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MODERATE DEVIATIONS FOR DIFFUSIONS
WITH BROWNIAN POTENTIALS

BY YUEYUN HU AND ZHAN SHI

Université Paris VI

We present precise moderate deviation probabilities, in both quenched
and annealed settings, for a recurrent diffusion process with a Brownian
potential. Our method relies on fine tools in stochastic calculus, including
Kotani's lemma and Lamperti’s representation for exponential functionals. In
particular, our result for quenched moderate deviations is in agreement with
a recent theorem of Comets and PopBwpab. Theory Related Field®6
(2003) 571-609] who studied the corresponding problem for Sinai's random
walk in random environment.

1. Introduction. Let W := (W(x), x € R) be a one-dimensional Brownian
motion defined oR with W(0) = 0. Let(8(¢), t > 0) be another one-dimensional
Brownian motion independent &% (-). Following [2] and [20], we consider the
equationX (0) =0,

(1.1) dX(t)=dp(t) — %W/(X(t)) dt, t>0.

The solutionX of (1.1) is called a diffusion with random potenti&l. The rigorous
meaning of (1.1) can be given in terms of the infinitesimal generator: Conditioning
on each realizatiogW (x), x € R}, the proces« is a real-valued diffusion with
generator

2 dx dx

Another representation & by time change is given in Section 4.

The processX has been used in modeling some random phenomena in
physics [16]. It is also related to random walk in random environment [18, 7, 26].
See [24] and [21] for recent surveys.

We denote byP and E the probability and the expectation with respect to
the potentialw, and byP,, andE,, the quenched probability and the quenched
expectation (“quenched” means the conditioning with respect to the pot#ntial

The total (or annealed) probability%d:efP(dw) ® Py,.
The typical long-time behavior oX () is described by a result of Brox [2],
which is the continuous-time analogue of Sinai's [22] well-known theorem for
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recurrent random walk in random ermirment: under the total probabili;

X (¢
—(2) Dpa), - oo
log*¢

d e ,
where(—>) denotes convergence in distribution, d@rd) is a nondegenerate random
variable whose distribution is explicitly known.

It is interesting to study the deviation probabilities

(1.2)  P,{X(®) >v} and P{X() > v}, t,v— 00, v > log’t,

wherev > log?t meansv/log?s — oco. In the sequel, we also write < y or
x = o(y) to denotey > x. Whenwv/t converges to a positive constant, this is a
large deviation problem, and is solved by Taleb [23] (who actually studies the
problem for all drifted Brownian potentials). In particular, it is shown that in this
case both probalifies in (1.2)have exponential decays.

We focus on moderate deviation probabilities, that is, whem) is such that
log?t « v < 1.

Our first result, which concerns the quenched setting, is in agreement with
Theorem 1.2 of [3] for random walk in random environment. This was, indeed,
the original motivation of the present work.

THEOREM1.1. We have

3) 2 |og5t /v)

logP,{X(¢) > v} - —1, P-as,
whenevep, 1 — oo suchthab > (log? ) log loglogr andloglog: = o(log(r/v)).
The same result holds feug_;-, X (s) instead ofX (z).

Loosely speaking, Theorem 1.1 says that in a typical potewtjd,, { X () > v}
behaves like exp-(1 + o(l))W]. However, if we take the average over
all the realizations oW (i.e., in the annealed setting), the deviation probability
will become considerably larger. This is confirmed in our second result stated as
follows.

THEOREM 1.2. We have
log? 1 2
ogf logP{X(¢) > v} — —n—,
v 8
wheneven, t — oo such thatv > log?s and logv = o(logr). The same result
holds forsup-,, X (s) instead ofX (¢).

(1.4)

When log ¢ < v < (log?1)(loglogr)Y/2, the convergence (1.4) has already been
obtained in [9] by means of the Laplace method. This method, however, fails when
v goes to infinity too quickly, for example, if > log®z.
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We say a few words about the proofs of Theorems 1.1 and 1.2. Although the
methods adopted in the three parts (Theorem 1.1, upper bound and lower bound
in Theorem 1.2) find all their roots in stochastic calculus, they rely on completely
different ingredients.

In the proof of Theorem 1.1, we exploit Kotani's lemma as well as other fine
tools in the theory of one-dimensional diffusion.

The proof of the upper bound in Theorem 1.2 relies on Lamperti’s representation
for exponential functionals and on Warren and Yor’s [25] skew-product theorem
for Bessel processes. The proof of the lower bound, on the other hand, is based on
a bare-hand analysis of pseudo-valleys where the diffu§iepends much time.

The rest of the paper is organized as follows. Section 2 is devoted to
some preliminary results for local times of Brownian motion. In Section 3 we
introduce Kotani’s lemma and prove Theorem 1.1. The main result in Section 4,
Theorem 4.1, is a joint arcsine type law for the occupation timeX ,oévhich
may be of independent interest. This result will be used to prove Theorem 1.2 in
Section 5.

Throughout this paper, we writ¢ ! for the inverse of any continuous and
(strictly) increasing functionf. Unless stated otherwise, for any continuous
process, we denote by (x) = inf{r > 0:£(r) = x}, x € R, the first hitting time
of & atx.

2. Preliminarieson local times. In this section we collect a few preliminary
results for the local times of Brownian motion. These results will be of use in the
rest of the paper.

Let B be a one-dimensional Brownian motion starting from 0. [etz, x),

t >0, x € R) be the family of the local times a8, that is, for any Borel function
fiR—> Ry, fé f(B(s))ds = [°5, f(x)L(t,x)dx. We define

2.1) t) ¥inflr >0:L¢,00>r),  r>0,
(2.2) o) ®infir > 0:B(1) > x}, x>0.

Denote by BE®) [resp. BESQ@S)] the Bessel process (resp. the squared Bessel
process) of dimensiofl. We recall that a-dimensional squared Bessel process

has generator of formxijz2 + 6%. When$ is an integer, a Bessel process can
be realized as the Euclidean norm of Rftvalued Brownian motion. We refer

to [19], Chapter XI, for a detailed account of general properties of Bessel and
squared Bessel processes, together with the proof of the following result.

FACT 2.1 (First Ray—Knight theorem). Fix> 0. The proces$L (o (a),a —
x), x > 0} is an inhomogeneous strong Markov process starting from 0, which is a
BESQ?2) on[0, a] and a BESQD) on (a, 00).
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The rest of the section is devoted to a few preliminary results for local times of
Brownian motion.

LEMMA 2.2. Forb>a>0andv >0,

2 % v b
- iexp(_ﬂ_z#)
T 8 (b—a)?)

