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LIMITING SHAPE FOR DIRECTED PERCOLATION MODELS

By JAMES B. MARTIN
CNRS and Université Paris 7

We consider directed first-passage and last-passage percolation on the
nonnegative IatticeZd, d > 2, with i.i.d. weights at the vertices. Under
certain moment conditions on the common distribution of the weights, the
limits g(x) = lim,— oo n ™17 (|nx]) exist and are constant a.s. foe RY,

where T (z) is the passage time from the origin to the veriex Zi. We

show that thisshape functiorg is continuous orR? | in particular at the
boundaries. In two dimensions, we give more precise asymptotics for the
behavior ofg near the boundaries; these asymptotics depend on the common
weight distribution onlylirough its mean and variance. In addition we discuss
growth models which are naturally associated to the percolation processes,
giving a shape theorem and illustrating various possible types of behavior
with output from simulations.

1. Introduction. We consider directefirst-passageandlast-passageerco-
lation models on the nonnegative IattiZE{, focusing in particular on behavior
close to the boundaries of the orthant.

With each node e Zi, associate theeightX (z). We assume that the weights
{(X(2),z¢ Zi} are i.i.d. according to some common distributihon R; by
allowing the weights to take negative as well as positive values we can consider
first-passage and last-passage models simultaneously.

A directed pathin Zi is a path each step of which consists of increasing a single
coordinate by 1. LeT (2), thelast-passage time i be the maximum weight of all
directed paths from the origin to the poimytwhere the weight of a path is the sum
of the weights of the nodes along the path. (See Section 2 for precise definitions.)
Natural objects of study are asymptotic quantities such as the furg:IiEﬁ — R
defined by

g(x) — Supw.
neN n

From superadditivity properties, we have that this supremum is in fact a limit,
and that: ~17 (|nx]) — g(X) a.s. as — oo, for all x € R4. We callg the shape
function since it determines the limiting shape for the growth model associated
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to the percolation procesg(x) is also sometimes known as thime constantn
directionx.

Analogous first-passage percolation models on the undirected lattice are by now
very well known—see, for example, Kesten [14, 15] or Durrett [7] for fundamental
results. Recently, the directed last-passage model has also received much attention;
in particular, the case where= 2 and the weight distributio is geometric or
exponential. First, this is essentially the only nontrivial case (whether directed or
undirected, first- or last-passage) where the form of the shape furzctbove is
known; for exponential weights, it was first given by Rost [25]. But much more
precise results are now available; in particular Johansson [13] extended methods
developed by Baik, Deift and Johansson [2] for the closely related model of the
longest increasing subsequence of a random permutation, and showed that, for
« > 0, the distribution of: ~Y/3{T ((n, an])) — ng((1, «))} converges as — oo
to a nondegenerate limit (the Tracy—Widom distribution, which also arises as the
limiting distribution for the size of the largest eigenvalue of a random matrix from
the Gaussian unitary ensemble).

Two-dimensional directed last-passage percolation problems with general
weight distributions have also been studied in detail in the context of tandem
gueueing systems; see, for example, [1, 10, 19].

Our first observation is a condition on the weight distributidrunder which
the shape functiorg above is finite everywhere. The condition required on the
positive tail is that/§° (1 — F(s))¥? ds < oo; this follows quickly from analogous
results for the related model gfeedy lattice animalgintroduced in [5] and [9];
the precise results we use are from [20]). We note that, as in the greedy lattice
animals model, there is still a small gap between this sufficient condition and the
best currently known necessary condition, which is It < oo (see [20] for a
discussion).

Our first main result is then that the shape functiors continuous on all of
Ri, including at the boundaries (in fact, continuity on the interior is immediate
from a simple concavity property). We note that the question of continuity for the
directed first-passage model was raised by Newman and Piza [21]; for the two-
dimensional last-passage model it was resolved (in a queueing theory context)
by Glynn and Whitt [10] for distributions with an exponential tail, and then
by Baccelli, Borovkov and Mairesse [1] and Martin [19] under weaker moment
conditions. Particular tools which we use to prove continuity at the boundaries
in any dimension are a truncation which relies on a bound given in [20] for the
growth rate in the greedy lattice animals model, and a concentration inequality
derived from a result of Talagrand [27].

In two dimensions we then give more precise information about the behavior of
g close to the boundary. For a distributighwith meany and variancer2, we
prove the asymptotic formula, as— 0,

g((1, @) = pu+ 20 + o(Va).
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In addition to the tools used in the proof of continuity, we use here a comparison
with a variant form of directed percolation analyzed by Seppélainen [26], and an
estimate for the speed of convergence in the central limit theorem from [24],
in order to prove a universality property over dil for the asymptotics at

the boundary. Comparing the exact formula known for the case wiliere

is the exponential distribution then yields the result. These asymptotics are
linked to theBrownian directed percolatiomodel—obtained, loosely speaking,

by reversing the order of the limitea — oo (in the definition of g) and

a — O0—which has been widely studied recently in various contexts; see,
for example, [3, 11, 12, 23]. See also [22] for a survey of the connections
between these various directed percolation processes, random matrix theory and
noncolliding particle systems.

For various results on the dependence of the time constant on the weight
distribution in the context of undirected first-passage percolation, see, for example,
[16, 18, 28].

Just as in the case of undirected first-passage percolation, thegrosrth
processesaturally associated to the directed percolation models considered here.
In Section 5 we describe these and proghape theoreranalogous to those given
in [4] and [14]. We also discuss, with illustrations from simulations (see Figures
1-7), various possible behaviors of the growth processes, and the differences which
exist between the directed and undirected cases and between the first-passage and
last-passage cases.

2. Notation and main results. We work with thed-dimensional nonnegative
lattice Z<.. Forx e Z4 (and similarlyZ?, RY andR?) we write x; for the ith
component of; we use the normix|| = }_ |x;|, and writex < X’ if x; < x] for
i=1,...,d. We writeO for the origin andLl for the point all of whose coordinates
equal 1, andy; for the point all of whose coordinates are 0 exceptitewhich
is 1 (sothak =Y ; x;€&).

With each poinv of Z4 , associate theveightX (v). We assume that the weights
{X(v),ve Zi} are i.i.d. random variables, with common distribution function
whereF (s) = P(X < s) (as here, we sometimes write simp{yto denote a generic
random variable with distributioi’).

