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MODERATE DEVIATIONS FOR DIFFUSIONS
WITH BROWNIAN POTENTIALS

BY YUEYUN HU AND ZHAN SHI

Université Paris VI

We present precise moderate deviation probabilities, in both quenched
and annealed settings, for a recurrent diffusion process with a Brownian
potential. Our method relies on fine tools in stochastic calculus, including
Kotani’s lemma and Lamperti’s representation for exponential functionals. In
particular, our result for quenched moderate deviations is in agreement with
a recent theorem of Comets and Popov [Probab. Theory Related Fields126
(2003) 571–609] who studied the corresponding problem for Sinai’s random
walk in random environment.

1. Introduction. Let W := (W(x), x ∈ R) be a one-dimensional Brownian
motion defined onR with W(0) = 0. Let(β(t), t ≥ 0) be another one-dimensional
Brownian motion independent ofW(·). Following [2] and [20], we consider the
equationX(0) = 0,

dX(t) = dβ(t) − 1
2W ′(X(t)) dt, t ≥ 0.(1.1)

The solutionX of (1.1) is called a diffusion with random potentialW . The rigorous
meaning of (1.1) can be given in terms of the infinitesimal generator: Conditioning
on each realization{W(x), x ∈ R}, the processX is a real-valued diffusion with
generator

1

2
eW(x) d

dx

(
e−W(x) d

dx

)
.

Another representation ofX by time change is given in Section 4.
The processX has been used in modeling some random phenomena in

physics [16]. It is also related to random walk in random environment [18, 7, 26].
See [24] and [21] for recent surveys.

We denote byP and E the probability and the expectation with respect to
the potentialW , and byPω andEω the quenched probability and the quenched
expectation (“quenched” means the conditioning with respect to the potentialW ).

The total (or annealed) probability isP
def= P (dω) ⊗ Pω.

The typical long-time behavior ofX(t) is described by a result of Brox [2],
which is the continuous-time analogue of Sinai’s [22] well-known theorem for
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recurrent random walk in random environment: under the total probabilityP,

X(t)

log2 t

(d)→ b(1), t → ∞,

where
(d)→ denotes convergence in distribution, andb(1) is a nondegenerate random

variable whose distribution is explicitly known.
It is interesting to study the deviation probabilities

Pω{X(t) > v} and P{X(t) > v}, t, v → ∞, v � log2 t,(1.2)

wherev � log2 t meansv/ log2 t → ∞. In the sequel, we also writex � y or
x = o(y) to denotey � x. Whenv/t converges to a positive constant, this is a
large deviation problem, and is solved by Taleb [23] (who actually studies the
problem for all drifted Brownian potentials). In particular, it is shown that in this
case both probabilities in (1.2)have exponential decays.

We focus on moderate deviation probabilities, that is, when(v, t) is such that
log2 t � v � t .

Our first result, which concerns the quenched setting, is in agreement with
Theorem 1.2 of [3] for random walk in random environment. This was, indeed,
the original motivation of the present work.

THEOREM 1.1. We have
2 log(t/v)

v
logPω{X(t) > v} → −1, P -a.s.,(1.3)

wheneverv, t → ∞ such thatv � (log2 t) log log logt andlog logt = o(log(t/v)).
The same result holds forsup0≤s≤t X(s) instead ofX(t).

Loosely speaking, Theorem 1.1 says that in a typical potentialW , Pω{X(t) > v}
behaves like exp[−(1 + o(1)) v

2 log(t/v)
]. However, if we take the average over

all the realizations ofW (i.e., in the annealed setting), the deviation probability
will become considerably larger. This is confirmed in our second result stated as
follows.

THEOREM 1.2. We have

log2 t

v
logP{X(t) > v} → −π2

8
,(1.4)

wheneverv, t → ∞ such thatv � log2 t and logv = o(logt). The same result
holds forsup0≤s≤t X(s) instead ofX(t).

When log2 t ≤ v ≤ (log2 t)(log logt)1/2, the convergence (1.4) has already been
obtained in [9] by means of the Laplace method. This method, however, fails when
v goes to infinity too quickly, for example, ifv � log3 t .
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We say a few words about the proofs of Theorems 1.1 and 1.2. Although the
methods adopted in the three parts (Theorem 1.1, upper bound and lower bound
in Theorem 1.2) find all their roots in stochastic calculus, they rely on completely
different ingredients.

In the proof of Theorem 1.1, we exploit Kotani’s lemma as well as other fine
tools in the theory of one-dimensional diffusion.

The proof of the upper bound in Theorem 1.2 relies on Lamperti’s representation
for exponential functionals and on Warren and Yor’s [25] skew-product theorem
for Bessel processes. The proof of the lower bound, on the other hand, is based on
a bare-hand analysis of pseudo-valleys where the diffusionX spends much time.

The rest of the paper is organized as follows. Section 2 is devoted to
some preliminary results for local times of Brownian motion. In Section 3 we
introduce Kotani’s lemma and prove Theorem 1.1. The main result in Section 4,
Theorem 4.1, is a joint arcsine type law for the occupation times ofX, which
may be of independent interest. This result will be used to prove Theorem 1.2 in
Section 5.

Throughout this paper, we writef −1 for the inverse of any continuous and
(strictly) increasing functionf . Unless stated otherwise, for any continuous
processξ , we denote byTξ (x) = inf{t ≥ 0 :ξ(t) = x}, x ∈ R, the first hitting time
of ξ atx.

2. Preliminaries on local times. In this section we collect a few preliminary
results for the local times of Brownian motion. These results will be of use in the
rest of the paper.

Let B be a one-dimensional Brownian motion starting from 0. Let(L(t, x),

t ≥ 0, x ∈ R) be the family of the local times ofB, that is, for any Borel function
f :R → R+,

∫ t
0 f (B(s)) ds = ∫ ∞

−∞ f (x)L(t, x) dx. We define

τ (r)
def= inf{t > 0 :L(t,0) > r}, r ≥ 0,(2.1)

σ(x)
def= inf{t > 0 :B(t) > x}, x ≥ 0.(2.2)

Denote by BES(δ) [resp. BESQ(δ)] the Bessel process (resp. the squared Bessel
process) of dimensionδ. We recall that aδ-dimensional squared Bessel process

has generator of form 2x d2

dx2 + δ d
dx

. Whenδ is an integer, a Bessel process can

be realized as the Euclidean norm of anR
δ-valued Brownian motion. We refer

to [19], Chapter XI, for a detailed account of general properties of Bessel and
squared Bessel processes, together with the proof of the following result.

FACT 2.1 (First Ray–Knight theorem). Fixa > 0. The process{L(σ(a), a −
x), x ≥ 0} is an inhomogeneous strong Markov process starting from 0, which is a
BESQ(2) on [0, a] and a BESQ(0) on (a,∞).
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The rest of the section is devoted to a few preliminary results for local times of
Brownian motion.

LEMMA 2.2. For b > a ≥ 0 andv > 0,

2

π
exp

(
−π2

8

v

(b − a)2

)
≤ P

(∫ b

a
L

(
σ(b), x

)
dx > v

)
(2.3)

≤ 4

π
exp

(
−π2

8

v

(b − a)2

)
.

PROOF. By the strong Markov property,
∫ b
a L(σ (b), x) dx is distributed as∫ b−a

0 L(σ(b − a), x) dx. According to Fact 2.1 and [19], Corollary XI.1.8, for any

λ > 0, Eexp{−λ2

2

∫ b−a
0 L(σ(b − a), x) dx} = 1/cosh(λ(b − a)), which is also the

Laplace transform atλ
2

2 of T|B|(b − a) (the first hitting time ofb − a by |B|).
Thus,

∫ b
a L(σ (b), x) dx

law= T|B|(b − a). The lemma now follows from the exact
distribution of Brownian exit time ([6], page 342).�

LEMMA 2.3. Letb > a > 0 andκ > 0, we have∫ σ(a)

0

(
b − B(s)

)(1/κ)−2
ds

law= ϒ2−2κ

(
2κb1/(2κ) � 2κ(b − a)1/(2κ)),

whereϒ2−2κ(x � y) means the first hitting time ofy by aBES(2 − 2κ) starting
fromx.

