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STEIN'S METHOD, PALM THEORY AND POISSON
PROCESS APPROXIMATION?

By Louis H. Y. CHEN AND AIHUA XIA
National University of Sngapore and University of Melbourne

The framework of Stein’s method for Poisson process approximation is
presented from the point of view of Palm theory, which is used to construct
Stein identities and define local dependence. A general result (Theorem 2.3)
in Poisson process approximation is proved by taking the local approach.
It is obtained without reference to any particular metric, thereby allowing
wider applicability. A Wasserstein psgometric is introdaed for measuring
the accuracy of point process approximation. The pseudometric provides
a generalization of many metrics used so far, including the total variation
distance for random variables and the Wasserstein metric for processes as
in Barbour and Brown $tochastic Process. Appl. 43 (1992) 9-31]. Also,
through the pseudometric, approximation for certain point processes on a
given carrier space is carried out by lifting it to one on a larger space,
extending an idea of Arratia, Goldstein and Gord&afjst. Sci. 5 (1990)
403-434]. The error bound in the general result is similar in form to that
for Poisson approximation. As it yields the Stein factga s in Poisson
approximation, it provides good approximation, particularly in cases where
A is large. The general result is applied to a number of problems including
Poisson process modeling of rare words in a DNA sequence.

1. Introduction. Poisson approximation was developed by Chen (1975)
as a discrete version of Stein’s normal approximation (1972). It involves the
solution of a first-order difference equation, which we call a Stein equation. In
extending Poisson approximation to higher dimensions and to Poisson process
approximation, Barbour (1988) converted the first-order difference equation into
a second-order difference equation and solved it in terms of an immigration-death
process. This work was further extended by Barbour and Brown (1992), who
introduced a Wasserstein metric on point processes and initiated a program to
obtain error bounds of similar order to that on the total variation distance in Poisson
approximation. This has been achieved for some special cases by Xia (1997, 2000),
and a general result with error bounds of the desired order has been obtained by
Brown, Weinberg and Xia (2000).
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In this paper, another general result on Poisson process approximation is proved
by taking the local approach. It is obtained without reference to any particular
metric, thereby allowing wider applicability. In proving this result, the framework
of Stein’s method is first presented from the point of view of Palm theory, which
is used to construct Stein identities and define local dependence. Although the
connection between Stein’s method and Palm theory has been known to others
[see, e.g., Barbour and Mansson (2002)], little of it has been exploited.

In applying the general result, a Wasserstein pseudometric is introduced
for measuring the accuracy of point process approximation. The pseudometric
provides a generalization of many metrics used so far, including the total variation
distance for random variables and the Wasserstein metric for processes as in
Barbour and Brown (1992). Also, through the pseudometric, approximation for
certain point processes on a given carrier space is carried out by lifting it to one
on a larger space, extending an idea of Arratia, Goldstein and Gordon [(1990),
Section 3.1], which was refined by Chen [(1998), Section 5].

The error bound in the general result is similar in form to that for Poisson
approximation [see, e.g., Arratia, Goldstein and Gordon (1989), Theorem 1]. It
is simpler and easier to apply than that in Brown, Weinberg and Xia (2000).
As it yields the Stein factor /. as in Poisson approximation, it provides good
approximation, particularly in cases wherés large.

The general result is applied to prove approximation theorems for Matérn hard-
core processes and for marked dependent trials. The latter is in turn applied to
the classical occupancy problem and rare words in biomolecular sequences. The
last application, in fact this paper, is motivated by an interest in modeling the
distribution of palindromes in a herpesvirus genome by a Poisson process. In
Leung, Choi, Xia and Chen (2002), the Poisson process model is used to provide
a mathematical basis for usingscans in determining nonrandom clusters of
palindromes in herpesvirus genomes [see also Leung and Yamashita (1999)].

2. From Palm theory to Stein’s method. Let T be a fixed locally compact
second countable Hausdorff topological space. Such a space is also a Polish space,
that is, a space for which there exists a separable and complete mefric in
which generates the topology. Defigé to be the space of honnegative integer-
valued locally finite measures dn, and let8B be the smallest -algebra in#
making the mappings — &(C) measurable for all relatively compact Borel sets
C c T'. Recall that a point process dhis a measurable mapping of some fixed
probability space inta#, 8) [Kallenberg (1983), page 5]. For a point process
E on I' with locally finite mean measurg, the point process, is said to
be a Palm process associated wihat « € T if, for any measurable function
[T xH— R,y :=][0,00),

2.1) E(/Ff(a, E)E(a’a)):E(/rf(a, Ea)k(da))
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[Kallenberg (1983), Chapter 10]. Intuitively,

~ E[E(da); 1gep]
P(E, € B) = S da) <B

An important characterization of Poisson process in the language of Palm theory
is thatE is a Poisson process if and onlyff(E,) = L(E + 84) A-a.S., wherd, is
the Dirac measure at. This highlights an idea of Poisson process approximation:
if we define

forall B € B.

DF (&) :=/Ff(x,é)%‘(dx) —/Ff(x,é 1 8M(dx),

then L(E) is close to the Poisson process distribution o¥erwith mean
measure., denoted as Ra), in terms of a certain metric if, for the set of suitable
corresponding test functions:I" x # — R := (—00, 00),

(2.2) EDf(E) ~0.

In other words, for a functiorz: # — R, if we can find a solutionf, to the
equation

(2.3) g(&) —Pa)(g) = Df(6),

then the distance between the distribution ®f and P@i) is achieved by
the supremum of EDf,(E)| over the class ofg which defines the metric.
Equation (2.3) is known as a Stein equation. If there exists a fungtigii — R
such thatf (x, &) = h(& — 8,) — h(§), then

Df (&) = /F (€ + 8) — h(E)IA(dx) + fr (€ — 8,) — h()]E(dx) = ARE).

