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SELF-INTERSECTION LOCAL TIME: CRITICAL EXPONENT,
LARGE DEVIATIONS, AND LAWS OF THE

ITERATED LOGARITHM1

BY RICHARD F. BASS AND XIA CHEN

University of Connecticut and University of Tennessee

If βt is renormalized self-intersection local time for planar Brownian
motion, we characterize whenEeγβ1 is finite or infinite in terms of the
best constant of a Gagliardo–Nirenberginequality. We prove large deviation
estimates forβ1 and−β1. We establish limsup and lim inf laws of the iterated
logarithm forβt ast → ∞.

1. Introduction. Let βt be the renormalized self-intersection local time of a
planar Brownian motionXt . Formally,

βt =
∫ t

0

∫ s

0
δ0(Xs − Xu)duds − E

∫ t

0

∫ s

0
δ0(Xs − Xu)duds,

whereδ0 is the delta function, and more precisely,

βt = lim
ε→0

[∫ t

0

∫ s

0
ϕε(Xs − Xu)duds − E

∫ t

0

∫ s

0
ϕε(Xs − Xu)duds

]
,(1.1)

whereϕε is a suitable approximation to the identity. We have three main results in
this paper:

1. Le Gall [16] showed that there is a critical exponentγβ such that

Eeγβ1

{
< ∞, if γ < γβ ,
= ∞, if γ > γβ .(1.2)

We characterizeγβ in terms of the best constant of one of the Gagliardo–
Nirenberg inequalities.

2. We prove large deviation estimates forβ1 and−β1.
3. We prove laws of the iterated logarithm for the lim sup and lim inf behavior

of βt .

Self-intersection local time has been an object of much study in recent years.
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on this subject. In addition to probability theory, self-intersection local time has
applications to some branches of mathematical physics, for example, constructive
quantum field theories and polymer measures.

The quantity
∫ t
0

∫ s
0 ϕε(Xs − Xu)duds converges almost surely to infinity as

ε → 0 and to get convergence, the expectation of this integral must be subtracted.
Therefore, exponential integrability ofβ1 is a subtle issue. In 1994 Le Gall [16]
proved there is a critical valueγβ such that (1.2) holds. This fact has proved to
be of considerable interest to the study of constructive quantum field theories. See
also Theorem 2.23 of [5] for a discussion in the context of random walks with
continuous time but discrete values. Our first main result characterizesγβ .

THEOREM 1.1. We have γβ = A−4, where A > 0 is the best constant in the
inequality

‖f ‖4 ≤ C
√‖∇f ‖2

√‖f ‖2, f :R2 → R.(1.3)

Inequality (1.3) is one of a class of inequalities known as Gagliardo–Nirenberg
inequalities. The proof of (1.3) is quitesimple. Begin with the well-known Sobolev
inequality inR

2:

‖g‖2 ≤ c1‖∇g‖1.

Replaceg by f 2, write ∇f 2 as 2f∇f and apply the Cauchy–Schwarz inequality
to the right-hand side. The best constant in (1.3) appears to be a difficult problem,
however, and is currently open. The best constant for Nash’s inequality, which
is another special case of the Gagliardo–Nirenberg inequalities, was found by
Carlen and Loss [6]. Two recent articles [9, 10] found the best constants for a
class of Gagliardo–Nirenberg inequalities. Numerical values for the best constant
in (1.3) were investigated as long ago as 1983 by Weinstein [21], who solved
an eigenvalue problem by numerical methods and found thatA is approximately
(π × 1.86225. . .)−1/4. By Theorem 1.1,

γβ ≈ π × 1.86225· · · ≈ 5.85043.

This is very close to a conjecture made by B. Duplantier (private communication).
We could ask an analogous question about the intersection local time of two

independent planar Brownian motions. There is a critical exponentγα . The critical
value in this case was determined in [7] and was found to be the same constantA−4

with A as above. As a matter of fact, the result given in [7] is an important
ingredient in the proof of Theorem 1.1 (and Theorem 1.2 as well).

As part of our proof of Theorem 1.1, we obtain large deviation estimates forβ1.

THEOREM 1.2. We have

lim
t→∞

1

t
logP(β1 ≥ t) = −A−4,

where A is as in the statement of Theorem 1.1.
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We easily see that Theorem 1.1 is a direct consequence of Theorem 1.2.
Interestingly, the lower tail ofβ1 is not exponential, but instead is double
exponential.

THEOREM 1.3. There exists 0 < L < ∞ such that

lim
t→∞ t−2π logP{−β1 ≥ logt} = −L.

We also investigate laws of the iterated logarithm forβt .

THEOREM 1.4. We have

lim sup
t→∞

βt

t log logt
= 1

γβ

a.s.

The lim inf behavior is described by the following theorem.

THEOREM 1.5. We have

lim inf
t→∞

βt

t log log logt
= − 1

2π
a.s.

Note the triple log in the rate of growth of the lim inf. This is suggested by the
double exponential tail of−βt . Compare this also with the result in [4] on the law
of the iterated logarithm for the range of a random walk onZ

2; the rate of growth
there also has a triple log term. For a random walk the number of self-intersections
is related to the range of the random walk up to timen, and Theorem 1.5 may
provide some further insight into the result in [4]. Theorem 1.5 suggests that the
right constant in [4] should be related to 1/2π ; we hope to return to these matters
in future research.

Section 2 contains some basic facts about intersection local time. Theorems
1.1–1.3 are proved in Section 3. Theorem 1.4 is proved in Section 4 and
Theorem 1.5 is proved in Section 5.

In all of the proofs, a key step is the representation ofβ as the normalized sum
of intersection local times of various pieces of the Brownian path plus sums of self-
intersection local times; see Proposition 2.2. What makes the two-dimensional case
much more difficult than the three-dimensional case is that in two dimensions these
intersection local times of distinct pieces of the Brownian path are the dominant
term.

2. Preliminaries. Let us begin with some notation. LetXt be a planar
Brownian motion, letFt be the completion ofσ {Xs; s ≤ t} and letPx denote the
law of X whenX is started atx. We useP for P

0. The shift operators are denoted
by θt as usual. IfI is an interval, we writeX(I) for the random set{Xs; s ∈ I }.
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The ball of radiusr aboutx is denotedB(x, r) and the letterc with subscripts is
used for positive finite constants whose exact value is unimportant.

