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In the standard formulation of the occupancy problem one considers the
distribution ofr balls inn cells, with each ball assigned independently to
a given cell with probability 1n. Although closed form expressions can be
given for the distribution of various interesting quantities (such as the fraction
of cells that contain a given number of balls), these expressions are often
of limited practical use. Approximations provide an attractive alternative,
and in the present paper we consider a large deviation approximation as
r andn tend to infinity. In order to analyze the problem we first consider
a dynamical model, where the balls are placed in the cells sequentially and
“time” corresponds to the number of balls that have already been thrown.
A complete large deviation analysis of this “process level” problem is carried
out, and the rate function for the original problem is then obtained via
the contraction principle. The variational problem that characterizes this
rate function is analyzed, and a fairly complete and explicit solution is
obtained. The minimizing trajectories and minimal cost are identified up to
two constants, and the constants are characterized as the unique solution to an
elementary fixed point problem. These results are then used to solve a number
of interesting problems, including an overflow problem and the partial coupon
collector’s problem.

1. Introduction. Urn occupancy problems center on the distribution bélls
in n cells, typically with each ball independently assigned to a given cell with
probability 1/». The literature on the general topic is enormous. See, for example,
[9, 19, 20] and the references therein.

There are many different questions one can pose. For example, it may be that
one is interested in the distribution ¢f'g,I'1,...), whereTI; is the number
of cells containing exactly balls after all» balls have been thrown. In the
classical occupancy problem [9, 14, 20], one is interested only in the distribution
of unoccupied urng’o. In other cases, one might be interested in the (random)
number of balls required to fill all cells to a given level, or the number required
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so that a given fraction are filled to that level—the so called coupon collector’s
or dixie cup problem. In biology the inverse problem of estimating the number of
balls thrown from the number of occupied cells also arises and is used to estimate
species abundance [17]. Related applications in biology appear in [2, 3], and an
application in computer science appears in [21].

Another related problem of interest is tlowerflow problem, in which the
urns are supposed to have a finite capacityand the number of balls that
overflow is the random variable of interest. Ramakrishna and Mukhopadhyay [24]
describes an application in computer science concerned with memory access,
and [12] considers an application to optical switches. In [12] one is concerned with
dimensioning the number of wavelength converters so as to reduce the probability
of packet loss across the switch to an acceptable level. In [12] any-color-to-any-
color converters are considered. However, by extending the results proved here to
the case where the balls have distinct colors, dimensioning in the case where we
have many-to-one color converters can be carried out and the blocking probability
of the output estimated.

A wide range of results have been proved for the occupancy problem by
using “exact” approaches. For example, combinatorial methods are used in [9,
14, 20], and methods that utilize generating functions are discussed in [20].
The implementation of these results, however, can be difficult. For example,
in applying the combinatorial results one must compute the difference between
large quantities that appeartine inclusion—exclusion fonula for the probability
that a given fraction of cells are occupied. An analogous difficulty occurs with
techniques based on moment generating functions, since one must invert the
generating function itself.

Asymptotic methods provide an attractive alternative to both of these ap-
proaches. One reason is that they often offer good approximations with only
a modest computational effort. A second, perhaps more important reason, is that
superior qualitative insights can often be obtained. Indeed, a range of asymptotic
results have already been obtained for these problems (see, e.g., [18]). The first
large deviations principle (LDP) for urn problems that we are aware of was es-
tablished in [28] for the special case of the classical occupancy problem. This re-
sult was applied in [21] to a boolean satisfiability problem in computer science.
Reference [6], which appeared while the present paper was under review, proves
a LDP for the infinite-dimensional occupancy measures associated with occupancy
processes. The present paper focuses on finite-dimensional occupancy measures in
which urn occupancies above a given level are not distinguished. In this finite case,
we are able to provide a concise large deviations proof along with explicit, insight-
ful and computable expressions for the rate functions and for the large deviations
extremals. The rate function for the occupancy model after all the balls have been
thrown is shown to have a simple and fairly explicit rate function, which can be
defined in terms of relative entropy with respect to the Poisson distribution. Many
different problems can be solved in this framework simply by changing the set
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over which the rate function is minimized. We also give sample path results for the
evolution of the urn occupancies toward a particular event. In principle, the explicit

form of the minimizing trajectories for sample path results should enable accurate
empirical estimates of unlikely events using importance sampling; see [7, 22].

Let |a] denote the integer part of a scalar With n cells available and
a total of r = |Bn] balls to be thrown (withg > 0), we consider the large
deviation asymptotics as — oo. The precise statement is as follows. Fix
a positive integer/. Then with I'/'(8) equal to the fraction of cells contain-
ing i balls, we characterize the large deviation asymptotics of the random vectors
{(TgB), T1(B),....T7(B),n=1,2,...} asn — oo. A direct analysis of this
problem is difficult, and, in fact, it turns out to be simpler to first “lift” the problem
to the level of a sample path large deviation problem, and then use the contrac-
tion principle to reduce to the original finite-dimensional problem. A “time” vari-
ablex is introduced into the problem, whefex | balls have been thrown at time
andI'! (x) is equal to the fraction of cells containindalls at this time. We then
follow a standard program: the large deviation properties of this Markov process
are analyzed, the rate functiohon path space is obtained, and the rate function
for the occupancy at timg is then characterized as the solution to a variational
problem involvingJ.

Although the program is standard, there are several very interesting features,
both qualitative and technical, which digjuish this large deviation problem.
We first describe some of the attractive qualitative features. Typically, one has a
rate function on path space of the fori¢) = [ L(¢(x), $(x))dx, where the
nonnegative functiod.(y, &) is jointly lower semi-continuous and convexgrfor
each fixedy. The large deviation properties of the process at {ihaee then found
by solving a variational problem of the form

inf{J(¢):0(8) =w},

where o is given and where there will also be constraints on the initial
condition ¢ (0). In general, this problem does not have an explicit, closed form
solution. One exception to this rule is the extraordinarily simple situation where
L(y, &) does not depend on the state variapldn this case, Jensen’s inequality
implies that the minimizing trajectory is a straight line, and so the variational
problem is actually finite dimensional. Another exception is the case of large
deviation asymptotics of a small noise linear stochastic differential equation.
In this case the variational problem takes the form of the classical linear quadratic
regulator, and the explicit solution is well known from the theory of deterministic
optimal control. However, in this case there is no need to “lift” the problem to the
sample path level, since the distribution of the diffusion at any time is Gaussian
with explicitly calculable mean and covariance. Other exceptions occur in large
deviation problems from queuing theory, but in these problems the variational
integrand is “sectionally” independent pf and one can show that the minimizing
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trajectories are the concatenation of a finite number of straight line segments (see,
e.g., [1] and the references therein).

For the occupancy problem the variational integrand has a complicated state
dependence [see (2.2)], reflecting the complicated dependence of the transition
probabilities (in the process level version) on the state. Nonetheless, the rate
function possesses a great deal of structure that can be heavily exploited. For
example, the functiory turns out to be strictly convex on path space, and so
all local minimizers in the variational problem are actually global minimizers.
Perhaps even more surprising is the fact that explicit solutions to the Euler—
Lagrange equations can be constructed, and as a consequence, the variational
problem can be more-or-less solved explicitly (see the Appendix). Both of these
properties follow from the fact that the variational integrandan be defined in
terms of the famouselative entropy function (or divergence).

A technical novelty of the problem is the singular behavior of the transition
probabilities of the underlying Markov process. Since only cells contaipingjls
can become cells withi+ 1, it is clear that the transition probability corresponding
to such an event scales linearly Wm(x), and in particular, that it vanishes at
the boundary of the state space, whe(x) = 0. This poses no difficulty for
the large deviations upper bound, but I1s an obstacle for the lower bound. (Some
results that address lower bounds when rates go to zero include Chapter 8 of [26],
which treats processes with “flat” boundaries, and recent general results in [27].)
For the occupancy model, existing results provide a lower bound for open sets of
trajectories that do not touch the boundary, because away from the boundaries the
set{¢:L(T, &) < oo} is independent of'. To deal with more general open sets
we use a perturbation argument. We first show, using the strict convexityantl
properties of the zero cost paths, that it is enough to prove large deviation lower
bounds for open neighborhoods of trajectories that stay away from the boundary
for all positive times. (Note that this still allows the trajectorydart on the
boundary.) Loosely speaking, to prove the lower bound for sets of this type it is
enough to show that givem> 0, there isb > 0 such that the probability that the
process is at least distanbdrom the boundary by timé is bounded below by
exp—na. It turns out that these bounds can be easily established by exploiting an
explicit representation for such probabilities that was proved in [11].

An outline of the paper is as follows. Section 2 states the main results of
the paper. In the first part of Section 2 we construct the underlying stochastic
process model, and state the corresponding sample path level LDP, as well as
the LDP for the terminal distribution. The proof of the sample path LDP is
given in the following section, although in Section 2 an additional heuristic
argument for the form of the local rate function based on Sanov’s theorem is
provided. In the second part of Section 2, the terminal distribution rate function
is characterized and explicit expressions for the sample path minimizers are
presented. These constitute more-or-less complete solutions to the corresponding
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calculus of variations problem. The detailed proofs of these latter results are
deferred to the Appendix.

Section 3 gives a proof of the sample path LDP. The solutions to the variational
problem are exemplified in Section 4, where we show how specific questions
regarding the occupancy problem can be answered. In particular, we work out the
asymptotics for a number of examples, including an overflow problem and a partial
coupon collection problem. Generalizations to our results are also described.

2. Main results.

2.1. Satement of the LDP. In this section we formulate the problem of
interest and state the LDP. The proof will be given in Section 3. As noted in
the Introduction, our focus is the asymptotic behavior of the occupancy problem.
If n denotes the total number of cells, then to have a nontrivial limit, the number
of balls placed in the cells should scale linearly withWe will place | 8n ] balls
in the cells, whergs € (0, o0) is a fixed parameter ard | denotes the integer part
of a.

As will be seen in the sequel, the large deviation asymptotics of the occu-
pancy should be treated by first lifting the problem to the level of sample path
large deviations, and then using the contraction principle to reduce to the orig-
inal problem. To do this, we introduce a “time” variabtethat ranges from 0
to 8. At time x, one should imagine thdtux| balls have been thrown. Thus,
the occupancy process will be piecewise constant over intervals of the form
[i/n,i/n + 1/n). With this scaling of time, large deviation asymptotics can be
obtained if we scale space by a factor gl Thus, we define theandom occu-
pancy processI™ (x) = (I'g(x), ..., '} (x), F7+(x)) by lettingI'!' (x),i =0,...,1
denote ¥n times the number of cells with exactlyballs at timex, and let-
ting I'7, (x) be 1/n times the number of cells with more thdnballs at timex.

Note thatI'" takes values in the set of probability vectors dn+ 2 points:
Si={y eRI*2:y;>0,0<j<I+1land¥Z5y; =1).

The procesgI' (i/n),i =0, 1,...} is obviously Markovian. It will be conve-

nient to work with the following “dynamical system” representation:

(=)o ()

where the independent and identically distributed random vector figlds),
i=0,1,...} have distributions

Pl =) = |

Vi, fv=eji1—¢;,0<j<1I,

VIl if v=0.

Heree; represents the vector ik/*2 whose;th element is unity and for which
all other elements are zero. The occupancy dfer| balls have been thrown can
then be represented lay™" (8).

As we have discussed, the large deviations behavidr'¢g) will be deduced
from that of the procesE”(-). In order to state the large deviation asymptotics
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precisely, we should clarify the space in which(.) takes values and the topology
used on that space. As usual for processes with jumps of this sort, we use the
Skorokhod spaceD([0, 81:R/*2) together with the Skorokhod topology [5],
Chapter 4. However, the large deviations propertieqIof} are the same as
for the processe$i™”}, whereI™ is defined to be the piecewise linear process
which agrees witH™” at times of the form' /n. For readers unfamiliar with the
Skorokhod space and associated topology, the identical large deviations results
hold for ', save that the space of continuous functions and the sup norm topology
are used instead.

To complete the statement of the LDP ¢} we need some additional nota-
tion. A vector of (deterministicdccupancy rates (x) = (6o(x), ..., 07 (x),0;1(x))
is a measurable mapping froff, 8] to S;. Intuitively these rates represent the
rate at which balls flow into urns of a given occupancy level. Associated with
each such vector of rates is the corresponding determinstiapancy func-
tion y(x) = (yo(x), ..., yr(x), yr+(x)), which is defined by the initial condi-
tion y (0) and the differential equationg(x) = —6p(x), y;(x) =0;_1(x) — 0 (x)
for j=1,...,1, andy;+(x) = 6;(x). These equations reflect the idea that the
fraction of urns containing balls increases as balls entér— 1)-occupied urns,
and decreases as balls enterccupied urns. Defining the matrix

-1 0 0 0
1 -1 0 0
0 1 -1 ... 0

2.1) M=\ . . :
o .- 1 -10
o .. 0 1 0

we can writey (x) = M6(x) for all x € [0, 8]. Conversely, given a differen-
tiable occupancy functiory, the corresponding rates are uniquely determined
by y(x) =M6(x) and the normalizatiory/_,6;(x) + 6, (x) = 1. We will
also be interested in theumulative occupancy function ¢ with components
Yi(x) = Z?:o y; (x). Inspecting the cumulative sums of the rowsWfshows that

Y =—6; fori =0,...,I. As more balls are thrown, the fraction of urns contain-
ing i or fewer balls can only decrease, and the rate of decrease is the rate at which
balls enteti -occupied urns. We will say thatis avalid occupancy function i’ is
absolutely continuous, if (x) is a probability vector for alk € [0, 8], and if its
associated (x) is a probability vector for almost all € [0, 8]. Note that the func-
tionsyr, y andéd are interchangeable, in the sense that each can be derived from
any of the others [givem (0) in the case of]. Thus, we say that andy are valid

if the associategt is valid. The following lemma gives a direct characterization of
validity in terms ofy.