PROOF. Write∫ σ(b)

0

(
b − B(s)

)(1/κ)−2
ds

=
∫ σ(a)

0

(
b − B(s)

)(1/κ)−2
ds +

∫ σ(b)

σ (a)

(
b − B(s)

)(1/κ)−2
ds.

By the strong Markov property, the integrals on the right-hand side are
independent random variables. Moreover, the second integral is distributed as
(b − a)1/κ

∫ σ(1)
0 (1− B(s))(1/κ)−2ds.

On the other hand, according to Getoor and Sharpe ([8], Proposition 5.14(a)),
for anyλ > 0,

Eexp
(
−λ2

2

∫ σ(1)

0

(
1− B(s)

)(1/κ)−2
ds

)
= 2

�(κ)
(λκ)κKκ(2κλ),

whereKκ denotes the modified Bessel function of indexκ .
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Assembling these pieces yields that

Eexp
(
−λ2

2

∫ σ(a)

0

(
b − B(s)

)(1/κ)−2
ds

)
=

(
b

b − a

)1/2 Kκ(2κλb1/(2κ))

Kκ(2κλ(b − a)1/(2κ))
.

According to Kent [13], the expression on the right-hand side is exactly the Laplace
transform atλ2/2 of ϒ2−2κ(2κb1/(2κ) � 2κ(b − a)1/(2κ)). �

LEMMA 2.4. Almost surely,

1

r
sup
|x|≤u

(
L

(
τ (r), x

) − r
) → 0,

wheneveru → ∞ andr � u log logu.

PROOF. By symmetry, we only need to treat the case 0≤ x ≤ u. It is proved
by Csáki and Földes ([4], Lemma 2.1) that for anyε > 0,

lim
r→∞

1

r
sup

0≤x≤r/(log logr)1+ε

(
L

(
τ (r), x

) − r
) = 0 a.s.

Thus, we only have to deal with the caser � u log logu andr ≤ u logu.
Let ε > 0. We shall prove that almost surely for allu, r → ∞ such that

r � u log logu andr ≤ u logu,

1

r
sup

0≤x≤u

(
L

(
τ (r), x

) − r
) ≤ ε.(2.4)

To this end, we consider the events

Ak,j
def=

{
∃ (u, r) ∈ [uk,uk+1] × [rj , rj+1] :

512

ε2
u log logu ≤ r ≤ u logu,

sup
0≤x≤u

(
L

(
τ (r), x

) − r
)
> εr

}
,

with uk
def= 2k , rj

def= 2j andk, j ≥ 100. The desired conclusion (2.4) will follow
from the Borel–Cantelli lemma once we show that∑

j,k≥100

P(Ak,j ) < ∞.

To prove
∑

j,k≥100P(Ak,j ) < ∞, we recall a result of Bass and Griffin ([1],
Lemma 3.4) saying that there exists a constantc > 0 such that for all 0< h,x < 1,

P

{
sup

1≤r≤2
sup

0≤z≤h

(
L

(
τ (r), z

) − r
)
> x

}
≤ c

x

h
exp

(
− x2

32h

)
.
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Therefore, by the monotonicity and the scaling property,

P(Ak,j ) ≤ P

(
sup

0≤x≤uk+1

sup
rj ≤r≤rj+1

(
L

(
τ (r), x

) − r
)
> εrj

)

= P

(
sup

0≤x≤uk+1/rj

sup
1≤r≤2

(
L

(
τ (r), x

) − r
)
> ε

)

≤ c
εrj

uk+1
exp

(
− ε2rj

32uk+1

)
≤ c

εrj

uk+1
(k log2)−4.

To ensureP(Ak,j ) > 0, necessarilyrj ≤ uk+1 loguk+1, this implies thatj ≤ 2k.
Hence, ∑

j,k≥100

P(Ak,j ) ≤ ∑
k≥100

cε2k(k log 2)−4(k + 1) log2< ∞,

as desired. �

LEMMA 2.5. Let r > 0. We have

Eexp
(
−λ

∫ ∞
0

e−sL
(
σ(r),−s

)
ds

)
= 1

1+ r
√

2λI1(
√

8λ)
, λ > 0,(2.5)

whereI1(·) denotes the modified Bessel function of index1. Consequently, there
exists some constantc > 0 such that for allr > c, λ > 0 and0 < a ≤ r , we have

P

(∫ a

−∞
e−|x|L

(
σ(r), x

)
dx > λ

)
≤ 3 exp

(
− λ

8r

)
+ 2 exp

(
− λ

4ar

)
.(2.6)

PROOF. By Fact 2.1,s �→ L(σ(r),−s) for s ≥ 0 is a BESQ(0) starting from

L(σ(r),0)
law= 2re, wheree is an exponential variable with mean 1. LetUa be a

BESQ(0) starting froma > 0. The Laplace transform of
∫ ∞
0 Ua(s)e

−s ds is given
by the solution of a Sturm–Liouville equation, see [17]: for allλ > 0,

Eexp
(
−λ

∫ ∞
0

e−sUa(s) ds

)
= exp

(
a

2
ψ ′+(0)

)
,(2.7)

where ψ ′+(0) is the right-derivative of the convex functionψ at 0, andψ is
the unique solution, decreasing, nonnegative, of the Sturm–Liouville equation:
ψ(0) = 1,

1
2ψ ′′(x) = λe−xψ(x), x > 0.

Elementary computations ([17], page 435) show that

ψ(x) = I0
(√

8λe−x/2), x ≥ 0,
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which implies thatψ ′+(0) = −√
2λI1(

√
8λ), whereI1 denotes the modified Bessel

function of index 1. Plugging this into (2.7) and integrating with respect toe give
the Laplace transform (2.5). By analytic continuation, for all sufficiently small
λ > 0 (how small depending onr),

Eexp
(
λ

∫ ∞
0

e−sL
(
σ(r),−s

)
ds

)
= 1

1− r
√

2λJ1(
√

8λ)
,

whereJ1(·) is the Bessel function of index 1. SinceJ1(x) ∼ x/2 whenx → 0,
there exists some largec > 0 such that for allr > c, we have

Eexp
(

1

4r

∫ ∞
0

e−sL
(
σ(r),−s

)
ds

)
= 1

1− √
r/2J1(

√
2/r )

< 3.

This implies that for allr > c andλ > 0, we have

P

(∫ ∞
0

e−sL
(
σ(r),−s

)
ds > λ

)
≤ 3 exp

(
− λ

4r

)
.(2.8)

On the other hand, sup0≤x≤a L(σ (r), x) is the maximum of a BESQ(2) over
[r − a, r]. It follows from reflection principle that

P

(∫ a

0
L

(
σ(r), x

)
e−|x| dx ≥ λ

)
≤ P

(
sup

0≤x≤a

L
(
σ(r), x

) ≥ λ

a

)

≤ 2P

(
L

(
σ(r),0

) ≥ λ

a

)
= 2 exp

(
− λ

2ar

)
,

since L(σ(r),0)
law= 2re. This, together with (2.8), yields (2.6) by triangular

inequality. �

3. The quenched case: proof of Theorem 1.1. This section is devoted to the
proof of Theorem 1.1, by means of the so-called Kotani’s lemma. LetX be the
diffusion process in a Brownian potentialW as in (1.1). We define

H(v)
def= inf{t > 0 :X(t) > v}, v ≥ 0.

Kotani’s lemma (see [12]) gives the Laplace transform ofH(v) under the quenched
probabilityPω.

FACT 3.1 (Kotani’s lemma). Forλ > 0 andv ≥ 0, we have

Eω

(
e−λH(v)

) = exp
(
−2λ

∫ v

0
Z(s) ds

)
,

whereZ(·) = Zλ(·) is the unique stationary and positive solution of the equation

dZ(t) = Z(t) dW(t) + (
1+ 1

2Z(t) − 2λZ2(t)
)
dt.
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Before starting the proof of Theorem 1.1, we study the almost sure behaviors of∫ v
0 Z(s) ds asv → ∞ andλ → 0.