PROOF By the strong Markov property[fL(a(b),x)dx is distributed as
fé’_“ L(o(b—a),x)dx.According to Fact 2.1 and [19], Corollary XI.1.8, for any

A >0, IEexp{—A—z2 é’_“ L(o(b—a),x)dx}=1/coshA(b —a)), which is also the
Laplace transform ai‘z—z of T |(b — a) (the first hitting time ofb — a by |B|).

(2.3)

Thus, [* L(o(b), x) dx law Tip|(b — a). The lemma now follows from the exact
distribution of Brownian exit time ([6], page 342)[]

LEMMA 2.3. Letb >a > 0andx > 0,we have
o(a)
/0 (b _ B(s))(l/K)—st |gv TZ—ZK(ZKbl/(ZK) s 2 (b — a)l/(ZK))’

whereY2_o,(x ~ y) means the first hitting time of by aBES(2 — 2«) starting
fromx.

PROOFE Write

o ()
/ (b— B(s)) Y %as
0

o(a)
:/ (b— B() M 2as +/
0 o

By the strong Markov property, the integrals on the right-hand side are
independent random variables. Moreover, the second integral is distributed as
(b — ) [§P (1 — B(s)O-24s.

On the other hand, according to Getoor and Sharpe ([8], Proposition 5.14(a)),
foranya > 0,

o(b)
(b — B(s)) M2 gs.

(@)

A2 @ Wo-2,\__2
Eexp(—?/o (1— B(s)) ds) = ﬁ()uc) K. (2c)),

whereK, denotes the modified Bessel function of index
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Assembling these pieces yields that
A2 po@ _ b \Y? K (2)bpV @0
Eexp(——/ (b— B(s)) V™ st) = ( ) e )__
2 Jo b—a) Kc(2i(b—a)l/ @)

According to Kent [13], the expression on the right-hand side is exactly the Laplace
transform at?/2 of Yo_p, (2cbY %) s 2 (b — @)Y/ ?)). O

LEMMA 2.4. Almost surely
1
— sup(L(z(r),x) —r) — 0,
T x|<u

whenever — oo andr > uloglogu.

PROOFE By symmetry, we only need to treat the case 8 < u. It is proved
by Csaki and Foldes ([4], Lemma 2.1) that for any O,

lim 1 sup (L(z(r),x)—r)=0 as.

reoor O<x<r/(loglogr)l+e

Thus, we only have to deal with the cas®> u loglogu andr < ulogu.
Let ¢ > 0. We shall prove that almost surely for allr — oo such that
r > uloglogu andr < ulogu,

(2.4) Y sup (L(r().0) ) <
O<x<u

To this end, we consider the events

def 512
A j =13, r) €lug, up1] x [rj, rjpal: ?u loglogu <r <ulogu,

sup (L(z(r),x) —r) >8r},

O<x<u

with uy d:Eka, rj d:efzf andk, j > 100. The desired conclusion (2.4) will follow

from the Borel-Cantelli lemma once we show that

> P(Ag,j) <oo.

j.k>100

To prove}; i>100P(Ax, ;) < oo, we recall a result of Bass and Griffin ([1],
Lemma 3.4) saying that there exists a constantO such that for all G< /2, x < 1,

2
IP{ sup Sup(L(t(r),z)—r)>x}Sc%exp< X )

1<r=20<z<h 32h
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Therefore, by the monotonicity and the scaling property,

P(Ag,j) < IP’( sup sup (L(z(r),x)—r) > erj>

O<x<upy17j=<r=rji1

=]P’( sup  sup (L(t(r),x)—r) >e)

O<x<upy1/rj 1sr=2

2
er; &2r;
<c—Lexpl —z—2 )
Uj+1 3211
er; _
<c—L (klog2)~.
Uk+1

To ensurdP(Ay, ;) > 0, necessarily; < ui41loguis1, this implies thatj < 2k.
Hence,

Y P(A) = Y ce2k(klog2)~*(k + 1)log 2 < oo,
j,k>100 k>100

as desired. [J

LEMMA 2.5. Letr > 0.We have

o0 1
25) E —A =L —s)ds | = 0
(2.5) eXp< /0 ¢ Lo ), =) s) 1+ rv20(V/8N) e

where;(-) denotes the modified Bessel function of infle€onsequentithere
exists some constant- 0 such that for allr > ¢, . > 0and0 < a < r, we have

(2.6) ]P’(/_aoo e WL(o(r), x)dx > k) < 3exr<—%) + Zexx—ﬁ).

PrROOF By Fact2.1s5+ L(o(r),—s) for s > 0is a BESQO) starting from

L(o(r),0) law 2re, wheree is an exponential variable with mean 1. L& be a
BESQO) starting froma > 0. The Laplace transform gf° U, (s)e ™ ds is given
by the solution of a Sturm—Liouville equation, see [17]: foraal+ O,

2.7) Eexp(—k fo WA ds) = exp(%w;(O)),

where v/ (0) is the right-derivative of the convex functiop at 0, andy is
the unique solution, decreasing, nonnegative, of the Sturm-Liouville equation:
v(0) =1,

Y (x) = he Y (x), x> 0.
Elementary computations ([17], page 435) show that
Y (x) =Io(v8re™?), x>0,



DIFFUSIONS WITH BROWNIAN POTENTIALS 3197

which implies thay/, (0) = —+/2x11(~/8% ), wherel; denotes the modified Bessel
function of index 1. Plugging this into (2.7) and integrating with respeetdwve

the Laplace transform (2.5). By analytic continuation, for all sufficiently small
A > 0 (how small depending on),

00 1
E A =L —s)ds ) =
exp( /o ¢ Lo ), =) S) 1—ra/20J1(v/80)°

where J1(-) is the Bessel function of index 1. Sinde(x) ~ x/2 whenx — 0,
there exists some large> 0 such that for all > ¢, we have

Eex ! oo_SL( )ds ) = _1 — <3
p(ﬂ/o e o(r),—s s)_l_ T3 2/r)<'

This implies that for alk > ¢ andA > 0, we have

(2.8) IP’(/OOOe_SL(U(r),—s)ds >A> §3exr<—4i>.

7

On the other hand, syp,, L(o(r), x) is the maximum of a BESQ) over
[r — a, r]. It follows from reflection principle that

]P(/(:L(a(r),x)e_xldx Zk) < ]P)( sup L(o(r),x) > 2)

0<x<a

< 2]P’<L(a(r), 0) > 2)

A
=2exg —— |,
XF( 2ar>

since L(o (r), 0) W e, This, together with (2.8), yields (2.6) by triangular
inequality. O

3. Thequenched case: proof of Theorem 1.1. This section is devoted to the
proof of Theorem 1.1, by means of the so-called Kotani’'s lemma.X_&e the
diffusion process in a Brownian potenti# as in (1.1). We define

Hw) Einflr>0:x@0)>v), v>0.