A directed pathin Zi is a path each step of which consists of increasing a
single coordinate by 1. Fary, zo € Zi, with z1 < 7, let T1[z1, z2) be the set of
directed paths fromz; to z,. We identify a path with the set of points it contains;
by convention we exclude the final pomt (but include the initial poingy, unless
Z1 = 22). Note that all paths ifl[z1, z») have size (or “length”)zo — z1]|.

Forzy < zp, defineT (z1, o), thelast-passage timom z; to zp, by

T(z1,22)= max » X(v).

”en[ZLZZ)ven
In the case; = 0, we write simplyIl[z) = [0, z) and
2.1 T(2)=T(0,2)= X (V).
(2.1) (2=T(0.2) n?r?)é)z (V)

vemr
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We immediately have the following superadditivity propertyzif< zo < zz
Z4, then

(2.2) T(21,22) + T(22,23) < T (21, 23).

Suppos€E | X| < oo. Then alsdE |T (z)| < oo for all ze Z4. Forx e R, we
now define

(2.3) g(x) = SUp}E T(lnx])
neN7

(which may be infinite). We sometimes wrigg (X) to emphasize the dependence
on the distributionF'; we also writeg(x1, ..., x4) for g(X) whenx = (x1, ..., xq)
in order to avoid proliferation of brackets.

The following basic properties of the functiop are immediate from this
definition and from the superadditivity in (2.2), using (a superadditive version of)
Kingman’s subadditive ergodic theorem:

PROPOSITION2.1. Suppos& | X| < oo.
() Forall xeR4,

}T(Lnxj) — g(X) asn — oo, a.s. and[if |g(X)| < oo]in L1.
n

(i) g(ox)=oag(x) forall o >0,xeRY.
(i) g is invariant under permutations of the coordinates
(iv) g(x)+g(y) <g(x+y) forall x,y e R%.

The following result gives conditions under which the functigns finite.
Condition (2.5) isstronger than the condition thEtXﬁ’r < oo (which is known
to be necessary for the finiteness) but weaker, for example, than the condition
E X4 (log, X)4~1*¢ < co. See [20] for detalils.

PROPOSITION2.2. If

(2.4) E|X| < oo
and
. 1/d
(2.5) /0(1 F(s))Y ds < oo,

d
then|g(X)| < oo for all x e RY..
Our first main result is then:

THEOREM 2.3. Under conditions(2.4) and (2.5), the shape functiory is
continuous on all oRi (including at the boundarigs
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Proposition 2.2 and Theorem 2.3 are proved in Section 3. In Section 4 we prove
the following theorem, which gives more precise asymptoticg fairthe boundary
in the casel = 2.

THEOREM 2.4. Let d = 2. Let the distribution F have meanu and
varianceo2, and satisfy

2.6) /000(1 — F(s)"2ds < oo
and

(2.7) /_io F(s)Y2ds < o0.
Thenasx | 0,

(2.8) gL, 0) =p+ 20/ +o(Ver).

Note that the framework effectively includes first-passage as well as last-
passage percolation models, since the weights may take negative as well as positive
values; replacingnaxby min and replacing the weight¥ (z) by —X (z) would
simply change the sign df and so ofg. When considering associated growth
models in Section 5, however, it is easier to consider first-passage and last-passage
models separately. For completeness, we also state here the first-passage versions
of the results above. Define the quantitighz),z € Z¢} and {h(x),x € R4},
analogous to the last-passage quantitieéz)} and {g(x)} defined at (2.1) and
(2.3), by

2. — mi X

(2.9) S(2) nrenﬁ?z)vgz W),

(2.10) h(X) = inf g S(Lnx)).
neNn

COROLLARY 2.5. ())If E|X| < coand (% (F(s)¥4 < oo, then|h(x)| < co
forall x e Ri, andh is continuous on all oRi (including at the boundarigs

(i) Letd =2.If F has mearu and variances? and satisfie$2.6)and (2.7),
thenasx | O,

h(l, @) =p —20/a +o(Va).

Definitions, results and discussions for the growth models are given in Section 5.
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3. Continuity at the boundary.

3.1. Case of bounded weightsWe first prove the continuity result of Theo-
rem 2.3 for the case where the weights are bounded. We will need the following
concentration inequality, which follows easily from Theorem 8.1.1 of [27]; see, for
example, Lemma 5.1 of [20] for the argument.

LEmmA 3.1. LetY;,i € I, be a finite collection of independent random
variables such that

Py, <L)=1
forall i € I. LetC be a set of subsets dfsuch that
max|C| < R,
CeC
and let
Z=max) Y;.
CE@Z !
ieC

Then for any > 0,
2
64R .2

IP(|Z—EZ|zu)§exp<— +64).

We apply the concentration inequality in the following lemma, which is the
central part of the proof of the continuity of

LEMMA 3.2. Suppos@®(|X| < L) = 1forsome finiteL. LetR > 0ande > 0.
There exists > 0such thatifx € Ri with ||x|| < R andx; =0 (wherel < j <d),
then

|g(X+hej) —g(X)| <e
forall 0<h <.

PrROOF  Without loss of generality, let = 1. Rephrased, the statement is that
forx =(x2,x3,...,xq) € Ri_l,

2((h, %)) — g((0,%)) ash | 0,

uniformly in {x: |X| < R}.

So leth > 0 andn € N. Any path fromO to the point(|nk], [nX]) contains
exactly [nh ] steps which increase the first coordinate, so can be decomposed into
a disjoint union of paths fronir, m,) to (r, m,41), r =0,1,2, ..., [nh], where
m, € 24~ for eachr, and

(3.1) O=mo<my<--- <Myp+1=nX].
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We have

Lnh)
T((lnh]), lnxD) =~ max [Z T((r,m,), (r, M41))

Ma,....Mppp+1
r=0

(3.2) |1
+ Z X(rv mi’+1):|'

r=0
(The second term on the right-hand side appears because of the convention that a

path fromz; to z, does not include the “final point,.) Here and below then,
range over values satisfying (3.1). The number of such choices fon the

ﬁ ( Lnaxi] + thJ>
i=2 Lnh]
which, by Stirling’s formula, is ex@¢ (h, X) + o(n)], where
i+h i+h
¢ (h,X) = Z <hlogx + +xl-logx + )
2<i<d h Xi
x;>0
We now consider the expectation of the quantity within the maximum on the
right-hand side of (3.2). For fixeggn, }, we have