LEMMA 3.2. We have∫ v

0
Z(s) ds = (

1+ o(1)
) v

4λ log(1/λ)
a.s.,(3.1)

wheneverλ → 0 andv → ∞ such thatv � log2(1/λ) log log log(1/λ).

PROOF. Without loss of generality, we assumeZ(0) = 1. Let

S(x)
def=

∫ x

1
e(2/y)+4λy dy

y
, x > 0,

which is a scale function of the diffusionZ. By Feller’s time change representation,
there exists a standard one-dimensional Brownian motionB, such that

Z(t) = S−1(B(
�−1(t)

))
, t ≥ 0,(3.2)

where

�(t)
def=

∫ t

0

ds

h2(B(s))
, t ≥ 0,

h(x)
def= S′(S−1(x)

)
S−1(x) = exp

(
2

S−1(x)
+ 4λS−1(x)

)
, x ∈ R,

S−1 and�−1 being the inverse functions ofS and�, respectively.
Let L(·, ·) denote, as before, the local time ofB, and letτ (·) be the inverse local

time at 0 as in (2.1). We define, for any fixedγ ∈ [0,1],
Dγ (r)

def=
∫ ∞
−∞

(
S−1(x)

)γ
(3.3)

× exp
(
− 4

S−1(x)
− 8λS−1(x)

)
L

(
τ (r), x

)
dx, r ≥ 0.

We claim that

Dγ (r) =


(
1+ o(1)

)
r log(1/λ), if γ = 0,

a.s.,(
1+ o(1)

)
�(γ )

r

(4λ)γ
, if 0 < γ ≤ 1,

(3.4)

wheneverλ → 0 andr � log(1/λ) log log log(1/λ).
Let us admit (3.4) for the time being, and prove the lemma. By the occupation

time formula and a change of variables, we have

�(τ(r)) =
∫ ∞
−∞

exp
(
− 4

S−1(x)
− 8λS−1(x)

)
L

(
τ (r), x

)
dx,
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which means that�(τ(r)) = D0(r) in the notation of (3.3). By (3.4), whenever
λ → 0 andr � log(1/λ) log log log(1/λ),

�(τ(r)) = (
1+ o(1)

)
r log(1/λ) a.s.,

which means that wheneverλ → 0 andv � log2(1/λ) log log log(1/λ),

�−1(v) = τ

((
1+ o(1)

) v

log(1/λ)

)
a.s.(3.5)

On the other hand, by (3.2) and the occupation time formula,∫ v

0
Z(s) ds =

∫ v

0
S−1(B(

�−1(s)
))

ds

=
∫ �−1(v)

0

S−1(B(r))

h2(B(r))
dr

=
∫ ∞
−∞

S−1(x)

h2(x)
L

(
�−1(v), x

)
dx

def= �
(
�−1(v)

)
,

with obvious definition of�(·). Note that�(τ(r)) = D1(r) in the notation
of (3.3). According to (3.4),

�(τ(r)) = (
1+ o(1)

) r

4λ
, r � log(1/λ) log log log(1/λ) a.s.

which, with the aid of (3.5), would yield Lemma 3.2.
It remains to show (3.4). We shall make use of the following simple conse-

quence of law of large numbers: iff :R → R is such that
∫
R

|f (x)|dx < ∞, then

lim
r→∞

1

r

∫
R

f (x)L
(
τ (r), x

)
dx =

∫
R

f (x) dx a.s.(3.6)

We write

Dγ (r) =
(∫ 0

−∞
+

∫ S(a)

0
+

∫ ∞
S(a)

)(
S−1(x)

)γ
× exp

(
− 4

S−1(x)
− 8λS−1(x)

)
L

(
τ (r), x

)
dx

def= �1 + �2 + �3,

wherea = a(r, λ) > 1/λ is chosen such that

e4λa

4λa
= log

(
1

λ

)
log log

(
1

λ

)
if r ≥ log2

(
1

λ

)
,

a = 1

4λ
log log

(
1

λ

)
if r < log2

(
1

λ

)
.

(3.7)
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Forx < 0, letS−1(x) = y ∈ (0,1), so that forλ < 1
4, −x = ∫ 1

y z−1e4λz+2/z dz ≤
y−1e1+2/y . This implies the existence of a large constantc > 0 such that for all
x < −c and λ < 1

4, we have 2
S−1(x)

≥ log |x| − 2 log log|x|. Hence, by means
of (3.6),

�1 ≤
∫ 0

−∞
e−8λS−1(x)L

(
τ (r), x

)
dx

(3.8)

≤
∫ 0

−∞

(
1(x≥−c) + 1(x<−c)

log4 |x|
|x|2

)
L

(
τ (r), x

)
dx = O(r) a.s.

To treat�3, we observe that fory ≥ a (thus,yλ → ∞),

S(y) =
∫ y

1
e(2/z)+4λz dz

z

= (
1+ o(1)

) ∫ y

1
e4λz dz

z
(3.9)

= (
1+ o(1)

)(∫ 1

4λ
ex dx

x
+

∫ 4yλ

1
ex dx

x

)
= (

1+ o(1)
)(

log
(

1

λ

)
+ O(1) + 1+ o(1)

4λy
e4λy

)
.

Let us distinguish two cases: First, ifr ≥ log2(1/λ), then 1
4aλ

e4aλ � log(1/λ);
hence, fory ≥ a,

S(y) = (
1+ o(1)

)e4λy

4λy
.(3.10)

Thus, forx ≥ S(a), we have

e4λS−1(x) = (
1+ o(1)

)
4λS−1(x)x > x and S−1(x) ∼ logx

4λ
.

It follows from (3.6) that

�3 ≤
∫ ∞
S(a)

(
S−1(x)

)γ
e−8λS−1(x)L

(
τ (r), x

)
dx

≤ 2
∫ ∞
S(a)

(
logx

4λ

)γ

x−2L
(
τ (r), x

)
dx

≤ 2(S(a))−1/2
∫ ∞

1

(
logx

4λ

)γ

x−3/2L
(
τ (r), x

)
dx

= o

(
r

λγ

)
.
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For the other case log(1/λ) log log log(1/λ) � r < log2(1/λ), we have

�3 ≤ L∗(τ (r))

∫ ∞
S(a)

(
S−1(x)

)γ exp
{
− 4

S−1(x)
− 8S−1(x)

}
dx

= L∗(τ (r))

∫ ∞
a

e−(2/y)−4λy dy

y1−γ

≤ L∗(τ (r))

∫ ∞
a

e−4λy dy = L∗(τ (r))

4λa
< L∗(τ (r)),

where

L∗(τ (r))
def= sup

x∈R

L
(
τ (r), x

) ≤ r(logr)1+ε a.s.,

for any ε > 0, by the law of iterated logarithm forL∗(·) ([14]). Since r <

log2(1/λ), this implies that�3 � r(log log(1/λ))2, a.s. Therefore, in both
situations, we have

�3 = o

(
r

λγ

)
+ o

(
r

(
log log

(
1

λ

))2)
a.s.(3.11)

To deal with �2, we claim that in both cases [i.e.,r ≥ log2(1/λ) and r <

log2(1/λ)],

S(a) = o

(
r

log logr

)
.

In fact, if r ≥ log2(1/λ), then by (3.10),S(a) ≤ 2
4aλ

e4aλ = 2 log(1/λ) log log(1/

λ) = o(r/ log logr); otherwise, by definition (3.7),a = log log(1/λ)
4λ

and by means
of (3.9), we haveS(a) ≤ 2 log(1/λ) = o(r/ log logr) [recalling thatr � log(1/

λ) log log log(1/λ)]. Hence, we can apply Lemma 2.4 to see that

�2 = r
(
1+ o(1)

) ∫ S(a)

0

(
S−1(x)

)γ exp
(
− 4

S−1(x)
− 8λS−1(x)

)
dx a.s.