LEmMmA 2.1. A vector of I + 1 continuous functions v, each of which maps
[0, 8] to [0, 1], isa valid cumulative occupancy path if and only if:
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(@) ¥i(x) = ¥i—1(x),

(b) ¥i(x) = ¥i(y),

(©) ThooWi(x) — ¥x(»)) <y —x,
foreachO<i</landO<x <y<§g.

SKETCH OF THE PROOF In the forward direction, the first condition plus the
boundvy;(x) < 1 ensure thay (x) is a probability distribution. The second and
third conditions together imply thal is Lipschitz continuous with constant 1
and, hence, absolutely continuous. This implies the absolute continuify. of
Sinceyy = —6, the third condition ensures théatis almost always a probability
distribution. The reverse direction proceeds similarlyl

Giveny, 6 € S, let D(@||y) denote relative entropy af with respect toy .
Thus,

I+1

D@®|ly) = 6;10g(6; /).
i=0

with the understanding thatlog(6; /y;) = 0 whenevep; = 0, and thab; log(6; /
yi) =00 if 6 >0 andy; = 0. If y(x) is a valid occupancy function with
corresponding occupancy ra#@&), then we set

B
(2.2) 1= [ eIy ).

In all other cases selt(y) = oco.

THEOREM 2.2. Suppose that the sequence of initial conditions {I""(0),
n=1,2,...} isdeterministic and that it convergesto « € S; asn — oo. Then the
sequence of processes {I',n =1, 2, ...} satisfies the LDP with rate function J.
In other words, for any measurable set A of trajectories, we have the large
deviation lower bound

1
liminf —log P{I'" € A} > —inf{J(y):y € A°, y(0) = «}
n—-oo n
and the large deviation upper bound
1 -
limsup—logP{I'" € A} < —inf{J(y):y € A,y(0) =«},
n
and, moreover, for any compact set of initial conditions K and C < oo, the set
{y:J(y)=<C,y(0)eK}

IS compact.
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The proof of this result is provided in Section 3. However, a formal justification
for the form of the rate function is as follows. L&t- 0 be a small time increment.
Owing to the fact thal'”* varies slowly when compared {6;(y)}, one expects

1 |ns|—1
r"<0>=y)wP<% > b,-(y)w),

P<F”(5) -0 _
j=0

5 s

where the symbol~” inside the probability means that the indicated quantities
are within a small fixed constant> 0 of each other. Suppose that we interpret
as a probability measure ofeo, ..., e;4+1}, and let{Y;} be independent and
identically distributed (i.i.d.) with distributiony. Then the sequence of i.i.d.
random vector$b;(y)} can be realized by setting

bj(y)={ei”0—ei} = Yj={eleil},
that is,

By Sanov's theorem, for any probability vectoe Sy,

1 [né]—-1
pl— Z Y, ~0|~exp—ndD@|y)
né 120 ! .

" (0) = y) ~ exp—nsD@|y).

Approximating an arbitrary trajectory by a piecewise linear trajectory with nearly
equal cost and using the Markov property, one expects

B
P ~y|II'"0) =a) %exp—n/o D@ |y @))dt,

wheref andy are related by = M6, y(0) = «. Thus, the rate function on path
space should bé&(y).

The zero cost trajectories are of course the law of large numbers limits, and can
easily be computed. For examplegit= (1,0, ...) (so all cells are initially empty)
andi < I, thenJ(y) = 0 implies thaty; (t) = e~'¢' /i!. In other wordsy (¢) is
the Poisson distribution with meansave that all mass corresponding te 7 is
collected together into the stafet+ 1. Throughout this paper we will denote the
Poisson distribution with meanby 2 (¢), where®; (1) = et /i!.

We are primarily interested in the distributionlof(8). The contraction princi-
ple (e.g., [11], Theorem 1.3.2) implies the following variational representation for
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the rate function fo{I'"(8),n =1, 2, ...}. Let A(a, w, B) denote the set of valid
occupancy pathg on [0, 8] satisfyingy (0) =« andy (8) = w.

COROLLARY 2.3. Suppose that the sequence of initial conditions {I""(0),
n=12,...} isdeterministic and that it convergesto « asn — oo. Then the se-
guence of random vectors {T'"(8),n =1, 2, ...} satisfies the LDP with the convex
rate function

Fw)=inf{J(y):y € Ao, 0, B)}.

REMARK 2.1. Using the explicit formula fof (w) stated in Theorem 2.7 and
the convexity of relative entropy in its first argument, it follows tiais, in fact,
strictly convex.

REMARK 2.2. It is sometimes useful to show that the large deviation lower
bound holds for sets with no interior relative to the ambient space. Such bounds can
often be proved for processes, such as ours, that take values in a discrete lattice.
An example would be a set C {y € S;:yr4+ = 0}, for which the minimizing
trajectories must be polynomial extremals (defined after Theorem 2.6). Although
we do not need such results in the present paper, it is worth observing that lower
bounds of this kind can be proved.

2.2. Characterization of the terminal rate function and minimizing paths. The
results of this section were obtained using calculus of variations techniques,
the details of which are given in the Appendix. The presentation begins with
the case in which all urns are initially empty because it appears in many
applications and because it is a building block for the general case. In each case,
first we give a characterization gf(w) as a minimal relative entropy, which may
be computed explicitly in this form. We then give an explicit functional form for
the sample path minimizer. The function form constain parameters determined by
the solutions to fixed point equations.

Before stating these theorems, it is helpful to specify the domain over which
g(w) is finite. We define an endpoint constraint to be a triplew, 8), wherew,

w € Sy are the initial and terminal occupancies, and whgre 0 is the number

of balls thrown per urn. We assume without loss thgt- O, that is, that some
fraction of urns are initially empty, and we denote the index set of positive initial
occupancies byK = {k:a; > 0}. Since we do not distinguish between urns having
more than! balls, we can always suppose that no urns initially have more than
I + 1 balls, and denote the last elementooby «; 1. The last element ab is
denotedw; +, signifying that it collects all urns with occupancy greater than or
equal tol + 1.

DEFINITION 2.1. A endpoint constrainfe, w, ) is feasible if the corre-
sponding set of valid occupancy pathx, w, ) is honempty.
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LEMMA 2.4. Anendpoint constraint («, w, 8) isfeasibleif and only if

i i
(2.3) DTS INIE i =0,..., 1 (monotonicity)
j=0 j=0
and
I I+1
(2.4) Y iwi+ I + Doy <Y kag+ B (conservation).
i=0 k=0

This lemma is proved in the Appendix. Condition (2.3) relates to the fact that
the v; (x) must decrease monotonically and (2.4) to a conservation constraint for
the number of balls thrown. The right-hand side of the inequality equals the initial
number of balls per urn, plus the additional balls per urn thrown up to fime
while the left-hand side is a lower bound on the number of balls per urn afgime

In the treatment of general initial conditions, the following further definition
will be useful.

DEFINITION 2.2. A set of feasible constrainta, w, 8) is irreducible if the
monotonicity conditions (2.3) hold with strict inequality for alk 7. Otherwise,
the constraints are termed reducible.

For a reducible set of constraints, lebe the first index such that _ay =
Z;'(:Oa)k. This condition can only be met if no balls are ever thrown into
i-occupied urns, and it follows that urns which initially contaitballs or less
will always containi balls or less. Thus, these urns may be treated in isolation
from the urns containing more thatalls. Furthermore, by subtracting- 1 balls
from each urn in this latter set, we obtain another occupancy problem in standard
form, that is, withag > 0. Continuing in this way, a given problem with constraints
(o, w, B) may be divided into a finite number of isolated, irreducible subproblems.
It is only necessary therefore to treat problems with irreducible constraints, and
wherever necessary we suppose this to be the case.

2.2.1. Empty initial conditions. An important special case of the initial
constraint is when all urns are initially empty, thatdg,= 1 ande; = 0 fori > 0.
We abuse notation and denote this case by1.

Define the setF (1, w, 8) to be the set of distributions on the nonnegative
integers satisfying;; = w; fori =0, ..., I and the constraint

o0
> imi=48
i=0

In the empty case, the conditions for feasibility(@f w, ) reduce toZi’:Oiw,- +
(I + Dwr+ < B, from which it follows that the sef is nonempty if and only
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if (1, w,B) is feasible. As we now discuss, the infimum of the rate function
over pathsA(1, w, 8) can be represented as an infimum of a relative entropy over
distributions inF (1, w, B).

THEOREM 2.5 (Terminal rate function, empty case)Given the initial con-
dition « = 1, the rate function (w):S; — R™ defined in Corollary 2.3 may be
determined as

J@)= min D(x|P(p))

reF(Lw,p)

if (1, w,pB) is feasible, and is otherwise infinite. The minimizing argument
n* e F(1, w, B) isunique.

The above expression is of interest in its own right. Moreover, the optimal
solution 7* can be computed explicitly. Using Lagrange multipliers, one can
show, in fact, that the solution takes the formj = C#;(pp) for i > I
for some constant€ > 0 and p > O that we refer to as twist parameters.
Here p is related to the Lagrange multiplier for the conservation constraint
Y i2oim =B, while C is a normalization constant ensuring thafc = = 1.
These two constraints may be solved to determinand C. If we have the
strict equalityzfzoia)i + (I +Dw;4+ = B, there are just enough balls to meet
the terminal constraints and we may repldcey I + 1 if necessary to ensure
thatw; =1— Z{:o w; = 0. In this case, it turns out th#&(1, w, ) has only one
element; we then hav€ = 0, and we may take = 1. Otherwise, we defing to
be the unique positive root of the equation

PB—Yi_oiPi(pB) _ B— i oiw

1-Y 0P 1= g
Because of the strict inequality in the conservation condition (2.4), the right-hand
side of the last equation is strictly greater thar- 1. The left-hand side of the
equation is the conditional mean[Y |Y > I] of a Poisson random variablé
with meanpg. As a function ofp, this conditional mean is a strictly monotonic

and continuous map froi®, oco) to (1 +1, co) and, hence, the equation has exactly
one positive rootC is given by

_ 1= Y _owi . S giw

1-Y/0Pi(0B)  pB—Xi_0iPi(pB)
Evaluating the relative entropy af* and & (8), the rate function of™”(8) can
be expressed as

(2.5)

(2.6) C

1

_ I
F@)=) |090L + (1— Zw,-)(logc +@-=p)B)
2.7) i=0 Pi(B) i=0

1
+ (ﬁ - Zia)i) logp.

i=0
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The next theorem shows that the least cost péthatisfying/ (y*) = 4(w) can
also be expressed explicitly in terms of the twist paramefeandp. The least cost
path is of interest for a number of reasons. First of all, the proof of Theorem 2.5
is obtained by evaluating (2.2), using the explicit formyof. In a similar way,
the least cost paths may be used as a tool in other problems of interest, such as
for determining the rate function af"(8) wheng is random. Second, the least
cost path provides insight into the expected behavior of occupancy experiments,
conditioned on the occurrence of a rare event. Third, they allow empirical
estimation of rare event probabilities by change-of-measure importance sampling.
A key step in proving the minimality of the proposed least cost path is to show that
the path satisfies the Euler—Lagrange equations (defined in the Appendix).

THEOREM 2.6 (Globally minimizing path, empty case)Supposethat (1,w, 8)
are feasible constraints with empty initial conditions. The infimum of J(y) over
A(1, w, B) isachieved on the occupancy path y € A(1, w, 8) defined by

! k
(2.8) Yox) = Ce™ + 3wy — Cﬂ)k(pﬂ))<1 - %) ,
k=0
(2.9) yi(x) = f—,l<—1>l'y(§")<x>, 1<i<I,

1
yi+() =1-=> yi(x),
i=0

where p > 0 and C > 0 are twist parameters associated with the constraints.
In addition, y satisfies the Euler—Lagrange equations.

Note that the entire path(x) is completely determined by the empty compo-
nentyp(x) and its derivatives. In particular, the componenis) are the terms in
the Taylor expansion ofg(x) aboutx, yo(x + y) = yo(x) + yyo(l) (x)+--- eval-
uated at time 0, that is, with = —x. Note thatyp(x) is the sum of a polynomial
and a single exponential term, so that the Taylor expansion always exists. When
C =0, there is no exponential term, and we say thas apolynomial extremal.
OtherwiseC > 0, we have amxponential extremal.