It is known that is the generator of af¢-valued immigration-death process
Z¢(¢) with immigration intensity, and unit per capita death rate, wh&ig0) = .
This fact was noted by Barbour (1988), who developed a probabilistic approach to
Stein’s method for multivariate Poisson and Poisson process approximations. The
equilibrium distribution oZ is a Poisson process with mean measuréhe idea
of introducing a Markov point process is to exploit the probabilistic properties of
the Markov process for obtaining bounds on the metrics of interest [see Barbour
and Brown (1992) and Brown and Xia (2000)].

For& e #¢ and a Borel seB C I', we defing | g as the restriction of to B, that
is, £|p(C) = &(B NC) for Borel setsC c T'. Let E be a point process on with
Palm processdss,}. Assume that for eaal there is a Borel set, C I" such that
a € Ay and the mapping

(2.4) F'xH—>T xH:(,) > (oz,g("‘))

is product measurable, wheg&”) := &| 4c. Note thaté®) does not refer to the
Palm measure. As the measurability of (2.4) is often hard to check, we give a
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sufficient condition for (2.4) to holdA = {(x, y):y € A, x € '} is a measurable
set of the product spade? :=T" x I". We give a brief proof for the sufficiency.
By the monotone class theorem, it suffices to show that the mappjie, &) :=
(a, £@)) is measurable for rectangular sets= B, x B>, where B; and B, are
measurable subsets Bf Indeed,

(x,§|35), if x € By,

MleBZ(x,§)={(x’§), if x ¢ Bi,

is measurable.

The requirement ofA being measurable ifr? is almost necessary. To see
this, letI" = [0,1], A = B1 x B2, where By ¢ " is not Borel measurable
[Nielsen (1997), page 128, 9.16(h)] arky C T" is a Borel set. DefineC =
{£:£(B2) #0}; thenM;l(F x C) = B x C is not a measurable set bfx #.

REMARK 2.1. In Barbour and Brown [(1992), page 15], it is proved that if
A, is a ball of fixed radius, then the mapping in (2.4) is measurable.

We defineE to belocally dependent with neighborhoods (A,; o € T') if
L((Ee)@)=L(EW),  ras.

LEMMA 2.2. Thefollowing statements are equivalent:

@) E Jr f(a, B® +84)E(da) =E [ f(ar, E® + §,)A(da) for all measur-
able f:I' x #£ — R,.
(b) L(E)®)=L(EW), r-as.

PrROOF By the definition of Palm process, we have

(2.5) E/Ff(a,E(a>+8a)a(da):E/Ff(a,(Ea)<“)+8a)x(doe).

Hence, (b) implies (a). Now assume (a). With the vague topoléys a Polish

space [see Kallenberg (1983), page 95], so there exists a sequence of bounded
uniformly continuous functionsf;; j > 1) on # which form a determining class
[Billingsley (1968), page 15]: for eary two probability measure®; andQ2 on

H,if [ f;dQ1= [ fjdQzforall j > 1, thenQ1 = Q> [see Parthasarathy (1967),
Theorem 6.6]. By taking («, & + 84) = k(o) f;(§), it follows from (2.5) that

/Fk(a)[Efj(E(”)]x(da):/Fk(a)[Efj((aa)W))]x(da)

for all bounded measurable functiohsI" — R and f;. Fixing f; and allowingk
to vary, we haveE f; (@) = E f;((E4) @), A-a.s. Now varyf; and (b) follows.
O
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In general, a point process is not necessarily locally dependent, but Lemma 2.2
suggests that, in a loose sense,

(2.6) LI(Ey) )~ L(E®),  ras.
if and only if

E/ flo, E@ +8,)E(da)

(2.7) r

wE/ fla, E® +8,)A(da)  for suitablef.
r

This will be our guiding principle in proving Theorem 2.3 using the local approach,
as follows [an extension of the approach of Chen (1975) which was elaborated by
Barbour and Brown (1992)]:

E/Ff(a, 2)E(da)
= =) — E(a) =
~E [ [/ ®) = /(. B +8,)]2 (o)
+E/Ff(a, E@ 1 8,)[E(da) — A(da)]
+E/F[f(oz, 2@ 1 5,) — f(a E + 50) M (der)
+E/Ff(a,8+8a))~(dot),
which implies
EDf(E) :E/F[f(a, B) — fla, E® +64)]E(da)
(2.8) -HE/Ff(a,E(“)—F(Sa)[E(da)—l(da)]

+E/F[f(a, E@ +64) — f(a. B+ 8)]A(da).

Hence, a bound ofi Df,(E) can be obtained by bounding the right-hand side
of (2.8).

There are two ways to handle the second term in (2.8): one uses coupling and
the other involves Janossy densities [Janossy (1950) and Daley and Vere-Jones
(1988)]. For a finite point process, that iISP(|E| < co) = 1, there exist measures
(Jn)n>1 such that, for measurable functiofis # — R,

1 n
Ef(8)= Zfrn af(i;%)],l(dxl,...,dxn).

n>0
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The term(n!)~1J,(dx1, ..., dx,) can be intuitively explained as the probability of
E havingn points and these points being located n@ar.. ., x,). The measures
(Jn)n>1 are calledlanossy measures by Srinivasan (1969).

Suppose there is a reference measuon I such that, for each > 1, J, is
absolutely continuous with respectith. Then, by the Radon—Nikodym theorem,
the derivatives, of J, with respect ta” exist, so that

1 n
Ef(E)= Z/Fn af(Z;%)jn(xl,...,xn)v”(dxl,...,dxn).

n>0

The derivatives j,),>1 are calledJanossy densities.
The density of the mean measuref a finite point proces& with respect ta
can be expressed by its Janossy densiligs>1 as

b=y [ L x V(A ),
m>0 rmm:
where the term withn = 0 is interpreted ag;(x) [Daley and Vere-Jones (1988),
page 133].