By a change of variablesS−1(x) = y, the integral on the right-hand side is, when
λ → 0,

=
∫ a

1
e−(2/y)−4λy dy

y1−γ
= (

1+ o(1)
) ∫ a

1
e−4λy dy

y1−γ

= 1+ o(1)

(4λ)γ

∫ 4λa

4λ
e−u du

u1−γ

=


(
1+ o(1)

)
log(1/λ), if γ = 0,(

1+ o(1)
) �(γ )

(4λ)γ
, if γ > 0.



3202 Y. HU AND Z. SHI

Accordingly,

�2 =


(
1+ o(1)

)
r log(1/λ), if γ = 0,

a.s.(
1+ o(1)

)
�(γ )

r

(4λ)γ
, if γ > 0,

(3.12)

Since Dγ (r) = �1 + �2 + �3, assembling (3.8), (3.11) and (3.12) readily
yields (3.4). The lemma is proved.�

We now have all the ingredients for the proof of Theorem 1.1.

PROOF OF THEOREM 1.1. Let t, v → ∞ satisfy the conditions in Theo-
rem 1.1.

First, we prove (1.3) for sup0≤s≤t X(s) in place ofX(t): P -almost surely,

Pω

(
sup

0≤s≤t

X(s) > v

)
= Pω

(
H(v) < t

) = exp
(
−(

1+ o(1)
) v

2 log(t/v)

)
.(3.13)

To this end, applying Chebyshev’s inequality to Fact 3.1 and Lemma 3.2,
we have that for almost surely all potentialsW and for λ → 0 satisfyingv �
log2(1/λ) log log log(1/λ),

Pω{H(v) < t} ≤ eλtEω

[
e−λH(v)

] = exp
(
λt − (

1+ o(1)
) v

2 log(1/λ)

)
.(3.14)

By choosingλ = v

t log2(t/v)
[this is possible sincet � v � log2(t/v) log log log(t/

v)], we have

Pω{H(v) < t} ≤ exp
(
−(

1+ o(1)
) v

2 log(t/v)

)
a.s.

This implies the upper bound in (3.13).
To get the lower bound, we keep the choice ofλ and use the simple relation

Pω{H(v) < t log2 t} ≥ Eω

[
e−λH(v)

] − e−λt log2 t

(3.15)

≥ exp
(
−(

1+ o(1)
) v

2 log(t/v)

)
,

by means of Lemma 3.2. Writẽt = t log2 t . Since log logt = o(log(t/v)), we have
log(t̃/v) ∼ log(t/v). Thus, (3.15) yields the lower bound in (3.13).

In light of the trivial inequalityPω{X(t) > v} ≤ Pω(H(v) < t), it remains to
show the lower bound in (1.3). For anyc1, c2 > 0, we define

G(c1, c2)
def= {(v, t) : t, v ≥ 381, v ≥ c1 log2 t log log logt, log(t/v) ≥ c2 log logt}.
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The proof of Theorem 1.1 will be complete if we can show that for any smallε > 0
and almost surely allω, there existc1(ε,ω), c2(ε,ω) > 0 and t0 = t0(ε,ω) > 0
such that for allt, v ≥ t0 and(v, t) ∈ G(c1(ε,ω), c2(ε,ω)), we have

logPω{X(t) > (1− ε)v} ≥ −1+ 2ε

2

v

log(t/v)
.(3.16)

Write Px,ω for the law of the diffusionX defined in (1.1) starting from
X(0) = x. Let j , k ≥ j0 be sufficiently large and definevj = ej/ logj and tk =
exp(ek/ logk). We claim that forc3 = c3(ε)

def= 256
(1−2ε)π2ε

,∑
j,k≥j0,(vj ,tk )∈G(c3,1)

P
{
Pvj ,ω

{
H

(
(1− ε)vj

)
< tk

}
> 1

2

}
< ∞.(3.17)

Indeed, by Brownian symmetry,Pvj ,ω{H((1 − ε)vj ) < tk} is distributed as
P0,ω{H(εvj ) < tk}, so that by means of (5.8) in Section 5, for all largej andk,

E
(
Pvj ,ω

{
H

(
(1− ε)vj

)
< tk

})
= P{H(εvj ) < tk}
≤ cε2v2

j e
−εvj + 9 exp

(
−(1− 2ε)

π2

8

εvj

log2(εvj tk)

)
≤ (c + 9)exp

(
−(1− 2ε)π2ε

32

vj

log2 tk

)
.

(3.18)

We have used in the last inequality the fact thatvj ≤ tk .
By Chebyshev’s inequality,∑

j,k≥j0,(vj ,tk)∈G(c3,1)

P

{
Pvj ,ω

{
H

(
(1− ε)vj

)
< tk

}
>

1

2

}

≤ 2
∑

j,k≥j0,(vj ,tk)∈G(c3,1)

E
(
Pvj ,ω

{
H

(
(1− ε)vj

)
< tk

})

≤ 2(c + 9)
∑

j,k≥j0,(vj ,tk)∈G(c3,1)

exp
(
−(1− 2ε)π2ε

32

vj

log2 tk

)
.

Several elementary computations show that the above (double) sum is finite:
in fact, we can decompose this sum into

∑
j≥k4 and

∑
j≤k4. Note that for

j ≥ k4,
vj

log2 tk
= exp{ j

logj
− 2 k

logk
} ≥ exp{ j

2 logj
}. Hence,

∑
j≥k4 ≤ ∑

j j1/4 ×
exp(− (1−2ε)π2ε

32 exp{ j
2 logj

}) < ∞. For the casej ≤ k4, we use the defini-

tion of G(c3,1), which says thatvj / log2 tk ≥ 256
(1−2ε)π2ε

log log logtk ,
∑

j≤k4 ≤∑
k k4e−8 log log logtk ≤ ∑

k k−4 < ∞. This yields (3.17).
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We now proceed to the proof of (3.16). According to the lower bound in (3.13),
for P -almost allω, there existc1(ε,ω) ≥ 2c3 [recalling thatc3 = 256

(1−2ε)π2ε
] and

c2(ε,ω) ≥ 2 such that for all(v, t) ∈ G(
c1(ε,ω)

2 ,
c2(ε,ω)

2 ),

P0,ω{H(v) < t} ≥ exp
(
− 1+ ε

2 log(t/v)

)
.(3.19)

For anyω, the strong Markov property at timeH(vj ) implies that for anyvj−1 ≤
v ≤ vj andtk−1 ≤ t ≤ tk ,

P0,ω{X(t) > (1− ε)v} ≥ P0,ω{H(vj ) < tk−1}Pvj ,ω

{
H

(
(1− ε)vj

) ≥ tk
}
.(3.20)

Consider larget, v such that(v, t) ∈ G(c1(ε,ω), c2(ε,ω)), sayv ∈ [vj−1, vj ] and
t ∈ [tk−1, tk]. Then both(vj , tk−1) and(vj , tk) are elements ofG(c1(ε,ω)

2 , c2(ε,ω)
2 ),

and a fortiori(vj , tk) ∈ G(c3,1). According to (3.19),

P0,ω{H(vj ) < tk−1} ≥ exp
(
− 1+ ε

2 log(tk−1/vj )

)
,

whereas by (3.17) and the Borel–Cantelli lemma,

Pvj ,ω

{
H

(
(1− ε)vj

) ≥ tk
} ≥ 1

2.

Plugging these estimates into (3.20) yields

P0,ω{X(t) > (1− ε)v} ≥ 1

2
exp

(
− (1+ ε)vj

2 log(tk−1/vj )

)
≥ exp

(
− (1+ 2ε)v

2 log(t/v)

)
,

since vj /vj−1 → 1 and logtk/ logtk−1 → 1. This will yield the lower
bound (3.16). �

4. The annealed case: a joint arcsine law. Let κ ∈ R and let

Wκ(x) = W(x) − κ

2
x, x ∈ R,

whereW is, as before, a Brownian motion defined onR with W(0) = 0. In this
section we shall study the diffusionX with potentialWκ [i.e., replacingW by Wκ

in (1.1)]. Plainly, whenκ = 0, we recover the case of Brownian potential andX is
recurrent, whereasX(t) → +∞, P-a.s. ifκ > 0.