2.2.2. General initial conditions. Occupancy problems with general initial
conditions may be thought of as a coupled set of problems with empty initial
conditions. In particular, we consider the set of urns initially contairtirizalls
to form a class. The evolution of excess balls (beyéhe@ntering urns of this
class may be denoted by occupancy functions of the ferm(z) representing
the fraction of balls initially having urns which havé + j urns at timer. The
fraction of urns containing balls in the overall system is obtained by summing
contributions from all subproblem components with j =i.
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As in the empty case, the rate functigitw) can be expressed as the solution to
a minimization problem. Lef,, denote the set of distributions on the nonnegative

integers, and les, denote the set of-tuples of such distributions. Recall that
K is set of indicest such thate;, > 0. We will denote an element cﬂ‘c';}f‘ by

7 ={mo),....7T%,---. T(k)}, Where for anyk € X a component distribution is
denotedr ) = {mx.0, 7,1, . - - }, @and it is understood that the corresponding is
omitted ifa = 0. Finally, letF («, B8, ) be the set ofr € SJ;ZC‘ which satisfies the
terminal constraints

(2.10) wi= Y ogmi—x forall0<i=<I,
k<i,keX
along with the conservation constraint

(2.11) Yo Y jmr =B

kexX  j=0

As in the empty case, it may be established thas nonempty if and only if
(o, w, B) is feasible.

THEOREM 2.7 (Terminal rate function, general caselhe rate function
9(w):S; — RT defined in Corollary 2.3 may be expressed

w)= min ar D (i || P
I (w) ﬂeF(a’w’ﬁ)kg kD ()|l P (B))
whenever («, 8, ) arefeasible, and isinfinite otherwise. The minimizing argument
n* e F(a, w, B) isunique.

As discussed above, we may suppose the constraints are irreducible, and then,
as shown in the Appendix, Lagrange multipliers will always exist for this problem.
When we have strict inequality in the conservation condition (2.4) (the exponential
case), the solution takes the form

CkPj(0B)Wirj,  keXK, k+j<I,
I, . =

ST CrPi(oB). ke X, k+j>1.
In the case of equality in (2.4) (the golomial case), the corresponding form is

n*':{chrpj(ﬂ)Wk—&-j, keX,j+k=I,
ki o, k+j>1.

As for empty initial conditions,0 may be associated with the conservation
condition. TheW; correspond to the terminal constraints, and theCy, Dy
are normalization constants. The constagls p, W; and D; can all be

computed numerically using Lagrangian methods for constrained optimization
(see, e.g., [4]). Given these constants, the optimizing trajectqry may be
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constructed explicitly. This construction may be most simply expressed in terms
of the minimizing trajectories in the empty case. kot X, denote the mean

of 73y by B = X520 jm ;, and define the terminal conditiany) € S;—« by

wk,j = n,:"j, for j=0,...,1 — k. Then the constraintél, o), Br) are feasible
constraints, and Theorem 2.6 determines the associated least cost paths, which
we denotey) = {yk,;(x)}. The least cost paths for the subproblems combine to
form the overall least cost path.

THEOREM 2.8 (Globally minimizing path, general case)or irreducible

feasible constraints («, w, B), let 7* SJ;ZC‘ be the unique minimizing distribution

in Theorem 2.7, and let the functions yx ; : [0, Bx] — [0, 1] be the minimizing
paths corresponding to the subproblems (1, w), Br). The infimum of J(y) over
A(x, w, B) isachieved on the occupancy path y € A(a, w, B) defined by

Vi) = > ovri-k(xBe/B),  i=0,....1,

k=0

I
yi+(x) =1=) yi(x).
i=0
In addition, y satisfies the Euler—Lagrange equations.

3. Proof of Theorem 2.2. The purpose of this section is to prove the main
large deviations result. We recall the processes and notation defined at the
beginning of Section 2.

Forz e R'*2 andy € S;, define

H(y,¢) =log(E[exp(¢ - bi(¥))]),

where “” denotes inner product. Since the supporbgaf/) is bounded uniformly

in i and y, there exists a functioh:R — R such thatH (y, ¢) < h(|¢|) for

all ¢ andy. Also, since the distribution ob;(y) is weakly continuous iny,

H (y, ¢) is jointly continuous. It follows from [10], Theorem 4.1, that the sequence
{I',n=1,2,...} satisfies a large deviation upper bound with a rate funcfipn
which we now define. LeL be the Legendre—Fenchel transformip(y, ¢) in ¢:

L(y,m)= sup [¢-n—H(y, Ol

{ERI"'Z

If v(x),0=<x < B is an absolutely continuous function that takes valueS;in
then

_ b _ ,
i) =/0 Ly (). 7)) dx.

If ¥ is not absolutely continuous, thel(y) = co. ([10] assumes that the vector
fieldsb; (y) are defined for aly € R’*2. Itis easy to check that we can extend the
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definition to this set with the bounld (v, ¢) < h(|¢|) and the continuity off (y, ¢)
preserved. However, if the proceB$ starts inS;, then it stays inS;, and so the
exact form of the extension has no effect on the rate function.)

We recall the definition of the matri# given in (2.1). To complete the proof
of the upper bound we must show that J, whereJ is defined as in (2.2). This
will hold if we can show thatL(y, n) is finite only wheny = M6 for a unique
probability vectom, and that in this case

L(y,M6)=D@®|ly).

It is well known thatZ (y, n) is finite if and only ify is in the convex hull of the
support ofb; (v) (see, e.g., [11], Lemma 6.2.3(d)). Thereforé {#, n) < oo, then
n can be written as a convex combination of the form

Oo(e1 —eg) +--- +0r(ej+1 —ex),
wheref; > 0 andzjzoej < 1. Since the vectorflej 41 —e¢;),j=0,1,...,1}
are linearly independent, these values are unique. Setjing= 1 — Z§209j,

we haven = M6 for a unique probability vectat. Now assume thaj takes this
form. Then

L(y,M0) = sup [¢- M6 — log(E[exp(¢ - bi())])]

{'GRH’Z
- sup w0 Iog([z i =) |+ )|
{ERI'FZ =0
I I
= sup |:Z(§j+1 =)0 — |09<[Z Vi eXpgj+1 — fj):| + )/1+1)]
{ERH'Z j:O j=0

Given any valuesuo, ..., ur+1, we can definego, ..., {41 recursively by
fo=—pr1 @ndgip1 — & = pj — pury1. With these definitions, it is apparent
that the last display is equal to

1
sup [Z wifj — 1l —0r41) — |09<[Z Yiexplu; — M1+1)i| + V1+1>}

neR*2 o j=0
I+1
= sup [Zuﬂ — 11— 91+1)+M1+1—|09(Z )/JeXpM,)}
weR/+2 j=0 Jj=0
I+1 I+1
= sup [ZMQ —Iog(z y,expuj)}
MGRI+2 j=0 j=0

According to the Donsker—Varadhan variational formula for relative entropy
(e.q., [11], Lemma 1.4.3(a)), the last display equal®|y), thereby completing
the proof of the upper bound.
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We turn now to the proof of the lower bound. In this proof we will assume
thatyo(0) > 0. Sinceyy is always nonincreasingp(0) = 0 implies thatp(x) =0
for all x and, therefore, under this condition the first component plays no
significant role. A proof analogous to the one given below applies whé&) = 0,
where the role ofp(0) here is played by the first positive componeni@b).

Let Prn [resp. Er»g] denote probability (resp. expected value) given
a deterministic initial occupandy” (0). To prove the large deviation lower bound,
it suffices to show that given ary> 0 ands$ > 0, there isy > 0 such that for any
initial occupancies satisfyingg™*(0) — y (0)| < n,

1
(3.1) liminf —log Prn(O)( sup [IM(x) —y(x)| < 8) >—J(y)—e.
n—-o n OSXSﬁ

Of course this inequality is trivial i (y) = oo, and so we assume thafy ) < co.

As we have remarked, a source of difficulty is the singular behavior of the
transition rates of the process wheh is near the boundary &f;. We first show
that this can be avoided at all times sawve= 0. To do this, we show that for
any a > 0, there existh > 0, K € N and an occupancy functiop such that
y(0) =y(0), sUp<x<g [y(xX) —y ()| <a, y;x) > bxKforall j=0,1,...,1, 1+
and O< x < 8, and such that

J(y) =JW).
Consider the zero cost trajectory defined by
z(x) = Mz(x), z2(0) =y (0).

We have the following expression fof whenj < I:

j .
(3.2) zj(x) = [Z Y (O)xY 0 /(j — k)!}e—x.

k=0

It is easy to check from this explicit formula that(x) > bxX for some
b>0,K=1I1,andallj =0,1,...,I,7/+ and O< x < 8. For p € (0,1), let

y? =pz+ (1— p)y. Theny” is the occupancy function that corresponds to the
rate pz + (1 — p)6. Using the joint convexity of relative entropy in both variables
([11], Lemma 1.4.3(b)) and the fact that(z||z) = 0, we have

B
J(P) Z/o D(pz(x) + (L= p)0 () lpz(x) + (1 — p)y (x)) dx

B B
Sp/O D(Z(X)IIZ(X))dx+(1—,0)/O D)y (x))dx

=1-p)J).

All required properties are then obtained by letting= y# for suitably small
p€(0,1).
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It follows that in proving the lower bound, we can assume without loss of
generality that for some fixed constamts- 0 andK € N, y;(x) > bxX for all
x € [0, B]. We now return to the proof of the lower bound. Our first objective is
to show that the process can be moved into a small neighborhogdrof(for
7 > 0 small) with sufficiently high probability. Given e (0, 8], 0 > 0, ande > 0,
define

0, ly —v(®l<0/2,

hy) = {Ze, else.

Forn large enoughthay (lnt]/n)—y(r)| < o/2 (and independentafe (0, 8]),
we have the inequality

Pro(IT" (Lnt]/n) — y(Int]/n)| < o) + e~
> Praoy(IT" (Lnl/n) — y (1) < 0/2) + e~
> Ern(o) (exp—nh (F"(l_ntj /I’l)))
We next exploit a representation for exponential integrals that will give us an
explicit lower bound on the last quantity. Consider a prod&4s) constructed as

follows. The process dynamics are of the same general structure as thib%e of
save thab, (I'" (i /n)) is replaced by a sequenkg:

f”(i + 1) = f"<i> + }E;*, '"(0) = I'"(0).
n

n n

Furthermore, the distribution dEf{’ is allowed to depend in any measurable way
upon the set of value$l™(j/n),0 < j < i}. Let u, denote the distribution

of b;(y), and (without explicitly exhibiting all the dependencies) jgt denote

the (random) distribution of”, given{I""(j/n),0 < j <i}. We letErn (o denote
expectation on the space that supports these processes. It follows from [11],
Theorem 4.3.1, that

_% log Ern (o) <exp—nh <Fn <%)))

o T
:InfEr"(O)[h<Fn< " >)+; > D(ﬂﬁwf"u/m)}

i=1

where the infimum is over all such proces$&gx). In order to obtain a lower
bound, we now simply insert a particular choice for the random varialjles
We can writey(r) — y(0) = Mvt for some probability vectow. Define a
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process” as follows:

Jj—1 j
€j—¢€j-1 if LZUHHJSZ’ELkamJ—l,forO§jgl,
b k=0 k=0

=

4

I
0, if LkarnJ <i<|tn] -1

k=0

In other words,l?;’ defines a deterministic, discrete time approximation to
the continuous time occupancy rate process that ggese; for an amount of
time vgt, e1 — e2 for an amount of timevit and so on. This continuous time
process will move the occupancy process frp(0) to y (7) attimer. If e; —e;_1
is used at the discrete time stigphen sincg:; concentrates its mass en—e;_1,
the cost is

(3.3) D[} (i /my) = '09<ﬁ> - _'°g<_?—1<:z_.)>'

The processI™(i/n) possesses important monotonicity and convergence
properties. Sinc@;’_l((i +1)/n) — l_“;?_l(i/n) = —1/n for Lz,ﬂ;é wetn] <i <

1] _guetn] — 1,
) i ) 1| J
SCIENCIN)
j 1(”) j—1 n kX:;)

asi 1 LZ,{ZO veTn]. In addition, because th¢j — 1)st component is never
modified when > |3} _ovetn], it follows that

(1]
F;’_1<; L Z vkrnJ) — yj-1(1)
k=0

asn — oo andn — 0. Furthermore, as observed previously, (3.2) implies the
existence ob > 0 andK € N such thaty;(r) > btK for j=0,...1. Thus, at any
given time step we have a strictly positive lower bound on the relevant component
of ', which in turn provides a strictly finite upper bound on the corresponding
relative entropy cost. Indeed, it follows from (3.3) apd(r) > b7 X that for all
sufficiently largen and smally > 0, there are”;, C2 < oo (and independent af)
such that whenever”(0) — y (0)| < n, for all i,

D(IZ?”MI‘"(,'/”)) < Ci[-logt¥] < —Czlogr.