Kotani’'s lemma (see [12]) gives the Laplace transformil@b) under the quenched
probability P,,.

FAcT 3.1 (Kotani's lemma). Fok > 0 andv > 0, we have

Ew(e_)‘H(v)) = exp<—2k /OU Z(s) ds),

whereZ () = Z, (-) is the unique stationary and positive solution of the equation
dZ(t) = Z()dW () + (1+3Z@t) — 222%(1)) 1.
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Before starting the proof of Theorem 1.1, we study the almost sure behaviors of
Jo Z(s)ds asv — oo andi — 0.

LEMMA 3.2. We have

(3.1) /Ov Z(s)ds = (1+o(1))

S,

v
4)log(1/A)
whenevei — 0 andv — oo such that > log?(1/4) loglog log(1/1).

PrROOF Without loss of generality, we assurd¢0) = 1. Let

S(x) d:ef/x e@/y)+A4ry d_y’ x>0,
1 y

which is a scale function of the diffusidf. By Feller’s time change representation,
there exists a standard one-dimensional Brownian maiiosuch that

(3.2) Z(t)y=s"YB(® tm)), =0,
where
def (1 ds
o0 [ Zaey 120
def o/ o—1 —1,.N 2 -1
h(x) =8 (S71))s (x)_exp(is_l(x)+4)»5 (x)), xeR,

$~1 and®~1 being the inverse functions ¢fand®, respectively.
Let L(-, -) denote, as before, the local time®fand letz (-) be the inverse local
time at 0 as in (2.1). We define, for any fixgce [0, 1],

D, & [~ (57w

3.3) .
X exp(—ST(x) — 8AS_1(x)>L(t(r), x)dx, r>0.

We claim that

(14 0(D)rlog(1/4), if y =0,
(34) D)/ (}") = r . a.S.,
a+dnww§ﬁy, if0<y<1,

wheneven. — 0 andr > log(1/A) logloglog(1/1).
Let us admit (3.4) for the time being, and prove the lemma. By the occupation
time formula and a change of variables, we have

o0 4 _
<I>(r(r))=/_ooexp<— = — 818 1(x)>L(r(r),x)dx,
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which means tha® (z(r)) = Do(r) in the notation of (3.3). By (3.4), whenever
A — 0 andr > log(1/A) logloglog(1/1),

@ (z(r)) = (14 0(1))rlog(1/r) a.s,
which means that whenevier— 0 andv > log?(1/4) logloglog(1/x),

1 . v
(3.5) P vy =1 <(1 + 0(1))7Iog(1/k)>

On the other hand, by (3.2) and the occupation time formula,
v v
/ Z(s)ds = f STYB(®7(s))) ds
0

[ STYBe)
/ hZ(B(r))

_[* s 1() o1
/ hz(x) (v), x)dx

L'y (@),

with obvious definition ofWw(.). Note thatW(z(r)) = D1(r) in the notation
of (3.3). According to (3.4),

\p(r(r))=(1+o(1));—k, r > log(1/»)logloglogl/a)  as.

which, with the aid of (3.5), would yield Lemma 3.2.
It remains to show (3.4). We shall make use of the following simple conse-
quence of law of large numbers: jff: R — R is such that/y | f (x)|dx < oo, then

1
(3.6) rll_>moo;/Rf(x)L(t(r),x)dx=/Rf(x)dx a.s.

We write
0 S(a) 00
D, (r) = ( /_ o /0 + S(a))(S_l(x))y

4 -1
X exp(— i 8AS (x))L(r(r), x)dx

def

= A1+ A2+ Ag,
wherea = a(r, A) > 1/A is chosen such that
eHa 1 1 : ,(1
= Iog(—) log Iog(—) if r >log <—>

1 1 : (1
a=4 log Iog(z) if » < log (X)



3200 Y. HU AND Z. SHI

Forx <0, lets~1(x) =y € (0, 1), so thatfor. < %, —x = yl 7 Le#at2/z g, <
y~1e1+2/y This implies the existence of a large constant 0 such that for all
x < —candi < 7, we have log|x| — 2loglog|x|. Hence, by means
of (3.6),

1()_

0 _
A < e 8 1(")L(r(r),x) dx
(3.8) -

0 log™ | x|
< / <1(x> —o)+ <=0 |g B ) (z(r),x)dx = O(r) a.s.
—o0
To treatAs, we observe that foy > a (thus,yA — 00),

y d
S(y) = / e(2/D+4z az
1 <

dz

_ (1+0(l))/ye4kz dz

:(1+0(1))(Ake d_x+ 4y)te d_x)

X 1 X

1+ 0(1) 64”)
40y '

(3.9)

=(1+ 0(1))<|Og<%) + 0@ +

Let us distinguish two cases: First,if> log?(1/1), then z-¢%* > log(1/2);
hence, fory > a,

e4Ay
(3.10) S(y) = (1+0(1))K

Thus, forx > S(a), we have

logx

PS5 TH) =(1+o0@)Sstx)x>x and $7i(x)~ TR

It follows from (3.6) that

oo —
A3§/ (S72)) e &S O L ((r), x) dx
S(a)

oo /| 4
< Z/S(a)<%) x2L(z(r), x)dx

< 2(S(a))~Y? /100 (bﬂ)yx—wL(r(r), x)dx

4
=0\ — ).
AV
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For the other case l@fj/1) logloglog(1/1) < r < log?(1/4), we have

Az < L*(z(r)) /:)(S—l(x))y exp{— ) 8S_1(x)}dx
« ® _2—tny Y
=L (T(r))/a e (2/y)—4hy yl——)/
< L*(z(r)) /006_4” dy = L*%g)) < L*(z(r)),

where

L* () ¥'supL(r (), x) < r(logn*t  as,
xeR

for any ¢ > 0, by the law of iterated logarithm foL*(-) ([14]). Sincer <
Iogz(l/k), this implies thatA3 « r(log Iog(l/A))Z, a.s. Therefore, in both
situations, we have

(3.11) Ag= o(/\%) + o(r (Iog Iog(%))z) as.