When the point process is simple, the Janossy densities can also be used
to describe the conditional probability density of a point being agiven the
configurationE2@ of Z outside A,. More precisely, letn € N be fixed and
B=(B1,...,Bm) € (A)™, and define

Y20 Sar dmar+1(@ B, ) ()T (dy)
> =0as Jm+s (B, m(sH7Ivs (dn)

where the term with- = 0 is interpreted ag,,+1(«, ) and the term withs =0

as j»(B). Theng(a, B) is the conditional density of a point being neagiven
that 2@ is Y"1 8. Direct verification gives that, for any bounded measurable
function f over #,

(2.10) E(/Ff(a,a(“>)a(da))=E(/Ff(a,a(“>)g(a,a(“>)v(da)).

Foreachf:T" x # — R4, & € #, write £(A,) = m and define

J
f(x, g(x) +68, + ZBZ,)

i=1

(2.9 G(a, B) =

’

f)(x,6)=  sup max

{Zl»--uZm}CF Oijim_l

j+1
- f(x,%‘(") + 8+ Z(Sz,.) :
i=1
where the right-hand side is interpreted as @& &= 0. Combining (2.3) and (2.8)
gives:




POISSON PROCESS APPROXIMATION 2551

THEOREM2.3. For each bounded measurable function g: # — R,
IEg(E) — Pod)(g)l
(2.11) < E/ F(<ng)(0¢, E)(E(Ag) — 1)E(da) + min{e1(g, E), e2(g, E)}
ae

+E f e M) E ().
where
(2.12) ei(g.B)=E f el B9+ 8)[[g e EP) = (@) (da),
which isvalid if E isa simple point process, and

(2.13) e2(g. E) =E/er|fg(a, E@ 1 8,) — folor, (Be)®@ + 80) M (der).

REMARK 2.4. How judicioug A,; @ € ') are chosen is reflected in the upper
bound in (2.11), and (2.13) suggests tha}; @ € I') should normally be chosen
such that (2.6) holds.

3. Poisson process approximation in Wasser stein pseudometric. We now
look at special test functiongwhich define metrics of our interest. We begin with
a pseudometripg on I" bounded by 1 [cf. Barbour and Brown (1992)]. In order
for Theorem 2.3 to be applicable, we assume that the topology generaigd by
is weaker than the given topology bf Let X stand for the set opg-Lipschitz
functionsk :T" — [—1, 1] such thatk(a) — k(B8)| < po(a, B) foralla, B € T'. The
first Wasserstein pseudometyigis defined on# by

pl(él,éz)={ el Sup‘/kdgl—/kdéz

wherel§; | is the total mass df;. A pseudometrig; equivalent tqo; can be defined
as follows [cf. Brown and Xia (1995)]: for two configuratiogs= )", §,, and
52 = Z;nz:l. 621‘ with m >n,

if 151] # 1821,
if 1§1] = |&2] > O,

p1(61.62) =min ) po(yi. zr(iy) + (m — n),
i=1
wherern ranges all permutations 61, . .., m).
Let # denote the set gf;-Lipschitz functions o suchthat £ (1) — f(&2)] <
p1(&1, &) for all &1 andé& € #. The second Wasserstein pseudometric is defined
on probability measures oF with respect tqo; by

p2(Q1. Q) = ;gfp] [ racu- [ racd|
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The use of a pseudometrig provides not only generality but also wider
applicability. For example, if we choogg(x, y) =0, then

p2(Q1, Q2) = drv (L(IX1]), L(IX2])),

the total variation distance betwedi{|X1|) and.£(]X2|), whereX; has distribu-
tion Q;,i =1, 2. Itis known that, fog =1z with Bc Z, :=1{0,1,2,...},

1—e 2
(Bfg)(x,8) < T |fg|§1/\\/;,

where, and throughout this paper,is the total mass ok and is assumed to
be finite [see Barbour, Holst and Janson (1992) and Brown and Xia (2001)]. So
Theorem 2.3 gives:

THEOREM3.1. Wehave
-

1-—
drv(L(E(T)), Pa)) < .

. 1—e*
A aE

2
£1= 1A\/;/ME|3(% E®) — ¢ (o) |v(de),

whichisvalid for E simple, and

E/OIGF(E(A(X) —1)E(da) + minfey, 2}

A(Ag)A(da),
r

where

1—e*
A

g2 = / E||E@| — [(Ea)®@||M(da).
ael

Theorem 3.1 withe; is a generalization of Chen (1975) [see also Barbour and
Brown (1992)] and witheo allows the use of the coupling approach [see Barbour
and Brown (1992)].

Another example is in Section 4, where it is possible to introduce an index space
so that the results also include the approximation in distribution by a Poisson
process to discrete sums of the fofl'_; X;8y,, whereY; is a random mark
associated wittk;, as in Arratia, Goldstein and Gordon (1989).

We now establish a general statement of this section. As the arguments in
Barbour and Brown (1992) and Brown and Xia (2001) never rely on the property
that po(x,y) = 0 implies x = y, the results are still valid forg and the
pseudometricgs andp, generated frompg. The following two lemmas are taken
from Barbour and Brown (1992) and Brown and Xia (2001).
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LEMMA 3.2. For each pp-Lipschitzfunctiong € £, x,y e ' and & € # with
|€] = n, the solution f, of (2.3)satisfies

5 3
(3.1) |fg(X,$+5x +5y)_fg(xa$+5x)|__+?
(3.2) | fe(y, €48, <1 165712

LEMMA 3.3. Foreachge F,&,neH andx €T,
|fg(X,$ +8x) - fg(x7n+6x)|

ke - R B
< el = = €1+ (5 e )l — el

<<§+#) ”(5 )
=\ A g )

With the above two lemmas, we write another version of Theorem 2.3.