In addition, as: — oo andn — 0,

f‘"(%l_tnj)—n/(r).
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By the Lebesgue dominated convergence theorem, for all sufficiently daagel
sufficiently smally > 0, |[I'"*(0) — y (0)| < n implies

1 nf 7]
——log Ern (g (exp—nh(F (T))) < —Cotlogr.
n

We now chooser > 0 so that—Cotlogr < ¢/2. Choosingr > 0 smaller if
need be, we can also guarantee thdt(x) — y(x)| <6 for all x € [0, 7] w.p.1
if |[I'"(0) —y(0)] <n andn > 0 is sufficiently small. The following bound is
therefore valid for the givem > 0: for anyo > 0 and all sufficiently smali > 0,

IT"(0) — ¥ (0)| < n implies
Fn<LnnTJ) - V<Lnnﬂ)‘ =7

sup [ (0) — ¥ (o) <6) >_£
x€[0,1] 2

li 'fll P,
minf ~10g P10

Note that the asymptotic lower bound on the normalized log of the probability is
independent of > 0. To obtain the lower bound for afl € [0, 8], we will use the
Markov property and an existing lower bound for paths which avoid that boundary.
This latter lower bound will hold uniformly in a neighborhood of the initial
conditiony (). Since we do not know a priori how small this neighborhood must
be, it is important that the lower bound in the last display should be independent
of o > 0.

Now choose € (0, 8] such thaty (x) is at least distance;2from the boundary
of §; for all x € [t, 8]. Recall that when considered as a functionyqfthe
distribution of b;(y) is continuous in the weak topology, and moreover that
the support of this distribution is independent pfso long asy; > 0 for all
ief{0,1,...,1+1} (i.e, y €S}, whereS; denotes interior relative to the
smallest affine space that contaifig). It then follows from Proposition 6.6.1
of [11] (see also the discussion on [11], page 165, regarding uniformity) that
{r",n=1,2,...} satisfies the following uniform large deviations lower bound:
given anye > 0 and¢ > O defined above, there 8 > 0 such that as long as

[T (lnt/n) =y (lntl/m)| <o,

o1 e
liminf - log PF"(LnrJ/n),LnrJ/n<tSS;JSpﬁ IT"(x) =y ()] < C) 2= -5
where Pru(uc/n),nr)/n denotes probability given the occupancy levels
I'(lnt]/n) at time|nt]/n. Proposition 6.6.1 of [11] assumes Condition 6.3.2.
It is worth noting that in the present setting this condition holds with the particu-
larly simple choice3 = y (using the notation of [11]).

The lower bound (3.1) now follows by the Markov property and the last two
displays. The proof thaf has compact level sets is as in [10], and therefore
omitted.
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4. Examples and extensions. In this section we apply the results of the
previous sections to three different occupancy problems. We show how the
parameters of interest may be computed numerically and plot the solutions to
the associated calculus of variations problems. In Section 4.4 we list some other
asymptotic problems of interest which can be solved by relatively straightforward
generalizations of the results presented in this paper.

In the calculus of variations problems solved in Section 2, precise initial and
terminal points were always given. In typical applications, one is interested in the
minimum value of the rate function over a constraint set. When the constraint set
is sufficiently simple, such problems may still be solved easily using the tools
provided in Section 2.2. The three problems of this section are of this type.

Suppose that the event of interest is that the random endp6éi#t) should
lie in a terminal constraint se®. To apply the LDP for{I"*(8)} established by
Corollary 2.3, one must compute exponents of the form

(@) = inf ().

Using Theorem 2.7, we can write

K
9(Q) = inf  inf ZOlkD(ﬂ'(k)”j)(ﬂ))

weQreF(x,w,B) e
4.1

K
— i (2]
= e ﬁ)gaw(n@nd 8),

where we have abused notation to define, 2, ) = U cq F (o, @, B).

In many cases, for example, when the terminal @das convex and defined
by linear constraints, the exponeftcan be computed directly from (4.1) using
Lagrange multipliers. That is, one solves minimization problems of the type given
in Theorem 2.7, but with the endpoint constraints (2.10) replaced by constraints
defining . This is the approach used in the second and third example below.
We do not prove that appropriate Lagrange multipliers always exist; if needed,
existence may be established using methods similar to those used in the Appendix
for the case&? = {w}. Because of the convexity of relative entropy in (4.1), a local
minimum is always a global minimum over convex sets. Hence, in any particular
scenario with conveg, it is sufficient to establish a local minimum by numerically
computing a set of Lagrange multipliers.

An alternative approach for computirg<2) could be to return to the sample
path level and useatural boundary conditions on the extremal curves (see [25]).

A set Q with interior Q° and closure2 is a g-continuity set if and only
if inf,ecqe $(w) = inf g J(w). For such sets the large deviations lower and
upper bounds coincide so thatim1/nlog P(I'"(B8) € Q) = inf,cq F(w). It may
readily be verified in each of the following examples that the event of interest is a
g-continuity set.
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4.1. The classical occupancy problem. In the classical occupancy problem,
the urns are initially empty and one only distinguishes between empty and
occupied urns, or in other words,= 0. The associated large deviations problem
was solved using a sample path approach in [28]; we show here how this case may
be obtained with our results. We might be interested in the probability of having an
unusually large number of empty urfi§(8) > wo > e~#, or an unusually small

number of empty urngg(8) < wo < e~ In either case, the calculus of variation
problem is that in whichg(B8) = wg. From (2.6), it is immediate tha = 1/p and
1

1
Yo(x) = —e P +1——.
o o

Using (2.5), we find thap is determined by the unique nonnegative solution to
p(l—wg)=1—e PP,

Finally, (2.7) provides a simple expression fbiw) in terms ofwg, 8, C andp.

In addition, our analysis gives the sample paths for the higher occupancies,
conditioned on an unusual number of empty urns, namely,) = #; (px)/p for
i > 0. Figure 1 depicts the first five occupancy levels as a function of balls per urn
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Fic. 1. Cumulative urn occupancies vrg through 15 for the classical occupancy problem, including
unconstrained paths (dashed curves) and constrained paths (solid curves).
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thrown x. In this example, the terminal fraction of empty uing= 0.15 is three
times larger than the expected val@2g(3.0) = 0.05.

4.2. The overflow problem. In the overflow problem an urn is considered full
when it reaches a finite capacify> 0. Once an urn has been filled, successive
balls thrown to that urn fall to the floor. For specificity, we consider the problem of
determining the probability that an unusually large number of balls end up on the
floor, and assume the empty initial conditians= 1.

The problem can be handled using urns of infinite capacity in the following
way. The number of balls that would have fallen on the floor in a finite capacity
system is the number of balls in urns with occupancy greaterthianinus/ times
the number of such urns. Wherballs have been thrown, the random number of
overflowing ballsw () is thus

w(r)=r —nl1(r/n) —2nT2(r/n) —---— InT;(r/n) — InT;4.(r/n)
or, sincel';, =1— Y, T,

1
wr)=r—nl+nY (I—DTi(r/n).
i=0
In order to compute
1
Jo(n. B) = —lim —IogP(w P n),
non n
we therefore consider sample paths which satisfy the end constraint

I
(4.2) YU —-idyiB)y=n+1—-p=¢.

i=0
Note thatz can be interpreted as the average spare capacity per urn, which must
satisfy the bound$/ — B]T < ¢ < I, and that the average overflow satisfies
[B — IT" <n < B. Assuming thay (and¢) is larger than would be expected in
the zero cost case, the minimum large deviations exponent will be achieved with
equality in the constraint (4.2). Assuming that- 0, we are in the exponential
case, and the large deviations expongntn, 8) will be given by minimizing the
divergence betweem and (8), under the linear equality constraints

00 00 1
4.3) Z?Tj=l, Zi]‘[i=ﬁ and Z([—i)]‘[i=§.
i=0 i=0 i=0

We introduce the Lagrangian

ST 2P P

00 1
ve(p-Xoim) (- T -om)
i=0 i=0
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with Lagrange multipliersy, z and 1. On differentiating, it follows that the
minimizing distributionz* should satisfy the conditions

logr =log®(B) —L+y+iz+ U —i)ta
In terms of variableg, p andv, we may write
) =CPi(pp) fori > 1
and
= CPi(pp)v' fori <1.

The distribution is conditionally Poissops/v for i < I and conditionally
Poissonpg for i > I. For convenience, we introduce the notation

0 1 0
Q1(M =D PipB)=— D iP(ph),
i=1 PP T
R;(p, U)—v e —pp(1- 1/1))2 ('Ovﬂ>

i=0

I+1 1
_ VT a1y Zij)i<ﬁ),
PP i—1 v

Sincen* must satisfy the three linear constraints (4.3), the cons@nisandv
must solve the equations

C(Ri(p,v) + Q1(p)) =

("ﬁm(p D+ 0BOI(p)) =B,

C(IJ’] (pB) + (1 - ?)Rz (o, v))

There can be at most one positive trip@, p, v) satisfying these equations, since
each such triple identifies a local minimum bfir || £ (8)) for = in a convex set,

and there can be only one such minimum. The equations can be solved numerically
in a number of ways to obtai@l, o andv. For example, from the first constraint,

C can be expressa@l= (R; + Q;) L. Substituting this expression into the second
and third constraints, we obtain the equations

(o/v—DRi(p,v)+(p—DQ1(p)=0
(I =pB/v—=20)Ri(p,v) = Q1(p) + IP(ph) =

Each equation implicitly defines a curveas a function of, and the intersection
of the two curves gives the desiréd, v). We note that larger than expected values
of ¢ willleadtov > p > 1, while smaller than expected valuegdjivev < p < 1.
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The large deviations exponent for the overflow problem may then be expressed

Jo(, B) = D(x*(|P(B))

= Zni* |Og(Ceﬁ_pﬂpiv(1_i)+)
i=0
=logC + B(1—p) + Blogp + ¢ logv.

4.3. Partial coupon collection, with initial conditions. In the coupon collec-
tor's problem, the urns represent théypes of coupons that are required to form a
complete collection. The placement of a ball in a given urn corresponds to choos-
ing a new coupon at random, and the problem is to see how many coupons must
be collected beforé + 1 complete sets are obtained. This event corresponds to the
constraintw; =0,i < I.

In this section we solve a generalization of this problem. Beginning from
nonempty initial conditions (a collection already in progress), we colkct
additional coupons with the goal of obtaining more thlanoupons of as many
types as possible. We want to determine how likely it is that number of types for
which we have collected or fewer coupons is less thgn.

In terms of the urn problems we have considered, we are given initial
occupancies and wish to compute

1 !
Je(, B, §) =—lim ;I09P<ZF?(ﬂ) <§),

i=0
where

K I—k
E<Y ary Pi(B)
k=0 i=0

is an unusually small number of low occupancy urns.

The exponent/c will be given by computingd(w) as defined in Theo-
rem 2.7 subject to the conservation constraint (2.11), replacing the terminal condi-
tions (2.10) with the single constraint

K 11—k
Zotk Z?Tk,j =§,
k=0 =0

where K < I since any sets which are initially complete may be left out of the
problem. After constructing a Lagrangian and differentiating, we find that the
minimizing solution must be of the form

. Ce P (pBIW, J+k=I,
Wk, j =Ty ;= .
. Cv P (pB), Jtk>1.
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As in the previous example, the unknown constants may be determined by
substituting the given form of the solution into the constraint equations, and
solving the resulting system of equations. In terms of these constants, the large
deviations exponent may be expressed

K

Je(a, B.§)=B(L—p+logp) +&logW + > ey log Cy.

k=0

Figure 2 depicts several cumulative occupancy cumkxe®r a particular example.
Suppose that there anee100 types of coupons to collect, and the goal is to collect
at least four coupons of as many types as possible (i.e.3). Initially, one is
given a single coupon of 30 types and pairs of coupons of a further 20 types,
corresponding to the initial conditions=[0.5 0.3 0.2]. In the zero-cost solution
(dashed lines)yr3(2.0) ~ 0.71. Hence, after collecting 200 additional coupons
at random g = 2), one would expect to have 4 or more coupons for only about
29 types. To compute the likelihood that we have at least 4 coupons for more than
45 types, we také = 0.55, which gives a large deviations expondpt~ 0.18

o
o

Fraction of urns

0 ) it 1
0 0.5 1 15 2

Balls per urn, x

FiG. 2. Cumulative urn occupancies v through s, for a partial coupon collectors problem,
including unconstrained paths (dashed curves) and constrained paths (solid curves).
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and a probability of about I®. The corresponding constrained occupancy curves
are depicted by solid lines in Figure 2.

4.4, Extensions. There are a number of variations of the basic occupancy
problem which can be solved by fairly straightforward generalizations of the
results of this paper, but which we will only mention briefly. These include the
following problems:

() arandom number of balls are thrown,
(i) balls have a probability of not entering any urn,
(i) balls enter different subsets of urns with differing probabilities,
(iv) an event of interest may occur at any time in the intef@aB], rather than
just at timeg.