We recall the time change representation ofX (cf. [2] for κ = 0 and [10] for
κ > 0):

X(t) = A−1
κ

(
B

(
T −1

κ (t)
))

, t ≥ 0,

whereB is a one-dimensional Brownian motion starting from 0, independent ofW ,
and

Aκ(x) =
∫ x

0
eWκ(y) dy, x ∈ R,

Tκ(t) =
∫ t

0
e−2Wκ(A−1

κ (B(s))) ds, t ≥ 0.
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(Recall thatA−1
κ and T −1

κ denote the inverses ofAκ and Tκ , resp.) Here, we
stress the fact that the processB, a Brownian motion independent ofW , is not
the sameB as in Section 3. There is no risk of confusion since we always separate
the quenched and the annealed cases. Recall that(L(t, x), t ≥ 0, x ∈ R) denote the
local times ofB andσ(·) is the process of first hitting times ofB:

σ(x)
def= inf{t > 0 :B(t) > x}, x ≥ 0.

Therefore,H(v), the first hitting time ofX atv > 0, can be represented as follows:

H(v) = inf{t ≥ 0 : X(t) = v}
= Tκ

(
σ

(
Aκ(v)

))
(4.1)

=
∫ σ(Aκ(v))

0
e−2Wκ(A−1

κ (B(s))) ds

=
∫ Aκ(v)

−∞
e−2Wκ(A−1

κ (x))L
(
σ

(
Aκ(v)

)
, x

)
dx

= �1(v) + �2(v),(4.2)

with

�1(v) =
∫ Aκ(v)

0
e−2Wκ(A−1

κ (x))L
(
σ

(
Aκ(v)

)
, x

)
dx =

∫ H(v)

0
1{X(s)≥0} ds,

�2(v) =
∫ 0

−∞
e−2Wκ(A−1

κ (x))L
(
σ

(
Aκ(v)

)
, x

)
dx =

∫ H(v)

0
1{X(s)<0} ds.

The main result in this section describes the (annealed) distribution of
(�1(v),�2(v)).

THEOREM 4.1. Letκ ≥ 0 and letv > 0. UnderP, we have(
�1(v),�2(v)

) law=
(

4
∫ v

0

(
e�κ(s) − 1

)
ds,16ϒ2−2κ

(
e�κ(v)/2 � 1

))
,

whereϒ2−2κ(x � y) denotes the first hitting time ofy by aBES(2− 2κ) starting
from x, independent of the diffusion�κ which is the unique nonnegative solution
of

�κ(t) =
∫ t

0

√
1− e−�κ(s) dβ(s) +

∫ t

0

(
−κ

2
+ 1+ κ

2
e−�κ(s)

)
ds, t ≥ 0,(4.3)

β being a standard Brownian motion.

The proof of Theorem 4.1 involves some deep results. Let us first recall
Lamperti’s representation theorem for exponential functionals [15].
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FACT 4.2 (Lamperti’s representation). Letκ ∈ R. There exists a BES(2+2κ),
denoted bỹR and starting from̃R(0) = 2, such that

exp
(
W(x) + κ

2
x

)
= 1

4
R̃2

(∫ x

0
exp

{
W(y) + κy

2

}
dy

)
, x ≥ 0.(4.4)

Let d1, d2 ≥ 0, a ∈ [0,1], and consider the equation

dY (t) = 2
√

Y (t)
(
1− Y (t)

)
dβ(t) + (

d1 − (d1 + d2)Y (t)
)
dt,

(4.5)
Y (0) = a,

whereβ is a standard one-dimensional Brownian motion. The solutionY of the
above equation is called a Jacobi process of dimension(d1, d2), starting froma

(see [11]). We mention that almost surely, 0≤ Y (t) ≤ 1 for all t ≥ 0.
The following result gives the skew-product representation of two independent

Bessel processes in terms of the Jacobi process.

FACT 4.3 ([25]). Let R1 and R2 be two independent Bessel processes of
dimensionsd1 andd2, respectively. We assumed1 + d2 ≥ 2, R1(0) = r1 ≥ 0 and
R2(0) = r2 > 0. Then there exists a Jacobi processY of dimension(d1, d2) starting

from
r2
1

r2
1+r2

2
, independent of the process(R2

1(t) + R2
2(t), t ≥ 0), such that

R2
1(t)

R2
1(t) + R2

2(t)
= Y

(∫ t

0

ds

R2
1(s) + R2

2(s)

)
, t ≥ 0.

We are now ready to prove Theorem 4.1.

PROOF OFTHEOREM 4.1. Using Fact 2.1 and the independence ofB andW ,
the process{ 1

Aκ(v)
L(σ (Aκ(v)), (1− x)Aκ(v)), x ≥ 0} is a strong Markov process

starting from 0, independent ofW ; it is a BESQ(2) for x ∈ [0,1], and is a BESQ(0)

for x ≥ 1. By scaling,(
�1(v),�2(v)

)
law=

(∫ v

0
e−Wκ(x)R2(Aκ(v) − Aκ(x)

)
dx,

∫ 0

−∞
e−2Wκ(A−1

κ (x))U(|x|) dx

)
,

whereR is a BES(2) starting from 0, independent ofW , and conditionally on
(R,W), U is a BESQ(0) starting fromR2(Aκ(v)).
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By time reversal,(Ŵκ(y)
def= Wκ(v − y) − Wκ(v),0 ≤ y ≤ v) has the same law

as(W−κ(y) = W(y) + κ
2y,0≤ y ≤ v). Observe that∫ v

0
e−Wκ(x)R2(Aκ(v) − Aκ(x)

)
dx

=
∫ v

0
e−Ŵκ(y)eŴκ(v)R2

(
e−Ŵκ(v)

∫ y

0
eŴκ(z) dz

)
dy,

R2(Aκ(v)
) = R2

(
e−Ŵκ(v)

∫ v

0
eŴκ(z) dz

)
.

By scaling and independence ofR andW , the processx �→ eŴκ(v)R2(xe−Ŵκ(v))

has the same law asR and is independent ofW . It follows that(
�1(v),�2(v)

)
(4.6)

law=
(∫ v

0
e−W−κ (x)R2(A−κ(x)

)
dx,

∫ 0

−∞
e−2Wκ(A−1

κ (x))U(|x|) dx

)
,

where conditionally on(R,W), U has the same law as a BESQ(0) starting from
U(0) = e−W−κ(v)R2(A−κ(v)).

Let us first treat the part(W−κ(x), x ≥ 0). By means of Fact 4.2, there exists a
Bessel process̃R of dimension 2+ 2κ ≥ 2, starting from 2, such that∫ v

0
e−W−κ(x)R2(A−κ(x)

)
dx =

∫ A−κ (v)

0
e−2W−κ (A−1−κ(y))R2(y) dy

(4.7)

= 16
∫ A−κ (v)

0

R2(y)

R̃4(y)
dy,

where we stress the independence of the two Bessel processesR andR̃. Observe
that

A−1−κ(x) = 4
∫ x

0

du

R̃2(u)
, x ≥ 0.

We apply Fact 4.3 toR and R̃, to see that there exists a Jacobi processY of
dimension(2,2+ 2κ) starting from 0 such that

R2(x)

R2(x) + R̃2(x)
= Y

(∫ x

0

ds

R2(s) + R̃2(s)

)
def= Y (�(x)), x ≥ 0,

where�(x)
def= ∫ x

0
ds

R2(s)+R̃2(s)
, and�(·) is independent ofY . Note thatY (0) = 0

and 0< Y(t) < 1 for all t > 0.
This representation, together with (4.7), implies that∫ v

0
e−W−κ (x)R2(A−κ(x)

)
dx = 16

∫ �(A−κ (v))

0

Y (u)

(1− Y (u))2 du

(4.8)

= 16
∫ ρ−1(v)

0

Y (u)

(1− Y (u))2
du,



3208 Y. HU AND Z. SHI

where

ρ(x)
def= A−1−κ

(
�−1(x)

) = 4
∫ �−1(x)

0

du

R̃2(u)
= 4

∫ x

0

dy

1− Y (y)
,

by a change of variablesy = �(u). Going back to (4.6),

U(0) = e−W−κ(v)R2(A−κ(v)
)

= 4R2(A−κ(v))

R̃2(A−κ(v))
= 4Y (�(A−κ(v)))

1− Y (�(A−κ(v)))
= 4Y (ρ−1(v))

1− Y (ρ−1(v))
.