If X andY are two independent planar Brownian motions, the intersection local
time can be defined formally by

α(s, t) =
∫ s

0

∫ t

0
δ0(Xr − Yu) dudr,

whereδ0 is the delta function. To make this rigorous, letϕ be a smooth nonnegative
function in the Schwartz class which integrates to 1, letϕε(x) = ε−2ϕ(x/ε) (so that
ϕε is an approximation to the identity) and define

α(s, t) = lim
ε→0

∫ s

0

∫ t

0
ϕε(Xr − Yu) dudr.(2.1)

On the other hand, self-intersection local time cannot be defined so simply because
the limit

lim
ε→0

∫ s

0

∫ t

0
ϕε(Xr − Xu)

does not exist. A procedure called renormalization is needed. The renormalized
self-intersection local time ofX is formally defined as

βt =
∫ t

0

∫ s

0
δ0(Xs − Xu)duds − E

∫ t

0

∫ s

0
δ0(Xs − Xu)duds.

To give a rigorous definition, let

βt = lim
ε→0

[∫ t

0

∫ s

0
ϕε(Xs − Xu)duds − E

∫ t

0

∫ s

0
ϕε(Xs − Xu)duds

]
.(2.2)

That the limit exists a.s. and is continuous int is proved, for instance, in [13, 15]
and [23]. Sometimes slightly different normalizations are used; they differ from
ours by at most a constant timest . So there is no difference in the critical exponent
or laws of the iterated logarithm, no matter which normalization is used.

If I is an interval, we useB(I) for the renormalized self-intersection for the
piece of the pathX(I). That is, ifI = [s, t], then

B(I) = βt−s ◦ θs .(2.3)

If I andJ are two intervals whose interiors are disjoint, letA(I ;J ) denote the
intersection local time for the two processesX(I) andX(J ). To define this more
precisely,

A(I ;J ) = lim
ε→0

∫
I

∫
J

ϕε(Xs − Xt) ds dt.(2.4)

REMARK 2.1. It is immediate by Brownian scaling thatα(t, t) is equal in
law to tα(1,1) andβt is equal in law totβ1. SupposeI = [a, b] andJ = [b, c].
ThenA(I ;J ) measures the intersections of the two independent Brownian motions
Xb − Xb−s andXb+t − Xb, and soA(I ;J ) is equal in law toα(b − a, c − b) with
starting point(0,0).
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PROPOSITION 2.2. If I is an interval that is the union of subintervals Ij ,
1 ≤ j ≤ n, such that the interiors of the Ij are pairwise disjoint, then

B(I) =
n∑

j=1

B(Ij ) + ∑
i<j

A(Ii; Ij) − E

∑
i<j

A(Ii; Ij ).(2.5)

PROOF. We have∫ ∫
s,t∈I,s<t

ϕε(Xt − Xs)ds dt − E

∫ ∫
s,t∈I,s<t

ϕε(Xt − Xs)ds dt

=
n∑

j=1

[∫ ∫
s,t∈Ij ,s<t

ϕε(Xt − Xs)ds dt − E

∫ ∫
s,t∈Ij ,s<t

ϕε(Xt − Xs)ds dt

]

+ ∑
i<j

∫ ∫
s∈Ii,t∈Ij

ϕε(Xt − Xs)ds dt

− ∑
i<j

E

∫ ∫
s∈Ii ,t∈Ij

ϕε(Xt − Xs)ds dt.

We now letε → 0. �

AlthoughEα(t, t) is a constant timest , we need a bit more precision.

PROPOSITION2.3. Let P
(x0,y0) be the joint law of (Xt , Yt ) when Xt is started

at x0 and Yt is started at y0. Then

E
(x0,y0)α(s, t) ≤ 1

2π
[(s + t) log(s + t) − s logs − t logt].(2.6)

If x0 = y0, then we have equality in (2.6).

PROOF. We have thatXr is a two-dimensional normal random vector with
meanx0 and covariance matrix that isr times the identity and thatYu is a two-
dimensional normal random vector with meany0 and covariance matrix that isu
times the identity; moreover, the two random vectors are independent. Therefore,
Xr − Yu is a two-dimensional normal random vector with meanx0 − y0 and
covariance matrix that isr + u times the identity. Hence

E
(x0,y0)

∫ s

0

∫ t

0
ϕε(Xr − Yu) dr du

=
∫ s

0

∫ t

0

∫
R2

ϕε(z)
1

2π(r + u)
exp

(−|z − x0 + y0|2
2(r + u)

)
dzdr du.

Letting ε → 0 and using (2.1),

Eα(s, t) =
∫ s

0

∫ t

0

1

2π(r + u)
exp

(−|x0 − y0|2
2(r + u)

)
dr du.
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The right-hand side is less than or equal to∫ s

0

∫ t

0

1

2π(r + u)
dr du

with equality whenx0 = y0. Some routine calculus completes the proof.�

Le Gall [16] showed that there exists a valueγβ such that

Eeγβ1

{
< ∞, if γ < γβ ,
= ∞, if γ > γβ .(2.7)

In the same article, Le Gall proved that there exists a valueγα such that

Eeγα(1,1)

{
< ∞, if γ < γα,
= ∞, if γ > γα.

(2.8)

He also gave a proof ([16], page 178) of a result by Varadhan [20] that

Ee−γβ1 < ∞(2.9)

for all γ > 0.

3. Large deviation estimates. In [7], the large deviations for intersection
local time ofp independentd-dimensional Brownian motions under the condition
p(d − 2) < d were studied. Takingd = p = 2 in this result,

lim
t→∞

1

t
logP{α(1,1) ≥ t} = −A−4,(3.1)

whereA > 0 is the best constant in the Gagliardo–Nirenberg inequality

‖f ‖4 ≤ C
√‖∇f ‖2

√‖f ‖2.

Let

M = sup
f ∈F2

{(∫
R2

|f (x)|4dx

)1/2

− 1
2

∫
R2

|∇f (x)|2 dx

}
,

whereF2 is the set of absolutely continuous functions onR
2 satisfying∫

R2
|f (x)|2 dx = 1 and

∫
R2

|∇f (x)|2dx < ∞.

As a special case of Lemma 8.2 in [7],

M = 1
2A4.(3.2)

In the following result, we claim thatβ1 satisfies the same large deviation principle
thatα(1,1) does.
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THEOREM 3.1.

lim
t→∞

1

t
logP{β1 ≥ t} = −A−4.(3.3)

In particular,

Eeγβ1

{
< ∞, if γ < A−4,
= ∞, if γ > A−4.

Note that this theorem impliesγβ = A−4 and is a reformulation of Theorems
1.1 and 1.2.