Some comments are in order. A particular example of (i) appeared in [13],
where the number of balls thrown, was binomially distributed with parameters

0 < a < 1 andn. An urn model proposed by [16] is of type (ii). Here, the goal is
to determine the distribution of the number of targets hit wheshots are fired

atn targets, and when the probability of missing the target.ign problem (iii)

there areK > 1 urn classes with a fractiosm,, k = 1,2,..., K of urns in each
class. Urns enter clagswith a fixed probabilityp; but then enter any urn within
that class with uniform probability. Similaanalysis to that for nonempty initial
conditions can be applied to this problem. For an example of type (iv), suppose
that an infinite sequence of balls is thrown intaitially empty urns, and that one
would like to know the probability that the number of urns containing exactly one
ball ever exceeds/2. The probability of this occurringfter gn balls have been
thrown can be bounded above by the probability that the number of empty and
singly occupied urns exceed$2 when exactly8n balls have been thrown. This
computation fits into the framework of a partial coupon collectors problem, and the
probability can be made negligible from the point of view of large deviations by
taking 8 sufficiently large. The remaining possibility, that the event octefsre

Bn balls have been thrown, is then a problem of type (iv). The associated calculus
of variations problem is to find the lowest cost occupancy curvédpfi] among

all curves withy1(x) > 0.5 for somex € (0, 8].

APPENDIX

Analysis of the calculus of variations problem. The Appendix is dedicated
to proving the calculus of variations results given in Section 2.2. Recall that
these results provide explicit representations for the terminal rate fungtion
defined in Corollary 2.3, and for the minimizing occupancy functiptfisatisfying
F (@) =J(y").

In the first step of the proof, we characterize a set of extremal occupancy
paths, that is, paths which satisfy the Euler-Lagrange equations. For all feasible
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terminal conditions of the forn{l, w, 8), Theorem A.1 shows that occupancy
paths of the form given in Theorem 2.6 are extremals and that paths of this
form can be constructed to meet any feasible constraints of the fbra, 8).
Likewise, Lemma A.6 and Theorem A.11 show that occupancy paths of the form
given in Theorem 2.8 are extremals, and such paths can be constructed to meet
all general feasible condition&, w, 8). The special form of the extremals is
used in Theorem A5 and Theorem A.13 to show that the extremals have the
costs given in Theorem 2.5 and Theorem 2.7, respectively. iff the extremal
occupancy path constructed for given constraintso, 8), we thus have the upper
bound 4(w) < J(y). The assertion in Theorem 2.5 and Theorem 2.7 that the
minimum relative entropy is achieved by a unique distributidris established in
Lemma A.6. The final step needed to prove Theorems 2.5-2.8 is the lower bound
J(w) = J(y). This bound is proved in Theorem A.14, using the Euler—Lagrange
equations together with properties of the relative entropy.

A.l. Preliminaries.

A.1.1. Proof of Lemma 2.4. Recall that the lemma states that endpoint
constraintdw, w, B) are feasible if and only if

(A.1) dai=) o), i =0,..., I (monotonicity)
j=0 j=0
and
I I+1
(A.2) Y iwi+ (I + Do <Y ie;+p  (conservation).
i=0 i=0

PROOF OFLEMMA 2.4. If a valid occupancy curve : [0, 8] — S; meets
the initial and terminal constrainig and w, then property (b) of Lemma 2.1
implies (A.1) and property (c) implies (A.2) since

1 i i 1
Z(Z“i - Z%‘) =) (I+1-)@j—w))
i=0 \;=0 j=0 j=0
(A.3)

1
=+ Doy —art) + ) j(wj —aj).
j=0
On the other hand, given the constraints (A.1) and (A.2), one can show that the
linear functions

Vi(x)=ai+(a)i—0(i)%, i=0,...,1,

I

X

yis(x) =1-Y yi(x) =arp1+ (@14 — 011+1)B
i=0
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satisfy the constraints and the conditions of Lemma 2.1. Propertles (@) and (b) are
immediate, and property (c) will be established by showing tlf@ 01//, <1.
Indeed, ﬂzl:ox//, is equal to the left-hand side of (A.3) and, therefore,

— Y1y < 1follows from (A.2). O

A.1.2. Euler—Lagrange equations. Given the numerous descriptions of occu-
pancy processes and ratefs ., 6, y, ¥, etc.), it is convenient to abuse notation.
Thus, for example, we will write botli(y) andJ (y), with the understanding that
the fundamental object of interest is the occupancy functipand that/ (v) is
merely J (y) whenyr is the cumulative occupancy process that correspongs to
Also, since{pi =—0; fori =0,..., I, we can define the local rate function (which
is usually written as a function af andy/) as a function off andd, and represent
the overall cost of a cumulative occupancy trajectgrgs an integral of the form

B
7 =/0 L(¥(x).000)) dx

Because the balls are thrown uniformly and randomly into the urns, the expected
rate for balls to enter urns of occupancys y; = ¥; — ¥;_1. As discussed in
Section 2, the cost of a deviation of a given pgtlirom its expected behavior at a
given instant is given by the rate function

L(.0) = D(QIIV)

_ZG Iog—+01+ Iog
i=0

- 06
- | 1-— | .
E Gog wl ( E e)og s

The rate function is defined to be infinity if the curve is not a cumulative occupancy
function.

The calculus of variations problem is to find the pgtlhaving least cost among
all paths satisfying given initial conditions and endpoint constraints, and to find
the cost of such ainimal path. As illustrated in the examples in Section 4, the
results extend to cases where the terminal point (or the initial point) are required
to lie in a given constraint set.

DEFINITION A.1. An occupancy path defined df, 8] is said to be an
extremal if it satisfies the Euler—Lagrange equations [8],

oL d (0L
S .000) =~ {89 (W (), 9<x))}
foralli €{0,...,I},x € (0, B).
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Although the Euler-Lagrange equations are neither necessary nor sufficient
conditions for minimality in general, extremals do turn out to be minimal in many
cases. In the following sections we will construct a family of extremal paths
for the cost function given above, and show that the extremal paths are, in fact,
globally minimal.

In the case at hand, the Euler—Lagrange equations are given by

91' ei—i—l d{ 9 9+ }
Ad) — + =2 log— 4o :
A T x| 9y g Ty,
fori=0,...,1 —1,andby

o; 01 d{ 0; 01 }
A.5 — —{—lo +lo
A T T Ty T a9y s Ty,

In the case when we have equality in the conservation constraint (2.4), and by
taking7 4+ 1 to ber if necessary, we have th@{zo w; = 1. Such cases of equality
are referred to as the polynomial case. When this holds, every valid occupancy path
must havey; (x) = 1 and, thereforeq; (x) = 0,4 (x) = 0. For all such occupancy
paths, the rate functioh(y, 0) then reduces to

A.6 L, 0)= 6;log———.
(A.6) (¥, 6) ;0 09—

i-1
The Euler-Lagrange equations pertinent to the problem of minimizing this
restricted set of occupancy paths are just
0; 0; 0;
_ i i+1 { |Og }
Vi—vi1 Y- ¥ dx Vi — Vi
fori =0,...,1 —1.

(A7)

A.2. Characterization of the extremals under empty initial conditions.
In this section we consider the simplest and most important case, in which the
urns are all initially emptyyo = 1. Recall that to each feasible endpoint constraint,
(1, w, B) correspond to twist parametefs> 0, p > 0 which satisfy the equations

1 0
dwi+ Y, CP(pB) =1,
i=0

i=I+1

Zzwl+ S iCPop) =B

i=I+1

THEOREMA.1l. Supposethat (1, w, 8) arefeasible terminal constraints, and
that p and C are the corresponding twist parameters. Then the set of functions y
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defined by
d k
(A.8) Yo(x) = Ce " + ) (wx — Cﬂ’k<pﬂ))<1 - %) :
k=0
(A.9) yi(x) = ’;-,l(—l)"x/fg”(x), 0<i<I,

1
yir (1) =1=7"yi(x),
i=0
areextremalson [0, 8] which satisfy the terminal constraintsalong with theinitial
constraint y9(0) = 1.

Recall that in the special cage= 0, the first component of the extremal is
simply thelth order polynomial

1 k
X
(A.10) Yo(x) =) a)k(l — —) )
k=0 2
We refer to such paths g®lynomial extremals, and to extremals witl” > 0 as
exponential extremals.
The following definition and lemma are useful in the proof of the above theorem.

DEFINITION A.2. A nonnegative functiorp is completely monotone on an
interval[a, b] if it is infinitely differentiable on[a, b] with

(A.11) (-1)i¢®Px)>0  forallx €[a,b] andi > 0.

This definition is based on the one pertaining to Bernstein’s theorem, which
characterizes Laplace transforms, see [15]. However, our definition differs in that
it considers only a finite intervak, »].

LEMMA A.2. The function ¥g(x) given in (A.8) is completely monotone
on [0, B]. Moreover, the inegquality in (A.11) is strict for x € [0, 8) and
i=0,...,I.Inthecase C > 0, this can be strengthenedto all i =0, 1, ....

ProOOFE Clearly, yo(x) is infinitely differentiable. Now suppose first that
C > 0. Theith derivative ofyy is

1 k—i
D'y () = p'Ce™ + ;(wk — CP(pB))B™ @ f!l.)! (1— %)
fori =0,...,1,and

(A.12) (—Diyg) (x) = p'Ce™P*

fori > 1.
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It is clear thata(x) = (—1)1+11//é[+1)(x) is completely monotone of0, co).
Moreover, (—1)'a®(x) > 0, x € [0,00), i =0,1,.... We deduce thap(x) =
(—1)1wé[)(x) must be monotonically strictly decreasing, and that

o(B) = (=D P (B)

1
=plce P + <a)1 — Ce‘pﬁ%y}#ﬂ

I\ -1
= (%) wr; >0,

so thatp(x) > 0 on[0, B). It follows thate(x) is completely monotone oj, 8]
and that the derivative constraint is strict[@ ). Proceeding inductively td — 1
and beyond, we arrive at the lemma.

In the polynomial cas€ = 0 the argument proceeds similarly on noting that

1

-1
Dy ) = (%) w;>0  forallxel0,Bl. -

PROOF OFTHEOREM A.1. The terminal constraints can be verified imme-
diately by inspection. The initial constraints follow from the constructiorCof
in (2.6), since

i=0

1 1
WN®=CO—§}ﬂwm)+z}w=l
i=0

A similar computation also using (2.6) shows tlﬂq(f)(O) = —1, a fact that we
will need shortly.

To establish that the given functions are valid occupancy curves, it is useful to
introduce the infinite sequence of functiopsand corresponding; obtained by
extending (A.9) to all:

(A13) y@0="CDY @, i=01.. LI+1...
L!

As the sum of an exponential and a polynomigy has a Taylor series
representation of unlimited radius about any pointThen y¥o(0) — ¥o(x) =

y00, £ 0 (), and thus,

me=z(
i=0

i=0

¥ (x) = Yo(0) = 1.

—x)i
il

Since, by Lemma A.2, thg; are nonnegative ofd, 8], we have{y; (x)} € Sy for
all x in that interval. It follows from (A.13) that for all > 0, the rate of decrease
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of each cumulative occupancy is
0; (x) = =i (x)

=— %)
(A.14) #=0

i X k. () Lk k41, (k+1)
=k§—m(—l) ¥ (x)+k§)ﬁ(—1) Y& ()

xi : i
_ 7(_:I_)l-i-lwé +1) (x)>0

for x € [0, B]. Forming the Taylor series representationptéf) aboutx, it follows
from (A.14) that

o) =3 i) =—yP O =1
i=0 i=0

The infinite sequence of functions can thus be thought of as a valid infinite-
dimensional occupancy path ¢@, 8]. Conditions (a) and (b) of Lemma 2.1 are
immediate from the expressions fgrand; in terms ofwé’), and condition (c)
follows by integrating the inequality

I
Y 6(x) <1
i=0

over an arbitrary subinterval §, 8]. Thus, the finite-dimensional occupancy path

y is valid.

Finally, we must show that the given curves solve the Euler-Lagrange
differential equations in0, 8). We begin with the exponential cage> 0. The
I+ terms satisfy the simple expressions

1 o] o]
O () =1+ dix)= > —i(x)=pC > Pi(px),

i=0 i=I+1 i=I+1

o o
1-yr0)= Y n@=C Y Pilpx),
i=14+1 i=I+1

where the first display uses= —yy and equations (A.12) and (A.14), and the
second uses (A.12) and (A.13). Then the rafio(x)/(1—¢;(x)) = p is constant,
and the corresponding terms drop out of the right-hand side of (A.4) and (A.5).

From the expressions fop;(x) and v;(x) given in (A.13) and (A.14), it
follows that
6:) _ ¥g )
i (%) ¥ ()

(A.15) ., xe(0,B),i>0.
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Then

i+2 i+1
6 _ Yo o Yoo _ i b

d
A16 —{—Io _}: . — =TT re0.p),
A10 G179y, R R (RS R 7 g
verifying (A.4). Likewise, to verify (A.5), we apply (A.16) with= I, using the
substitution—y, 2 /y{!™ = p obtained from (A.12).
In the polynomial cas& = 0, note that (A.15) holds for =0, ..., I, so
that (A.16) implies (A.7). [

A.2.1. Interpretation of the twist parameter p. For an exponential extremal
the twist parametes may be interpreted as follows. The expected rate for balls to
enter urns with more thah balls is equal to the proportion of such urns, namely,
1— ;. The twist parametes is then a multiplicative factor applied to-1; to
give the actual rate at which balls enter these urns. ThysyifL, balls unusually
pile into high-occupancy urns, while if < 1, they instead concentrate on the low-
occupancy urns. The occupancy distribution of the high-occupancy urns remains
Poisson but with a modified parameter.