Assume for the moment that for any fixedr > 0, if Ur denotes a BESQ(0)

starting fromUr(0) = r , independent ofW , then∫ 0

−∞
e−2Wκ(A−1

κ (x))Ur(|x|) dx
law= 16ϒ2−2κ

(√
4+ r

2
� 1

)
, κ ≥ 0.(4.9)

By admitting (4.9), it follows from (4.6), (4.7) and (4.8) that under the total
probabilityP,(

�1(v),�2(v)
)

(4.10)
law=

(
16

∫ ρ−1(v)

0

Y (u)

(1− Y (u))2 du,16ϒ2−2κ

(√
4+ U(0)

2
� 1

))
,

whereU(0) = 4Y (ρ−1(v))

1−Y (ρ−1(v))
, and givenU(0) = r , ϒ2−2κ(

√
4+r
2 � 1) is the first

hitting time of 1 by a BES(2 − 2κ) starting from
√

4+r
2 , independent of the

processY .

Sincedρ−1(x) = 1−Y (ρ−1(x))
4 dx and∫ ρ−1(v)

0

Y (u)

(1− Y (u))2 du = 1

4

∫ v

0

(
1

1− Y (ρ−1(x))
− 1

)
dx, v > 0,

it follows from (4.5) that�κ(t)
def= − log{1 − Y (ρ−1(t))} satisfies the stochastic

integral equation (4.3). Theorem 4.1 will then follow from the identity in
law (4.10).

It remains to show (4.9). Note that(Wκ(−x), x ≥ 0) is distributed as(W−κ(x),

x ≥ 0). Thus,∫ 0

−∞
e−2Wκ(A−1

κ (x))Ur(|x|) dx
law=

∫ ∞
0

e−2W−κ(A−1−κ (x))Ur(x) dx

(4.11)

= 16
∫ ∞

0

Ur(x)

R̃4(x)
dx,

by using again the BES(2+ 2κ) process̃R defined in (4.7).
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Applying Fact 4.3 to the two independent squared Bessel processesUr andR̃2,
we get a Jacobi procesŝY of dimension(0,2+ 2κ) starting from r

r+4, such that

Ur(t)

Ur(t) + R̃2(t)
= Ŷ

(∫ t

0

ds

Ur(s) + R̃2(s)

)
def= Ŷ

(
�̂(t)

)
, t ≥ 0,

with �̂(t)
def= ∫ t

0
ds

Ur (s)+R̃2(s)
, t ≥ 0, independent of̂Y . Observe that̂Y is absorbed

at 0.
By a change of variablest = �̂(x),

16
∫ ∞

0

Ur(x)

R̃4(x)
dx = 16

∫ TŶ (0)

0

Ŷ (t)

(1− Ŷ (t))2
dt,(4.12)

whereTŶ (0)
def= inf{t : Ŷ (t) = 0}. By computing the scale function and using the

Dubins–Schwarz theorem ([19], Theorem V.1.6) for continuous local martingales,
there exists some one-dimensional Brownian motionβ starting from 0 such that

s
(
Ŷ (t)

) = β(φ(t)), t ≥ 0,

with

y0
def= r

r + 4
,

s(y)
def=


log

1− y0

1− y
, if κ = 0,

1

κ
{(1− y)−κ − (1− y0)

−κ}, if κ > 0,

0 ≤ y < 1,

φ(t)
def= 4

∫ t

0

Ŷ (s)

(1− Ŷ (s))1+2κ
ds, t ≥ 0.

Note thatφ(TŶ (0)) = inf{t > 0 :β(t) = s(0)} def= Tβ(s(0)).
Whenκ = 0, we have

16
∫ TŶ (0)

0

Ŷ (t)

(1− Ŷ (t))2
dt

= 4

1− y0

∫ Tβ(s(0))

0
eβ(u) du

law= 4

1− y0
inf

{
s > 0 :R̃(s) = 2es(0)/2 = 2

√
1− y0

}
,

where the last equality in law follows from (4.4) by replacingW by β [recalling
R̃(0) = 2]. This, together with the scaling property, yields (4.9) in the caseκ = 0.
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If κ > 0, we observe that

16
∫ TŶ (0)

0

Ŷ (t)

(1− Ŷ (t))2
dt = 4

∫ Tβ (s(0))

0

(
1− s−1(β(u))

)2κ−1
du

= 4κ(1/κ)−2
∫ Tβ (s(0))

0

(
1

κ
− s(0) + β(u)

)(1/κ)−2

du.

By symmetry (i.e., replacingβ by −β) and Lemma 2.3, the expression on the
right-hand side is equal in law to

4κ(1/κ)−2
∫ Tβ(|s(0)|)

0

(
1

κ
+ |s(0)| − β(u)

)(1/κ)−2

du
law= 16ϒ2−2κ

(√
4+ r

2
� 1

)
,

completing the proof of (4.9). Theorem 4.1 is proved.�

5. Proof of Theorem 1.2. This section is devoted to the proof of Theo-
rem 1.2. We prove the upper and lower bounds with different approaches.

5.1. Theorem1.2: the upper bound. The proof of the upper bound is based on
an analysis of the diffusion process�0(·) introduced in (4.3) (withκ = 0).

For notational convenience, we write� def= �0. Let us start with a couple of
lemmas.

LEMMA 5.1. There exists a numerical constantc > 0 such that for allt > 100
and0 < a < x <

√
t , we have

P

(
sup

0≤t1≤t2<t,t2−t1<a

|�(t2) − �(t1)| > x

)
≤ c

t

a
exp

(
−x2

9a

)
,(5.1)

P

(
sup

0≤s≤t

�(s) < 1
)

≤ 2 exp
(
− t

50

)
.(5.2)

PROOF. By definition of� in (4.3) (withκ = 0),

�(t) =
∫ t

0

√
1− e−�(s) dβ(s) + 1

2

∫ t

0
e−�(s) ds.

It follows from the Dubins–Schwarz theorem ([19], Theorem V.1.6) that

�(t) = γ

(∫ t

0

(
1− e−�(s)

)
ds

)
+ 1

2

∫ t

0
e−�(s) ds, t ≥ 0,(5.3)

whereγ (·) denotes a one-dimensional Brownian motion. Since�(s) ≥ 0 for all
s ≥ 0, we have

sup
0≤t1≤t2<t,t2−t1<a

|�(t2) − �(t1)| ≤ sup
0≤s1<s2<t,s2−s1<a

|γ (s2) − γ (s1)| + a

2
.
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According to Lemma 1.1.1 of [5],

P

(
sup

0≤s1<s2<t,s2−s1<a

|γ (s2) − γ (s1)| >
x

2

)
≤ c

t

a
exp

(
−x2

9a

)
.

This implies (5.1).
To prove (5.2), we note that on{sup0≤s≤t �(s) < 1}, we have

∫ t
0 e−�(s) ds ≥

t/e, hence, for allt > 100,{
sup

0≤s≤t

�(s) < 1
}

⊂
{
γ

(∫ t

0

(
1− e−�(s)

)
ds

)
< 1− t

2e
< − t

5

}

⊂
{

inf
0≤u≤t

γ (u) < − t

5

}
.

The estimate (5.2) now follows from the usual estimate for Brownian tails.�

LEMMA 5.2. For any ε ∈ (0,1), there exists somev0 = v0(ε) > 0 such that
for all x, v > v0, we have

2

π
exp

(
−(1+ ε)

π2

8

v

x2

)
≤ P

(
sup

0≤s≤v

�(s) < x

)
≤ 9 exp

(
−(1− ε)

π2

8

v

x2

)
.