[nh] lnh]—1
E[Z T((r,m,), (romp)+ > X(r, m,+1)i|

r=0 r=0
[nh]
=E > T((0,m,),(0,m, ;1)) + [nh]EX
r=0
(3.3) <ET((0,mg), (0, Mus|+1)) +nhL (by superadditivity)

=ET((, |nx])) +nhL
<n[g((0,x)) + hL]
(by definition ofg and superadditivity again).
Still keeping{m,} fixed, note that the quantity inside the expectation on the
left-hand side of (3.3) may be written as the maximum of the sum of various
sets of weightsX; each such set has siZi€|nk], |[nXx])| < n|(k, X)|| and, by

assumption, none of the weights has absolute value greater/th8o we can
apply the concentration inequality in Lemma 3.1 to give

\nh] [nh]—1
P[Z T((r,my), (nMey) + Y X(r,my11) > n(g((0,%) + AL + s)}
r=0 r=0

[nh] lnh|—1
S]P’[Z T((r,my), (rnmp1)+ > X(r,mey1)
r=0 r=0
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deviates from its expectation by more than}

(ne)?
M 64
=N T samaoiz " )

2
ne
= —————— +64).
exi{ 641, 0IL2 )
Thus, taking the sum over all possitila, },

P[T((Lnh], [nx])) = n(g((0,X)) + AL +¢)]

n£2
< ean¢(h, X) + O(H)] eXF{—W + 64)

This sums overn € N to a finite amount whenever

e > 8L |(h,X)|¢(h, X).

Since
.1
g((h,x)) = lim_ ;T((thJ, Lnx])) a.s,
Borel-Cantelli then gives

8((h, %)) = g((0,x)) < hL + 8L/ |(h, X)[1¢ (A, X).

The right-hand side tends to 0 &g 0, uniformly in||x|| < R, as required.
In the other direction, the superadditivity property in Proposition 2.1(iv) implies

=hEX
> —hL,

which again tends to 0 a@s| 0O, uniformly over allx. [

LEMMA 3.3. Suppos@®(|X| < L) = 1for some finiteL. Theng is continuous
on all of R%.

PROOF Lete >0 andy € Ri. Suppose thay has exactlyk nonzero
coordinates. Without loss of generality, assume that infact O for 1<i <k
andy; =0fork+1<i <d.

Define the functiong; on R’jr by gr(U) = g(u1,...,ur,0,...,0) (appending
d — k zeros to the end af).

Sinceg is concave oﬂR’i [by Proposition 2.1(iv)] g is concave ofRX , and so

is continuous on the interior @&~ .
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Hence we can choo$é> 0 small enough that ifz;| < 8’ for 1 <i <k, then

lgk(x1+ha, ..., xk +he) — ge(x1, ..., xp)| <&,

and so

<E€.

(3.4)

k
g<x+ Zhiei) —g(X)

i=1

Choose anyR > ||ly|| + k8’. We now fixs > 0 small enough that the conclusion
of Lemma 3.2 applies (for our chosdn R ande¢), and also small enough that
Iyll + k8" + (d — k)8 < R.

Take anyh € R? with ||h| < min(§’, §) and with(y + h) € RZ. Then certainly
|hi| <8’ forl<i<k,andalso < h; <sfork+1<i<d.

We are about to apply Lemma 32— k) times, once for each of the coordinates
of y which is 0. Specifically, fok +1< j <d, setx/) =y + Z{:_llhiel-. Then for
k+1<j<d,we havel|x"| < R (by choice of§) andx;]) = 0 (sincey; = 0),
so all the required conditions of Lemma 3.2 apply.

Using also (3.4), we obtain

k
g<Y+ Zhiei) - g(Y)‘
i—1

lg(y +h) — gyl <

d J j-1
+ > g(y+zhiei>_g(y+zhiei)‘
j=k+1 i=1 i=1

k
g(y+ Zhiei) - g(Y)‘
i=1

d
+ 20 s +hjej) — g(xV)]
j=k+1

<e+(d-—k)e
< (d+ De.

Sincee was arbitrary, we have thgtis continuous ay, as desired. [J

3.2. Extension to unbounded weight distributiorDefine a lattice animal of
sizen to be a connected subset®f of sizen which includes the origin. Extend
the i.i.d. array{X (2)} to all of Z¢, so that{X (), z € Z%} is an i.i.d. array with
common distributionF. Let A(n) be the set of lattice animals of sizeand define

N@n) = X(2).
(n) g@%z 2

ze&
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the maximum weight of a lattice animal of size

The results in the following proposition are taken from Theorems 1.1 and 2.3
of [20]. (In fact the model in [20] covers only the case where the weiglis are
nonnegative; but replacing weights whose value is 0 by negative weights can only
reduce the left-hand side of (3.5) or (3.6) and leaves the right-hand side unchanged.
Alternatively, see [6] for a detailed treatment of the lattice animals model where
the weights can take negative values.)

PROPOSITION 3.4. There exists = c¢(d) < oo such thatfor all F satisfy-
ing (2.5):

(i) foralln>1,
vd
(3.5) EN(n) < cn/o (1—F(s))

(i) with probability 1,

(3.6) IimsupN n) Sc./o (1- F(s))l/d

n—o00 n

Now we can easily deduce the following lemma for the directed percolation
model. Part (iii) implies Proposition 2.2.
LEMMA 3.5. There existg = ¢(d) < oo such thatfor all F satisfying(2.5):

(i) forall ze Z4,
(3.7) ET(@2) < c|z| /Ooo(l—F(s))l/dds
(i) with probability 1,

(3.8) lim sup} max T (z) < c/OOO(l— F(s))l/d ds

n—oo N Z:|z||<n

(i) forall x e R,

(3.9) IXIE X < g(x) < c|x]| / (1— F(s))Y ds.

PrROOF First note that ifz € Zi and||z|| = n, then any pathr € I1[z) is a
lattice animal of size; thusT (z) < N(n), and parts (i) and (ii) follow immediately
from Proposition 3.4.

Puttingz = [nx] in (i), dividing by » and then letting: — oo gives the upper
bound in {ii).