PROOF. To establish the upper bound, we consider the decomposition

β1 = β1/2 + B([1/2,1]) + A([0,1/2]; [1/2,1]) − EA([0,1/2]; [1/2,1]).
Recall thatB([1/2,1]) andβ1/2 are equal in law to12β1, andA([0,1/2]; [1/2,1])
is equal in law to1

2α(1,1). Moreover,B([1/2,1]) is independent ofβ1/2. Given
ε > 0,

P{β1 ≥ t} ≤ P{α(1,1) − Eα(1,1) ≥ (1− ε)t} + P{β1 + β ′
1 ≥ (1+ ε)t},

whereβ ′
1 is an independent copy ofβ1. In view of (3.1),

lim sup
t→∞

1

t
logP{β1 ≥ t}

≤ max
{
−(1− ε)A−4, lim sup

t→∞
1

t
logP{β1 + β ′

1 ≥ (1+ ε)t}
}
.

We now need the simple fact that (1.2) is equivalent to

lim sup
t→∞

1

t
logP{β1 ≥ t} = −γβ.

Also notice that

Eexp{γ (β1 + β ′
1)} = (Eexp{γβ1})2

{
< ∞, γ < γβ ,
= ∞, γ > γβ.

So

lim sup
t→∞

1

t
logP{β1 + β ′

1 ≥ (1+ ε)t} = −(1+ ε)γβ

and therefore

lim sup
t→∞

1

t
logP{β1 ≥ t} ≤ −(1− ε)A−4.

Letting ε → 0+, we obtain

lim sup
t→∞

1

t
logP{β1 ≥ t} ≤ −A−4.(3.4)
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By scaling we have the upper bound of (3.3).
By scaling, Theorem 3.1 is equivalent to

lim
n→∞

1

n
logP{βn ≥ θn2} = −θA−4, θ > 0.(3.5)

Let

Cn =
n−1∑
k=1

A([0, k]; [k, k + 1]), n = 1,2, . . . .

Then by Proposition 2.2,

βn = Cn − ECn +
n∑

k=1

β([k − 1, k]).

Notice that{β([k − 1, k])} is an i.i.d. sequence with the same distribution asβ1.
Since the moment generating function ofβ1 exists in a neighborhood of the origin,
Cramér’s theorem implies that for anyδ > 0,

lim
n→∞

1

n
logP

{
n∑

k=1

β([k − 1, k]) ≥ δn2

}
= −∞.(3.6)

Also, using Proposition 2.3, a calculation implies

ECn = 1

2π
n logn.(3.7)

By Theorem 4.2.13 in [11], (3.5) is then equivalent to

lim
n→∞

1

n
logP{Cn ≥ θn2} = −θA−4, θ > 0.(3.8)

We now claim that Theorem 3.1 holds provided

lim inf
n→∞

1

n
logEexp{λC1/2

n } ≥ λ2A2

4
, λ > 0.(3.9)

Indeed, from the upper bound (3.4), we can improve (3.9) into equality. In the case
λ < 0, we use Jensen’s inequality:

Eexp{λC1/2
n } ≥ exp{λEC1/2

n } ≥ exp{λ(ECn)
1/2} = exp

{−O
(√

n logn
)}

,

where the last step follows from (3.7). Therefore, we have

lim
n→∞

1

n
logEexp{λC1/2

n } = ψ(λ)

for any real numberλ, where

ψ(λ) =
 λ2A4

4
, λ ≥ 0,

0, λ < 0.
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By the Gärtner–Ellis theorem (Theorem 2.3.6 in [11]),

lim
n→∞

1

n
logP{C1/2

n ≥ θn}

= − sup
λ∈R

{λθ − ψ(λ)} = −sup
λ>0

{
λθ − λ2A4

4

}
= −θ2A−4, θ > 0,

which is equivalent to (3.8).
We now prove (3.9). Some of the ideas come from [8]. We start with the fact

(see, e.g., [17]) that for any measurable, bounded functionf onR
2,

lim
n→∞

1

n
logEexp

{∫ n

0
f (Xt ) dt

}
= sup

g∈F2

{∫
R2

f (x)g2(x) dx − 1

2

∫
R2

|∇g(x)|2 dx

}
.

For anyε > 0, letpε(x) be the density ofXε and write

L(t, x, ε) =
∫ t

0
pε(Xs − x) ds, x ∈ R

2, t ≥ 0.

It is easy to see from the semigroup property that(∫ ∫
0≤s≤t≤n

p2ε(Xs − Xt) ds dt

)1/2

= 1√
2

(∫
R2

L2(n, x, ε) dx

)1/2

≥ 1√
2

∫
R2

f (x)L(n, x, ε) dx = 1√
2

∫ n

0
fε(Xt ) dt

for any measurablef onR
2 with∫

R2
f 2(x) dx = 1,

where

fε(x) =
∫

R2
f (x − y)pε(y) dy.

Therefore,

lim inf
n→∞

1

n
logEexp

{
λ

(∫ ∫
0≤s≤t≤n

p2ε(Xs − Xt) ds dt

)1/2}

≥ sup
g∈F2

{
λ√
2

∫
R2

fε(x)g2(x) dx − 1

2

∫
R2

|∇g(x)|2 dx

}

= sup
g∈F2

{
λ√
2

∫
R2

f (x)

(∫
R2

g2(x − y)pε(y) dy

)
dx − 1

2

∫
R2

|∇g(x)|2 dx

}
.
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Taking the supremum overf with ‖f ‖2 = 1 and using the fact that the dual ofL2

is L2 gives

lim inf
n→∞

1

n
logEexp

{
λ

(∫ ∫
0≤s≤t≤n

p2ε(Xs − Xt) ds dt

)1/2}

≥ sup
g∈F2

{
λ√
2

[∫
R2

(∫
R2

g2(x − y)pε(y) dy

)2

dx

]1/2

− 1

2

∫
R2

|∇g(x)|2 dx

}
(3.10)

for anyλ > 0.
On the other hand, write

ξk(ε) =
∫ ∫

{k−1≤s≤t≤k}
p2ε(Xs − Xt) ds dt, k = 1,2, . . . ,

and

Dn =
n−1⋃
k=1

[0, k) × (k, k + 1], n = 1,2, . . . .

Then{ξk(ε)}k≥1 is an i.i.d. sequence and∫ ∫
{0≤s≤t≤n}

p2ε(Xs − Xt) ds dt =
∫ ∫

Dn

p2ε(Xs − Xt) ds dt +
n∑

k=1

ξk(ε).