THEOREM 3.4. Wehave
p2(LE, PoL))

5 3 .
(3.3) <E aeF<_ + m)(n(Aa) —1)E(da) + minfeq, &2}

+E/aer —//fieAa< |(u/3)(:j’)| )l(da)l(dﬁ),

where
(3.4) e1= (1/\(1.65r1/2))/ FIE|g,(a, E2@) — ¢ (a)|v(da),

3
I(E)@|AJE@]+1

5
(3.5) e=E F<X+ )p/l/((Ea)(a),E(“))k(doz).
ae

In many applications, we can obtain the Stein factox tom the terms
1B+ (E) @A+ (Ep@l+1) 7
by applying Lemma 3.5.

LEMMA 3.5 [Brown, Weinberg and Xia (2000), Lemma 3.1For a random
variable X > 1,

E( ) V(14K /4) +1+K/2
X))~ E(X)

wherex = Var(X)/E(X).
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COROLLARY 3.6. If B is a locally dependent point process with neighbor-
hoods (A,; @ € "), then

p2(LE,Pad) <E [

o

3
+/aer //SeAa<k 12| + )X(d“)l(dﬂ)

5 3
Y1 ) (E(A) - DE(a)
G o)
(3.6) " =5+

where £ @#) = §lagnag-

REMARK 3.7. Since

/ u(AC{) E :/ / u(dﬁ)E(dO{)
ozel“|a(0t)|+1 er Jpea, |:(oz)|+1

1
—————E(dB)E(da),
/aer‘/ﬁeAa|E(a/3)|+1 (dB)E(da)

to simplify the first term of (3.6) using the assumption of local dependence, it is
tempting to ask whether

IA

E(dB)E(da)=E EE(dB)E (da).

E|E(aﬁ)|+1 |E@B)| +1
The answer is generally negative, although it might be true in many appllcatlons, as
shown in Section 5. To see this, [B(B;) =g =0.1fori =1,2,3,P(B;B;) =
for 1<i+# j <3 andP(B1B2B3) = 2¢3. Setl’ = {1,2,3}, E({i}) = 113,, 1 <
i <3,andA; = A> =1{1,2} and A3 = {1, 3}; then E is locally dependent with
neighborhoodsA;; i € I'). However, direct calculation gives

1
E————E({1)E{2)H =¢°>—¢°
@)+ 1 ({1hed2h=9¢"—¢q

and

E——EE{1DE{2) = (1 — 0.59)q%,
(@) + 1 {1HhE{2H =( q)q

SO

1
E——E{1HE{2 E———EE{1HE({2)}).
@)+ 1 (1HE(2) # 2(3) + 1 (1HE2H
4. Sums of marked dependent trials. The case of Poisson process approxi-
mation for sums of marked dependent trials is of particular interest as it has appli-
cations in computational biology, occupancy and random graphs. We devote this
section to this case.
Let I;, i € {4, be dependent indicators with a finite or infinitely countable
index space and

]P’(Ii=l)=1—]P’(Ii=0)=pi, ield.
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Let U;, i € 4, be 8-valued independent random elements, whgiie a locally
compact second countable Hausdorff space with mégrimounded by 1. Assume
that{U;, i € 4} is independent ofI;, i € 4}. Our interest is to approximate the
distribution of M := 3", 1;6;, by that of a Poisson process.

Let #(48) be the space of nhonnegative integer-valued locally finite measures
on §. The metricdp will generate the first Wasserstein metig¢ on #(8) and
second Wasserstein metrdgon probability measures off (§) as in Section 3 [see
also Barbour and Brown (1992)]. For eaich 4, let A; C £ such that € A;. Let
wi = L(U;), the law ofU;,i € &, and leth =3~ pi;. DefineVi =344, ;.

THEOREM4.1. Wehavei=);.; pi and

da(LM,POAV) <EY " > (E + )1,-1,- + min{eq, €2}

@) il jeany A Vitd
' 5 3
+2 ) (‘ +E[— Ij= 1})1?:‘1?‘/’
iel jeA; A Vi+ 1‘
where

e1= (LA LBSAYA Y EIEUL ;. j ¢ A) — pi

iel

’

5 3
82=EZ<—+ )ZIin—Ijlpi,
e VinLjea Jii 1 (3
and (J;; j € 4) and (/;; j € 4) are defined on the same probability space with

L(UTjis jed)=LUj; jed|l; =1).

REMARK 4.2. The bound in (4.1) does not depend on the distribution of the
marks(U;);cy, Ssince the mean measure of the approximating Poisson process has
been chosen to reflect the contribution of the marks.

REMARK 4.3. SinceM is in general not ample point process, the Janossy
density approach via (2.9) is not applicable. Also, due to the structusé,dhe
neighborhood$A,, @ € 4} cannot be determined. By introducing a pseudometric
and by lifting the process#( from 4 to a larger carrier spade= 4§ x {, the lifted
process becomesimple and the neighborhoodg,,, « € T'} determinable.

PROOF OFTHEOREM4.1. We consider the approximation on the lifted space
I' = 8 x 4 with pseudometricog((s, i), (¢, j)) = do(s, t). For eachg e #(I')
(I means lifted), defin€ € #(8) by &(ds) =Y, & (ds, {i}). Let M;(ds, {i}) =
I;8y, (ds) and leth;(ds, {i}) = piui(ds). ThenM; is a simple point process dn
M(ds) =Y ;cy Mi(ds, (i}), M(ds) = Yy Mi(ds, {i}), and

,02(£=M1, PO()»[)) = d2(£M, PC(X)).
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For each(s,i) e T, defineA. ;) := 8 x A;. Then|M,((“’i))| =V,
The first term in the upper bound of (3.3) becomes

5 3
E —+ )MA-—ll-a,d
(Sl.)er< V1 (Mi(As.i)) — 1) 1i8y; (ds)

=5 (e )( 5 0y

ied JEA;

which gives the first term of the bound (4.1). Referring to (3.4), if we take the
reference measungds, {i}) = u;(ds), theng((s,i)) = p; and foriq, ..., i € 4,
whereiy, ..., i; are all different,

Ji((s1, 1), -y (ks i) =P(Ciy.i)s
where
,,,,, =1L =1forl=iy,...,ixandl; =0forl #iq, ..., i}

For a = (s,i), B = ((s1,01), ..., (5, ix)) € (Af;, l))k, the numerator of (2.9)
becomes

Z - Yo P(Ciiyigjinir)

r=0" {'1 ..... JrlCAN)
=P(j=1forj=i,i1,...,ir andl; =0for j € A7 \ {i1, ..., ix});

and the denominator of (2.9) is reduced to

Z Z ]P)(Cil,---,ik,jl,m,jr)

r>O { . Jr}CA;
:IP’([,-:1forj:i1,...,ikand[,:OforjeAf\{il,...,ik}).