2918 J. B. MARTIN

For the lower bound in (i), lez € Z4, and let7 be any path inf1[z); then
|7| = ||z||, and we have

ET@Z) =E max ZX(V)

VET[

>E ) X(V)

VET
= [z||EX.
Again letz= |nx| and letn — oo to obtain the lower bound in (iii). (I

We now introduce truncated versions of the weidl¥$z)}. For L > 0 andz
74, let X B (z) = maxmin{X (z), L}, —L} [so that| X D) (2)| = min(|X (2)|, L)].

Then let{T™1)(2), z € Z1} and{gD)(x), x € R%} be defined just a&T'(2)} and
{g(¥)}, but with the quantitie$X (z)} replaced by the truncated versidig (z)}.

LEMMA 3.6. Suppose thaf2.4)and(2.5)hold. Then for anyx € R%,

-L
00— Ixl [ Fes)ds
(3.10) o N
<800 =g 00 +elxl [ (21— F)Yds.
wherec is as in Lemma&.5.Thus for anyR > 0,
(3.11) sup  |g(x) —gPx)|—0 asL — oo.
xeRL: Ix[<R
PrROOE Note that
—[L-X@4+ <X@-XP@ <[X@ - Ll;.
We consider first the positive tail. Late R%. Then

g — g x) = lim }ET(LnxJ)— lim EET(L)(LnxJ)
n—-oon n—-xon

= lim }E[ sup > X(V)—  sup ZX(L)(V)}

"N | ren(o,[nx)) ver mell[0, [nX)) ver

(3.12) < lim e sup [ZX(v)—ZX(L)(v)}
ver

"N gen(o,|nx]) ver

= lim 1E sup [Z[X(v)—L]JF}

"N ren(o,(nx))|Lver

<c||X||/ (1= F(s))Yds
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the last inequality follows from Lemma 3.5, since the variallgs(v) — L]+,
v e Z4} are i.i.d. with distribution function >, whereF>1)(s) = 0 fors < L

and F>L)(s) = F(s) for s > L. This gives the lower bound in (3.10).
For the negative tall, let € 74, and letz* € T1[0, Z) be the maximizing path

for 71 (z). (If there are several maximizing paths, choose, say, the one that is first
in the lexicographic order.)

Now for anyv € Z4, P(v € 7*|X (V) < s) is a nondecreasing function of
[This follows from a simple coupling, sinde& (V/), V' € Zi} are independent and,

for a fixed realization of the other weightX (v'), V' € Z% V' # v}, the function
I{v € 7*} is a nondecreasing function &f(v).]

Hence in particulaiP(v € n*|X(v) < —L) < P(v € 7*), and so by simple
manipulation of conditional probabilities,

P(X(V) < —L|ven*) <P(X(V) <—L).

Furthermore, the evert € 7*} depends only orfmaxX ('), —L},V' € Z4};
thus, conditional o X (v) < —L}, X (v) is independent ofv € 7*}. Hence

E([-L — X(V)]+|ver®)
=E([-L — X(V)]4+|X (V) < —L)P(X(v) < —L|ven¥)
SE(-L = XWI4+IX(V) < -L)P(X(v) <L)
=E([-L—-XMW]4)

—L
= / F(s)ds.
Now
ET(z) =E n@r?[x > Xv)

vemr

>E max Y (XP(v)—[-L - XV)])

nel‘[[z)ven

=E ) XYW -E Y [-L-XW]4

ver* ver*

=ET" @) - ) Pvern)E(-L—-XW)tlver)

d
VEZS

—L
zET(L)(z)—/ F(s)ds Y P(ven®

d
VEZL

—L
=ETWP(2) —/ F(s)dsE |n*|
—00

L
—ETV(2) - |z / F(s)ds,
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sincerr* € I1[z) and all paths iT1[z) have length|z]|.

Letting z = |nx] and takingn — oo then gives the first inequality in (3.10), as
required. The convergence in (3.11) then follows since, under (2.4) and (2.5), both
the integrals in (3.10) tend to 0 &s— oco. [

It is now immediate to extend the continuity property proved in Lemma 3.3 to
the case of unbounded weights, and so complete the proof of Theorem 2.3.
Lemma 3.3 shows that the functiopd” are continuous for each, and (3.11)
shows that, under the conditions (2.4) and (2¢}) — ¢ asL — oo, uniformly
on any compact subset Rﬁ Henceg itself is continuous, as required.

4. Asymptotics at the boundary for d =2. In this section we prove
Theorem 2.4.

We first obtain an estimate on the growth rate in the case whésea Bernoulli
distribution. This is done using a comparison with an alternative percolation model
in which the Bernoulli distribution is an exactly solvable case. We writd Befor
the Bernoulli distribution with parameter, withP(X =1)=1—-P(X =0) = p.

LEMMA 4.1. Foralla >0, p €[0, 1],
ggerp) (L @) <L+ a)p +2J/av1+avp(l—p).

PrRoor Recall that
T(m,n)= max » X(2),

rwell[m,n) zen
wherelIl[m, n) is the set of paths of the form

20,21, ...y Zm4n—-1
such thatzg = 0, such that, forall xi <m +n -1,z — z_1 =e; for some
j €{1,...,d}, and such that alson, n) — z,,,—1 = €; for somej € {1, ...,d}.
Define an alternative set of increasing palljgn, n) to be those paths of the
form

(07 )’0)’ (1’ )’1), DR (m - 1’ )’m—l),
where 0< yg<y1 <--- < y,,—1 < n, and define

T(m,n)= max Y X(2).

well[m,n) o

Define the functiony : Z2 + Z2 by ¥ (x,y) = (x +y, y).

Sincey (z) # ¥ (Z') wheneverz # Z, and since{X(2),z € Zi} are i.i.d., we
have
4.1 ET =E X(2)=E X )
(4.) (m, n) max Y X(2) LJnax Y X (2)

well[m,n) 7en M) 7w
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For a pathmr = zg,...,z_1, write Y (;r) for the pathy(z9),..., ¥ (z_1).
From the definitions of the path sets above, one can obtain thatill[m, n),
theny (7) € II[m + n, n). (We do not require that all paths ifi[m + n, n) can
be written asy (;r) in this way.) Put another way: let (IT[m, n)) be the set
(7 :7% = ¢ () for somer € [m, n)}; theny (I1[m, n)) C [m + n, n).