Let p,q > 1 be such thatp−1 + q−1 = 1. By the triangle inequality and Hölder’s
inequality,

Eexp
{
p−1λ

(∫ ∫
{0≤s≤t≤n}

p2ε(Xs − Xt) ds dt

)1/2}

≤
[
Eexp

{
λ

(∫ ∫
Dn

p2ε(Xs − Xt) ds dt

)1/2}]1/p

×
[
Eexp

{
qp−1λ

(
n∑

k=1

ξk(ε)

)1/2}]1/q

.

It is easy to see from standard large deviation theory that

lim
n→∞

1

n
logEexp

{
qp−1λ

(
n∑

k=1

ξk(ε)

)1/2}
= 0.
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Therefore, by (3.10) we have

lim inf
n→∞

1

n
logEexp

{
λ

(∫ ∫
Dn

p2ε(Xs − Xt) ds dt

)1/2}

≥ p sup
g∈F2

{
p−1λ√

2

[∫
R2

(∫
R2

g2(x − y)pε(y) dy

)2

dx

]1/2

− 1

2

∫
R2

|∇g(x)|2 dx

}
.

Lettingp → 1+ gives

lim inf
n→∞

1

n
logEexp

{
λ

(∫ ∫
Dn

p2ε(Xs − Xt) ds dt

)1/2}

≥ sup
g∈F2

{
λ√
2

[∫
R2

(∫
R2

g2(x − y)pε(y) dy

)2

dx

]1/2

− 1

2

∫
R2

|∇g(x)|2 dx

}
.

(3.11)

For anym ≥ 0, let k ≥ 0 be the integer such that 2k ≤ m ≤ 2(k + 1). By
Lemma 3.4,

E
(
C(m+2)/2

n

) ≥ [ECk+1
n ](m+2)/(2(k+1))

≥
[
E

(∫ ∫
Dn

p2ε(Xs − Xt) ds dt

)k+1](m+2)/(2(k+1))

≥
[
E

(∫ ∫
Dn

p2ε(Xs − Xt) ds dt

)m/2](m+2)/m

.

As n → ∞, it is clear thatCn → ∞. Using Lemma 3.4, we can also see that there
is aN > 0 andε0 > 0 such that

E

(∫ ∫
Dn

p2ε(Xs − Xt) ds dt

)m/2

≥ 1, m = 0,1, . . . ,

if n ≥ N andε ≤ ε0. Hence

E
(
C(m+2)/2

n

) ≥ E

(∫ ∫
Dn

p2ε(Xs − Xt) ds dt

)m/2

.

Using the Taylor series expansion foreλx , for each 0< δ < λ,

E
(
Cn exp

(
(λ − δ)C1/2

n )
) ≥ Eexp

{
(λ − δ)

(∫ ∫
Dn

p2ε(Xs − Xt) ds dt

)1/2}
.
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By the fact thateλ
√

x ≥ xe(λ−δ)
√

x for sufficiently largex > 0 and in view of (3.11)
(with λ replaced byλ − δ), the above estimate implies

lim inf
n→∞

1

n
logEexp{λC1/2

n }

≥ sup
g∈F2

{
λ − δ√

2

[∫
R2

(∫
R2

g2(x − y)pε(y) dy

)2

dx

]1/2

− 1

2

∫
R2

|∇g(x)|2 dx

}
.

Letting ε → 0+ on the right-hand side gives

lim inf
n→∞

1

n
logEexp{λC1/2

n }

≥ sup
g∈F2

{
λ − δ√

2

(∫
R2

|g(x)|4 dx

)1/2

− 1

2

∫
R2

|∇g(x)|2 dx

}

= (λ − δ)2

2
sup
f ∈F2

{(∫
R2

|f (x)|4 dx

)1/2

− 1

2

∫
R2

|∇f (x)|2 dx

}

= (λ − δ)2A4

4

(3.12)

for any 0< δ < λ, where the second step follows from the substitution

g(x) = λ − δ√
2

f

(
λ − δ√

2
x

)
and the last step follows from (3.2). Finally, lettingδ → 0+ gives (3.9). �

THEOREM 3.2. There is a 0< L ≤ ∞ such that

lim
t→∞ t−2π logP{−β1 ≥ logt} = −L.

Theorem 3.2 proves part of Theorem 1.3.

PROOF OF THEOREM 3.2. For any positive integersm andn, by Proposi-
tion 2.2,

βm+n = βn + B([n,n + m]) + A([0, n]; [n,n + m]) − EA([0, n]; [n,n + m])
≥ βn + B([n,n + m]) − EA([0, n]; [n,n + m]),

andβn andB([n,n + m]) are independent. Hence

Eexp{−2π(m + n)β1}
= Eexp{−2πβm+n}
≤ exp{2πEA([0, n]; [n,n + m])}Eexp{−2πB([n,n + m])}Eexp{−2πβn}
= exp{2πEA([0, n]; [n,n + m])}Eexp{−2πβm}Eexp{−2πβn}
= exp{2πEA([0, n]; [n,n + m])}Eexp{−2πmβ1}Eexp{−2πnβ1}.
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Using this and Proposition 2.3,

(m + n)−(m+n)
Eexp{−2π(m + n)β1}

≤ (m−m
Eexp{−2πmβ1})(n−n

Eexp{−2πnβ1}).
If we write

a(n) = log(n−n
Eexp{−2πnβ1}), n = 1,2, . . . ,

then we have proved that for any positive integersm andn,

a(n + m) ≤ a(m) + a(n).

Consequently,

lim
n→∞

1

n
a(n) = inf

m≥1

{
1

m
a(m)

}
.

By Stirling’s formula, this is equivalent to

lim
n→∞

1

n
log

(
(n!)−1

Eexp{−2πnβ1}) = 1+ inf
m≥1

{
1

m
a(m)

}
.

By Lemma 2.3 of [14],

lim sup
t→∞

t−1 logP
{
exp{−2πβ1} ≥ t

} = −exp
{
−1− inf

m≥1

{
1

m
a(m)

}}
= −L,

where

L = exp
{
−1− inf

m≥1

{
1

m
a(m)

}}
. �

REMARK 3.3. In fact,L < ∞. This is established in Corollary 5.7.

LEMMA 3.4. For any positive numbers ε and ε′ with ε > ε′, any D ⊂
{(s, t); s ≤ t} and integer m ≥ 1,

E

[∫ ∫
D

pε′(Xt − Xs)ds dt

]m

≥ E

[∫ ∫
D

pε(Xt − Xs)ds dt

]m

.