To deal with A,, we claim that in both cases [i.e:,> Iog2(1/k) andr <
log?(1/1)],

Sta) = 0<Iog Iogr)'

In fact, if » > log?(1/1), then by (3.10)S(a) < %e‘m = 2log(1/2) loglog(1/
A) = o(r/loglogr); otherwise, by definition (3.7 = '09"2# and by means
of (3.9), we haveS(a) < 2log(1/A) = o(r/loglogr) [recalling thatr > log(1/
A)logloglog(1/2)]. Hence, we can apply Lemma 2.4 to see that

S(a)
Apr=r(l+ 0(1))/0 (s71))” exp(— S_f'(x) — 8AS‘1(x)> dx a.s.

By a change of variableS™1(x) = y, the integral on the right-hand side is, when
Ar—0,

a d a d
— —@/y-sy 4V _ 1+o0(1 / —dry_4Y
[ e Sy = o) [T
_140(1) M " du
@Y Ja ul-v

(1+o(D)logl/r), ify =0,

= C'(y)
(1+0()) @

if y >0.
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Accordingly,

(14 o(1))rlog(1/Ar), if y =0,
3.12 Ay = _ a.s.
(3.12) T @rowrm gy ify>o

Since D, (r) = A1 + Az + Ag, assembling (3.8), (3.11) and (3.12) readily
yields (3.4). The lemma is provedd

We now have all the ingredients for the proof of Theorem 1.1.

PROOF OF THEOREM 1.1. Lets,v — oo satisfy the conditions in Theo-
rem1.1.
First, we prove (1.3) for sy, X (s) in place ofX (¢): P-almost surely,

(3.13) Pw< sup X(s) > v) =P,(H(v) <t)= exp(—(l—i— 0(1))

O<s<t

Zoai7%)
2log(t/v) )

To this end, applying Chebyshev’s inequality to Fact 3.1 and Lemma 3.2,
we have that for almost surely all potentid#é and for A — 0 satisfyingv >
log?(1/1) logloglog(1/A),

(3.14) P,{H(v) <t} <eME,[e W] = exp(,\t —(1+ o(l))m)-

By choosingh = tlogzv(t/v) [this is possible since>s> v > log?(¢/v) log log log(z/
v)], we have

v
P,{H —(1 D)
AHW <1} <o ~(L+oD) 50— )
This implies the upper bound in (3.13).
To get the lower bound, we keep the choice.@&nd use the simple relation

Po{H (v) < tlog?t} > E,[e +HM)] — ¢=#10g%
(3.15)

v
> —(1 D)
_exp( (1+o ))2Iog(t/v))’
by means of Lemma 3.2. Write= 7 log? ¢. Since loglog = o(log( /v)), we have
log(/v) ~ log(t/v). Thus, (3.15) yields the lower bound in (3.13).
In light of the trivial inequalityP,{X () > v} < P,(H (v) < t), it remains to
show the lower bound in (1.3). For any, ¢2 > 0, we define

G(e1,c2) B, 1)1, v > 38 v > c1log?t logloglogr, log(r /v) > ¢z loglogt).
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The proof of Theorem 1.1 will be complete if we can show that for any sinalD
and almost surely alb, there existc1(e, w), c2(e, w) > 0 andrg = (e, w) > 0
such that for alk, v > g and(v, 1) € G(c1(g, w), c2(g, w)), we have
1+ 2¢ v

2 log(t/v)’

Write P, for the law of the diffusionX defined in (1.1) starting from
X(0)=x. Let j, k > jo be sufficiently large and defing; = ¢//'°9/ and =

exp(e®/1°9%) We claim that fores = c3(e) & (1-%?)67128’

(3.17) Z P{ij,w{H((l—s)vj)<tk}>%}<oo.
Jik>jo,(vj,t)€G(c3,1)

(3.16) logP,{X () > (1—¢&)v} > —

Indeed, by Brownian symmetry®,; »{H (1 — ¢)v;) < #} is distributed as
Po,o{H (ev}) < 1}, so that by means of (5.8) in Section 5, for all laggandk,

E(Py ol H((1—e)v)) < 1})
=P{H (ev;) < 1}
2 .
(3.18) <C82U2€ &vi +9€X[< 1- 28) L)
8 Iog (evjty)

(1—2¢)72 v;
<(+9 exp(— : )
€+9) 32 lod?n

We have used in the last inequality the fact thak #.
By Chebyshev’s inequality,

1
Z P{ij’w{H((l—e)vj)<tk}>E}
J.k=jo,(vj,ik)€G(c3,1)

<2 Z E(ij’w{H((l—s)vj)<tk})

Jik>jo,(vj,t)€G(c3,1)

1-2 ;
<2(c+9) p( ( 8)”8 ! )
log® #

J-k=Jjo, (v, 11)€G(c3,1)

Several elementary computations show that the above (double) sum is finite:
in fact, we can decompose this sum |nE]>k4 and >_; ;4. Note that for

j = k4 mS - = ex p{log/ Iogk} exp{ZIOQ‘/} Hence, ijk4 <>, iV

exp(— 1= 2352)” £ explzik)) < oo. For the casej < k* we use the defini-

tion of G(c3, 1), which says thav,-/logztk - 2) % logloglogri, > ;44 <

Y, k#e—8logloglogn: — s~ (=4 - o0, This yields (3.17).
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We now proceed to the proof of (3.16). According to the lower bound in (3.13),
for P-almost allw, there exist1(e, w) > 2c¢3 [recalling thatcz = ] and

c2(e, w) > 2 such that for alfv, 1) € G(2&2, 2E0))

256
(1-2¢)72e

1+¢
(3.19) Po.otH (v) <1} = ex —m)'

For anyw, the strong Markov property at timé (v;) implies that for any;_; <
v<vjandf_1 <t <t,

(3.20) Poo{X(r) > (1—e)v} = Poo{H ;) < tr—1}Py, o[ H((1 = &)v)) = 1 }.
Consider large, v such that(v, t) € G(c1(e, ), c2(¢, ®)), sayv € [v;_1,v;] and

t € [tx—1, 1. Then both(v;, #,_1) and(v;, ;) are elements off (LG2), 252,
and a fortiori(v;, #) € G(c3, 1). According to (3.19),

Po.wlH (1)) < i1} = ex —ﬂ),
’ 2log(tk—1/v;)
whereas by (3.17) and the Borel-Cantelli lemma,
Poof{H((L—e)vj) >t} > 3.
Plugging these estimates into (3.20) yields
B A+e)v; ) - ex _(1+28)U)
2log(tx-1/vj) /) ~ 2log(t/v) )’

since v;/vj_1 — 1 and logy/logf—1 — 1. This will yield the lower
bound (3.16). O

Po.w(X(1) > (1—e)v} > %ex

4. Theannealed case: ajoint arcsinelaw. Letx € R and let
We(x) = W(x) — %x, xeR,

whereW is, as before, a Brownian motion defined Brwith W (0) = 0. In this
section we shall study the diffusicn with potentialw, [i.e., replacingW by W,
in (1.1)]. Plainly, whenc = 0, we recover the case of Brownian potential &t
recurrent, whereaX (t) — +oo, P-a.s. ifx > 0.