Continuing from (4.1),

ET(m,n)=E max Y X(V)

rwell[m,n) vey (1)

=E max X ()
ﬁex/f(l'l[m,n))\%;

<E max > X(V)
welllm+n,n) ver

=ET(m +n,n).
Then

g, )= nli_)moo }E T(n,|an])
(4.2) ”1
<liminf ZET(|1+ «]n, lan)).
n—oo gn

Seppaldinen [26] analyzes directed percolation based on the patff,setsd in
particular obtains that, for the case of Bernoulli weights,

.1 ~
n“—>moo ;E Ber(p) I (laan ], [aon])

, o1
pla1 —a2) + 2, /aiaz+/p(1— p), if p< ,
. o1+ o
- . o1
oy, if p> .
p a1+ o2

A calculation then shows that for gbl,
.1 ~
Jim ;E Ber(py I (laan], laon]) < a1p + 2/ araov/ p(1— p).
Substituting into (4.2) witlky = 1+ «, a2 = o gives the required result.C]

LEMMA 4.2. Let F; and F»> be distributions with meang; and u» and
satisfying(2.6)and(2.7). Then for alla > 0,

lgr (L o) — giy(L ) — (L4 o) (1 — 12)|
<2/ato [ | Fuls) — Fals) Y2 ds.
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PROOE Let{U(2),z¢ Zi} be i.i.d. uniform on[0, 1], and fori = 1, 2, let
X:(2) = F7Y(U(2)), whereF~(u) = suplx : F(x) <u}.
Thenfori =1,2,{X;(2),z¢ Zi} are i.i.d. with distributionF;, and for anyx,

P(X1(2) > x, X2(2) < x) = [F2(x) — F1(x)]+
and
P(X2(2) > x, X1(2) <x) = [F1(x) — F2(x)]+.
Now
gr(La)—gp(la)

= lim }E max ZXl(z)— im E__max > Xa(2)

n—oon mell(n, LanJ)Zen mell(n, LanJ)Zen

lim }E max > (X1(2) — X2(2))

n—o00on mgell(n, Lom])zen

IA

= lim E max / 1(X1(2) > x, X2(2) < x)
n—-oon gell(n,|lan)) Oozen
—1(X1(2) < x, X2(2) > x)]dx
1 o0
< lim =E max Y [I(X1(2) > x, X2(2) < x)
n—-oon —00 nel’[(n,[omj)zen

— I(Xl(Z) <x,X2(2) > x)] dx
= f_oo nl|_>moo ;E nel’[%?f;nj)z%;[l(xj'(a > x, X2(2) < x)
— I(Xl(Z) <x,X2(2) > x)]dx

(by Fubini's theorem and bounded convergence)

—oo—7>n nel'[(n,LomJ)Zen

5/00 lim }[E max > [I(X1(2) > x, X2(2) < x)]

+E  max (Z[l —1(X1(2) < x, X2(2) > x)]

well(n,|an]t) 7w
- Z 1) } dx
zZemw

o0
= / {gBen1 o)~ F1010) (1, @) + gBerd—[Fy () - Fa(n)11) (L, @) — (L4 ) dx}
—o0
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< / A+ )([Fa(x) — Fy)ls +1— [Fi(x) — Fa(0)ls)

+ 2o/ 1+ a([Fa(x) — Fl(x)]_ll2 + [Fi(x) — Fz(x)]l/z)
—(1+a)}dx
(by Lemma 4.1)

—(lta) /_ T (Fax) — Fi(v)) dx
+2J&~/1+a/°° |F1(x) — Fo(0)| Y2 dx

=A+a)(u1—pn2) +2VaVi+a /_ °; FL(r) — Fa(o)[Y2dx,
Similarly,
grn(la)—grn(la)
= (4o (uz —p) + 2«/W1+—oe/_°; |FL(x) = F2(0)[Y2dx.

Together these give the desired resulil

LEMMA 4.3. Let F satisfy(2.6) and (2.7), and lete > 0. Then there is a
distribution F with bounded support which has the same mean and variange as
and which satisfies

/OO |F(s) — F(s)|Y%ds < e.

PROOF Let X have distributionF. For brevity we cover only the case where
P(X > 0) = 1; the negative tail can be truncated in an analogous way.

Take anyt > 0. If P(X > r) = 0, thenF itself has bounded support and we take
F = F. Otherwise, letn = E (X|X > t) andw = E (X2|X > 1), and choose, u
to satisfy

(4.3) A—pyt+pu=m
(4.4) 1—p®+ pu=w.
The solution is
(m —1)?
P= (m—t)2+w—m2’
u=t + —1

p
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note that O< p <1 andu > ¢, sincem >t andw > m2.

Then let
N F(x), ifO<x<r,
(4.5) Fx)=11-p[l—F@®)], ifr<x<u,
1, if x>u.

Now F has bounded support siné&u) = 1. For the mean and variance, fét
have distribution®, and use (4.3) and (4.5) to give

EX=EX:;X<0)+1=p[l-FOl+pll—F®Olu
—E(X; X <0)+P(X > [ p)t + pul
=EX;
similarly use (4.4) to givé X2 =E X2

For the final part we have
/OO |F(s) — F(s)|Y%ds < /00[1— F(s)1Y%ds +/OO[1— F(s)1Y?ds
0 t t
= /00[1— F(s)1Y2ds + /u[p(l— F(;))]l/st
t t
< /00[1— F()1Y?ds + [pu’P(X > 1)1/
t
< /00[1— F(s)1Y2ds + E(X% X > Y2,
t

By assumption/$°[1— F(s)]*/?ds < oo, and this implies thaE X? < oo also;
hence by choosing large enough we can make the right-hand side as small as
desired. O

LEMMA 4.4, Let F be a distribution with bounded suppoand for k € N,
let F® be the distribution of(1 + X2 + - - - + Xx, where{X;} are i.i.d. ~ F. Let
r: Ry +— N be any function satisfying(«) — oo andr(«)/a — Oasa | 0.Then

lim ! 1 ! 1 =0
aioﬁ gr( ,a)—@gpm( ’O”'(O‘)) =V

PROOR For (x,y) € Z2 andr € N, let B")(x, y) be the se{(rx + i, ),
i=01,...,r—1}.

The setsB")(z) partitionZ2 ; essentially we have grouped the siteﬁéf into
“blocks” of lengthr and height 1. We will compare our original model with one
where each of these blocks functions as a single site, whose weight is the sum of
the original sites contained in the block.