PROOF. Assume for the moment that� starts from�(0) = 1. Let

f (x)
def=

∫ x

1

dy

1− e−y
, x > 0,

be the scale function of�. Sincet �→ f (�(t)) is a continuous local martingale, it
follows from the Dubins–Schwarz theorem ([19], Theorem V.1.6) that

f (�(t)) = B

(∫ t

0

ds

1− e−�(s)

)
, t ≥ 0,

for some one-dimensional Brownian motionB starting from 0. Therefore, by
writing T�(x) = inf{s > 0 :�(s) > x}, we have

T�(x) =
∫ σ(f (x))

0

(
1− e−f −1(B(s))

)
ds =

∫ f (x)

−∞
(
1− e−f −1(y)

)
L

(
σ(f (x)), y

)
dy,

wheref −1 is the inverse of the increasing functionf , σ(x)
def= inf{s :B(s) = x}

for x ∈ R, andL is the local time ofB.
Observe thatf −1(y) ∼ y asy → ∞, andf −1(y) ∼ e−|y| as y → −∞. Let

y0 = y0(ε) > 0 be sufficiently large such thate−f −1(y) < ε/2 for ally ≥ y0. Denote

by b(ε)
def= sup−∞<y≤y0

(1− e−f −1(y))e|y| < ∞. Then for all largex,

T�(x) ≥
(

1− ε

2

)∫ f (x)

y0

L
(
σ(f (x)), y

)
dy,(5.4)

T�(x) ≤
∫ f (x)

y0

L
(
σ(f (x)), y

)
dy + b(ε)

∫ y0

−∞
L

(
σ(f (x)), y

)
e−|y| dy.(5.5)
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For the lower bound in Lemma 5.2, we note that by (5.4) and (2.3),

P

{
sup

0≤s≤v

�(s) < x

}
= P{T�(x) > v}

≥ P

{∫ f (x)

y0

L
(
σ(f (x)), y

)
dy >

v

1− ε/2

}

≥ 2

π
exp

(
−π2

8

v

(1− ε/2)(f (x) − y0)
2

)
.

Sincef (x) ∼ x, x → ∞, this yields the lower bound in Lemma 5.2 in the case
when � starts from�(0) = 1, and a fortiori, in the case when� starts from
�(0) = 0 by a comparison theorem for diffusion processes ([19], Theorem IX.3.7).

For the upper bound in Lemma 5.2, we again assume�(0) = 1 for the moment.
By (5.5) and the triangular inequality, forr ≥ v0,

P

{
sup

0≤s≤r

�(s) < x

}
= P{T�(x) > r}

≤ P

{∫ f (x)

y0

L
(
σ(f (x)), y

)
dy ≥ (1− ε/2)r

}

+ P

{∫ y0

−∞
L

(
σ(f (x)), y

)
e−|y| dy >

ε

2b(ε)
r

}
.

The first probability expression on the right-hand side is≤ 4
π

exp(− π2(1−ε/2)r

8(f (x)−y0)
2 )

[see (2.3)], whereas the second is≤ 3 exp(− ε
16b(ε)f (x)

r)+ 2 exp(− ε
8y0b(ε)f (x)

r) in
light of (2.6). Therefore, if�(0) = 1, then for allr, x ≥ v0,

P

{
sup

0≤s≤r

�(s) < x

}
≤

(
4

π
+ 5

)
exp

(
−π2(1− ε)r

8x2

)
.(5.6)

We are now back to the case�(0) = 0 we were studying. By (5.2), for
any v > 100/ε, P{T�(1) > εv} ≤ 2 exp(− εv

50), which, in view of (5.6) [taking

r
def= (1− ε)v there], yields that

P

{
sup

0≤s≤v

�(s) < x

}
≤

(
4

π
+ 5

)
exp

(
−π2(1− ε)2v

8x2

)
+ 2 exp

(
−εv

50

)
,

which yields the upper bound in Lemma 5.2 [sinceε ∈ (0,1) is arbitrary]. �

We are now ready to give the proof of the upper bound in Theorem 1.2.

PROOF OFTHEOREM 1.2: THE UPPER BOUND. Observe that, by (4.2),

P

{
sup

0≤s≤t

X(s) > v

}
= P

(
H(v) < t

) ≤ P{�1(v) < t}.
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By Theorem 4.1,�1(v) is distributed as 4
∫ v
0 e�(s) ds − 4v. Thus,

P

{
sup

0≤s≤t

X(s) > v

}
≤ P

{∫ v

0
e�(s) ds <

t

4
+ v

}
.(5.7)

According to (5.1) (takingx
def= 3 anda

def= 1
v

there), we have

P

{
sup

0≤t1≤t2≤v,t2−t1<1/v

|�(t2) − �(t1)| > 3
}

≤ cv2e−v,

wherec is the numerical constant in (5.1). On the event{sup0≤t1≤t2≤v,t2−t1<1/v

|�(t2) − �(t1)| ≤ 3}, we have
∫ v
0 e�(s) ds ≥ 1

v
exp(sup0≤s≤v �(s) − 3). Plugging

this into (5.7) yields that for all sufficiently largev andt ,

P

{
sup

0≤s≤t

X(s) > v

}
≤ cv2e−v + P

{
sup

0≤s≤v

�(s) − 3< log
(

tv

4
+ v2

)}
(5.8)

≤ cv2e−v + 9 exp
(
−(1− 2ε)

π2

8

v

log2(tv)

)
,

the last inequality being a consequence of the upper bound in Lemma 5.2. We
mention that (5.8) was already used in Section 3 to prove the estimate (3.18).

Since logv = o(logt), (5.8) yields the upper bound in Theorem 1.2.�

5.2. Theorem1.2: the lower bound. The ideas in this section essentially go
back to [2]. Fora, b ∈ R, we define

�W(a,b)
def= sup

0≤s≤1
W

(
a + s(b − a)

)
,

W(a, b)
def= inf

0≤s≤1
W

(
a + s(b − a)

)
,

W#(a, b)
def= sup

0≤s≤t≤1

[
W

(
a + t (b − a)

) − W
(
a + s(b − a)

)]
.

Note thatW#(a, b) �= W#(b, a) in general. LetPx,ω be the quenched probability
under which the diffusionX starts fromx.

Recall thatH(y) = inf{t ≥ 0 :X(t) = y}. Let

ψ(x) := P

{
inf|y|≤1/2

L
(
σ(1) ∧ σ(−1), y

)
< x

}
, x > 0.(5.9)

We start with the following lemma. We mention that(W(y), a ≤ y ≤ c) is not
necessarily a valley in the sense of Brox [2].

LEMMA 5.3. Leta < x < c and letλ > 0.
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1. We have

Px,ω

{
H(a) ∧ H(c) > λ(c − a)2emin(W #(a,c),W #(c,a))} ≤ 24

λ
+ 96

λ2 .(5.10)

2. Let

a′ = sup{y ≤ x :W(y) − W(x) > λ},(5.11)

c′ = inf{y > x :W(y) − W(x) > λ}.(5.12)

If

(c′ − a′)eλ ≤ 1
2 min

{∫ x

a
eW(y)−W(x) dy,

∫ c

x
eW(y)−W(x) dy

}
def= 1

2�(a, c),(5.13)

then for all0< ε < 1,

Px,ω{H(a) ∧ H(c) ≤ ε(c′ − a′)e−λ�(a, c)} ≤ ψ(ε),(5.14)

whereψ(·) is defined in(5.9).

PROOF. 1. According to Brox ([2], pages 1213 and 1214, proof of (i); we
mention that them in [2] is our c, and theα in [2] is 1 here),

H(a) ∧ H(c) ≤ (c − a)2eW #(a,c)�4,

where�4
law= sup−∞<y≤1 L(σ(1), y)+�5 andEx,ω(�2

5) ≤ 12. A similar estimate
holds withW#(c, a) instead ofW#(a, c).