Furthermore, if D is a finite union of disjoint rectangles contained in {(s, t); s ≤ t},

D =
n⋃

k=1

(Ik × Jk),

then

E

[∫ ∫
D

pε(Xt − Xs)ds dt

]m

≤ E

[
n∑

k=1

A(Ik;Jk)

]m

.
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PROOF. By the Fourier transform,

pε(Xt − Xs) = 1

(2π)2

∫
R2

dξ exp{−iξ · (Xt − Xs)}exp
{
−ε

2
|ξ |2

}
.

Hence

E

[∫ ∫
D

pε(Xt − Xs)ds dt

]m

= 1

(2π)2m

∫
Dm

ds1dt1 · · ·dsm dtm

∫
(R2)m

dξ1 · · ·dξm

× E

[
m∏

k=1

exp{−iξk · (Xt − Xs)}exp
{
−ε

2
|ξk|2

}]

= 1

(2π)2m

∫
Dm

ds1dt1 · · ·dsm dtm

∫
(R2)m

dξ1 · · ·dξm

× exp

{
−1

2
Var

[
m∑

k=1

ξk · (Xt − Xs)

]}
exp

{
−ε

2

m∑
k=1

|ξk|2
}
,

which leads to the first half of the lemma.
As for the second half of the lemma, by Theorem 4 on page 191 in [15],

E

[
n∑

k=1

A(Ik;Jk)

]m

< ∞, m = 0,1, . . . ,

and ∫ ∫
D

pε(Xt − Xs)ds dt →
n∑

k=1

A(Ik;Jk) (ε → 0+)

in Lm-norm for all integersm ≥ 1. (In fact, Le Gall proved the above convergence
with pε replaced by the uniform density on the disk of radiusε. It can be seen from
his argument that this remains true in our case.) Therefore, lettingε′ → 0+ leads
to the second half of the lemma.�

4. The lim sup result. In this section we establish Theorem 1.4.

LEMMA 4.1. There exist constants c1, c2 such that for all λ > 0 and all
a ∈ (0,1),

P
(
α(1, a) > λ

) ≤ c1 exp
(−c2λ/

√
a

)
.

PROOF. Let m ≥ 1 be an integer. We first prove there exist constantsc3, c4
such that

E[α(1, a)m] ≤ c3c
m
4 am/2m!.(4.1)
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To establish this, write

α(1, a) = lim
ε→0

∫ 1

0

∫ a

0
p(ε,0,Xv − Yu) dv du,

wherep(ε, x, y) is the transition density of planar Brownian motion. As mentioned
in the last paragraph of the proof of Lemma 3.4, the convergence takes place inLp

for everyp. By the semigroup property,

p(ε,0,Xv − Yu) = p(ε,Xv,Yu) =
∫

R2
p(ε/2, x,Xv)p(ε/2, x, Yu) dx

and so [∫ 1

0

∫ a

0
p(ε,0,Xv − Yu) dv du

]m

=
∫
(R2)m

dx1 · · ·dxm

(
m∏

k=1

∫ 1

0
p(ε/2, xk,Xv) dv

)

×
(

m∏
k=1

∫ a

0
p(ε/2, xk, Yu) du

)
.

Using the independence ofX andY , the expectation is equal to∫
(R2)m

dx1 · · ·dxm E

[
m∏

k=1

∫ 1

0
p(ε/2, xk,Xv) dv

]
E

[
m∏

k=1

∫ a

0
p(ε/2, xk, Yu) du

]
.

By the Cauchy–Schwarz inequality this is less thanJ1(ε)
1/2J2(ε)

1/2, where

J1(ε) =
∫
(R2)m

dx1 · · ·dxm

(
E

[
m∏

k=1

∫ 1

0
p(ε/2, xk,Xv) dv

])2

and

J2(ε) =
∫
(R2)m

dx1 · · ·dxm

(
E

[
m∏

k=1

∫ a

0
p(ε/2, xk, Yu) du

])2

.

By Brownian scaling,

lim
ε→0

J2(ε) = am lim
ε→0

J1(ε).(4.2)

To estimateJ1(ε), we rewrite it as∫
(R2)m

dx1 · · ·dxm E

[
m∏

k=1

∫ 1

0
p(ε/2, xk,Xv) dv

]
E

[
m∏

k=1

∫ 1

0
p(ε/2, xk, Yu) du

]
and so by the argument above in reverse order,

J1(ε) = E

[∫ 1

0

∫ 1

0
p(ε,Xv,Yu) dv du

]m

.
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Therefore limε→0 J1(ε) = E[α(1,1)m]. Lemma 2 of [16] together with (4.2) and
an application of Fatou’s lemma completes the proof of (4.1).

We then obtain

Eexp
(

α(1, a)

2c4
√

a

)
=

∞∑
m=0

(
1

2c4
√

a

)m
E[α(1, a)m]

m! ≤ c7,

wherec7 does not depend ona. Finally,

P
(
α(1, a) > λ

)
≤ exp

(−λ/
(
2c4

√
a

))
Eexp

(
α(1, a)/

(
2c4

√
a

)) ≤ c7 exp
(−λ/

(
2c4

√
a

))
,

which is what we wanted.�

The key to the upper bound is to obtain an estimate of the following form.

PROPOSITION4.2. If γ < γβ , there exists c1 such that

P

(
sup
t≤1

βt > λ

)
≤ c1e

−γ λ, λ > 0.(4.3)

PROOF. By Proposition 2.2,

βt − βs = B([s, t]) + A([0, s]; [s, t]) − EA([0, s]; [s, t]).
Let γ ′ be the midpoint of(γ, γβ) and letε > 0 be chosen so thatγ ′(1 − ε) is the
midpoint of(γ, γ ′). Note

P(βt − βs > λ) ≤ P
(
B([s, t]) > λ/2

) + P
(
A([0, s]; [s, t]) > λ/2

)
.(4.4)

Since B([s, t]) equalsβt−s in law, which equals(t − s)β1 in law, the first
probability on the right is bounded by

c2 exp
{
− γ ′λ

2(t − s)

}
.(4.5)

However,A([0, s]; [s, t]) is equal in law toα(s, t − s), which is smaller than
α(1, t − s). So by Lemma 4.1 there existsc3 not depending ons or t such that

P

(
A([0, s]; [s, t]) >

λ

2

)
≤ exp

{
− c3λ

(t − s)1/2

}
.(4.6)

Fix n = 2N . Since

sup
k≤n

Eexp(γ ′βk/n) = sup
k≤n

Eexp
(
(γ ′k/n)β1

) ≤ c4,

wherec4 does not depend onn, then

P

(
sup
k≤n

βk/n > (1− ε)λ

)
≤ nsup

k≤n

P
(
βk/n > (1− ε)λ

)
≤ ne−γ ′(1−ε)λ ≤ ne−γ λ.