It follows that

G(Cs, 1), ((s1, 1), - .., (Sk, k)
—P(l; =1/1;=1for j=i1,....ig andl; =0 for j € AS\ {ix. ... ix}).

Therefore,
G((s, i), M) =E(L 115 j ¢ A)
and

/(‘ o BI85 = (5. D)wds. (i) = 2B ¢ A) = pi

iel

’
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which givese; of Theorem 4.1. On the other hand, in viewsafin (3.5), we can
write the Palm process associated wiih at (s, i) as

Jjidu; (1), if j#i,
Ms,n(dt, {j}) =10, if j=iandr#s,
8:(dt), if j=iandr=s.

With this coupling, we havé(M i) D[ =344, Jji and|M | = V;. So,
1 1

M) @A LMD 1 Vi AT g, i1

and

P (M) @ M) < 37 i = 1),
JEA;

which yieldse2 of Theorem 4.1. Finally, since
A(ds, {iDA(dt, {j}) = pipjuni(ds)u;(dr),
the last term of (4.1) follows from the last term of (3.3).]
Bounds onE[ViLHuj — 1] and E[ﬁuj = I; = 1] may be obtained by

applying Lemma 3.5. Sharper bounds can be achieved if additional information
about the relationship df’s is available, for example, if;’s are independent.

REMARK 4.4. If I;,i € J4, are locally dependent with neighborhoods;;
i €d),then

1 1
E|l——|I,=1|<E| —/——|,
|:Vi+1‘ ! ]‘ [Vij+1}

whereVij =3 iea.0a; Ik-

Random indicators/;; i € 4) are said to beegatively related (resp.positively
related) if, for eachi, (J;;, j € 4) can be constructed in such a way thiat <
(resp>)I; for j € 4, j #i [see Barbour, Holst and Janson (1992), page 24].

PrRoPOSITION4.5. Suppose (I;; j € {) are negatively related, and let A =
EZiel Il! then
=
4 1 < l1—e .
Yieali+1 A
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PROOF Indeed, since(/;; j € J) are negatively related, for decreasing

function &,
oo 3 =) == (el 35, o)
ied\{j} ied\{j}

so for fixed O< z < 1, E(zZ<"\t} i |I,) is increasing inl; andz " is a decreasing
functionin/;, giving

Ez2ietli — E[E(ZZiel\(j] I |]j)zlj]
< E[E(zZi<n0 i |1) B[] = E(z it )BT,

[see Liggett (1985), page 78]. Sindds a finite or infinitely countable index set,
by mathematical induction,

EZZiel I < H Bzl

iel
Hence
1 1 S 11_[
E7=E/ z fef"dzsf (1-pi+piz)dz
Ziel Ii +1 0 0 icd l l

1 1—e

< e_Pi(l_Z) dZ — .

= 10 ; -

ied

COROLLARY 4.6. Withthesamesetup asin Theorem4.1,suppose(/;; j € 4)
are negatively related; then

5 3
(4.2) do(LM,POL)) <E (—+7)|: l-2+ i [1'—J'i]i|-
2( ) g by Zj;éijji+l p p ; J J

PrROOF By Theorem 4.1 wit4; = {i} ande>, the first term of (4.1) vanishes
and the last two terms of (4.1) can be rewritten as (4.2).

As we need to bouniL[(V; + 1)~ = I; =1], itis relevant to ask whether
(Jki. k € 1) are also negatively (resp. positively) related (if;; j € £) are
negatively (resp. positively) related. The answer is generally negative, as the
following counterexample shows.

COUNTEREXAMPLE 4.7. Choose four setB;, 1 <i < 4, so thatP(B;) =g,
P(B;B;) = bq?, P(B;B;By) = bq>, for all different 1< i, j,k < 4; and
P(B1B>B3B4) = bg* with b < 2 andq sufficiently small (e.g.< 0.01) so that
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the sets are properly defined. Sgt= 15,. Then for any increasing functioh on
{0, 1)2 [see Barbour, Holst and Janson (1992), page 27], we have

=g —-D[®(1,0,0)+ P(0,1,0)+ $(0,0,1) — 3(0,0,0)].

Hence, by Theorem 2.D of Barbour, Holst and Janson (1992), if we chioese
(resp.<) 1, then(/;; 1 < i < 4) are positively (resp. negatively) related. But

P(Jar=Jar=1Jo1=1) =PIz = I4=1|I1 = [, =1) = ¢°
and
P(Jai=Jai=1) =P(lz3=Is= 111 = 1) = bg>,
o)
P(J31=Ja1=1|Jo1=1) < (resp.>) P(Jz1 = Ju1 = 1),

which implies that Ji1, k=1, ..., 4) are not positively (resp. negatively) related.

5. Applications. In this section, we apply the main results in Sections 3 and 4
to the Matérn hard-core process, an occupancy problem and rare words in DNA
sequences, all of which are different in nature. The results in Section 4 can also be
applied to random graphs, for example, to the isolated vertices resulting from the
deletion with small probability of each of the edges of a connected graph, where
the resulting isolated vertices may remain in their original positions or may be
distributed independently and randomly in a carrier space. Since this random graph
problem is similar in nature to that of rare words in DNA sequences, it will not be
discussed further in this section. A special case of this problem which involves
counting the number of isolated vertices has been considered by Roos (1994) and
Eichelsbacher and Roos (1999).