We recall the time change representationxo{cf. [2] for x = 0 and [10] for
x> 0):

X0 =A BT 0), =0

whereB is a one-dimensional Brownian motion starting from 0, independéiit,of
and

X
AK(x):/ eV gy, x eR,
0

! -1
T, (1) =/ e 2We (A (B(S)))ds, t>0.
0
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(Recall thatA;1 and T,;l denote the inverses ad, and 7., resp.) Here, we
stress the fact that the proceBs a Brownian motion independent &, is not

the sameB as in Section 3. There is no risk of confusion since we always separate
the guenched and the annealed cases. Recalliliatr), r > 0, x € R) denote the
local times ofB ando () is the process of first hitting times &f:

o) Einf{r>0:B(t)>x), x>0
Therefore H (v), the first hitting time ofX atv > 0, can be represented as follows:
Hw)=inf{r>0: X(t) = v}
(4.1) =T (0 (Ac(v)))

o (Ac(v) .
_ f o~ 2We A BO)) 4
0

Acw) .
_ / e 2O L (5 (A (1)), x) dx
—00

(4.2) = 01(v) + O2(v),

with

Ax (v) oW, (A-1 H(v)
®1(v) =/ e 2Wi(A¢ (x))L(a(AK(v)),x)dxzf Lix(s)=0yds,
0 0

O Wit e
@2(1}):/ e VAT L(G(A,((v)),x)a’x:/o 1ix(s)<0} ds.
—o0

The main result in this section describes the (annealed) distribution of
(©1(v), O2(v)).

THEOREM4.1. Letxk >0and letv > 0.UnderP, we have
v =
(O1(v), O2(v)) 2 (4 / (%) — 1) ds, 1672 o, (€5 /2 s 1)),
0
whereY2_o, (x ~ y) denotes the first hitting time gfby aBES(2 — 2«) starting

from x, independent of the diffusiod, which is the uniqgue nonnegative solution
of

t _ t 1 -

(4.3) E,(1) =/ V1— e 5 d,B(s)—i—/ (—%+#e_°”(s))ds, t>0,
0 0

B being a standard Brownian motion

The proof of Theorem 4.1 involves some deep results. Let us first recall
Lamperti’s representation theorem for exponential functionals [15].



3206 Y. HU AND Z. SHI

FACT 4.2 (Lamperti’'s representation). Lete R. There exists a BE2+ 2«),
denoted byR and starting fromR (0) = 2, such that

kK N _ lso0(* Ky
(4.4) exp(W(x) + Ex) = ZR </o eXp{W(y) + ?}dy>, x>0.

Letdy, d2 > 0,a € [0, 1], and consider the equation

45) dY(®) =2vY()(1 - Y (1)) dB(t) + (d1 — (d1+ d2)Y (1)) dt,
4.5
Y(0) =a,

whereg is a standard one-dimensional Brownian motion. The solukiasf the
above equation is called a Jacobi process of dimengigniz), starting froma
(see [11]). We mention that almost surehs@ () < 1 forallz > 0.

The following result gives the skew-product representation of two independent
Bessel processes in terms of the Jacobi process.

FACT 4.3 ([25]). LetR1 and R, be two independent Bessel processes of
dimensionsi; anddy, respectively. We assumg + d2 > 2, R1(0) =r1 > 0 and
R>(0) =r> > 0. Then there exists a Jacobi proc®ss dimension(ds, d») starting

2
from % independent of the procegB?(r) + R3(), t > 0), such that
riTra

RA(t t d
% = Y(/ %) t=0.
R{(t) + R5(1) 0 R7(s)+ R5(s)
We are now ready to prove Theorem 4.1.

PROOF OFTHEOREM4.1. Using Fact 2.1 and the independenc8a@ndW,
the proces$ﬁL(a(A,((v)), (1—x)A.(v)), x > 0} is a strong Markov process
starting from 0, independent & ; itis a BESQ?2) for x € [0, 1], and is a BES()
for x > 1. By scaling,

(©1(v), O2(v))

) 0
law (/0 e W R2(A, (v) — AK(x))dx,/_

o0

e WAy (|x)) dX),

where R is a BES?2) starting from 0, independent d¥, and conditionally on
(R, W), U is a BESQO) starting fromR2(A, (v)).
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By time reversaI(WK(y) WK(v —y) — W, (v),0<y <) has the same law
as(W_,(y) =W () + 5y,0<y <v). Observe that

/Ov eV R2(A, (V) — A (x)) dx

_ /”e—WK(y)eWK(sz( WK(v)/ We (@) dz) dy.
0 0
—_ VvV o~
RZ(AK(U)) — R2<e—WK(U)/ eWK(Z) dZ)
0
By scaling and independence Bfand W, the process > ¢s® R2(xe= W)

has the same law @ and is independent d¥ . It follows that
(©1(v), O2(v))

(4.6)
v 0 -
law </ e W@ R2(A_, (x)) dx,/ e_ZWK(A"l(x))UUdex)v
0 —00

where conditionally on(R, W), U has the same law as a BE@) starting from
U(0) =e VW RZ(A_, (v)).

Let us first treat the patW_, (x), x > 0). By means of Fact 4.2, there exists a
Bessel procesg of dimension 2t 2« > 2, starting from 2, such that

v A_(v) —
/ e WO RZ(A_ (x))dx = / e~V (AZ0) R2(y) dy
0 0

A_(v) R2
— 16 / RO,
0 RA(y)

where we stress the independence of the two Bessel procRssesR. Observe
that
Y du
A" ) = 4/ _— > 0.
() o R x>

We apply Fact 4.3 t®R and R, to see that there exists a Jacobi processf
dimension(2, 2 + 2«) starting from 0 such that

Rz(x) . X ds d_ef
m—Y(/o m) Y(A(x),  x=0,
def

4.7)

Vs

whereA (x) = fy m, andA(-) is independent of . Note thatY (0) =
andO< Y(t) <1forallr > 0.