The infinite sequence of occupancy functions introduced in the proof just
given is a useful construct. Operations which are technically difficult in infinite
dimensions may nevertheless be carriedfoutally on the infinite sequence of
functions, giving insight in to the solution for the finite-dimensional system.

The next two lemmas compute the cost of extremal curves in a general form
which will also apply to the nonempty case of the next section. The conditions
of the lemmas are satisfied by the exponential and polynomial extremals of
Theorem A.1, as can be readily verified.

LEMMA A.3. Supposethat ¥ is completely monotone on [0, 8] with
)iy =Cple ™ fori>1,

for somel > 0,C > 0,and p > 0. Further supposethat {yo, y1, ...} areaninfinite
seguence of nonnegative functions on [0, 8] satisfying

o0 o0
D v =1, > iyi(x) < Bo,
i=0 i=0
_WéH_I) (X)
g (x)
for all x € [0, 8] and some constant By < co. Let y denote the vector of functions
(Y0, - » v1, vi+}, Wherey 4 =1— 31y Thenthe cost J (y) is given by

> —i(x) =1, i (x) = i (x)
i=0

A17) T =B+ [rBloglyd’ B)| — vi (0 loglyd’ (0)]].

i=0
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ProoE Foralli > I andx € [0, 8], we have\//(’H)/x//(’) = —p. Therefore,
usingd = —y with (A.12) and (A.13), it follows that

1 0 o0
Oy =1-Y —vi= Y —vyi=p > vi=pL—yp.

i=0 i=I+1 i=I+1
Then for eachx € [0, 8], the cost functionL can be interpreted as an infinite-
dimensional cost functiorL.. Indeed, since—v; /y; = —wé’H)/wé’) = p for
i>1 and(l-l—Z-I—o‘ﬂi)/(l— v =p,
: (—r)
L. y) =) (=¥ log————
12(:) Vi— Vi1

A4 Yo+ -+ Y1)
1—-vyy

+ @A+ Yo+ -+ ) log

—Z< lmlogw( lf/j_ = Loo (¥, V).

Note that since. o (¢, V) can be interpreted as a relative entropy, we always have
L~ (¥, ¥) > 0. The total cost/ (y) may be computed by integrating,,. Note

that| Y, i (x)| = 1, x € [0, 8] and that givers > 0, log— lﬁé’+1)(x)/1//(l)(x) are
uniformly bounded for € [¢, 8 — ¢]. By the monotone convergence theorem

TRy —g ()
J(y)=Ilim —;(x)log—%—""4
o) =lim | > —intolog— 5=

Using our convention thaf_1(x) = 0, the integral on the right may be written as

_g 00

—_g 00 B
/ 3 it loglyg " wax + / 3 diwloglyg (o) dx
&
(A.18)
:3_8 . . (l)
-y [ @i = imaw)logl @)
i=0"¢

The above expression is valid as long as the left and right series in the first

line converge. But this follows from the finite mean condition {o} (x) since,
fori > I,

—i (1) log|yg (x)] = pyi(x)[log € +ilogp — px]

and similarly for y; (x) Iog|wéi+1)(x)|. Applying integration by parts and us-
ing (A.15) for each term of (A.18), the integral is

X : pe X .
Slntogug I+ [T ~dudx,
£ =0

i=0
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The lemma follows on taking limits as] 0. [
A similar result holds in the case of the polynomial extremal.

LEMMA A.4. Supposethat v is a degree I polynomial which is completely
monotone on [0, B]. Let {yo, ..., yr} be nonnegative functions on [0, 8] satisfying

1 -1
Yy =1 Y i) =1
i=0 i=0

—y it )
e

for all x € [0, B]. Then the cost J(y) is given by

—i (x) = 7 (x) i={0,....1-1)

1 . .
(A19)  J() =+ [nBlogy’ B)| - vi(0)loglys O)]].
i=0

PROOFE The cost obtained by integrating the reduced cost function (A.6)
from 0 to 8, using the same substitutions and integration by parts as in the proof
of Theorem A.3. [

A.2.2. Characterization of the extremal cost. In the case of empty ini-
tial conditions, recall that the,; defined in the proof of Theorem A.1 sat-
isfy y,-(x):xill//g)(x)|/i!. Using this expression to substitute quré’) in
(A.17) and (A.19), we find that the cost(y) is simply the relative entropy
Dy (B)||#(B)) between the/; (8) and the Poisson, zero cost distribution. It turns
out that the given,; (8) minimize the relative entropy, among all distributions for
which the firstl + 1 elements are determined by and which have mea#. De-
noting the set of all such distributions (1, w, 8), we may prove Theorem 2.5,
which we restate here.

THEOREM A.5. Suppose that y is an extremal occupancy path constructed
according to Theorem A.1 to meet feasible terminal constraints (1, w, 8). Then

Jyy=__min  DEIP®).

PrROOF We first solve the minimization problem, and then relate the problem
to J(y). Theresultis trivially true for polynomial extremals, since thel, w, 8)
has only one element. In the case of an exponential extremal, the given
minimization problem can be solved using Lagrange multipliers, which turn out to
be simple functions of the twist parameterandC > 0 associated with the given
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endpoint constraints. We consider the set of nonnegative SEQL{@O(}%O eRY
satisfyingr; = w; fori =0,..., I, and define théagrangian .£ on this set to be

75 ”(l Z”’) +Z(’3 Zm’)’

wherez = Iog,o andy =logC + (1—p)B + 1.

Define n = y;(B), where the latter are determined as in the proof of
Theorem A.1 with the givei@, p. For anyi > I, the definitions ofr*, x andy
and the strict convexity aof logx imply thats* is the unique global minimizer of
x — xlogx — x[log P; (B) + y +iz]. Therefore, for any > I andrn; € [0, c0),

L3y, 2) = Zm log

>X<

7; log i — Yy — Ziw; > 7] Iog —yn —zin].
Pi(B) (ﬁ)
Following standard Lagrangian arguments, we thus have
inf = inf  £L(7;y,
neF(Lw,p) DI?#) 7eF(Lw,p) (:5.2)
> inf L(mx;y,2)
7R
= D(*[|P(B)).

Since n* € F(1,w, B), it follows that =*, the terminal distribution, is the

minimizer of the relative entropy. The uniquenesstdf follows from the strict

convexity of the relative entropy with respect to its first argument.
Substituting the particular form of* into (A.17), we have

vi(B)
J(y)—ligyz(ﬁ)logﬂ, B i D(*||P(B)),
where
_ | i, O<i<lI,
V’(ﬁ)‘{cmpm, i>1. O

The cost for an exponential extremal can be written explicitly in termpg,of
w andpg as

1
J(y)_Za)l log (1—Zwi)(logC+(l—p)ﬂ)

i=0

z(ﬂ)

+ (ﬂ — Ziw,-) log p,
i=0

whereC is defined by (2.6). In the polynomial case, the cost is simply given by
the first term in the above expression.
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A.3. Characterization of the extremals under general initial conditions.

We now generalize the solution to the Euler—Lagrange equations for the case when
the urns are not all initially empty, but in which they may contain ugtdalls.

Recall that the fraction of urns having balls initially is denotedw, and the

set of urn occupancies with «; > 0 is denotedX. Without loss of generality,

we may assume that some urns are initially empty (henee,/0 and we may
take K = max.x.

In the caseK > 1, we regard the urns as belonging|#| classes, according
to their initial occupancies. We denote the final number of additional balls per urn
entering thekth class bygy, in which case the total number of additional balls per
urnispg =Y rex @k Br. It turns out in the solution of the Euler—Lagrange equations
that the fraction of balls entering th¢h class in any time period g, 8/ 8. After
rescaling time by the factgs; /g, the evolution ofadditional balls entering each
class of urns becomes an occupancy problem with initially empty conditions and
terminal timeg.

We can thus defin@X| occupancy curvegx) = {y,i}i, where the function
vk.i-10, Bx] — [0, 1] represents the fraction of clagsurns which contain
additional balls (thusk + i total balls) afterx balls per urn have been given to
this class. The overall extremal occupancy curves for the general initial conditions
are then given by

Vi) =Y arvri-k(xBi/B).

ke X

We will see that the occupancy curyg, for the kth subproblem is an extremal
of the form given by Theorem A.1, with — k terminal constraints. Given
the appropriate subproblem terminal conditiqdsw ), Br), the results of the
previous section determine the twist paramet€fsand p; and corresponding
extremals.

At this point we come to the main obstacle in determining the extremals
for nonempty initial conditions. This is to show that thewdst subproblem
terminal conditiong1, o), Bx) which yield the extremal solution in the overall
problem. To show that such conditions and the corresponding extremals exist,
we will first give the form of the final cost function (which can be obtained
by formal arguments). We then show that the cost function is the solution of
a minimization problem, that the problem has a unique minimizing argument, that
it has corresponding Lagrange multipliers, and that the extremal curves can be
constructed using the Lagrange multipliers.

The large deviations exponent for the case of nonempty initial conditions
turns out to be
(A.20) min Y D (7 1P (B)).

neSc‘,‘Zf'keK
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subject to the conservation constraint

(A.21) Yoy jmi=p

keX  j=0
and the terminal conditions

(A.22) wi= Y oTki—k forall0<i <.
k<ike K

Recall thatSc';Zf‘ is the set of al| X |-tuples of distributiongm ) }xex, Where each

k) Is a distribution on the nonnegative integers. It is straightforward to show
that this problem is feasible whenever, w, 8) are feasible constraints, as we
discuss in the proof of Lemma A.6. As in the empty case, each polynomial problem
can be formulated in a standard way so that = 0, in which case equality
holds in the monotonicity conditiod _qa; = >}_ow; = 1 as well as in the
conservation condition (2.4). Unlike in the empty case, the minimization problem
does not become trivial in the polynomial case since degrees of freedom remain
in allocating balls among thgK | classes. In the polynomial case, the constraints
imply that

(A.23) my,j =0, k+j>1

so that the minimization problem is finite dimensional. The polynomial problem
can be stated equivalently as minimization of (A.20) subject to (A.23) and the
endpoint constraints (A.22), in which case the conservation constraint (A.21) need
not be included explicitly.

As written, the vector of distributions = (), ..., 7®), ..., T(k)) IS such
that k only ranges over indices withy > 0. Including all indices G< k < K
yields an equivalent problem in which the minimizing solution is not unique,
since ther(), with o = 0 make no contribution to the objective function or the
constraints. In the form given, however, the solution can be shown to be unique.

LEMMA A.6. Supposethat («, w, B) are feasible constraints. Then there is
a unique vector of distributions 7* € Sc';ff " which minimize (A.20) subject to
constraints (A.21) and (A.22).

ProoOF Recall thatF(«, w, 8) denotes the set of all distributions e S(‘;Zf'
satisfying the constraints (A.21) and (A.22). The feasibility @f&, ) implies
that F has at least one element. Moreover, it has at least one element with finite
support and, thus, finite cost. A sketch argument for this point is as follows: First
of all, any set of exponential constraints with terminal condiiiog S; can be
reformulated as a set of polynomial constraints with terminal conddiens;,

where] > I. Any feasible point for constraint&, ®, 8) would also be feasible
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for the original constraints, and would have finite support. It remains to show that
there is at least one feasible point for each set of feasible polynomial constraints.
Such a feasible point may be constructed by an ordered filling construction.
First, we assignrg o = wo/ag. The first monotonicity conditioni (= 0) in (2.3)
ensures that this is possible with less than or equal to unit mass. Next, some of
the remaining mass from the distributiarg, is applied torg 1, and mass from
w1 is applied tomry o as necessary until the constraingrno 1 + @110 = w1
is satisfied. Thatr) and ) have sufficient mass to do so follows from the
(i = 1) condition in (2.3). This process continues until all constraintsave been
satisfied. The equality in the conservatiamdition (2.4) implieghat the final step
uses up all of the probability mass in the distributi¢ng,)}.

It will be useful to consider X |-tuples of distributions inS,, under the
topology of weak convergence, with the distance between distributions given by
the Prohorov metric [5]. For two distributior3, Q in S, this distance is simply

Y. P—-0i= ) Qi—P
i:Pi>Q; i:Q;>P;
and the metric extends {d<|-tuples by treating them as elements of a product
space. For eacA < oo, define the set

Hy={m e S": >y D( | 2(B)) < A}
%

The level sets of the relative entropy are compact under the above topology ([11],
Lemma 1.4.3), from which it follows tha# 4 is also compact. For later reference,
we note that a finite sum of relative entropy functions also inherits from the relative
entropy the properties of lower semi-continuity and of strict convexity with respect
to its first argument. As the next step in proving the lemma, we wish to show for
some finiteA that

Oa(a,w, ) =F(a,w,p) N Hy

is compact and nonempty. This will enable us to find the minimum as a limit of
a sequence of distributions B 4.