5.1. Matérn hard-core process. Consider a Poisson number, with meganof
points placed independently and uniformly at randori jnvherel is a compact
subset ofR? with volume V(I") # 0. A Matérn hard-core processis produced
by deleting any point within distaneeof another point, irrespective of whether the
latter point has itself already been deleted [see Cox and Isham (1980), page 170].
More precisely, lefa; } be a realization of points of the Poisson process. Then the
points deleted are

{a)} ={x ef{a,}:|x — y| <r for somey # x, y € {a,}},

and{a,} = {a)} \ {/} constitutes a realization of the Matérn hard-core pro&ess
[see Daley and Vere-Jones (1988)].

The Matérn hard-core process is one of the hard-core processes introduced
in statistical mechanics to model the distribution of particles with repulsive
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interactions [see Ruelle (1969), page 6]. It is a special case of the distance models
[see Matérn (1986), page 37] and is also a model for underdispersion [see Daley
and Vere-Jones (1988), page 366].

Let X1, X», ... be independent uniform random variablesIgnand letN be
a Poisson random variable with meanand independent ofX;;i > 1}. Then
the Poisson process for the arrival point§’irs Z = vazl Ox,.LetB(x,r)={y €
I':0<do(y, x) <r}, ther-neighborhood of, wheredp(x, y) = |x — y| A1. Then

the Matérn hard-core proce&can be written as€ = 3" ; 8x,1(z(B(x,.r))=0}-
Also,

N
E(da)= Z(SXi (da)izB(x;.r)=0} = L{z(B(a.r))=0}Z (d).
i=1

Let x; be the volume of the unit ball iR? and letd, be the second Wasserstein
metric generated frondy as in Section 3.

THEOREM 5.1. The mean measure of E is A(da) = e #V@n/VI) 1«
V(I 1da, and

do(LE, PAA)) <109 +69[3+ (1—e 2 ?)0]/(1+ (1— 29)/A),

where V («, r) isthe volume of B(a, r) and © = kg (2r)¢/ V(I).

PrROOF The Poisson property ¢f implies that the counts of points in disjoint
sets are independent. So

AMda) = E(E(da) = Elz((.r=0EZ(da) = e *V@/VD vy (1)L,

Also, whether a point outsidB(«, 2r) U {«} is deleted or not is independent of the
behavior ofZ in B(«, r) U {a}. Hence, we choosé, = B(«a, 2r) U {«} so that2
is locally dependent with neighborhoo@$, ; « € I') and

1 1

Applying Corollary 3.6 gives

5 3
do(LE, Pad 5/ / <—+E7>EE da)E(,
2( d )) wel Jpean\( A |E(O‘/3)| +1 ( Ol) ( :3)

(5.1) ;
+/“€F /;‘36/4&(% +E |E@B)| + )l(do‘)l(dﬂ)-

Now,

E|E(«xﬁ)|=/F A
op
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wherel'yg =T"\ (Aq U Ag) andur =/ V(I"). On the other hand,

EE(da)E(dB)
e nrV@n+VBm) 2 4o qp, if | — B| > 2r,
e—ﬂr(V(Ot,r)-*-V(ﬁJ’)—V(d,ﬁ,r))u% dadB, if r <|o—B|<2r,
0, fO<|a—pBl<r,
e rrV@n L da, if a =8,

whereV («, 8, r) is the volume ofB(«, r) N B(B, r). Hence,

BllsPf)=Ef[ ECRED

:/ eV L dx
Cap

+// e Hr V@DV ) 2 g gy
x,y€lgg,lx—y|>2r

+// e~ (VEDFV =V @y 2 gy gy,
x,y€lgp,r<|x—y|<2r
Writing
[E|2@P|]* = / / pup €T O D  dxdy,
yYEL op

we have

Var(|E(aﬁ)|):/ eV
I

op
+// e VDV OD=V ) 2 g gy
x,yelgg, r<|x—yl<2r

_// eV ENTVO 2 g gy
x,yelgg, lx—y|<2r

5/ e HVEr) Ly
Cap

+ // e—MrV(XJ’)[l _ e—,U«rV(yJ’)]Ml% dxdy
x,yelgg, lx—y|<2r

<{1+(1- e_“FK‘"d)MrKd(Zr)d}/r etV r) L dx.
af

Thus,

Var(|E@P|+1)  Var(|E@P))) e d P
= < <14 (1— e Hrkar 2r)?,
E(EeP+1 = EqEem) T k@)
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which, together with Lemma 3.5, yields

E 1 - 24+« - 3+ (11— e_“r"d’d)urlcd(Zr)d
[E@)| +1~ [Faﬁ e MV prdx +1 A+1—2urkq(2r)d

Finally,
[ [ Eswws@p=[ [ errenddads < ure@)s
ael JBeAy\{o} aell JBeA,y
and
[ [ randp) < prea@ns.
ael’ JBeAy
Applying these inequalities to the relevant terms in (5.1) gives Theorem bl1.

5.2. Occupancy problem. Suppose balls are dropped independently inio
urns with probabilityp; of going into thekth urn. Two cases of the distribution of
urns with given content have been studied in the literature. They are urns with
at mostm balls fight-hand domain) and urns with at least: balls (eft-hand
domain), wherem is a fixed nonnegative integer [see Kolchin, Sevast’'yanov and
Chistyakov (1978) and also Barbour, Holst and Janson (1992), Chapter 6]. In this
section, we consider the right-hand domain. So far, the focus in the literature has
been on the total number of urns [see Arratia, Goldstein and Gordon (1989) and
Barbour, Holst and Janson (1992), and refiees therein] and little attention has
been paid to the locations of the urns.