(4.7)
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Now we use metric entropy. Ift ∈ (0,1), let tj be the largest multiple of 2−j that
is less than or equal tot . Write

βt = βtN + (
βtN+1 − βtN

) + (
βtN+2 − βtN+1

) + · · · .
If βt > λ for somet ≤ 1, either (a) for somek ≤ n, we haveβk/n > (1 − ε)λ or
(b) for somej ≥ N and somes < t with t − s = 2−j and boths, t integer multiples
of 2−j , we have

βt − βs > ελ/(100j2).(4.8)

The probabilityof possibility (a) is bounded by (4.7). Using (4.5) and (4.6), the
probability of possibility (b) is bounded by

c5

∞∑
j=N

2j [
exp

(−εγ ′λ2j /(200j2)
) + exp

(−c3ελ2j/2/(200j2)
)]

.(4.9)

The 2j in front of the brackets comes about because there are 2j pairs (s, t) to
consider. It is not hard to see that the sum in (4.9) is bounded by

c6
[
exp

(−εγ ′λ2N/(400N2)
) + exp

(−c3ελ2N/2/(400N2)
)]

.

If we chooseN large enough so that 2Nε/(400N2) > 1 and c32N/2ε/(400×
N2) > γ ′, we then have that the probability of possibility (b) is bounded by

2c7e
−γ ′λ ≤ 2c7e

−γ λ.

If we combine this with (4.7), we have (4.3).�

Using the Borel–Cantelli lemma it is now straightforward to get the following
theorem:

THEOREM 4.3. We have

lim sup
t→∞

βt

t log logt
≤ 1

γβ

a.s.

PROOF. Let M > 1/γβ . Chooseε > 0 small andq > 1 close to 1 so that
M(γβ − 2ε)/q > 1. Let tn = qn and letCn = {sups≤tn

βs > Mtn−1 log logtn−1}.
By Proposition 4.2 and scaling, the probability ofCn is bounded by

c1 exp
(−(γβ − ε)Mtn−1 log logtn−1/tn

)
.

By our choices ofε andq this is summable, so by the Borel–Cantelli lemma the
probability thatCn happens infinitely often is zero. To complete the proof we point
out that ifβt > Mt log logt for somet ∈ [tn−1, tn], then the eventCn occurs. �

To finish the proof of Theorem 4.3 we prove the next theorem:
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THEOREM 4.4. We have

lim sup
t→∞

βt

t log logt
≥ 1

γβ

a.s.

Jointly, Theorems 4.3 and 4.4 are a reformulation of Theorem 1.4.

PROOF OFTHEOREM 4.4. Letγ > γβ and letγ ′ be the midpoint of(γβ, γ ).
Then by Theorem 3.1,

P(β1 ≥ a log logn) ≥ c2e
−γ ′a log logn, a > 0.(4.10)

Let δ > 0 be small enough so that(1 + δ)γ ′/γ < 1 and settn = exp(n1+δ).
By (2.5),

βtn = B([0, tn])
= B([tn−1, tn]) + B([0, tn−1])

+ A([0, tn−1]; [tn−1, tn]) − EA([0, tn−1]; [tn−1, tn])
≥ B([tn−1, tn]) + B([0, tn−1]) − EA([0, tn−1]; [tn−1, tn]).

By scaling,

EA([0, tn−1]; [tn−1, tn]) ≤ Eα(tn, tn)

= tnEα(1,1) = o(tn log logtn), n → ∞.

SinceA ≥ 0, we need only to prove

lim sup
n→∞

B([tn−1, tn])
tn log logtn

≥ 1

γβ

a.s.(4.11)

and

lim
n→∞

|B([0, tn−1])|
tn log logtn

= 0 a.s.(4.12)

Using (4.10) and scaling, it is straightforward to obtain
∞∑

n=1

P

(
B([tn−1, tn]) >

1

γ
tn log logtn

)
= ∞.

Using the fact that different pieces of a Brownian path are independent and the
Borel–Cantelli lemma,

lim sup
n→∞

B([tn−1, tn])
tn log logtn

>
1

γ
a.s.

Letting γ → γ +
β gives (4.11).

Let ε > 0. By (2.9) there existsc4 > 0 such that

P{−β1 ≥ ε log logn} ≤ c4e
−2 log logn.(4.13)
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So (4.12) follows from Theorem 3.1, (4.13), scaling and the Borel–Cantelli lemma.
�

REMARK 4.5. Theorems 4.3 and 4.4 together imply Theorem 1.4.

5. The lim inf result. Let us writeDt for −βt . We knowEexp(γD1) < ∞
for everyγ > 0, but in fact we have the following proposition.

PROPOSITION5.1. We have Eexp(γ sups≤1 Ds) < ∞ for every γ > 0.

PROOF. Fix γ > 0. ChooseN a fixed integer so that 2N/(1600N3) > 2. If
s < t ≤ 1, we knowEA([0, s]; [s, t]) ≤ c1(t − s)L(t − s) ≤ c2, whereL(x) =
1 + | log(1/x)|. Supposeλ > c3, where c3 is chosen so thatc3/(400j2) >

2c12−jL(2−j ) for eachj ≥ 0. Let sj = inf{k/2j : s ≤ k/2j }. If s ∈ [0,1], we can
write

Ds = DsN + (
DsN+1 − DsN

) + (
DsN+2 − DsN+1

) + · · · .
So if Ds > λ for somes ∈ [0,1], then either (a) for somek ≤ 2N , we have
Dk/2N > λ/2 or (b) for somej > N and somes < t , both multiples of 2−j with
t − s = 2−j ,

Dt − Ds >
λ

200j2 .

We haveP(Dk/2N > λ/2) = P(D1 > 2Nλ/(2k)) ≤ P(D1 > λ/2) ≤ c4e
−2γ λ

sinceEexp(4γD1) < ∞. So the probability of possibility (a) is bounded by

c42Ne−2γ λ.(5.1)

By Proposition 2.2,

Dt − Ds = −B([s, t]) + EA([0, s]; [s, t]) − A([0, s]; [s, t])
≤ −B([s, t]) + c1(t − s)L(t − s).

Since λ/(400j2) > 2c1(t − s)L(t − s), then for Dt − Ds to be larger than
λ/(200j2), we must have−B([t − s]) > λ/(400j2). Since−B([s, t])/(t − s) is
equal in law toD1, then

P
(−B([t − s]) > λ/(400j2)

) ≤ c5 exp
(−γ λ2jL(2j )/(800j2)

)
.