SHAPE IN DIRECTED PERCOLATION 2925

Givenr € Il(nr, m), we can findr € I1(n, m) such that

(4.6) UB"@ Aax| <mr,

zew

whereA denotes the symmetric difference. [For instancetlet {z: 7 N B (z) #
}.] Similarly, givenz € I1(n, m), we can findr € IT(nr,m) such that (4.6) is
satisfied.

Suppose thatX (z),z € Zi} are i.i.d. with distributionF'. Define

XDo= Y X@.

veB((2)

Then {X")(2),z € Z2} are i.i.d. with distributionF". Let K be such that
P(X| > K) = 0. Then by the properties (in both directions) noted at (4.6) and
after,

<mrkK,

max Y X(z)— _max ZX(z)

nel'[(nrm)zen mell(n, m)

so that
1 11 1
‘—E rT(nr,m) — —=E g T (n, m)‘ <—mrKk.
nr rn nr

Puttingm = |anr | and lettingn — oo gives

1
grl,a) — ;gF(m(l, ar)| <ark.

If r is a function ofa such that\/o — 0 as« | 0, then the right-hand side is
o(y/a) asa | 0, as desired. (]

LEMMA 4.5. Let F be a distribution with bounded supportith meanu
and variances 2. Let F® andr be as in Lemmé&.4.Then
1 1 ar(a
gF(r)(l ar(a)) — F—UFM =0,

oc¢0 [ \/W

where® is the standard normal distribution

PrROOF Theorem 5.16 of [24] gives a bound on the rate of convergence in the
central limit theorem, for distributiong which have a finite third moment. Here
F has bounded support and so certainly finite third moment; we obtain that there
existsC = C(F) such that

IFO(x) — d(x)| < Cr Y20+ |x)) 3
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for all r € N, x € R, where F is the distribution of (X1 + --- + X, —
rur)/(or/r). (Note thatF ") is simply the distribution” ") normalized to have
mean 0 and variance 1.)

Now combine this estimate with Lemma 4.2; for ang N,

i’} (Lar)— up —o oL, ar)
\/& rgF(r) s UF F «/;
1 ‘UF (L ar) go(1,ar)
= —|—9275 s —O0OF——
\/& ﬁgF() oar F ﬁ

o

w% 1850 (L, ar) — go(L, ar)|

0
< F 2«/ar«/1+ar/ 1Cr~Y2(1 4 1x) 3 Y2dx
—00

Jor
, Al4ar
= Clop ™10
717

whereC’ is some constant independent-ainda. If r is a function ofe such that
ri/a — 0 andr — oo asa | 0, then the right-hand side tends to Oca$ O, as
required. O

The following lemma is the universality result which we need:

LEMMA 4.6. Let F be a distribution with meamr and varianceoﬁ,
and satisfying(2.6) and (2.7), and let the function satisfy the conditions of

Lemmad.4.Then
go(Lar@)| _

.1
g%ﬁ V(o)

PROOF Lete > 0. Using Lemma 4.3, choose a distributi®nwith bounded
support, with the same mean and variancé aand with

4.7) gr(l,a) —up —oF 0.

(4.8) /_Z |F(x) — F)|Y%dx < /2.

Then
go(1, ar(a))

. 1
limsup—=|gr(1,a) — ur —of

al0 \/& Jr(a)
. L o gelar@)
< Ilrg foupﬁ gi(L,a) —pup —of NG

1
+limsup—|gr (1, @) — g (L a)|.
al0 ﬁ r



SHAPE IN DIRECTED PERCOLATION 2927

The first term is 0 by combining Lemmas 4.4 and 4.5 and using the fackthas
the same mean and variancefggshe second term is ¢ by Lemma 4.2 and (4.8).
This works for any > 0, so the desired result follows[]

Finally, we compare with an exactly solvable case to yield the asymptotic
behavior for allF:

PROOF OF THEOREM 2.4. Choose any that satisfies the conditions of
Lemma 4.4, for example (o) = [a~ /4.

When F is the exponential distribution with mean 1 (and so also variance 1),
we have the exact formulgr (1, o) = 1+ 2\/a + « (See, e.g., [25]). Substituting
into (4.7) gives

go(l,ar(a))
(4.9) 2%7 2o — i b =0.

Now take anyF satisfying (2.6) and (2.7). Combining (4.7) and (4.9) gives
1
lim — lLa)—ur—2 =
J%ﬁ|gF(,a) nr —20p/a| =0,
as required for (2.8).
5. Growth models.

5.1. Definitions and statement of shape theoremecall that first-passage
quantitiesS andh, analogous t@ andg, were defined at (2.9) and (2.10).
DefineB(t), thelast-passage shape at timgby

B(t)={xeRL:T(Ix])) <1},
and defineC (¢), thefirst-passage shape at timeby
C(1) ={xeRL:S(|x)) <1).

Both B(¢r) and C(¢) are increasing irr, in the sense that for & 11 < 1o,
B(11) € B(r2) andC (1) € C(t2).
We further define subsesandC of R by

B={x:g(x) <1},
={X:h(X) <1}.
B is concave [by Proposition 2.1(iv)]; similarly¢ is convex.B and C are
asymptotic shapdsr the processesB(¢)} and{C(¢)} in the sense of the following

theorem, which is analogous to well-known results for undirected first-passage
percolation models (see, e.g., [4, 14]). We give the proof in Section 5.3.
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THEOREMS5.1. Suppose that the weight distributidghsatisfies

0
(5.1) / F(s)Y%ds < oo
and

. 1/d
(5.2) /0(1 F(s))Y4 ds < co.

(i) Last-passage shape theorem
If E X > 0,then for anys > 0,

(5.3) (1—8)Bcﬁc(1+ £)B

for all sufficiently larger, with probability 1.
(i) First-passage shape theoreth

’

xeR4\ (0} [IX[l
then for anye > 0,

1- )CCgC(l+ e)C

for all sufficiently larger, with probability 1.

REMARK 5.1. (i) Note that by a subadditivity property far analogous to
the superadditivity property fogp in Proposition 2.1(iv), we have that for all
X € Ri, h(x) > @h(l, 1,...,1); thus the condition in part (ii) is equivalent to
the condition that:(1, 1, ..., 1) > 0. If the weights are nonnegative, then this is
implied by the condltlon thaF(O) < p(d) wherep(d) is the critical value for
directed percolation il dimensions; this follows, for example, from the same
arguments as the property, noted by Kesten and Su [17], that (in their case for
undirected percolation) the critical points for percolation and for “1-percolation”
coincide.