We assume the urns are numbered from 4 &mnd letX; be the number of balls
in theith box, 1<i < n. Define a point procesg8 onT" = [0, 1] as follows:

n
E=)_ 1ixizmBi/n-
i=1

The mean'measure & is thenp = Y7 1 7i8i/n, Wherem; = T:o (j)pf X
1 —-p)*/ andpu =" . Seti(dt) = nmidt for (i — 1)/n <t <i/n,
i=12,...,nanddp(ty, t2) = |t1 — 2| for 1, 1o €. Let

@w'= min Y PXi<m|Xi=X;=0)

e

and

1 H /
= min P(X; <m|X; =0)>u'.
= tisn Z (Xj=mlX; =0)=u
J#L1<j<n
If s mini<;<, p; is large, then we would expect good Poisson process approxima-
tion.
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THEOREMb5.2. WIth the above setup,
da(LE, Po)))

1 5 3
(5.2) <o+ (— + —,)[Euan —Var(z)]

noo\u o p

1 s Ins +mlInins 4+ 5m 4\ 2
5.3 <—+C — -
(5.3) _2n+ Pu+u<s—MS—mMMS—4mM+s)L

where (5.3)isvalid for s > Ins + mInins + 4m,
1-3p, + zpf)S(l 271*)_1
1-3p. j2% ’
with 7, = maxi<;<, 7; and p, = maxi<;<, pi <1/3.

C:5+3(

PROOF By the triangle inequality,d2(LE, Pod)) < do(LE,Pop)) +
do(Po(i), Po(})), so the term 1(2n) follows immediately from estimating
do(Po(p), Po())) [see Brown and Xia (1995), (2.8)]. For each<li < n,
let I; = 1(x,<m), then(;; 1 < i < n) are negatively related. Indeed,Xf; < m,
takeY;; = X; for all j. If X; > m, take a random variabl&; which is indepen-
dent of{X1, ..., X,} and has distribution?(X;|X; < m) and takeX; — X; balls
from urni and redistribute them to the other urns with probabilieg(1 — p;)
for j #1i. Let Y;; be the number of balls in urri after the redistribution and
setJji = Liy;; <m}- This coupling(J;;; 1 < j < n) satisfies

L(Jji;1<j<n)=LU;;1<j=<n|l;=1), Jji <Ijforall j#i

[see Barbour, Holst and Janson (1992), page 122].
We have from Corollary 4.6 that

(5.4) d2(£u Pq;l,) <EZ< m)(Z(lk Jk,')JT,'-{-Trl.z).
j#i Jji

i=1 ki

Now, the above coupling can be modified to show that/ ferl,
(ijj#ll”lllxl;L::Xlz =0)

are also negatively related. In fact, denbte (iy,...,i). If X;; =---=X;, =0,
take Z;.i = X, for all j #iy,...,i. If one of X;,,..., X;, is not O, take all
balls in urnsiy,...,i; and relocate them to the other urns with probabilities
pi=pj/(d—=piy—---—pi)for j#ia, ..., i Afterthe relocation, IeZ’ be the
number of balls in urry andJ = ]l{zx <m)- Next, fork # iy, ... i, if Z,’cl <m,
take J1; = Jii. If Z; > m, take a random variabl&;; which is independent

of {Z};, ..., Z/;} and has distributiont(Z};|Z}; < m). RemoveZ}, — Z}; balls
from urnk and redistribute them to the other urns with probablllpgg(l )
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Jj #k,i1,...,i. After this, let J]//ki =1 if there are at mosiz balls in urnj;
otherwise, let/}}; = 0. These couplings satisfy

LU j A i) =L j# i il Xy = =X,

=0).
LU j# i i) =L j# i il = 1),
Jhi < Jji forall j #k,i1,...,i,
Jj’.i51j forall j #iq,...,1.
In particular, ifi =i, thenJ!; < J;; for j #i.
By these couplings and Proposition 4.5, we have
1 1 1 1
Y i1 T X+l T X By T
On the other hand, for # i, denotek = (i, k), we have
Iy — Jii
>z Jji +1
Iy — Jii
T Xk i+l
> ¥ —
= E[ Xp=1I1,Y = ZZ]IP’(Xk =01, Y =12)
[Olmmg1 L2 jik Livsizm) +1 l l
1 m N
<E n 1 Y Y PX=l, V=12
Zj?éi’k {Z;‘kfm} + [1=0l=m+1
1
=E—————P=1J;;=0)
jik S+l l
-1
< [ > EJ]/-ki| P(Iy =1, Ji; =0)
JF#ik
PUk=1Ji =0 _ Elk — Ji)
— M/ - M/ :

Hence,

i dji +1
which, combined with (5.4) and (5.5), yields

da(LE, Pop)) < (2 + %)Ei[(zh‘ — Z]ki)m +7'[l.2i|.

i=1L \ k=i ki

E(Zk;éi T — D ki Jki) < %E[Z(lk — Jki)i|v

ki
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On the other hand, since far# i, E(Ji)m; =P = I; = 1) = E(I; I;), we
have

Ei[(Zlk —~ ZJk,-)n,- +7rl-2i|

i=1L \ k=i ki
= > EUQEUI)— Y. EUil)
1<ik<n i#k,1<i,k=<n

=E(E]) — Var(|E]).