Since for eachj there are 2j pairs (s, t) to consider, the probability of (b) is
bounded by

∞∑
j=N

c52j exp
(−γ λ2jL(2j )/(800j2)

)
.
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This is summable and can be bounded by

c6 exp
(−γ λ2N/(1600N3)

)
for somec6. By our choice ofN , this is less than

c6e
−2γ λ.(5.2)

Combining (5.1) and (5.2), we have

P

(
sup
s≤1

Ds > λ

)
≤ c7e

−2γ λ

if λ > c3. Our result follows immediately from this.�

THEOREM 5.2. With probability 1,

lim sup
t→∞

Dt

t log log logt
≤ 1

2π
.

Theorems 5.2 and 5.5 together are just a reformulation of Theorem 1.5.

PROOF OFTHEOREM 5.2. Let

K = [log logt], R = t/K and Ij = [(j − 1)R, jR].
Let

Ej = sup
(j−1)R≤t≤jR

(−B
([(j − 1)R, t])).

By Proposition 2.2, if s < t and( − 1)R ≤ s < R, then

Ds ≤ ∑
j<

(−B(Ij )
) + (−B

([( − 1)R, s]))
+ ∑

i<j<

EA(Ii; Ij ) + ∑
j<

EA
([( − 1)R, s]; Ij

)

≤
K∑

j=1

Ej + ∑
i<j≤K

EA(Ii; Ij )

=
K∑

j=1

Ej +
K∑

j=1

EA
([0, (j − 1)R]; Ij

)
.

By Proposition 2.3 and Remark 2.1, the last term on the last line is bounded by

K∑
j=1

1

2π

[
jR log(jR) − (j − 1)R log

(
(j − 1)R

) − R logR
]
,
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which is easily seen to equal

1

2π
t log log logt.

Then forε > 0 andt large enough, we have

P

(
sup
s≤t

Ds > (1+ 2ε)
1

2π
t log log logt

)

≤ P

(
K∑

j=1

Ej > εt log log logt

)

= P

(
K∑

j=1

Ej

R
>

εt logK

R

)
= P

(
K∑

j=1

Ej

R
> εK logK

)

≤ c6e
−εK logK

Eexp

(
K∑

j=1

Ej

R

)
= c6e

−εK logK

(
Eexp

(
E1

R

))K

,

using the independence of theEj . SinceE1/R is equal in law to sups≤1 Ds , then
by Proposition 5.1, the above is bounded by

c6e
−εK logK(c7)

K.

If we taket large enough, we have the bound

c8e
−2K.

We apply this withtn = qn with q > 1 close to 1 so that(1 + 3ε)/q > 1 + 2ε.
Since exp(−2 log logtn) = O(n−2), we have

P

(
sup
s≤tn

Ds > (1+ 3ε)
1

2π
tn log log logtn

)
≤ c9

n2

for n large. IfDs > (1+4ε) 1
2π

s log log logs for somes ∈ [tn−1, tn], then it follows
that sups≤tn

Ds > 1+3ε
q

1
2π

tn log log logtn. By the Borel–Cantelli lemma, it follows
that

lim sup
t→∞

Dt

t log log logt
≤ 1

2π
(1+ 4ε) a.s.

Sinceε is arbitrary, our result follows. �

We now turn to the lower bound.

LEMMA 5.3. The quantity

P

(
sup

x∈B(0,3)

r<2

1

r

∫ 1

0
1B(x,r)(Xs) ds > λ

)

tends to 0 as λ → ∞.
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PROOF. Let

Ut(x, r) =
∫ t

0
1B(x,r)(Xs) ds.

By symmetry, the expectation ofE
yU1(x, r) is largest wheny = x. We have

E
x

∫ 1

0
1B(x,r)(Xs) ds =

∫ 1

0

∫
B(x,r)

1

2πs
exp

(−|z − x|2
2s

)
dzds,

and a straightforward calculation shows this is bounded byc1r
2(1 + log+(1/r)),

wherec1 can be chosen to be independent ofx andr . Then by the Markov property,

E[U1(x, r) − Ut(x, r)|Ft ] = E
Xt U1−t (x, r) ≤ c1r

2(1+ log+(1/r)
)
.

By [1], Theorem I.6.11, sinceUt(x, r) has continuous paths and is nondecreasing,
there existsc2 such that

Eexp
(
c2U1(x, r)/r2(1+ log+(1/r)

)) ≤ 2.(5.3)

Setrk = 2−k and letAk be the set of points inB(0,4) such that each coordinate
is an integer multiple of 2−k . The cardinality ofAk is less thanc322k. By
Chebyshev’s inequality,

P

(
sup

xk∈Ak

1

rk
U1(x, rk) >

λ

4

)
≤ c422k exp

( −c5λ

rk(1+ log+(1/rk))

)
.

This is summable ink, so

P

(
sup

k≥−1
sup

xk∈Ak

1

rk
U1(x, rk) >

λ

4

)
tends to 0 asλ → 0. If x ∈ B(0,3) andr < 2, thenB(x, r) ⊂ B(xk, rk) for some
xk ∈ Ak and somek such thatrk/4≤ r ≤ rk. Our result now follows. �

LEMMA 5.4. Suppose µ is a measure supported in B(0,2) such that for all
r ≤ 2 and all x ∈ R

2, we have µ(B(x, r)) ≤ c1r . There exists c2 such that for all
x ∈ R

2, ∫ 1

0

∫
p(s, x, y)µ(dy) ds ≤ c1c2,

where p(s, x, y) = 1/(2πs)exp(−|x − y|2/(2s)) is the transition density of two-
dimensional Brownian motion.

PROOF (cf. [2]). Substitutingt = |x − y|2/(2s) shows that∫ 1

0
p(s, x, y) ds ≤ c3

(
1+ log+(1/|x − y|)).
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We then use the Fubini theorem to write∫ 1

0

∫
p(s, x, y)µ(dy) ds

≤ c4

∞∑
k=−1

∫
B(x,2−k)\B(x,2−k−1)

(
1+ log+(1/|x − y|))µ(dy)

≤ c5

∞∑
k=−1

(2+ k)µ
(
B(x,2−k)

) ≤ c6c1

∞∑
k=−1

(2+ k)2−k ≤ c7c1,

as required. �

THEOREM 5.5. We have

lim sup
t→∞

−βt

t log log logt
≥ 1

2π
a.s.

PROOF. Let K = [b log logt] andR = t/K , whereb is to be chosen later. Let
Ij = [(j − 1)R, jR]. Let Gj = σ(Xs : s ≤ jR).