Since there are solutions with finite cost, it is automatic at(«, w, 8) is
nonempty for large enougi. Since the setQ 4 is bounded, it is enough to
verify for each convergent sequence of distributiart® € Q4 that the limiting
distribution 7 lies in F(«, 8, w). (That it lies in Hs is immediate since this
set is compact.) The only difficulty lies in showing that the mean of ktie
subdistributionr ) is equal to the limit of the means of t (,’:)). This will be
the case if we can show for any sequenc&in and for an arbitrary that the

sequencar((,:’)) is uniformly integrable. In the present context, uniform integrability
means that for each> 0, there isn < oo such that

. (n)
(A.24) Z Jmgj <€

j=m
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for all n andk.
Sincee” —1=sup.. glxy — x logx + x — 1], we have the inequality
xy<(xlogx —x+1+ (-1,
where by convention 0log£ 0. Observe that this inequality is valid for alland

all x > 0, and thak logx — x + 1 is nonnegative. We will also make use of the fact
that the Poisson distribution has exponential moments: fosang,

00 ) X L1/8j,—BgJ
Zel/a,j)j(ﬂ)zze i B _ Fp _ oo
j=0 =0 7

Takingy = j/§ andx = n(”)/JJ(ﬂ) we have the estimate

m _ N gd nlgnj) P,
D Jmly =)0 85 75 P;(B)

j=m j=m
" ,
525[ n)'og( T ) T+ =7’f<5)]+52<61/5]—1>=‘/’1<ﬂ>

=DV 1P B) +38 Y (M —1)P;(B)
jzm
<8A+8Y (VT —1)2;(B).
j=m

where the second equality uses the fact that tméffl and P (B) are probability
distributions. Thus, (A.24) follows by first picking > O sufficiently small and
then m < oo sufficiently large. [Note also for use in Corollary A.7 that the
analogous result holds f is replaced by a sequeng&’ — 8 € (0, oo)].

We now apply the uniform integrability to analyze the limits of the means.
It follows from [5], Theorem 5.4, that

ﬁ/&n) — B
Finally,

Y awBy=lim Y axp” =limp = B,
k k

so thatt € F(B, o, w) andQ 4 is compact.
We have shown tha 4 is compact under the Prohorov metric and that it is
nonempty. Now let

G= inf > axD(mlP(B))=0.

Te AkeX

Choose a sequenaé™ € Q4 suchthap & oakD(n(")H P(B)) < G+1/n.Since
0 4 is compact this has a convergent subsequence, and to simplify the notation we
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index this subsequence byLet* € Q 4 be the limit point. Since relative entropy
D(7|In) is lower semi-continuous ifr ([11], Lemma 1.4.3(b)), it follows that

> aD(rjy I2(B) <liminf Y~ ax D(x() 12 (B)) =

ke X ke X

where in fact we have equality by definition @. The uniqueness of this
minimizing vector of distributions follows from the strict convexity of the
objective function. O

Before continuing with the question of the existence of the extremals, we pause
to obtain a corollary which will be useful in establishing the strong minimum in
Theorem A.14. Defing (o, w, 8) to be the minimum cost in the problem (A.20)
if the constraints are feasible, and otherwise.

COROLLARY A.7. Suppose that («™, ™, B™) is a sequence of feasible
optimization problems with costs g™ = g (a™, »™, ™) such that
(a("),a)("), ﬁ(n)) — (o, », B)
componentwise and such that («, w, 8) isfeasible with 0 < 8 < co. Then

|mwﬁ%“zgmmmﬁ)

PROOF For anyA > liminf, g = G, we may choose a subsequence of
problems such that

g™ <G+1/n<A,

and for each problem in this subsequence, we defifiec Q 4 (¢, 8™, w™) to

be the minimizing solutiom* given in the above lemma. By compactness, there
is a further subsequence such th&t — 7 € H,. As in the proof of Lemma A.6,

if B < o0,then

A" ZJ”(")—W?/« Zjnk,, k=0,1,....K.

If o/ — 0 andga” 4 0, then the terrm(”)D(n((,f))H (8™)) would go to
infinity; to see this, note that the infimum @z ||#(B8)) over distributionsr
with mean is 8 — A + Alog(A/B). Since our sequence has bounded cost, we must
havea"” B — a; By even ifa; = 0.

Thus,

(n) (n) __; (n) _
Zﬂkdk—"mZﬁ o =lim g™ =g,

ke X



2806 P. DUPUIS, C. NUZMAN AND P. WHITING

and 7w satisfies the constrainte, w, 8). By joint lower semi-continuity of the
relative entropy in both arguments ([11], Lemma 1.4.3(b)) we have

K
iminf Yo" D12 (8™)) = liminf 3« D12 (8"))
" =0 ka0
> Y aD@wIPB)
k:oap>0
> J(a, 0, B)

as desired. [J

We now turn to the existence of the Lagrange multipliers corresponding to the
minimization problem (A.20). For a given vectar, it will be helpful to define
the set of integerd (w), wherei € 4(w) if 0 <i < I andw; > 0, orifi > I and
wy+ > 0. This is the set of terminal urn occupancy levels which the constraints
do not force to be empty. As we will show, for irreducible constraints, the optimal
{7, j} with k + j € 4(w) are always strictly positive. This result does not hold
directly for reducible constraints, but as we discussed earlier, any problem with
reducible constraints can be replaced by a finite humber of subproblems with
irreducible constraints.

LEMMA A.8. Supposethat («, w, 8) areirreducible feasible constraints, and

let 7* € SLX! bethe minimizer of (A.20) subject to constraints (A.21) and (A.22).
Thenmy ;> O0forall k+ j € f(w) and 7y’ ; =0ifk + j ¢ d(w).

PROOF Fork + j ¢ J(w), the constraints force the; ; to be zero for all
feasible points of the problem, and hence, for the minimizer in particular. The
main point is to show that it is feasible for any other element to be positive, and
the result will then follow from the infinite derivative of the objective function near
the boundary.

Letr S"K‘ be any feasible solution meeting the given constraints, and suppose
thatr,, , = 0 for some particula¢m, n) with m +n € 4(w). Letw be an arbitrary

set of probability distributions |G"K‘ subjectto the restrictions thay, , > 0, that
wx,j =0forallk + j ¢ 4(w), and thatr has finite support. If we define

i 00
Di =Y 0Tk i—k B=Y " ar ) j
k=0

keX  j=0

then 7 is a feasible solution for the constraints, o, B). Next, for anyn > 0,
we may define
B=@B-np)/A-1n). b=@-nd)/1-n).
By construction, the constraintg, &, 8) are feasible for sufficiently smai.
In the exponential case, this is immediately true becduse, 8) satisfies all
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constraints in (2.3) and (2.4) with strict inequality. In the polynomial case, the
(o, w, B) satisfies thel'th monotonicity constraint of (2.3) and the conservation
constraint (2.4) with equality. However, it may easily be verified that these two
constraints also hold with equality féw, @, 8) and, hence, fot, &, B).

We may now let# be a feasible point for(a,®, 8), and finally form
7 =nw + (1 —n)z. By constructionr is a feasible solution corresponding to
the original constraintéx, w, ), and, in additions,, , > 0. As discussed in the
proof of Lemma A.6, we may také to have finite support so that also has
finite support.

We will show thatz is not a minimizer by proving that a sufficiently small
perturbation towardr reduces the objective function. Because the constraints
are linear, the pointg® = e + (1 — ¢)xr are feasible solutions to the original
constraints for all G< ¢ < 1. Let f(¢) denote the value of the objective function
evaluated atr®. The derivative of this function is

fley=Y" akg(log (ﬂ) + 1)(7Tk Jj = Tk j)

ke X

= > Zlog (ﬁ) (7. = T, j)

keX  j=0

8

Z o Z Tk J Iog (,3)

n(ﬁ) keX  (k.j)£Gm.n)

2 2] Og (ﬁ)

ke X j

= amnm n IOg

In the limit ase — 0, the third term in the last display tends to
—Y aD(z 2 (B)) <O.
k

The second term is bounded above by the expressipi ax 3 ; 7, j 109 2; (8),
which is finite becaus@& has finite support. The first term in the display tends
to —oo, which establishes that(s) < f(0) for some sufficiently smals > 0.
We have shown that, for amy+n € {(w), 7 cannot minimize (A.20) ift,, , = 0.

As 7y, is arbitrary withinm + n € J(w), it follows thatz;, , > 0 whenever
m+ned(w). O

We now establish the existence of Lagrange multipliers and the form of the
optimal solution for the polynomial case.

THEOREM A.9. Suppose that («, w, B) are irreducible feasible constraints
yielding equality in (2.4),and let 7* be the corresponding unique minimizer from
Lemma A.6. Then there exist positive constants { Dy }rcx and {W;};c; such that
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the minimizer takesthe form
n*_:{Dka’jw)Wkﬂ, ke X, j+kelw),
k. 0, otherwise.

PrROOF The strict equality in the constraints requires every feasible point
to be supported on the finite set satisfyihge & andk + j € 4 and, hence,
the minimization problem (A.20) may be considered to be a finite-dimensional
problem over this set. By Lemma A.8 the minimizet is strictly positive. Since
the objective function is continuously differentiable in a neighborhood tf
and the constraints are linear, Lagrange multipliers are guaranteed to exist for
this problem (see, e.g., [4], Proposition 1.33). Specifically, there are constants
zx andw; such that the Lagrangian

L(T)= ) ar Y mjlog ;)Tk(/]g) + > Zkak(l— > ﬂk,l)
J

keX  k+jed keX k+led

i
+ Z w; (wi - Z Otkﬂk,i—k>
k=0

ied

is also minimized at*, with all partial derivatives oi£ being zero at the optimal
point. Taking partial derivatives and rearranging, the optimality condition yields

e = Pp(Be T
The result follows on defining; = e~ andW; = e¢%i. O

We now give the corresponding theorem for the exponential case.

THEOREMA.10. Supposethat («, w, 8) areirreducible feasible constraints
yielding strict inequality in (2.4), and let =* be the corresponding unique
minimizer from Lemma A.6. Then there exist positive constants p, {Cr}rex, and
{Wi}icy.i<1 such that the minimizer takes the form

CkPi(pB)Wivj, ke XK, k+j<I,k+jeld,
7 j =1 CkPi(pB). ke X, k+j>1,
0, otherwise.

ProoOF To avoid difficulties with infinite-dimensional Lagrangians, consider
a sequence of truncated problems indexed by a sequence of indgers. For
each suchv define

M) - M) .
P =Y o bmy =Y
keX I<M <M
and consider the problem of minimizing

Tk, j
Zak Z Tk, j IOQT(;@’

ke K J<M.k+jed
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subject to the constraints

Yoo Y Img=p",

ke X [<M ,k+led

(M)
Yo ma=ng, ke X,
<M. k+led
Z O Tk i—k = W;, ield.
k<i,ke X

By construction, the minimizer of this problem is obtained simply by truncat-
ing 7*. As in the previous lemma, the strict positivity of the minimizer, together
with the linearity of the constraints, guarantees the existence of Lagrange multi-
pliers via [4], Proposition B3. The Lagrangian for th&th problem is

S T
J

ke XK J<M.k+jed ke XK <M k+led

+ ZZ(M)(X ( (M) _ Z ﬂk,l)

ke X [<M ,k+led

M
+Zwi( )<0)i - Z ak”k,i—k)-
ied k<ike K

Since the derivative oft with respect tor; ; must be zero at the minimizer,
it follows that

wf = 2Bl I e

for all j < M andk + j € 4, where for convenience we have defined= 0 for
i >1.Fork+ j > I, note that

*
Tk j+1 f/’j+1(ﬁ)ey<M>

i, PiB)
so thaty™ is independent oM. Sincew,ﬁﬁ‘f} =0if k+ j > I, it follows that
(M) and w(M) are also independent . Then the above expression fﬁ;;k

holds for allk + j € 4, with fixed Lagrange multipliers, {zx} and{w;}. The form
expressed in the theorem is based on the substitutieas”, C; = ¢(?~DA-1+xu
andW; =e%i. O

Now that we have the general form of the minimizing endpoint valugs
we are ready to characterize the extremal curves. We denote the mean of
the kth distribution n(k by Br =3; ]nk’]. In the exponential case, we define
px = pP/PBr so that the distributionr), meets/ — k terminal constraints, has
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meang; and a Poissopy B tail. Denoting the terminal constraints by ; = n,:"j

and wg) = (wk.0, ..., Wk, 1-k), WE S€e thaw(*;() is the minimizing distribution
arising in Theorem A.1 for the terminal constraiils w,), Bx), with associated
twist parameterso;, and Cy. In the polynomial case, the terminal constraints
(1, o), Br) mean that each subproblem is polynomial, with= 0. In either case,
Theorem A.1 gives the form of the extremal occupancy cupygsx) for each of
thesek subproblems. We now show that the subproblem curves sum to form the
general extremals.

THEOREM A.11. Suppose that {nk -} are the minimizing distributions from
Lemma A.6 for feasible constraints («, w, 8). Denote the means of the minimizing
arguments by g = 3; J7E i and let y j(x) be the extremal curves from
TheoremA.1 for thesubproblems(l k), Pr). Then the curves

yi(x) = Zoekyk,,-_k(xﬂk/m, i=0,...,1,

k=0

I
Y+ (@) =1=) yi(x)
are extremal s which satisfy the constraints («, w, B).