This representation, together with (4.7), implies that

v A(A— (V) Y(u)
e (x) p2 —
/0 e RE(A_c(x))dx = 16/0 A Y w)? u

(4.8) TR
v u
g S
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where
def 1 n—1 0y _ g [N du _dy
P = A (A (x))_4/o R2(u) _4/0 1-Y()’
by a change of variables= A (1). Going back to (4.6),
U =e "+WR%(A_, (v))
_AR%(A_,(v))  AY(A(A_(v))) 4y (p~1(v))

T R2A_(v)  1-Y(A(A_(v) 1-Y(pl(w)’

Assume for the moment that for any fixed> 0, if U, denotes a BES@)
starting fromU,.(0) = r, independent of¥, then

k > 0.

° e I NLE
(4.9) / e~V AT 1 (1x]) dx @16“{2_2,(( wl),
—00

By admitting (4.9), it follows from (4.6)(4.7) and (4.8) that under the total
probability P,
) (©1(v), O2(v))

law Pt Y (u) NZERI(0)
= (16/0 mdu,lGTz_zK<fwl>),

(4.10

where U (0) = %, and givenU (0) = r, To_p (Y3 ~ 1) is the first

hitting time of 1 by a BE& — 2«) starting from —“42”, independent of the
process .

i -1
Sincedp~1(x) = 212D 41 and

P Y 1 1
/0 md”ﬁ/o(m—l)dx, v>0,

it follows from (4.5) thatg, (r) def _ log{1 — Y (p~1(r))} satisfies the stochastic

integral equation (4.3). Theorem 4.1 will then follow from the identity in
law (4.10).

It remains to show (4.9). Note théW, (—x), x > 0) is distributed agW_, (x),
x > 0). Thus,

0 B o0 -1
/ e_ZWK(AKl(x))Ur(|x|)dx |gVA e—ZW—K(Afx(X))Ur(x) dx
o

_ o Uy (x)
_ 16 /O i

by using again the BEQ + 2«) processk defined in (4.7).

(4.11)
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Applying Fact 4.3 to the two independent squared Bessel proc&ssesl k2,

we get a Jacobi processof dimension(0, 2 + 2«) starting from#l, such that

U, (1) s ’L def o/~
Uy () + R2(t) Y(/o U, (s) +§2(S)) =Y(A®M), =0

cro~ o def o d . = S .
with A(1) = [, mz(—s), t > 0, independent of . Observe that is absorbed
at 0.
By a change of variables= A(x),
0 U, 0 Y(t
(4.12) 16/ LZAC 16/ m_re .
0 RA*x) 0 (1-Y(1))?

where Ty (0) d=‘3finf{t :Y(r) = 0}. By computing the scale function and using the
Dubins—Schwarz theorem ([19], Theorem V.1.6) for continuous local martingales,
there exists some one-dimensional Brownian mogiastarting from 0 such that

s(Y (1)) =B(p()), >0,

with
def T
44
1_
log 1 yo’ if «k =0,
s() &' —Y 0O<y<1,
—{A=y)"*=A-y0 "}, if « >0,
K
def , (! Y(s)
Hn=4 —————ds, t>0.
b(1) A(l_Y@»H& s 1>

Note thatp (T (0)) = inf{t > 0: (1) = s(0)} ' T4 (5(0)).
Whenk =0, we have

T3 (0) %
16/ Y Y
0

(1—Y@)?
4 Tp(s(0))
= / P gy
1-yoJo
4 -
Igvl inf{s>0:R(s):2es(o)/2:2\/1—yo},
— )0

where the last equality in law follows from (4.4) by replaciigby g [recalling
R(0) = 2]. This, together with the scaling property, yields (4.9) in the aas€0.
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If « > 0, we observe that
7O V(1) Tp (s(0)) . 21
16/ fdz:4/ 1—s 1B du
o (A-Y(@®)? 0 ( (Bw)
Tg(s(0) /1 (1/x)—2
- 4K<1/K>—2/ (— —s(0) + ﬁ(u)) du.
0 K

By symmetry (i.e., replacing by —g) and Lemma 2.3, the expression on the
right-hand side is equal in law to

Ts(IsO)) /1 (1/k)—2 a
4072 fo (; +1s(0)] — ﬂ(u)) du'2 mw@ 2+ . 1),

completing the proof of (4.9). Theorem 4.1 is proved]

5. Proof of Theorem 1.2. This section is devoted to the proof of Theo-
rem 1.2. We prove the upper and lower bounds with different approaches.

5.1. Theoreml.2:the upper bound. The proof of the upper bound is based on
an analysis of the diffusion proce8g(-) introduced in (4.3) (withc = 0).

_ . . def :
For notational convenience, we wri@ = Zo. Let us start with a couple of
lemmas.

LEMMA 5.1. There exists a numerical constant 0 such that for alk >~ 100
and0 < a < x < +/t, we have

t x2
60 P swp (=G -E@i=x)sciexp(—o).

0<t1<tr<t,tp—t1<a a

(5.2) ]P’( sup E(s) < 1) < 2exp<—L).

O<s<t
PROOF By definition of E in (4.3) (withx = 0),
(1) =/0tmdﬂ(s) + %/Ote—a“) ds.
It follows from the Dubins—Schwarz theorem ([19], Theorem V.1.6) that
(5.3) E(t):y(/ot(l—e_s(s))ds)+%/Ote_a(s)ds, t >0,

wherey (-) denotes a one-dimensional Brownian motion. Siage) > 0 for all
s > 0, we have

sup  |E(2) — E(n)] < sup |y(s2) — (s + =

0<n <tr<t,trp—t1<a O<sp<sp<t,so—s1<a 2
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According to Lemma 1.1.1 of [5],

2
P( sup  [y(s2) — Gl > %) < cieXp(_"_).
a

O<s1<so<t,s0—s1<a 9a
This implies (5.1).
To prove (5.2), we note that ofsupy.,, E(s) < 1}, we havefye =) ds >
t/e, hence, for alt > 100,

! = t t
e 1 1— e EG ) 1-— — ——}
{Oitlg (s) < } C {y(/o (1-—e )ds | < 2 <"E

t
inf ——t.
< {Osuszy(u) = 5}
The estimate (5.2) now follows from the usual estimate for Brownian talls.