(ii) In fact, the moment conditions in Theorem 5.1 are stronger than necessary;
for the last-passage case one can replace (5.1) by the conditidh |tkiat < oo,
and for the first-passage case one can replace (5.2) by the conditi@Xhatoo.

In particular, combining with the previous remark, for the first-passage model
with nonnegative weights it suffices for the limiting shape resultihdt< co and
F(0) < pP.

To prove the theorem under these weaker conditions, one can follow an
approach similar to that used by Cox and Durrett [4] for the undirected first-
passage case, making use of the fact &t < co = E min(Xy, ..., X )4 < o0,
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whereX, ..., X, are i.i.d. copies ok . However, the proof needs a rather lengthy
enumeration of cases and a description of a variety of different sets of “alternative
paths”; in addition, the fundamental ideas are already in [4], so we do not include
it here.

Under the stronger conditions in Theorem 5.1 (already almost optimal for
the last-passage case with nonnegative weights), bounds of the sort given in
Lemma 3.5 are available, and the proof is simpler.

5.2. Discussion of the growth modelsln this section we describe and illustrate
various possible types of behavior for the first-passage and last-passage growth
processe®(t) andC(r).

We will concentrate on the case where the weigit&)} are nonnegative. Then
forallt > 0, B(r) andC(¢) are connected; in additio®(¢) is a decreasing subset
of Ri, althoughC (r) does not generally have a similarly simple property.

If the weight distributionF is exponential (resp. geometric), then the processes
{B(t),t = 0} and{C(¢), r > 0} are Markov in continuous (resp. discrete) time; in
the two-dimensional last-passage case this yields the growth model considered in,
for example, Rost [25] and Johansson [13]. Simulation8@) andC(¢) in two
dimensions with exponentially distributed weights are given in Figures 1 and 2,
and the three-dimensional last-passage case is shown in Figure 7.

In fact B(r) and C(¢) are also Markov in discrete time when the weights are
Bernoulli (taking values 0 and 1).

100 200 300 400 500 o

50 100 150 200 250 300 350

Fic. 1. Simulation of the last-passageFiG. 2. First-passage process C(t),
process ford = 2 and F exponential with =50, 100, 150 200for d =2 and F exponen-
meanl. The setsB(r) are shown forr = 150 tial with meanl.

(darkes}, 30Q 450,600 (ightes). Here the

asymptotic shapeB is known to be{(x, y) €

RZ:Vx+ .y <1}



2930 J. B. MARTIN

We now discuss various ways in which the shape result in Theorem 5.1 may
fail.

First, the last-passage case. Note thgt(¥) = oo for somex in the interior of
]Ri, then (by a simple superadditivity argumept= oo throughout the interior.

A sufficient condition for this to occur is th&t X¢ = co. Then the growth oB(r)

in any interior direction is sublinear in on a linear scale, the asymptotic shape
collapses into the boundary (or even to the origin alorfeXf = co). An example

is illustrated in Figure 3 for a distribution with finite mean but infinite variance,
with d = 2.

The undirected first-passage caseZhis comparable. Here again there are
just two possibilities: either the shape function is 0 everywhere (in which case the
asymptotic shape is essentially the wholéRd), or the shape function is nonzero
everywhere.

For the directed first-passage case, in contrast, the different behaviors can co-
exist. If péd) <P(X =0) < 1, thenkh =0 for some cone around the directi@n
(this is the cone in which “oriented percolation of sites with weight 0” occurs),
but 2 > 0 elsewhere. In this case there will a.s. be some infinite path starting at
the origin which has finite total weight, and the g&t) will have infinite size at
some finite time. The shageé= {x: h(x) < 1} is noncompact, but not equal to the
whole of]Ri, and the shape theorem does not apply as given. See Figure 4 for a
simulation of such a case.

350
500 300 |
400 2501
1501
100 <
100 503

o 100 200 300 400 500 &00 0 50 100 150 200 250 300 350

Fic. 3. B(t), t+ = 150,300 450,600, with FIG. 4. C(¢), t = 18,36, 54, with d = 2 and
d = 2 and the Pareto distributionF(x) = X =0wp.0.645andX = (0.355)*l w.p. 0.355
min(0, 1 — (3x)~3/2), which has mead butin- (showing only the intersection with the box
finite variance The asymptotic shap® consists [0, 350]2). Here h(x) = 0 for some(though not
only of two linesbetween the origin an@d, 1) all) x; thus the asymptotic shape is noncompact
and between the origin and,, 0). (but not the whole dRﬁ), and as. the setC(¢)

will be infinite for some.
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Note that if againX attains its minimum value with probability more thp{ff’),
but this minimum is now greater than 0, the(x)/| x| is constant on some cone
around the directiof, and the boundary af has a flat section—see Figure 5. This
is the same phenomenon observed by Durrett and Liggett [8] for the undirected
case.

If EX = o0, thenh(e1) = oo, and the shape theorem cannot hold as stated, but
an amended version for a cone excluding the boundaries may hold. However, if
(only slightly more stronglyE min(X1, ..., X4)¢ = oo, then the result fails more
fundamentally Still the limit 2(x) = lim,_, oo n~1S(|nx]) exists and is finite and
constant a.s. for any in the interior of R, and one can define the asymptotic
shapeC as before. However, it is no longer the case that the convergence is a.s.
uniform on compact subsetsﬁﬁ; in effect, the “holes” in the shap@é(r) persist,
as seen in Figure 6. The same sort of behavior would occur for the undirected
first-passage model whéb min(Xy, ..., X29)? = oo; see, for example, related
discussions in [4].

5.3. Proof of Theorenb.1 Note first that for part (i) of Theorem 5.1, the
condition EX > O implies that inf_ga g, 80 > 0 [since, by superadditivity,
g(x) > |xlg(1,0,...,0) = [|X||E X].

Note also that, by replacing the weigHt& (z)} by {—X (2)}, part (ii) can be
rewritten as follows in terms of last-passage rather than first-passage quantities:

If

sup & <0,
XeRﬂI_\{O} ||X||
then for anye > 0,
B (¢
(5.4) a-o5 <P carop

for all sufficiently larger, with probability 1, where
B~(1) = {xeRL:T (X)) = 1}
and
BT ={x:g(x) > —1}.