Therefore, (5.10) will follow from Chebyshev’s inequality once we can show
that for allλ > 0,

P

{
sup

−∞<y≤1
L

(
σ(1), y

)
> λ

}
≤ 6

λ
.(5.15)

To prove (5.15), we note that by Fact 2.1,y ∈ [0,1] �→ L(σ(1), y) is a BESQ(2)

starting from 0, andy ∈ [0,∞) �→ L(σ(1),−y) is a BESQ(0) starting from
L(σ(1),0). Using successively the triangular inequality, the reflection principle
for BESQ(2) and the martingale property of BESQ(0), we obtain that

P

{
sup

−∞<y≤1
L

(
σ(1), y

)
> λ

}

≤ P

{
sup

0≤y≤1
L

(
σ(1), y

)
> λ

}
+ E

(
1{L(σ(1),0)<λ}1{sup−∞<y≤0 L(σ(1),y)>λ}

)
≤ 2P

{
L

(
σ(1),0

)
> λ

} + E

(
1{L(σ(1),0)<λ}

L(σ(1),0)

λ

)
.

SinceL(σ(1),0) has the exponential distribution of mean 2, this leads to

P

{
sup

−∞<y≤1
L

(
σ(1), y

)
> λ

}
≤ 2e−λ/2 + 2

λ

∫ λ/2

0
ye−y dy ≤ 6

λ
,
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proving (5.15) and, thus, (5.10).
2. The proof of (5.14) is essentially from [2], page 1215, line -11. Without loss

of generality, we assumex = 0. Under (5.13), we havea < a′ < 0 < c′ < c. In
view of (4.1), we have, by the occupation time formula,

H(a) ∧ H(c) = T
(
σ(A(a)) ∧ σ(A(c))

)
=

∫ c

a
e−W(y)L

(
σ(A(a)) ∧ σ(A(c)),A(y)

)
dy

≥ (c′ − a′)e−λ inf
a′≤y≤c′ L

(
σ(A(a)) ∧ σ(A(c)),A(y)

)
≥ (c′ − a′)e−λ inf

|z|≤(c′−a′)eλ
L

(
σ(A(a)) ∧ σ(A(c)), z

)
,

sinceA(c′) ≤ c′eλ andA(a′) ≥ −|a′|eλ. In view of (5.13) and scaling,

Px,ω{H(a) ∧ H(c) ≤ ε(c′ − a′)e−λ�(a, c)}
≤ P

{
inf|y|≤1/2

L
(
σ(1) ∧ σ(−1), y

)
< ε

}
,

proving (5.14). �

We now have all the ingredients to prove the lower bound in Theorem 1.2.

PROOF OFTHEOREM 1.2: THE LOWER BOUND. Fix a smallε > 0. Consider
larget andv such thattε ≥ v ≥ log2 t . Let r = log t

1−10ε . For r > 0, defined−(r)
def=

sup{t < 0 :W#(t,0) > r}.
Define three random timesα > m > η > v by

η = inf{s > v :W(s) − W(v) = −(1− 3ε)r},
α = inf{s > η :W(s) − W(η) = r},
m = inf{s > η :W(s) = W(v,α)}.

We consider the following events concerning the Brownian potentialW :

F1
def=

{
|d−(r)| < r2; ∣∣W (

d−(r),0
)∣∣ ≤ εr;

∫ 0

d−(r)
eW(z) dz > er/2

}
,

F2
def=

{
W#(0, v) < (1− 20ε)r; �W(0, v) <

r

3

}
,

F3
def=

{
η − v ≤ r5/2; sup

v≤s≤η

(
W(s) − W(v)

)
< εr;W#(v, η) <

r

3
;

∫ η

v
eW(x)−W(η) dx > e(1−4ε)r

}
,
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F4
def=

{
α − η ≤ r5/2; inf

η≤s≤α

(
W(s) − W(η)

)
> −εr;

W#(η,m) <
r

3
;W#(α, η) <

r

3
;

sup
m≤x≤m+1

(
W(x) − W(m)

)
< r2/3;

∫ α

m
eW(x)−W(m) dx > e(1−ε)r

}
.

Observe that by the strong Markov property, the events(Fj )1≤j≤4 are independent.
Moreover,P {F3} andP {F4} do not depend onv.

FIG. 1.
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Clearly,

P0,ω{X(t) > v} ≥ P0,ω{H(m) < t;X(t) > v}
(5.16)

≥ P0,ω{H(m) < t}Pm,ω{H(v) ∧ H(α) > t}.
We have

P0,ω{H(m) ≥ t} ≤ P0,ω

{
H

(
d−(r)

)
< H(m)

} + P0,ω

{
H

(
d−(r)

) ∧ H(m) ≥ t
}

= A(m)

A(m) − A(d−(r))
+ P0,ω

{
H

(
d−(r)

) ∧ H(m) ≥ t
}
.

Let ω ∈ ⋂4
j=1Fj . SinceA(m) ≤ me

�W(m) ≤ mer/3+εr , |A(d−(r))| ≥ er/2, and
W#(d−(r),m) ≤ (1− 19ε)r , we apply (5.10) to(d−(r),0,m) and arrive at

P0,ω{H(m) ≥ t} ≤ mer/3+εr

er/2 + 24

t

(
m − d−(r)

)2
e(1−19ε)r

+ 96

t2

(
m − d−(r)

)4
e2(1−19ε)r .

Note thatm ≤ α ≤ r3 + v ≤ 2tε andt = e(1−10ε)r . We obtain that

P0,ω{H(m) ≥ t} ≤ e−6εr if ω ∈
4⋂

j=1

Fj .(5.17)

To apply (5.14) to(v,m,α), we chooseλ = r2/3 and verify that the assump-
tion (5.13) is satisfied on

⋂4
j=1Fj , because

�(v,α) = min
{∫ m

v
eW(y)−W(m) dy,

∫ α

m
eW(y)−W(m) dy

}

≥ min
{∫ η

v
eW(y)−W(η) dy, e(1−ε)r

}
≥ e(1−4ε)r ≥ 2(c′ − a′)eλ.

It follows from (5.14) that

Pm,ω{H(v) ∧ H(α) ≤ t} ≤ ψ

(
teλ

(c′ − a′)�(v,α)

)
.

Sincec′ − a′ ≥ c′ − m ≥ 1 by definition ofF4,

ψ

(
teλ

(c′ − a′)�(v,α)

)
≤ ψ

(
e(1−10ε)r+r2/3−(1−4ε)r

) ≤ ψ(e−5εr).
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Therefore, for all larger ≥ r0(ε), we get from (5.16) that

P0,ω{X(t) > v} ≥ (1− e−6εr )
(
1− ψ(e−5εr )

) ≥ 1
2 if ω ∈

4⋂
j=1

Fj .

Hence,

P{X(t) > v} = E(P0,ω{X(t) > v}) ≥ 1
2P

{ 4⋂
j=1

Fj

}
= 1

2

4∏
j=1

P {Fj },(5.18)

by the independence ofFj . Whenr → ∞, P {η − v > r5/2} → 0 and

1

r
log

∫ η

v
eW(x)−W(η) dx ∼ 1

r
sup

v≤x≤η

(
W(x) − W(η)

) ≥ (1− 3ε).

It follows that

lim inf
r→∞ P {F3} ≥ lim inf

r→∞ P

{
sup

v≤s≤η

(
W(s) − W(v)

)
< εr;W#(v, η) <

r

3

}
= C(ε) > 0,

for some constantC = C(ε) depending only onε. The same holds forP {F4} and
P {F1}. It follows that for all larger ≥ r0, we have

P {F1}P {F3}P {F4} ≥ C′(ε) > 0.(5.19)

Finally, we recall the asymptotic expansion of the distribution of(W#(0, v),
�W(0, v)) ([9], Theorem 2.1): for any fixed 0< a ≤ 1, whenδ → 0+,

P {W#(0,1) < δ; �W(0,1) < aδ} ∼ 4 sin(aπ/2)

π
exp

(
− π2

8δ2

)
.

It follows from scaling that whenr → ∞,

P {F2} ∼ 4 sin(π/6(1− 20ε))

π
exp

(
− π2

8(1− 20ε)2

v

r2

)
.

Plugging this into (5.18) and (5.19) implies

lim inf
t,v→∞,v�log2 t,logv=o(logt)

log2 t

v
logP{X(t) > v} ≥ −π2

8
.

The lower bound in Theorem 1.2 is proved.�
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