LEMMA 5.2. For anye € (0, 1), there exists somey = vg(e) > 0 such that
for all x, v > vg, we have

2 2 2
—exp(—(1+e)”—i) 51@( sup E(s) <x> < 9exp<—(1—e)”—i>.
T 8 x2 Ogsfv 8 x2

PrROOFE Assume for the moment thél starts fromzZ (0) = 1. Let

def
fx) = 1_8 3

be the scale function dt. Sincet — f(E(t)) is a continuous local martingale, it
follows from the Dubins—Schwarz theorem ([19], Theorem V.1.6) that

! d
reom=8([ 1 am)  rz0

for some one-dimensional Brownian motidh starting from 0. Therefore, by
writing Tz (x) = inf{s > 0: E(s) > x}, we have

o(f(x)) _ S0 _
Tz (x) = /o (1— e/ ) g5 = f (1—e /O Lo (f@)). y)dy,

—00

x>0,

where 1 is the inverse of the increasing functigh o(x) |nf{s B(s) = x}
for x € R, andL is the local time ofB.
Observe thatf ~1(y) ~ y asy — oo, and f ~1(y) ~ e Pl asy - —oc0. Let

yo = yo(e) > 0 be sufficiently large such that/ ) < ¢/2 forall y > yo. Denote

by b(e) &'sup. so<y<yo(L— e~ 10l < 00, Then for all larger,

fx)
(5.4) Ta(x>z(1—§) /y L(o (£ 00, v)dy,
0

fx)

(5.5) Ts(x) < /

Yo

L(o(f(x)).y)dy +b(e) / L(o(f(). y)e " dy,
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For the lower bound in Lemma 5.2, we note that by (5.4) and (2.3),

IP’{ sup E(s) < x} =P{Tz(x) > v}

O<s<v
fx) v
P L ,v)d
> {/y (@ (FC. ) y>1_8/2}

2o v )
T 8 (1—¢/2)(f(x) — y0)?
Since f(x) ~ x, x — 00, this yields the lower bound in Lemma 5.2 in the case
when E starts fromZ(0) = 1, and a fortiori, in the case wheR starts from
E (0) = 0 by a comparison theorem for diffusion processes ([19], Theorem IX.3.7).
For the upper bound in Lemma 5.2, we again ass@® = 1 for the moment.
By (5.5) and the triangular inequality, fer> v,

]P’{ sup E(s) <x} =P{Tz(x) > r}

O<s<r

fx)
< P{ [ Lo yay=a- e/2)r}
Yo

m{/ ° Lo (Fa).v)e ‘y'dy>zbi> }

The first probability expression on the right-hand side<i¢ exp(— ;Jf(lx)s/}?)’z)

[see (2.3)], whereas the secondi$ XA — 107" + 2 XM —gra 7 ) N
light of (2.6). Therefore, ifE (0) = 1, then for allr, x > v,

6o el o= (Tes)enl TG ")

We are now back to the case(0) = 0 we were studying. By (5.2), for
any v > 100/e, P{T=(1) > sv} < 2exp—gy), Which, in view of (5.6) [taking

r dzef(l — g)v there], yields that
4 rrz(l — s)zv &V
P B <({—+5 -]+ 2e
{Oigspv (5= x} B (7‘[ * )exp( 8x2 ) XF( 50)
which yields the upper bound in Lemma 5.2 [sirce (0, 1) is arbitrary]. O
We are now ready to give the proof of the upper bound in Theorem 1.2.
PROOF OFTHEOREM 1.2: THE UPPER BOUND Observe that, by (4.2),

IP’{ sup X(s) > v} =P(H(v) <t) <P{O1(v) <t}.

O<s<t
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By Theorem 4.101(v) is distributed as 43 ¢=*) ds — 4v. Thus,

(5.7) P{ sup X(S)>v}S]P’{/Uea(s)ds<%+v}.
0

O<s<t

def def 1

According to (5.1) (taking = 3 anda = 3 there), we have

IP{ sup |E(t2) — E(r)| > 3} <cv?e Y,

0<t1<m=<v,tr—t1<1l/v
wherec is the numerical constant in (5.1). On the evésupy_; ;,<y 1,1 <1/v

|E(t2) — E(t1)| < 3}, we havefy eE®) ds > %exp(sug)SSv Z(s) — 3). Plugging
this into (5.7) yields that for all sufficiently largeandz,

]P’{ sup X(s) > v} <cvle™ +]P’{ sup Z(s) —3< Iog(tzv + vz)}
O<s< O<s<wv
(5.8) == T

2
< cvleV +9ex;<— 1—2¢ n—#)
= ( '8 log?(tv)
the last inequality beim a consequence of the upper bound in Lemma 5.2. We
mention that (5.8) was already used in Section 3 to prove the estimate (3.18).
Since logw = o(logt), (5.8) yields the upper bound in Theorem 1.2]

5.2. Theoreml.2: the lower bound. The ideas in this section essentially go
back to [2]. Fora, b € R, we define

W(a.b) % sup W(a+sb - a)),

O<s<1

def .
W(a,b) = ogfle(a +s(b —a)),

Wha,0) L sup [W(a+1(—a)— W(a+sb—a).
O<s<r<1
Note thatW#(a, b) # W¥#(b, a) in general. LeP, ,, be the quenched probability
under which the diffusiorX starts fromx.
Recall thatH (y) = inf{t > 0: X (¢r) = y}. Let

(5.9) ¥(x) ::IP’{ (c(D)Ao(=1),y) <x}, x>0.

inf L
yl<1/2

We start with the following lemma. We mention th@¥ (y),a < y < c¢) is hot
necessarily a valley in the sense of Brox [2].

LEMMA 5.3. Leta <x <c andleth > 0.
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1. We have
i : . 24 96
(5.10)  P,o{H(a) A H(c) > A(c — a)2eMnW @o.Wieay Tt
2. Let
(5.11) d =suply <x:W(@) — W) > A},
(5.12) d =inf{y > x:W(y) — W(x) > A}.
If

X c
(5.13) (' —d')e* < %min{/ﬂ W I=Ww) dy,/x W O=W(x) dy} d=‘3f%lﬂ(a, c),

thenforall0<e¢ <1,
(5.14) ProlH(@) AH(c) <e(c’ —d)eT(a,0)} < ¥ (e),
whereyr (-) is defined in(5.9).

ProOOF 1. According to Brox ([2], pages 1213 and 1214, proof of (i); we
mention that then in [2] is our ¢, and thex in [2] is 1 here),

H(a) A H(c) < (c — )2V @O ay,

whereAg4 law SUP_so<y<1 L(0 (1), y)+ As andEx,w(Aé) < 12. A similar estimate
holds withW#(c, a) instead ofW#(a, ).