Therefore, (5.2) follows. To prove (5.3), we note from Theorem 6.D of Barbour,
Holst and Jonson [(1992), page 122] that

+
s—lns—mlnlns—4mu s

* —

<7+
E(ED Iz

So, it remains to show that

- 2
1_Val’(|u|)< s( Ins +minins + 5m 4) '

1-3p, + 2p§>s<1_ 271*)_1

"
5.6 —
56) /§< 1-3p. u

n
To prove (5.6), notice that, for& i, j <n with i # j,

> P(Xp<m|X;=X;=0)

ki, j
— E E <S) <$)l<1_ L)S_l
IJ\1—pi—p;j 1-pi—p;

ki, j O<i<m
o ,
F 22 (;M(l_p")s_l(al—pf)l(lf‘;i —pl;»)
- (%) k;j 2 (‘} ) Pe@=p*
= (%)S(u — 2my).
Hence
w= <#3f2p$)s(u —27),

which implies (5.6). O
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5.3. Rare words in biomolecular sequences. One of the important problems
in biomolecular sequence analysis is the study of the distribution of words in
a DNA sequence. A DNA sequence may be regarded as a sequence of letters
taken from the alphabet {A, C, G, T}. The letters A, C, G, T represent the four
nucleotides: adenine, cytosine, guanine and thymine, respectively. They form two
complementary pairs, namely {A, T} and {C, G}.

It is known that repetition of a given word or a group of words or occurrences
of unusually large clusters of words are known to have biological functions.
For example, unusually large clusters of palindromes are known to contain such
significant sites as origins of replication and gene regulators. Here palindromes are
symmetrical words of DNA in the sense that they read exactly the same as their
reverse complementary sequences. In Leung and Yamashita (1999), palindromes
of certain lengths are assumed to be independent and uniformly distributed in
herpesvirus genomes, and thecan statistic is used to identify unusually large
clusters of palindromes.

It is commonly assumed that the bases of DNA are independent random
variables taking values in the set{A, C, G, T}. Under this assumption, if each word
of a particular type is represented by a point, then the points representing these
words form a locally dependent point process. Theorem 4.1 in this paper provides
an error bound for approximating such a point process by a Poisson process. The
error bound can be used to find conditions for which the approximation is good.
In general, the approximation is good if the words are rare in the sense that the
probabilities of their occurrences are small. However, the error bound can be made
more explicit only when the words are specified.

As an application, Theorem 4.1 provides a mathematical basis for Poisson
process modeling of rare words in a biomolecular sequence, and in particular of
palindromes in a DNA sequence. A consequence of this is that the observed rare
words may be regarded as a realization of i.i.d. random variables, thus providing
a mathematical basis for the assumption in Leung and Yamashita (1999) that the
points representing the palindromes are independent and uniformly distributed in
the herpesvirus genomes.

In Leung, Xia and Chen (2002) Poisson process approximation for palindromes
in sixteen herpesvirus genomes is studied. The centers of palindromes in each

herpesvirus genome are represented by the point procg¢8shtu, 2/n, ..., (n —
1)/n, 1}:
n
(5.7) E=Y lidi/n.
i=1

where the length of genome (number of base pairs) is denotedf pyhose
palindromes considered are of length at least(he length must be even) and
called Z-palindromes, the center of a palindrome of lengtki & the Kth

base in the palindrome from the left, and the number of possible centers of
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2L-palindromes isM — 2L + 1, denoted by:. Also, I; is the indicator random
variable for the occurrence of d&2palindrome centered at basg- L — 1 of the

DNA sequence. The palindromes are represented by their centers because the latter
are fixed irrespective of the lengths of the former, whereas the first base pair of a
palindrome of at least a certain length is random and will give rise to complications

in the analysis if it is used to represent the palindrome.

Since Z-palindromes with centers sufficiently far apart (more specifically,
further than Z — 1 bases apart) occur independently, the point process (5.7) is a
sequence of marked locally dependent trials as described in Section 4 of this paper,
towhich Theorem 4.1 is applicable. Hetig; 1 < i < n) are locally dependent with
neighborhoods

Ai={jii—2L+1<j<i+2L-1N{L2....,n}, i=12...n.

TakeD’ = [0, 1] anddp(x, y)=|x—y|. Let p; =P(; =1) andp,-j =P(; =
I; =1). It can be shown thap; = 6L, whered = 2(papr + pcpc) andpa, pr,
pc, pg are the probabilities of A, T, C, G, respectively.

Suppose

n
5.8 =pr, = and 4<L <—.
(5.8) pa=pr pc = pG <L=¢5
Then the next theorem follows from Theorem 4.1 with = i/n, Lemma 3.5
and a two-step approximation as in Section 5.2; namely, first approxighbiea
Poisson process with the same mean measure as tlEatot then approximate
the latter by a Poisson process on [0, 1] with intensity measune

THEOREM5.3. Wehave
26 1 L2
n

where A =37y pi =n0L, ba=3"_1Y ica, pir; <n(4L — 1)6%L,

n

bo=) Y. pij<n(4L—2)6%"?
i=1jeA;, j#£i

and A(dx) = Adx.

Since a proof of Theorem 5.3 is given in Leung, Choi, Xia and Chen (2002),
we will not give one here. It suffices to mention that the explicit bound on the
overlap probabilities in (5.9) is due to the explicit nature of the palindrome. In
order for P@A) to be nondegenerate in the limit,= n6% must converge to a
positive number ag — oo. This means thal. =Inn/In(1/6) + d, whered is
bounded. For such ah, the assumption (5.8) is satisfied for sufficiently large
Theorem 5.3 holds and the upper bound in (5.9) tends to0-asx.
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A significant feature of the bound in (5.9) is that it has the Stein factar 1
This is crucial for accuracy, as the valuelofanges from about 100 to 300 for the
sixteen herpesvirus genomes under study.

In Leung, Choi, Xia and Chen (2002), a direct proof of a special case
of Theorem 4.1 withU; =i/n is given (see Theorem 1 and the Appendix).
Also given are the details of deducing Theorem 5.3 from the special case of
Theorem 4.1 and the proof of the upper bound 184/2 (see Lemmas 1 and 2
and Propositions 1 and 2)his upper bound is then used as a guide to choose
optimal lengths of palindromes for the approximation. The scan statistics is then
applied to identify unusually large clusters of palindromes for each of the sixteen
herpesviruses.

Acknowledgment. The authors thank Peter Hall for this invitation to the
Australian National University in June 2003, during which part of the paper was
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