By Theorem 2.3, we know thdg(z)| < oo for all z; then (5.3) and (5.4) are
immediately implied by the following property: for amy> 0, there are a.s. only
finitely manyz € Z4 such thalT (z) — g(2)| > lg(2)|.

Since we assume in both cases thgt)|/||z|| is bounded away from 0, we
have|g(z)| > ||z||infy |g(Z)|/11Z ||, so in fact it is enough to show that for any
¢ > 0, there are a.s. only finitely mamysuch that 7 (z) — g(2)| > ¢||z||.
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Fic. 6. C(400 for d = 2 and the Pareto
distribution F (x) = min(0, 1 — x—3/4), which

has infinite mean

= 50,100, 150 200, with

t

Fic. 5. C(),

=0.5wp. 0.8, X =3 wp. 0.2.
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3 and F exponential with meaf.

Fic. 7. B(30) ford
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This follows immediately from Lemmas 5.2-5.5, which we state immediately
and then prove in turn.

LEMMA 5.2. SupposeF satisfies [° F(s)Y/4ds < oo and [§°(1 —
F(s))Y4ds < oo, and lete > 0. If L is large enoughthen with probabilityl,
T@) - T @] <¢lzl

. . d
for all except finitely many € Z¢ .

LEMMA 5.3. Lete > 0andL > 0. With probability1,
T @) -ET™(2)] <¢lzl,

. . d
for all except finitely many € Z¢ .

LEMMA 5.4. Lete > 0andL > 0. Then for all except finitely marge Z<,

ETV (@) - ¢ @)| <ellzl.

LEMMA 5.5. SupposeF satisfies [° F(s)Y/4ds < oo and [§°(1 —
F(s))Y4ds < oo, and lete > 0. If L is sufficiently largethen for allz € Z< ,

e (2) - g2 <elzl.

PROOF OFLEMMA 5.2. LetL be large enough that/>° (1 — F(s))Y¢ds <
/2 andc [~L F(5)Y?ds < ¢/2, wherec is the constant in Lemma 3.5.
Letze Zi; for somer* € I1[z), we have

T@-TP@=) [xWv)-xPW],

ver*
so that
T@-TP @< D [XV) — L4+ Y [-L—-XW)+
ver* ver*
5.5
69 < max Y VB + max > wh(v),
nel‘[[z)ven nel‘[[z)ven

where we defind’ ) (v) = [X (v) — L] andW D (v) = [-L — X (V)]4.

Note that{V L) (v),v € Z4} are i.i.d. with common distribution\"’, where
F{"(x) =0forx <0andF" (x) = F(L +x) for x > 0.

Similarly, {W® (v),v € Z4} are i.i.d. with common distributio’, where
FV(VL)(x) =0forx <O andFv(VL)(x) =1-—F(—L —x)forx>0.
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From Lemma 3.5 (applied tp/ (&) (v)} andF\(,L) rather than td X (v)} and F),
we then have that, with probability 1,

1 oo
limsup= max max Y v (v) < C/ (1= Ry )Y ds
0

n—-oo N Z: ||Z||§n7rel'[[z)ven
o0
:c/ (1— F(s))" ds
L

<e&/2

In particular, there are a.s. only finitely mang Zi such that
&
max ¥ VB w) > Z|z|.
max > VW z;le
Applying Lemma 3.5 td WX (v)} and F{*’ in the same way, one obtains that
there are a.s. only finitely margye Zi such that
&
max Y W) > 2|zl
> W)=zl

”EH[Z)ven
Thus from (5.5), there are a.s. only finitely mang Zi such that
T2 - T (@] = ¢llzl,
as required. O
PrROOF OF LEMMA 5.3. All the paths inll[z) have length|z|, and the

weights X ) (v) have absolute value no greater thanHence we may apply the
concentration inequality in Lemma 3.1 to give

IP’(|T(L)(Z) _ ET(L)(Z)| > ¢l|z||) < ex _w + 64)
- - 64|z|| L2

2
&)z )
=expl — 64|.
6ar2 *
Forn € Z, there are certainly no more than+1)¢ pointsz such that|z|| = n;
thus

2
> BTV @ -ETV @) zel2l) = X expf — o5 +64)
ZeZi neZ‘j_
< 00,

and Borel-Cantelli yields the desired result]
PROOF OFLEMMA 5.4. From the definition of and so ofg™, we have

ET® (z) < gP)(z) for all z, so we need to show th&tT L) (z) > ¢ (2) — ¢]|z]],
except for finitely many.
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Fix a > 0. The distributionF (%) has bounded support, so certainly satisfies (2.4)
and (2.5); thus by Theorem 2,82 is continuous ofR“ , and hence is uniformly
continuous on the compact subget R : [|x|| < 2d}.

So choose: < min(1, a) such that wheneveix|| < d and|x — X'|| < ud, then

g0 — g X)) <a.
frrefos | 2]

Now let C be the set
C is afinite subset dRi, and for every € C, we have [by Proposition 2.1(i)],

ET®
7(Lnyj) — g(L)(y) asn — o0.
n

Hence there iV = N(a) such that, for alk > N and ally € C,

ET®(lny)) = n(g™ (y) - a).
Let z satisfy max; > N. Define

_ {1 z J
y=u u maxz; '

theny € C, with (maxz;)y < z, with ||y|| < d and with
=
maxz;

—y” <ud <ad.

Using first superadditivity, then the fact that all the weight§%)(z)} are no
smaller than-L, then the continuity bounds above, we obtain

ET" (@) = ET™ (L(maxz)yl) + ET®) (2 — L(maxz;)y])
> ET" (L(maxz,)y]) — Lllz— [(maxZ;)y]|
> (maxz;) (g (y) —a) — L(l|lz— (maxz;)yl| +d)

=gV (@ - (maXZi){[g(L) (i) — g™ (y)]

maxz;

e |+ o

+a+ L H
maxz; maxz;

>(L)z—ma-{ Lad }
> g (2) —(maxz;)ia+a+ La +maxZi

Hence ifa < 2¢~1(2 + Ld), then for allz with maxz; > max(N(a), 2Ld/¢),
we have

ET®H (z) > ¢V (2) — (maxz;)e

> gD — ¢z,
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as required. [

PrRooF oF LEMMA 5.5. Under the moment conditions an, the result
follows immediately from Lemma 3.6.
This completes the proof of Theorem 5.1.]
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