Therefore, (5.10) will follow from Chebyshev’s inequality once we can show
that for allA > 0,

(5.15) ]P’{ sup L(o(1),y)> A} < 9
—oo<y<1 A
To prove (5.15), we note that by Fact 2yls [0, 11— L(o (1), y) isa BESQ2)
starting from 0, andy € [0, 00) — L(c(1), —y) is a BESQO0) starting from
L(o(1),0). Using successively the triangular inequality, the reflection principle
for BESQ(2) and the martingale property of BES®, we obtain that

]P’{ sup L(a(l),y)>k}

—oo<y<l

< P{OSUPIL(G(D, y) > )»} +E(LiL0@).00<11Lisup o, o Lo 1).3)>1})
<y< o

L(c(1),0
<2P{L(e (D, 0) > A} + E<1{L(0(1),0)<A}$>.

SinceL (o0 (1), 0) has the exponential distribution of mean 2, this leads to

2 A2 6
]P’{ sup L(a(l),y)>k}§26_”2+x/0 ye_ydyfr

—oo<y<l
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proving (5.15) and, thus, (5.10).
2. The proof of (5.14) is essentially from [2], page 1215, line -11. Without loss

of generality, we assume = 0. Under (5.13), we have <a’ <0< ¢ <c. In
view of (4.1), we have, by the occupation time formula,

H(a)ANH(c)= T(G(A(a)) A U(A(C)))
_ / e VOL (o (AW@) A0 (AE), Ay))dy

> (' —a)e™ inf L(o(A@) Ao (A(0)). A(y))
a’'<y=c
> (' —d)e™ inf L(0(A@) Ao (A(©), 2),
lz|<(c’—a’)e
sinceA(c’) < c’e* andA(a’) > —|a’|e”. In view of (5.13) and scaling,

ProlH(@) AH(c) <e(d —a)e ™ T(a,c))

< IP’{ inf

\y|51/2L(U(1) Ao (=1),y) < 8},
proving (5.14). O

We now have all the ingredients to prove the lower bound in Theorem 1.2.

PROOF OFTHEOREM 1.2: THE LOWER BOUND.
larger andv such that® > v > log?s. Letr =
supr < 0:W#(,0) > r}.

| Fix a smalle > 0. Consider
ogrt

1—10:- Forr > 0, defined_(r) def
Define three random times> m > n > v by

n=inf{s >v:W(s) — Wk)=—-(1- 3e)r},
a=inf{s >n: W) —W(n) =r},
m=Iinf{s >n:W(s)=W(,a)}.

We consider the following events concerning the Brownian poteWial
FLE ()] <r?;

0
W (d_(r). 0)] ssr;f

VD~ er/z},
d_(r)

F L W0, v) < (1—206)r; WO, v) < %}

F3 def

n—v<r2 sup(W(s)— W)
v<s<n

< é&r; W#(v, n) < %;

/"eW(x)—W(n) dr = e(l—4s)r}’
v
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F4 d=ef{o( —-n < ’,.5/2; nigia(W(S) _ W(n)) - er:

Whmn.m) < 2 Whan) < 3:

o
sup (W(x) — W(m)) <r2/3;f W EO—Wm) g, >e(1_8)’},
n

m<x<m+1 "

Observe that by the strong Markov property, the eveRf$; < ;<4 are independent.
Moreover,P{F3} and P{F4} do not depend on.

W)
A

v

(1-3¢) r

FiG. 1.



DIFFUSIONS WITH BROWNIAN POTENTIALS 3217

Clearly,
Po.o{X () > v} > Poo{H(m) <t; X() > v}
(5.16)
> Po,o{H (m) <t}Py o{H () A H(a) > 1}.
We have

Po.o{H (m) > 1} < Poo{H(d-(r)) < H(m)} + Pou{H(d-(r)) A H(m) >t}

B A(m)
~ A(m) — A(d_(r))

+ Po,o{H(d—(r)) A H(m) > t}.

Let w € N2y F;. Since A(m) < me™ ™ < me"/3+, |A(d_(r))| = ¢'/2, and
W#(d_(r), m) < (1 —19%)r, we apply (5.10) tad_(r), 0, m) and arrive at

er/3+sr 24

Pow{H(m) = 1) < =5+ —(m - d_(r))2e 19

96 4 21—
+ 5 (m—d_() 2119,

Note thatm < a < r3 + v < 2¢¢ ands = ¢1~10)7 We obtain that

4
(5.17) Poo{Hm) >t} <e ®  ifwe()F;.
j=1

To apply (5.14) to(v, m, «), we choose. = r%/2 and verify that the assump-
tion (5.13) is satisfied oM?_, F;, because

I',o)= min{/’” eW(y)—W(m) dy, /01 ew(y)—W(m) dy}
v

m
n
> min{/ =W dy,e(l—f)’}
v

> e(l—4s)r > 2(C/ _ a/)e)».

It follows from (5.14) that
Pl H ) A H@ 1) <y re’ )
w v = = ———— |-
m, * c —a)T(v,a)
Sincec’ —a’ > ¢’ —m > 1 by definition of Fy,

tet

(1—108)r+r23—(1—4e)r —Ber
o—wram) =V )=y,
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Therefore, for all large > ro(¢), we get from (5.16) that
4
Poo(X(1)>v}>1—e®*)(1-y(e ™)) >3 ifwe()F;.
j=1
Hence,
4 4
(5.18) P{X (1) > v} = E(Pp.o{X (1) > v}) > %P{ N Fj} =1T] PtF;h.
j=1 j=1

by the independence &f;. Whenr — oo, P{n —v > r%?} — 0 and
1 n 1
- Iog/ VOV gy~ = sup (W(x) — W(p) = (1 — 3e).
r v r v<x<n

It follows that

.. .. # r
liminf P{F3} > liminf P{ sup (W(s) — W(v)) <er; W'(v,n) < =
r—00 r—00 v<s<p 3

=C(e) >0,

for some constant = C(¢) depending only o. The same holds foP{F4} and
P{Fy}. It follows that for all larger > rg, we have

(5.19) P{F1}P{F3}P{F4} > C'(¢) > 0.

Finally, we recall the asymptotic expansion of the distribution(8f*(0, v),
W (0, v)) ([9], Theorem 2.1): for any fixed & a < 1, whené — 0+,

— 4sj 2 2
P{W#0,1) <8; W(0,1) < ad} ~ Mexp@’f_),
b4 852
It follows from scaling that when — oo,

4sin(r /6(1 — 20¢)) ox n? v
T p(_ 8(1— 20¢)2 72)'

P{F2} ~

Plugging this into (5.18) and (5.19) implies

. log? ¢ w2
liminf d logP{X (¢) > v} > ——.
t,v—>00,v>l00?1,logv=0(logr) ¥ 8

The lower bound in Theorem 1.2 is proved.]
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