* [Lemma 2.7(d)], which implieD (8*) < d,, by Lemma 2.2. Hence the
maximum in (8) is bounded above by, which proves (1). [
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