By (2.5) we have

−βt =
K∑

j=1

−B(Ij ) −
K∑

j=1

A
(
Ij ; [0, (j − 1)R]) +

K∑
j=1

EA
(
Ij ; [0, (j − 1)R])

= J1 + J2 + J3.

Recall thatA(Ij ; [0, (j − 1)R]) is equal in law toα(R, (j − 1)R). By Proposi-
tion 2.3 and Remark 2.1,

J3 =
K∑

j=1

1

2π

[
jR log(jR) − R logR − (j − 1)R log

(
(j − 1)R

)]
and it is straightforward to see that this is equal to1

2π
t logK .

Define the sets

Dj1 = {
XjR ∈ B

(
j
√

R,
√

R/16
)}

,

Dj2 = {
X(Ij ) ⊂ [

(j − 1)
√

R − (√
R/8

)
, j

√
R + (√

R/8
)] × [−√

R/8,
√

R/8
]}

,

Dj3 = {B(Ij ) ≤ κ1R},

Dj4 =
{∫ jR

(j−1)R
1

B(x,r
√

R )
(Xs) ds ≤ κ2rR

for all x ∈ B
(
j
√

R,3
√

R
)
,0< r < 2

√
R

}
,

Dj5 = {A(Ij−1; Ij ) ≤ κ3R},
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whereκ1, κ2 andκ3 are constants to be chosen later and that do not depend on
j, b, t andR. Let

Cj = Dj1 ∩ Dj2 ∩ Dj3 ∩ Dj4 ∩ Dj5

and

E =
K⋂

j=1

Cj .

We want to show

P(Cj |Gj−1) ≥ c1(5.4)

on the setC1 ∩ · · · ∩ Cj−1, wherec1 > 0 does not depend onj, b, t andR. Once
we have (5.4), then

P

(
m⋂

i=1

Ci

)
= E

(
P(Cm|Gm−1);

m−1⋂
i=1

Ci

)
≥ c1P

(
m−1⋂
i=1

Ci

)

and, by induction,

P

(
K⋂

i=1

Ci

)
≥ cK

1 = c
b log logt
1 = exp(b log logt logc1).(5.5)

On the setE we have

−J1 =
K∑

j=1

B(Ij ) ≤ κ1KR = κ1t.

Since for eachj we are on the setDj2, then on the eventE we haveX(Ii) disjoint
from X(Ij ) if |i − j | > 1. Therefore,

−J2 =
K∑

j=1

A(Ij−1; Ij ) ≤ κ3KR = κ3t.

So onE we have altogether that

J1 + J2 + J3 ≥ 1

2π
t log log logt − (κ1 + κ3)t.

We now proceed to show (5.4). By the support theorem for planar Brownian
motion and scaling (see [1], Theorem I.6.6),

P(Dj1 ∩ Dj2|Gj−1) > c2.

By scaling,

EB(Ij ) = REB([0,1]) ≤ c3R.
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So if κ1 is chosen large enough,

P
(
B(Ij ) > κ1R

)
< c2/6.

Now let us look atDj4. By scaling and Lemma 5.3 it follows thatP(Dj4) ≤
c2/6 if we chooseκ2 large enough.

Next we look atDj5. We have an estimate onEA(Ij−1; Ij ), but what we
actually need is an estimate onE[A(Ij−1; Ij)|Gj−1]. To show

P
(
A(Ij−1; Ij ) > κ3R|Gj−1

) ≤ c2/6

if κ3 is large enough, it is enough to show

E[A(Ij−1; Ij )|Gj−1] ≤ c4R(5.6)

on the set
⋂j−1

i=1 Ci . By [3], we can letµ be the measure onR2 defined by

µ(F ) =
∫ 1

0
1F (Xs) ds

and considerA([0,1]; [1,2]) as an additive functional of Brownian motion that
corresponds to the measureµ. So to show (5.6), by scaling and translation
invariance it is enough to show

E
[
A([0,1]; [1,2])|F1

] ≤ c5(5.7)

on the set whereµ(B(x, r)) ≤ κ1r for all x ∈ B(0,3) and all r ∈ (0,2). The
conditional expectation (5.7) is bounded by

sup
y

∫ 1

0

∫
p(s, y, z)µ(dz) ds,

where p(s, y, z) is the transition density for planar Brownian motion. Using
Lemma 5.4 we have (5.7).

Settingc6 = c2/2 gives the desired lower bound (5.4).
Let tn = exp(nγ ) for someγ > 1 and letε > 0. Provided we takeb (in the

definition ofK) small enough, the Borel–Cantelli lemma tells us that

−B([tn−1, tn]) ≥
(

1

2π
− ε

)
(tn − tn−1) log log log(tn − tn−1)(5.8)

infinitely often with probability 1. By (2.5) we have

−B([0, tn]) = −B([0, tn−1]) − B([tn−1, tn]) − A([0, tn−1]; [tn−1, tn])
+ EA([0, tn−1]; [tn−1, tn]).

(5.9)

By the upper bound for−βt , from Theorem 4.3, we know that

B([0, tn−1]) = O(tn−1 log log logtn−1) = o(tn log log logtn) a.s.(5.10)
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By scaling,

Ãn = A([0, tn−1]; [tn−1, tn])(5.11)

is equal in law to�nα(1, tn−1/�n), where�n = tn − tn−1. By Lemma 4.1,

P(Ãn > tn) ≤ exp

(
−c8

tn

�n

√
�n

tn−1

)
,

which is summable. Using the Borel–Cantelli lemma, we have

Ãn = o(tn log log logtn) a.s.(5.12)

Substituting this, (5.8), (5.10) and (5.12) in (5.9) proves the theorem.�

REMARK 5.6. Theorem 1.5 follows immediately from Theorems 5.4 and 5.5.

The following corollary completes the proof of Theorem 1.3.

COROLLARY 5.7. Let L be as in the statement of Theorem 3.2.Then L < ∞.

PROOF. In the proof of Theorem 5.5 we showed that the eventE had
probability at least exp(b log logt logc1) and that on the eventE we had
−βt ≥ 1

2π
t log log logt − c2t provided t was large enough. Chooset so that

1
2π

log log logt − c2 = logs. Using scaling, we then have

P(−β1 > logs) ≥ exp(−c3 log logt) = exp(−c4s
2π).

Now take logarithms of both sides and divide bys2π . �

REMARK 5.8. Theorem 1.3 follows immediately from Theorem 3.2 and
Corollary 5.7.
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