PrROOF We assume without loss of generality that the constraints are
irreducible. Otherwise, each irreducible subproblem may be treated separately.
We extend the definition of; (x) for i > I by using the extended definition
of y, j(x) used in the proof of Theorem A.1 [see (A.13)]. Also, for convenience,
defineyy ;(x) = yk.j (xBi/B) and likewise, deflne;/k/ They; inherit from they;
the relation

Vi () =D o _x (x).
k=0

To see that the; are valid occupancy curves, note that

Zy,m—zzakykl p(x) = Zaan,j(x):l
=0 j=0

i=0k=0

Also, the—; (x) are all nonnegative of®, 4], and

00 K 00 . K
Z —i (x) = Z o Z —Ypj(x) = Z a(Br/B) =1,

where the last equality follows from the fact that bh,? satisfy the conservation
constraint (A.21). Hence, curves(x),i <1 andy1+(x) satisfy the conditions of
Lemma 2.1.
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It is clear that they; satisfy the desired initial conditions singgo(0) =1 and
¥k,;(0) =0 for j > 0. The terminal conditions are guaranteed by the fact that the
valuesyy ;(Bk) = | j satisfy the constraints (A.22).

In order to establish that the curves satisfy the Euler-Lagrange equations,
we first show that the rescaled zero-occupancy cu,T/rw for the kth subproblem
is proportional to théth derivative of the overall zero-occupancy cugg

First, take the exponential case, and recall thgt, = pB. The kth zero-
occupancy curve, after rescaling, is

- (= xBi/B
Vo) = Cre PROB/B) 4 Z(a)k,i — CkPi (prBr)) <1 — 5 )
i=0

-k i
=Cre " + Z(a)k,,‘ — Cr % (pﬂ))(l— %)
i=0

s i -nmn(1-3)
=Crle ™+ ) (Witi = 1)Pi(pB)(1—— }
k pard k+ B

Here we have used thal; =, = Cx P (B) Wkt wheni <1 — k. Thekth
derivative ofyo = agirg g is

[ESARASIES

X i—k
=aoCo[ e - D, oh o (1-5) }

(A.25) =k

= j
= aoCop’ [e_px + D (Wigj — 1)5’1(,0/3)(1 - %) }
j=0

aoCop

Yiol).

Using Theorem A.1 to expres ; in terms ofyy o, we have
i X i- ; X

=3 k( Bk/B) (_ 1) k‘//( k)( ﬁk)

= (i -k B

—k

d'
—Zak( _k),<— D' Vo)

i—

_ v G x (i)
ZOtoCop . k)'( Dy (x).
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Similarly, we obtain

—i(x) = Zotk Yk, k(x?)

i—k+1

= Zoek k)'(—l)l_kml//k,o(x)

i—k

Lo x i+1., (i+1)
— -1 + ,
ZotoCop TR I

so that the extremals satisfy the simple relation

6:x) _ ¥y D)
yi(x) )
which also arose in the case of empty initial conditions. Because the polynomial
portion of ¥ has degred, the ratio6;(x)/y;(x) is given by the constanp
fori > I, which establishes (as in the proof of Lemma A.3) that
Or4(x)
1—9Y(x)
As shown in the proof of Theorem A.1, the relations (A.26) and (A.27) are

sufficient to show that theg; satisfy the Euler—Lagrange equations.
In the polynomial case, similar computations show that

(A.26)

(A.27)

D
(A.28) DAy 0 = =5 Owk 0(x)
and that
() — S D x' i+l G+, N —WéiH)(X)
(A.29) 9’(x)‘,§,aoDo TR <x)—y,<x)W

fori =0,..., I, establishing the restricted set of equations (A.T).
In order to demonstrate a strong minimum we will need the following.

CoROLLARY A.12. For irreducible constraints, the occupancy functions
defined in Theorem A.11 satisfy the integrated version of the Euler—Lagrange
equations: given x1 € [0, B8), there are constants C;,i =0,...,I — 1 (and also
i = I inthe exponential case) depending on x1 only such that

!/

Y oL
/ (¥ (x), 9(X))dx+—(w(x) 0(x") =C;
X1 3%

for all x’ € (x1, B).
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PrROOF We may takexg > 0 without loss of generality. By Theorem A.11,
the extremals satisfy the usual form of the Euler-Lagrange equations. The above
indefinite integral is Iog—x//(’”)( )/w(’)(x)), which is finite at both endpoints,
becausg—1)’ w(’)(x) >0forx €[0,8),i <I (andi =1 + 1 in the exponential
case), as shown in Lemma A.2. The partial derivative with respegtatso exists
for the same reason]

THEOREM A.13. Suppose that y is the extremal defined by Theorem A.11
for the feasible constraints («, w, 8). Then the cost J(y) is the solution to the
minimization problem (A.20) subject to constraints (A.21) and (A.22).

PrRoOOF Consider first the exponential case. The infinite sequence of func-
tionsy; defined in the proof of Theorem A.11 are shown in the proof to satisfy the
conditions of Lemma A.3. Hence, the cost is

J(y)—ﬂ+z[zakyk, k<ﬂ>log|vf(”<ﬁ>|} Zaklogw(")(on

i=0L k=0

(k+’)(ﬁ)
= Zak Zyk /(:8) IOg‘ (k) —
i= (0)e

The fact thaty; o(0) = 1 together with (A.25) implies that" (x) = ¥ (0) x
V¥ .0(x), so that

vo ) :<ﬂk> W(/)<xl3k) V@
vl @eF \B B/ (=x)ehj
Then

K
J) =Y DT .(BIPB)).
k=0
By construction, the endpoinig, ;(8) coincide with the optimal argumenﬁg‘]
of the minimization problem.
The proof of the polynomial case is almost identical, except that we use
Lemma A.4 and (A.28). O

A.4. Extremal curves have globally minimal cost. In this section we prove
the following theorem:

THEOREM A.14 (Strong minimum). Given feasible constraints («, w, 8),
let y be the corresponding extremal occupancy path defined in Theorem A.11,
and let y be any other occupancy path satisfying the same constraints. Then
J(y) = J ().
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We first introduce some notation. L@&tdenote the set of valid occupancy func-
tions, that is, vector functiong such that the cumulative occupancy functians
satisfy the conditions of Lemma 2.1, and Bl{o, w, 8) ={y € 0:y(0) = «,

y(B) = w} be the subset of valid occupancy functions satisfying feasible con-
straints(«, w, 8). The proof of the following lemma is a straightforward conse-
guence of the convexity of the md, y) — D(0|y) and, hence, omitted.

LEMMA A.15.

(@) O(x, w, B) isa convex set.
(b) J(y) restrictedto O («, w, B) is a convex function.

For a given pair of occupancy functiong,y € O(x,w,8), we denote
y® = (1-¢e)y + ey and define the functiot : [0, 1] — R4 U {oc0} by

B
Glel = 3(v") = [ D" ) lly* () d.

To simplify the notation, we do not explicitly indicate the dependencé& ain
y andy. Lemma A.15 ensures théatis a well-defined, convex function for anpy
y €0 (a,w,p).

For the remainder of this section, we once again restrict attention to irreducible
constraints, without loss of generality. The following lemma establishes the
minimality of the extremals in an important special case. The proof uses the fact
that the extremal curve and its derivative can be bounded away from zero.

LEMMA A.16. Supposethat (o, w, 8) are strictly positive, irreducible feasi-
ble constraints, where the upper indices K and I of « and w satisfy K =1 + 1
in the exponential case, or K = I in the polynomial case. Suppose that y is the
extremal curve for these constraints, defined in Theorem A.11, and that y is any
competing occupancy function satisfying the same constraints. Then

J(y) =JP).

PrROOF We construct the family of pathy® = (1 — ¢)y + ey, with
Gle]l=J(y%). It follows from convexity thatG is left and right differentiable
wherever it is finite. We will show tha®’,_[0] = 0, whereG’, [¢] denotes the right
derivative ofG. The convexity ofG then implies the desired result.

It will be convenient to work with the cumulative occupancy functiah§
and as in Section A.1.2, we will mix notation by writing, for exampléy ) =
JE L, 0)dx.

After defining

n(x) =y @) —¥kx),
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we may write

g B
(A.30) G[e]:/o L(w+8n,9—en)dx:/0 g(x,&)dx.

We can assume without loss th@(1) = J(y) < oo, since there is nothing to
prove otherwise. We wish to show that differentiation under the integral sign with
respect tce is valid in a neighborhood of 0. The validity of this operation will
follow from [23], Corollary 39.2, if we can provide a constant bound on the partial
derivative ofg with respect te for almost every € [0, 8].

To construct this bound, we will first establish that the components)
and derivatives; (x) = —v; (x) are uniformly bounded away from zero. For
specificity, we first assume that, w, 8) are exponential constraints. Note
that in the empty case studied in Section Ayg(x) decreases monotonically
to y0(B) = wo and 6p(x) decreases monotonically #y(8). Inspection of the
formula for ¥ in Theorem A.1 reveals tha#y(8) = w1/ if I > 0 and
6o(B) = CP1(pB)/B otherwise. Hence, for any exponential problem with empty
initial conditions and positive terminal conditions, yp and 8y are uniformly
bounded away from zero. For the constraiiatsw, 8) under consideration, each of
the associated subproblems is an exponential empty problem with positive terminal
conditions, and sy o(x) andéy o(x) are uniformly bounded from zero for each
subproblem. These, in turn, lower bound the overalindé;, since, for example,

1
Vi) =D aryri-k(x) = iyio(x).
k=0
The catch-all termy;(x) is monotonically increasing, and hence, satisfies
yr+(x) > ary1 > 0. The identity9; 4 (x) = pyr+(x), established in the proof of
Theorem A.11, ensures a similar bounddpn (x).

Note thaty® > (1 — ¢)y and6® > (1 — ¢)6, so that for each G ¢ < 1,
these functions are also uniformly bounded from zero[@rB]. Indeed, given
an arbitraryeg < 1, there are positive lower bounds @i and#¢ which hold
uniformly for x € [0, 8] and ¢ € [0, g9]. To be precise, these inequalities and
bounds hold everywhere except possibly on a set of measure zero @vineag
not exist.

The partial derivative of the integrand of (A.30) is

1 1

3 aL 9L _
5,88 =l§ 5, yS(X)ni(x) —;a—el_ yS(X)m(x).

The partial derivatives of. are (in mixed notation)
oL 0;i(x)  Oit1(x)

(x) = — :

i Yi(x)  vit1(x)

6i() g )
Yi(x) 1-y1(x)

L
a0, ) =19
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The uniform lower bounds om® and 64, together with upper boundg® < 1,
9¢ < 1 and the boundednessipandr, combine to establish that there is a finkte
such that

0
—g(x,8e)|<B fore €0, g0], a.e.x €0, B].

‘38

Similar arguments may be used to establish this bound in the polynomial case.
In that case, the termg; = 1 andd; = 0 do not play a role, and the expression for
the partial derivative of. with respect t@; simplifies.

We are now free to differentiate under the integral sign so that

B9
G/[£]=/O gg(x,s)dx

for all ¢ € [0, g9). We note that

[ AR N |}

0 AVily Yi J/l+1
is absolutely continuous as a function of since it is the difference of two
continuous monotone functions with bounded derivatives. Applying integration by

parts for absolutely continuous functions ([23], 36.1, page 209) to the first term,
we obtain

d /

B
G'.[0] = / {_w(’” n(x)——(x) n(x)}dx

—/ i) - ( Ox%< )dx——(x))

f Zsz (x)dx

1

Z (i (0) —ni(B)) =

The constantg’; appearing in the third equality come from the integrated version
of the Euler—Lagrange equations (Corollary A.12), while the last equality is due to
the fact thaty andy have the same beginning and end points.

We now extend the lemma to show that the extremal is a global minimizer even
when some of the initial and terminal points are zero. Without loss of generality
we suppose thatg > 0 and note that the extremals defined in Theorem A.1 and
in Theorem A.11 are strictly positive except possibly at the initial and final times
t=0andr = 8.

Let y be this extremal and suppose thats an alternate occupancy function.

It may be supposed thatalso lies on the boundary onlyat 0 orr = 8, since if
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there is ay with lower cost thary, the convexity of/ implies that there is another
occupancy path of the formy + (1 — A)y which also has lower cost than and
which avoids the boundary everywhere thadoes.

Given x{” | 0 and x5 1 B, let y™ be the extremal curve with initial

point;?(xi”)) and terminal poin;?(xg’)). By Lemma A.16,

(n)

X2
Jy™) < /
X

(n)
1

DA (x)) dx.

It then follows that
J(y) =G, w, B)
< liminf g(7(x"), 7 (x3"), x5 — x1")

— limi (m)
= liminf J (")

i .
<tim [,* D@7 @) dx
*1

=J¥)

with the first two equalities following from Theorem A.13 and the definition
of J(o, w, B), the first inequality following from Corollary A.7 and the last
equality from the monotone agergence theorem.
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